Bridge-Coder: Transferring Model Capabilities from High-Resource

to Low-Resource Programming Language

Anonymous ACL submission

Abstract

Most LLMs universally excel at generating
code for high-resource programming languages
(HRPLs) like Python, a capability that has
become standard due to the abundance of
training data. However, they struggle signif-
icantly with low-resource programming lan-
guages (LRPLs) such as D, exacerbating the
digital divide. This gap limits developers us-
ing LRPLs from equally benefiting and hinders
innovation within underrepresented program-
ming communities. To make matters worse,
manually generating data for LRPLs is highly
labor intensive and requires expensive expert
effort. In this work, we begin by analyzing the
NL-PL Gap, where LLMs’ direct-generated
LRPL data often suffers from subpar quality
due to the misalignment between natural lan-
guage (NL) instructions and programming lan-
guage (PL) outputs. To address this issue, we
introduce Bridge-Assist Generation, a method
to generate LRPL data utilizing LLM’s general
knowledge, HRPL proficiency, and in-context
learning capabilities. To further maximize
the utility of the generated data, we propose
Bridged Alignment to obtain Bridge-Coder.
To thoroughly evaluate our approach, we se-
lect four relatively LRPLs: R, D, Racket, and
Bash. Experimental results reveal that Bridge-
Coder achieves significant improvements over
the original model, with average gains of 18.71
and 10.81 on two comprehensive benchmarks,
M-HumanEval and M-MBPP.

1 Introduction

Large Language Models (LLMs) have shown re-
markable capabilities (Chen et al., 2021b) in as-
sisting with coding tasks such as code genera-
tion (Austin et al., 2021a), debugging (Zhong et al.,
2024; Xia et al., 2024), code explanation (Nam
et al., 2023). With the introduction of tools like
GitHub Copilot (Microsoft, 2023; Services, 2023),
models like OpenAl Codex (Chen et al., 2021b)
have greatly enhanced the efficiency of developers
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Figure 1: A comparison between Direct and the
Code-Bridge approach in solving coding-related tasks.
When responding to such tasks, models’ response in-
volves both Natural Language (NL) and Programming
Language (PL). However, due to the lack of training
data in LRPLs, the NL-PL Gap makes it challenging
for models to generate accurate responses directly. In
contrast, Code-Bridge mitigates this gap by leveraging
the model’s proficiency in HRPLs to generate an inter-
mediate NL-PL aligned process. This intermediate step
serves as a bridge, guiding the model to produce more
accurate and coherent responses in LRPLs.

by automating repetitive tasks, providing real-time
code suggestions, and offering in-depth explana-
tions of code functionality.

However, when it comes to low-resource pro-
gramming languages (LRPLs), the instruction-
following abilities of LLMs are significantly di-
minished (Cassano et al., 2022). This limits
LLMs’ ability to effectively support developers
working with LRPLs (Zheng et al., 2023; Orlan-
ski et al., 2023), preventing these developers from
fully benefiting from the advanced capabilities that
LLMs provide for High-Resource Programming
Languages (HRPLs). This uneven distribution
of benefits exacerbates digital inequality, further
widening the gap between developers in different
programming ecosystems.

While research has been conducted on low-
resource natural languages (LRNLs) (Xue, 2020;
Lample, 2019; Huang et al., 2019; Conneau et al.,
2019; Hu et al., 2020), LRPLs remain relatively un-
derexplored and present distinct challenges. First,



unlike NLs, where one language can address a
broad range of tasks, specific PLs are often de-
signed for specialized domains, limiting their ver-
satility. Second, programming demands greater
attention to the logical structure and coherence of
PL. Finally, programming tasks require generating
responses that seamlessly combine both NL (e.g.,
instructions or comments) and PL (the actual code),
adding a significant layer of complexity to LRPLs.

As illustrated in Figure 1, this interplay between
NL and PL introduces what we refer to as the NL-
PL Gap—a disconnect arising from the need to
align NL instructions with outputs in both NL and
PL. While LLMs exhibit some proficiency in LR-
PLs derived from indirect sources, this gap limits
their fully ability and often results in suboptimal
outputs. However, by first leveraging LLMs’ ca-
pabilities in HRPLs to generate an intermediate
Code-Bridge, the model can produce more accu-
rate responses. The Code-Bridge, which contains
both the HRPL solution and NL-formatted com-
ments explaining it, replaces purely NL-based in-
structions. This approach offers two key benefits:
(1) enhancing task comprehension by incorporating
both NL and PL information, and (2) leveraging
PL’s logical structure to guide the generation of
more accurate and coherent outputs in LRPLs.

