
Bridge-Coder: Transferring Model Capabilities from High-Resource
to Low-Resource Programming Language

Anonymous ACL submission

Abstract

Most LLMs universally excel at generating001
code for high-resource programming languages002
(HRPLs) like Python, a capability that has003
become standard due to the abundance of004
training data. However, they struggle signif-005
icantly with low-resource programming lan-006
guages (LRPLs) such as D, exacerbating the007
digital divide. This gap limits developers us-008
ing LRPLs from equally benefiting and hinders009
innovation within underrepresented program-010
ming communities. To make matters worse,011
manually generating data for LRPLs is highly012
labor intensive and requires expensive expert013
effort. In this work, we begin by analyzing the014
NL-PL Gap, where LLMs’ direct-generated015
LRPL data often suffers from subpar quality016
due to the misalignment between natural lan-017
guage (NL) instructions and programming lan-018
guage (PL) outputs. To address this issue, we019
introduce Bridge-Assist Generation, a method020
to generate LRPL data utilizing LLM’s general021
knowledge, HRPL proficiency, and in-context022
learning capabilities. To further maximize023
the utility of the generated data, we propose024
Bridged Alignment to obtain Bridge-Coder.025
To thoroughly evaluate our approach, we se-026
lect four relatively LRPLs: R, D, Racket, and027
Bash. Experimental results reveal that Bridge-028
Coder achieves significant improvements over029
the original model, with average gains of 18.71030
and 10.81 on two comprehensive benchmarks,031
M-HumanEval and M-MBPP.032

1 Introduction033

Large Language Models (LLMs) have shown re-034

markable capabilities (Chen et al., 2021b) in as-035

sisting with coding tasks such as code genera-036

tion (Austin et al., 2021a), debugging (Zhong et al.,037

2024; Xia et al., 2024), code explanation (Nam038

et al., 2023). With the introduction of tools like039

GitHub Copilot (Microsoft, 2023; Services, 2023),040

models like OpenAI Codex (Chen et al., 2021b)041

have greatly enhanced the efficiency of developers042

Figure 1: A comparison between Direct and the
Code-Bridge approach in solving coding-related tasks.
When responding to such tasks, models’ response in-
volves both Natural Language (NL) and Programming
Language (PL). However, due to the lack of training
data in LRPLs, the NL-PL Gap makes it challenging
for models to generate accurate responses directly. In
contrast, Code-Bridge mitigates this gap by leveraging
the model’s proficiency in HRPLs to generate an inter-
mediate NL-PL aligned process. This intermediate step
serves as a bridge, guiding the model to produce more
accurate and coherent responses in LRPLs.

by automating repetitive tasks, providing real-time 043

code suggestions, and offering