In light of this, we propose a two-stage approach
to develop an enhanced model, Bridge-Coder, for
improving performance in LRPLs. The first stage,
Bridge-Assisted Generation, begins by leveraging
LLMs’ general knowledge for task screening to
ensure that the selected tasks are answerable within
the LRPL context. We then synthesize the Code-
Bridge and let LLMs use in-context learning abil-
ities to reference this bridge when responding to
instructions in LRPLs, enabling it to generate more
accurate and coherent results. Given the existence
of the NL-PL Gap, it is critical to effectively utilize
this data to help LLMs better address LRPL tasks.
To this end, the second stage, Bridged Alignment,
begins with assisted alignment, where intermediate
guidance is provided to help the LLM gradually
bridge the NL-PL Gap, avoiding an abrupt learning
leap. This is followed by direct alignment, which
focuses on enhancing the model’s ability to inde-
pendently respond to NL instructions in LRPLs.

To thoroughly evaluate our approach, we se-
lect four functionally diverse yet relatively low-
resource programming languages (LRPLs): R, D,
Racket, and Bash. We conduct experiments on

two comprehensive benchmarks, M-HumanEval
and N-MBPP, each featuring hundreds of tasks
per language that require passing numerous test
cases to ensure correctness. The results demon-
strate that our method significantly enhances the
model’s performance in LRPLs. Additionally, we
perform extensive experiments to validate the tech-
nical choices within our approach, which may offer
valuable insights into the underexplored domain of
low-resource programming languages.
In summary, our contributions are:

* We identify the NL-PL Gap as the primary
factor behind LLLMs’ poor performance in
LRPLs. This gap emerges due to program-
ming language datasets containing both PL
and NL components (e.g., instructions, com-
ments), complicating the alignment between
NL instructions and PL outputs.

* We introduce a two-stage method to ob-
tain Bridge-Coder that has enhanced perfor-
mance in LRPLs by first leveraging LLMs’
potential to generate high-quality data, then
following assist and direct alignment steps.

* Through extensive experiments across various
LRPLs, we demonstrate the effectiveness and
generalization of Bridge-Coder. Moreover,
we provide valuable insights that can guide
future research in the underexplored field of
low-resource programming languages.

2 Related Work
2.1 Code LLMs

Foundation Models. Training on code samples
with billions of tokens using hundreds of high-
performance GPUs, decoder-only code foundation
LLMs have been proven to have strong code gen-
eration ability across various tasks. Specifically,
Codex (Chen et al., 2021a) is OpenAl’s earliest
domain-specific LLM for coding and is believed to
support the Copilot service, which helps with auto-
matic code completion across different IDEs (Mi-
crosoft, 2023). Additionally, the open-source com-
munity has developed a series of code LLMs, such
as InCoder (Fried et al., 2022) and CodeT5 (Wang
et al., 2021), to further support the development of
stronger or domain-specific code assistants. More
precisely, Deepseek-coder (Guo et al., 2024) fam-
ily models and StarCoder (Li et al., 2023) fam-
ily models trained their model parameters from



scratch with trillions of tokens scraped from web
pages related to code. Code-Llama (Roziere et al.,
2023) and Code-Qwen (Hui et al., 2024) family
models perform post-training from general-purpose
models with code-related datasets to achieve high-
performance code foundation models.

Downstream Models. Besides developing code
foundation models, researchers often finetune these
code foundation models for specific applications.
Maigcoder (Wei et al., 2023) utilizes open-source
code snippets to create instruction datasets for fur-
ther improving code LLMs’ instruction-following
abilities. Wizard-Coder (Luo et al., 2024) and Wav-
Coder (Yu et al., 2023) use evol-instruct (Xu et al.,
2023) to extract effective instruction-code pairs
from proprietary LLMs through few-shot prompt-
ing and self-improvement. OctoCoder (Muen-
nighoff et al., 2023) uses Git commits and code
changes to generate instruction-following data and
enhance the model’s coding ability. Besides these
works, there exist several works (Paul et al., 2024;
Sun et al., 2024) focusing on using intermediate
representation like from LLVM to improve Code
LLMs. Cassano et al. (2024) proposed to translate
high resource PLs to low resource PLs with the
help of compiler.

2.2 LLMs’ Inherent Capabilities

Large Language Models (LLMs) possess several
intrinsic capabilities that are a result of the ex-
tensive training. One of their core strengths is
general knowledge reasoning (Liang et al., 2022),
which arises from the vast amount of diverse data
they are trained on (Touvron et al., 2023a,b; Guo
et al., 2024). This general reasoning ability en-
ables LLMs to provide accurate responses to a wide
range of tasks across different domains. Another
most powerful capability of LLMs is In-Context
Learning (ICL) (Brown et al., 2020). ICL enables
models to generate more accurate responses by
learning from the context provided in the input,
without the need for further training. As a training-
free approach, ICL is highly flexible and can be
applied in various ways, including data genera-
tion (Wang et al., 2022), personalized conversa-
tions (Pi et al., 2024), where the model adapts to
user preferences; and task-specific guidance, where
context helps refine and improve response accuracy.
ICL’s versatility makes it a valuable tool for enhanc-
ing performance across different applications.
Leveraging these capabilities, our approach uses

general knowledge reasoning for task screening to
ensure solvable tasks are selected and applies ICL
to utilize the Code-Bridge for more accurate LRPL
outputs.

2.3 Low-Resource Programming Languages

LRPL Benchmarks. An ideal multilingual code
generation benchmark requires diverse text queries,
verified test cases, and execution environments.
MultiPL-E(Cassano et al., 2022) fulfills these cri-
teria by extending HumanEval and MBPP to mul-
tiple programming languages through human ex-
pert translation and modification, while also pro-
viding verified test cases and execution sandboxes.
In contrast, other benchmarks like FIM(Face,
2023), CrossCodeEval (Ding et al., 2024), and
CodeXGLUE (Lu et al., 2021) either lack a focus
on text-to-code generation or do not specifically
address LRPLs, which is the primary focus of our
work.

LRPL Transcompilers. Although transcompil-
ers (source-to-source compilers) can theoretically
translate code between programming languages
(PL-to-PL), they fail to address the NL-PL Gap
(NL+PL-to-NL+PL), which is central to our re-
search. Transcompilers also require significant en-
gineering effort and become impractical for many
language pairs, such as Python, Java, D, Racket, R,
and Bash, which result in 36 combinations (Emre
et al., 2021). Existing works like IRCoder (Paul
et al., 2024) focus on PL-only semantics using inter-
mediate representations. In contrast, our approach
targets NL-PL pairs, offering a holistic solution
that integrates natural language understanding with
programming language consistency.

3 NL-PL Gap

The NL-PL Gap refers to the disparity that arises
when LLMs are tasked with following natural lan-
guage (NL) instructions in programming language
(PL). This gap is particularly pronounced in low-
resource programming languages (LRPLs). The
NL-PL gap stems from the following key factors:

Data Imbalance. The statistics in Table 9 high-
lights the stark data imbalance between high-
resource and low-resource programming languages.
Languages like JavaScript, Python, and Java have
millions of files in the StarCoder dataset, providing
LLMs with extensive NL-PL aligned data. In con-
trast, low-resource languages such as R, Racket,
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Figure 2: An illustration of Bridge-Coder. In Bridge-Assisted Generation, the LLM first identifies tasks suitable
for the target low-resource programming language (LRPL). Then, it generates a code-bridge in a high-resource
programming language (HRPL), combining both code and comments to explain the solution. This code-bridge
is then used to help bridge the NL-PL gap in LRPLs. In Bridged Alignment, the model is first guided by the
code-bridge to assist in aligning the NL-PL gap, and later progresses to generating responses directly from natural

language instructions without the code-bridge.

and D are vastly underrepresented, with only a frac-
tion of the data available. This disparity limits the
model’s ability to learn effective mappings from
NL to PL in LRPLs, significantly contributing to
the NL-PL Gap. The GitHub and TIOBE indices
further reflect this imbalance, reinforcing the chal-
lenges faced by LLMs when generating code for
underrepresented languages.

Complexity of Mapping NL to PL. Unlike
purely natural language tasks, coding tasks require
models to first understand NL instructions and then
generate executable PL code, often together with
NL comments to explain the code. In HRPLs, mod-
els excel due to the abundance of NL-PL aligned
data. However, for LRPLs, this mapping is more
difficult due to limited data. As shown in our exper-
iments, directly generating code for LRPLs leads to
lower-quality outputs, whereas using a code-bridge
as a transitional step improves code quality by mit-
igating the NL-PL gap.

4 Methodology

In this section, we present the details of our ap-
proach to obtain Bridge-Coder, including two
phases: Bridge-Assisted Generation (Section 4.1)
and Bridged Alignment (Section 4.2). The key idea
of Bridge-Assisted Generation is fully leveraging

LLMs’ intrinsic capabilities to generate instruction
following data for low-resouce programming lan-
guages (LRPLs). Afterward, Bridged Alignment
gradually helps the model overcome the NL-PL
Gap, improving its performance on LRPLs. An
illustration of Bridge-Coder is shown in Figure 2.

4.1 Bridge-Assisted Generation

This section introduces a novel approach for gen-
erating training data for LRPLs. We first leverage
the LLM’s general knowledge reasoning abilities
to identify the task set 7 that can be effectively
solved using the target LRPL, denoted as P L.
Next, we utilize the LLM’s strong understanding
and generation capabilities in a HRPL to generate
the code-bridge, denoted as P Lyqe. Finally, by us-
ing the LLM’s in-context learning (ICL) abilities,
we rephrase the task 7 with the help of P Lyqg,
which enables the LLM to generate the desired
response in the target LRPL P Ly,,.

4.1.1 Task Screening

Existing code instruction datasets often include
general-purpose tasks, while others can only be
solved with specific programming languages. If
unsuitable tasks are not filtered out, the model may
fail to respond when the task is unanswerable in
the target language. Even more concerning, several



studies (Spiess et al., 2024; Shum et al., 2024) have
highlighted that, due to mis-calibration, LLMs tend
to confidently generate incorrect answers in such
cases. This issue further emphasizes the impor-
tance of task screening to prevent such errors and
improve response quality.

We observe that while current LLMs struggle
with LRPL code generation, they perform much
better in classification tasks that simply judge
whether a task can be solved using a specific LRPL.
This is because classification tasks, unlike code
generation, do not require the LLM to bridge the
NL-PL Gap. Instead, the model can rely on its gen-
eral reasoning abilities to provide a straightforward
‘Yes’ or ‘No’. answer. Additionally, as the model’s
accuracy improves, we enhance this process by re-
quiring the LLM to provide logical explanations
for its judgments, further validating its decision-
making process. We validate the importance of
this screening step with experimental evidence in
Section 6.3.4, showing its critical role in improving
output quality.

4.1.2 Code-Bridge Synthesis

When LLMs answer task 7, they first need to com-
prehend the natural language (NL) instructions and
then generate a response in the programming lan-
guage (PL), which often includes adding NL com-
ments to the code. This makes NL-PL alignment in
the training data crucial. In high-resource program-
ming languages (HRPLs), the abundance of NL-PL
aligned data in the training sets allows LLMs to
perform effectively.

Here, we leverage the existing capabilities of
LLMs in HRPLs to follow the NL instruction. Fur-
thermore, we also ask LLMs to include comments
explaining the key steps and the thought process
behind the solution. In this way, we create the
code-bridge P Lygg, which combines both NL (i.e.,
comments) and PL (i.e., code). This serves as
a reinterpretation of the NL instruction from the
perspective of PL logic, transforming what might
seem like simple instructions in NL into a more
explicit and detailed process in PL. Programming
languages often require a step-by-step breakdown
and precise logic that natural language tends to ab-
stract away, making P Lp4e an essential way for
bridging this gap. This approach ensures that even
with limited NL-PL aligned data in LRPLs, LLMs
can still effectively generate correct and coherent
solutions by leveraging the detailed structure and
reasoning provided by the code-bridge.

4.1.3 Guided Code Transfer

For LRPLs, which are underrepresented in training
data, the NL-PL Gap presents a major challenge.
Although LLMs possess some code generation ca-
pabilities, the lack of well-aligned data between NL
instructions and PL reasoning leads to suboptimal
solutions, making it difficult to generate accurate
responses to NL instructions in LRPLs.

To overcome this, we utilize the previously gen-
erated code-bridge to mitigate the NL-PL gap. Dur-
ing this step, when generating responses in LRPLs,
the code-bridge is appended to the instruction as
additional context. By harnessing the in-context
learning (ICL) capabilities of LLMs, this approach
allows the model to reference the PL logic in the
code-bridge, guiding it when responding to NL in-
structions. This significantly improves the quality
of the model’s output in LRPLs.

This process is analogous to a non-native English
speaker first drafting their thoughts in their native
language and then translating them into English.
The code-bridge acts as a “draft" in PL, enabling
the LLM to better interpret NL instructions and
produce more accurate answers in LRPLs.

4.2 Bridged Training

We draw inspiration from the concept of curriculum
learning (Bengio et al., 2009) and apply it to the
learning of LRPLs. To effectively bridge the NL-
PL gap and improve LLM performance in low-
resource programming languages, we divide the
training process into two stages.

Assist Alignment. In the first stage, the primary
goal is to assist the LLM in bridging the NL-PL gap
by providing additional support through the code-
bridge. The input includes the instruction of task
T, along with the code-bridge in the high-resource
programming language P Lpqg, Which serves as a
guide. The LLM uses this reference to assist in
generating the target response in the low-resource
programming language P L. The loss function
can be formalized as:

T
Lasis = — 3 log Pyl | y21 T, PLygy)
t=1

Direct Alignment. In the second stage, the fo-
cus shifts to helping the LLM adapt to real-world
scenarios by asking it to directly follow NL instruc-
tions without any assistance from the code-bridge.
This approach ensures the model becomes more



Models

I M-HumanEval passe@1

M-MBPP pass@1

H RR Ep # Bash ) Racket Avg H RR Ep # Bash ) Racket Avg

CodeLlama 18.42 11.76 10.09 12.34 13.15 24.75 20.75 19.77 21.50 21.69

CodeGemma 20.92 10.47 8.10 9.04 12.13 24.73 15.94 11.57 20.57 18.20

DeepSeek-Coder-Base 29.28 20.73 24.51 19.84 23.59 38.23 30.83 28.67 3248 32555
Magicoder-DS 38.3149.03 19.47-1.26 29.17+4.66  29.1749.33 | 29.034544 41.134290  3249+1.66 28.52.0.15 37.75+5.27 | 34.97+2.42
Magicoder-S-DS 40.63+11.35 24.60+3.87 33.0648.55 30.50+10.66 | 32.20+8.61 44.03+5.80  31.76+0.93 24.43.424 37.83+535 | 34.51+1.96
DeepSeek-Coder-DG 37.56+8.28  27.7647.03 37.26+12.75 30.95+11.11 | 33.38+9.79 46.74+8.51  36.47+5.64 34264559 33.9641.48 | 37.86+5.3]
DeepSeek-Coder-IC 42.93413.65 31.39+10.66 37.26+12.75 33.81+13.97 | 36.35+12.76 || 47.1248.89  38.52+7.69 34.1649.65 37.30+4.82 | 39.28+6.73
DeepSeek-Coder-BC || 49.11+19.83  35.51+14.78 42.99+18.48 41.57+21.73 | 42.30+18.71 | 50.53+12.30 43.51+12.68 35.83+7.16 43.57+11.09 | 43.36+10.81

Table 1: Comparison of different models on two mainstream benchmarks for multilingual code generation, each
featuring multiple test inputs per case. To ensure a comprehensive and challenging evaluation, we adopt pass@1,
allowing models only a single attempt to produce the correct solution. Here, -DG denotes DeepSeek-Coder-Base
fine-tuned on data from direct generation, -IC on data generated via in-context learning, and -BC using our proposed
framework. We also compare Magicoder-DS (Wei et al., 2023) which also finetuned based on the our base model.
Bold values indicate the best performance. + and — represent the difference compared to DeepSeek-Coder-Base.

capable of solving tasks independently, as it would
in practical applications where such assistance is
not available. The training loss for this phase is
calculated as:

T
Edirect = — Z lOg P(yfl’mf ’ yitLlar’ 7-)
t=1

This two-step process facilitates a smooth and
effective learning progression, moving from guided
learning with assistance to independent problem-
solving in LRPLs, as validated in the subsequent
experiments in Section 6.2, highlighting the bene-
fits of this approach.

5 Evaluation Settings

5.1 LRPLs and Benchmarks

LRPLs. To fully validate the generalization abil-
ity of our method, we selected four low-resource
programming languages: R, D, Racket, and Bash.
These languages cover a broad range of functional-
ities, including statistical computing, systems pro-
gramming, language creation, and automation. De-
tailed descriptions of these languages can be found
in the Appendix A.2.

Benchmarks. We utilize the adapted versions
of two widely recognized benchmarks that also
contain low-resource programming languages,
M-HumanEval(Chen et al.,, 2021b) and M-
MBPP(Austin et al., 2021b).! Both benchmarks
are highly challenging due to their rigorous require-
ments: each programming task consists of hun-
dreds of problems, where a solution must pass nu-
merous test cases to be considered correct. For
example, M-HumanEval evaluates over 150 tasks

'We use the MultiPL-E (Cassano et al., 2022) framework
for evaluation to evaluate models on this two benchmarks.

per language, with each requiring an average of
9.6 test cases to validate correctness, ensuring a
stringent evaluation process. Similarly, M-MBPP
evaluates nearly 400 tasks per language, further
testing the robustness of models under diverse sce-
narios. To better reflect real-world demands, we
adopt the pass@1 metric, which requires the model
to generate a correct solution on the first attempt.

5.2 Models

Baseline Models. We select five baseline
models for comparison: CodelLlama (Roziere
et al., 2023); CodeGemma (Team et al., 2024);
DeepSeek-Coder-Base (Guo et al., 2024), which
serves as the base model for our subsequent fine-
tuning experiments; Magicoder-DS (Wei et al.,
2023), a widely used benchmark model for code
generation, trained on the OSS-Instruct dataset
and built upon DeepSeek-Coder-Base; and
MagicoderS-DS (Wei et al., 2023), an enhanced
version of Magicoder-DS, further trained on both
the OSS-Instruct and Evol-Instruct datasets (Luo
et al., 2024), offering superior performance across
various coding benchmarks while also being based
on DeepSeek-Coder-Base.

Models for Generation. The models used during
the Bridge-Assisted Generation process include:
Llama3-7@B (Dubey et al., 2024), our primary
model, which combines strong general-purpose
reasoning with high performance in code gener-
ation tasks, making it suitable for a wide range
of applications; L1ama3-8B, a smaller variant of
Llama3 that leans more towards general-purpose
tasks with moderate code generation capabilities;
and StarCoder2-Instruct-15B (Li et al., 2023),
a specialized code LLLM with strong capabilities
for code-related tasks but limited general-purpose



reasoning abilities.

5.3 Comparison

Data Generation. In our experiments, we em-
ploy two different approaches for generating data:
DG (Direct Generation): In this approach, the model
generates code directly from the natural language
task without any intermediate steps. IC (In-Context
Examples): This approach utilizes some human
generated examples to help the model better under-
stand the task during generation. BC (Ours): This
approach introduces a code-bridge, which acts as
an intermediary between the task and the final code
generation.

Training Methods. We compare several train-
ing techniques, where our training data is repre-
sented as {input; output}. 7 denotes the NL (natu-
ral language) task instruction, P Lyq4g represents the
HRPLs output that acts as a bridge, and P Ly, is
the answer in the target low-resource programming
language (LRPL). The Separate Alignment method
is represented as {7; PLydg } U{T; PL}. Direct
Alignment involves {T; PL,}. Assist Alignment
combines {7, PLpqg; P Liar }, While Bridged Align-
ment begins with assist alignment and transitions
to direct alignment.

6 Experimental Results

6.1 Main Results

As shown in Table 1, the performance of various
models underscores the challenges of adapting to
Low-Resource Programming Languages (LRPLs).
Models like Codel. 1ama(Roziere et al., 2023) and
CodeGemma(Team et al., 2024) exhibit strong ca-
pabilities in HRPLs but struggle significantly on
LRPLs. For instance, CodeGemma achieves lower
average scores on both M-HumanEval and M-
MBPP compared to DeepSeek-Coder-Base, high-
lighting its limited ability to generalize beyond
HRPLs. Similarly, CodelL1ama, while competitive
in HRPL scenarios, shows minimal performance
in languages like Bash and Racket, further empha-
sizing the difficulty of LRPL adaptation without
targeted strategies.

Models such as DeepSeek-Coder-DG and
DeepSeek-Coder-1IC, which incorporate
directly generated data or in-context learn-
ing, demonstrate modest improvements over
DeepSeek-Coder-Base. However, their gains are
inconsistent and limited, particularly in scenarios

Training Methods R D Avg
Separate Alignment | 46.89 23.87 35.38
Direct Alignment | 42.63 3245 37.54
Assist Alignment | 42.93 33.87 38.40
Bridged Alignment | 49.11 35.51 42.31

Table 2: Comparison of different aligning methods.

requiring deeper NL-PL alignment. For example,
while DeepSeek-Coder-IC performs well in R
and Racket, it still lags in Bash, showcasing the
limitations of direct data generation strategies for
LRPLs.

In contrast, our proposed Bridge-Coder frame-
work (DeepSeek-Coder-BC) achieves substantial
improvements across all LRPLs and benchmarks.
By introducing the code-bridge as an intermedi-
ate step, our method effectively enhances NL-PL
alignment, producing higher-quality LRPL train-
ing data that leverages the model’s HRPL strengths.
For example, DeepSeek-Coder-BC achieves signif-
icant improvements of +19.83 in R and +21.73 in
Racket on M-HumanEval, with consistent gains
across all benchmarks. It also outperforms all base-
lines, with average improvements of +18.71 on
M-HumanEval and +10.81 on M-MBPP.

6.2 Comparison of Training Methods

We compared various training methods to assess
their effectiveness in aligning NL instructions with
LRPL outputs. As shown in Table 2, Assist Align-
ment alone performs worse because the model be-
comes overly reliant on the code-bridge and strug-
gles to generalize to NL-only instructions. Di-
rect Alignment also underperforms, as the model
is forced to bridge the NL-PL gap without any
support, highlighting the importance of gradual
learning. Our Bridged Training approach, which
begins with Assist Alignment and transitions to Di-
rect Alignment, consistently achieves the best re-
sults. To ensure the improvements weren’t solely
due to the HRPL component of the code-bridge,
we tested Separate Alignment, which showed in-
stability in D, confirming that combining the two
phases of Bridged Training leads to more robust
and effective performance..

6.3 Further Analysis
6.3.1 Code LLM Performs Better?

One might expect that code-specific models would
perform best for generating code-related data, but



Synthesis Transfer R D Avg
Code Code 29.56 26.61 28.08
Code General | 32.22 27.50 29.86

General General | 37.53 28.16 32.85
General Code 3423 2590 30.07

Table 3: Comparison of code-specific models (Code)
and general-purpose models (General) in different com-
binations of Code-Bridge Synthesis and Guided Code
Transfer. Bold indicates the best result, and underline
indicates the second-best result.

Assist Format R D Avg
PL 42.64 32.57 | 37.61

NL 40.89 30.72 | 35.81

NL + PL 44.71 35.51 | 40.11

Table 4: Comparison of different assist formats in the
Assist Alignment during the second phase.

as shown in Table 3, the combination of code mod-
els for both Synthesis and Transfer stages actually
performs the worst. In contrast, general-purpose
models consistently improve performance, with
the best results coming from using general models
for both stages. This can be attributed to the fact
that Code-Bridge Synthesis primarily leverages the
model’s HRPL capability, which reduces the per-
formance gap between code-specific and general
models. However, in the Guided Code Transfer
stage, in-context learning (ICL) becomes more crit-
ical, where general models seem to outperform
code-specific ones.

6.3.2 NL vs. PL: Which Matters More?

In the first phase of our Bridged Training, we ex-
plored whether using NL-formatted comments or
PL-formatted code as part of the Assist Alignment
yields better alignment. As shown in Table 4, train-
ing with code (PL) alone outperforms comments
(NL) alone. However, relying solely on code is still
not the optimal approach. The combination of both
NL and PL (code & comments) leads to the best re-
sults, highlighting the complementary nature of NL
and PL in bridging the NL-PL gap and improving
overall performance. This also explains why, in our
generation of the code-bridge, we emphasize the
need for explanations in the form of NL comments
to assist and enhance the code output.

6.3.3 Different HRPLs as Code-Bridge

The results in Table 5 demonstrate that Python out-
performs C++ and Java as the code-bridge pro-

Code-Bridge HRPL R D
Python 47.61 33.87
C++ 44.29 30.62
JAVA 46.47 3193

Table 5: Further Analysis of different Programming
Languages used as Code-Bridge in the first stage.

w/ TS
w/o TS

N w N
o o o

Accuracy

fun
o

o

R D Racket Bash
Low Resource Programming Languages

Figure 3: Ablation of Task Screening.

gramming language. This is likely due to Python’s
prevalence in the training data, which enables the
model to generate more accurate and effective code-
bridges. Python’s extensive library ecosystem for
tasks like data science and automation also pro-
vides more tools for generating robust code. Ad-
ditionally, Python’s simplicity and readability con-
tribute to better alignment with natural language
instructions, facilitating a smoother NL-PL transi-
tion. In contrast, C++ and Java’s more complex
syntax and explicit logic make them less effective
for generating efficient code-bridges in this context.

6.3.4 Ablation of Task Screening

Figure 3 highlights the importance of task screen-
ing. While the dataset without screening includes
more tasks, the performance on unanswerable tasks
is poor. With Task Screening (w/ TS), accuracy im-
proves significantly across all LRPLs (R, D, Racket,
Bash). This demonstrates that filtering out tasks be-
yond the model’s capability leads to better results
and validates the effectiveness of using LLMs’ gen-
eral reasoning for task screening.

7 Conclusion

This paper tackles the challenge of generating high-
quality programs in low-resource languages. By
leveraging LLLMs’ intrinsic abilities and expertise
in high-resource programming languages, we cre-
ate a new, high-quality dataset for low-resource lan-
guages. We also propose a progressive alignment
to mitigate the gap. Experimental results show our
methods significantly outperform the baseline.



Limitations

Despite strong instruction-following capabilities,
our work remains confined to repository-level text-
to-code generation, which involves long-context
modeling and resolving lost-in-the-middle issues.
Additionaly, future studies should address multi-
round text-code challenges, requiring repeated in-
teractions and more detailed instructions.
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A Appendix
A.1 Detailed Prompts

This is a section in the appendix.

A.2 Low-Resource Programming Languages

* R: A programming language widely used for
statistical computing, data analysis, and vi-
sualization. It is highly popular in academia,
research, and data science due to its extensive
libraries and tools for handling complex data.

* D: A systems programming language de-
signed for high performance and productiv-
ity. It combines the power of C and C++ with
more modern features, making it ideal for ap-
plications that require efficiency and low-level
system access, while maintaining a developer-
friendly syntax.

* Racket: A functional programming language
that excels in language creation and experi-
mentation. It is commonly used in academic
settings and research for developing new pro-
gramming languages, as well as for teaching
concepts in computer science and functional
programming.

* Bash: A Unix shell and command language
widely used for scripting and automation tasks
in system administration, software develop-
ment, and task automation. Bash scripts are
frequently used for managing servers, exe-
cuting repetitive tasks, and automating work-
flows in Linux environments.
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Prompt for Task Screening

You are a highly knowledgeable assistant that specializes in problem-solving across various programming languages.
You should judge whether <Programming Language > can be used to solve the problem below.

You should always respond with either “Yes" or “No", followed by a concise explanation. Be concise and direct in
your responses.

Here is the task: <Task>

Table 6: The prompt for screening tasks that are unanswerable in Low-Resource Programming Language.

Prompt for Bridge-Assisted Generation

You are a highly knowledgeable assistant that specializes in problem-solving across various programming languages.

Help me use to solve the problem below. In your response, you need to provide detailed
comments to explain the key steps and the reasoning process, rather than only responding the solution.

Here is the task: <Task>

Table 7: The prompt for synthesizing code-bridge in

Prompt for Guided Code Transfer

You are a highly knowledgeable assistant that specializes in problem-solving across various programming languages.
Help me use <Programming Language> to solve the problem below.
Here is the task: <Task>

To help you better solve this task, you can refer to this solution in

.

Table 8: The prompt for generating answers in L.ow-Resource Programming Language. is the
answer in a

B Implementation Details

StarCoder
L. . Language GitHub (%) TIOBE (%)

For optimization, we used the Adafactor (Shazeer Num. files _Percentage
.. . . Bash - - - 43
and Stern, 2018) optimizer with a learning rate of Cor 6377914 6379 70 4
5 x 107°. The model was trained for 2 epochs c# 10,839,399 5.823 3.1 5
with a warm-up of 15 steps. The batch size was set GD 730461 2101 7 ?;

. . [¢] y X . .

to 512. To improve efficiency, we employed Flash Java 20151565  11.336 13.1 3
Attention (Dao et al., 2022) and used the bf16 preci- JavaScript 21,108,587  8.437 143 7
sion for faster and more memory-efficient training Python  12.962,245  7.875 - :
: R 39,194 0.039 0.05 19
L. Racket 4,201 0.004 - -
C Statistics Rust 1,386,585 1.188 11 2
Ruby 3,405,374  0.888 6.2 15

Table 9: Programming Language Statistics: The Star-
Coder parts are based on data from their report (Li et al.,
2023). The last two columns are derived from GitHut
2.0 and the 2022 TIOBE Programming Community
Index, as referenced in the MultiPLE benchmark pa-
per (Cassano et al., 2022).
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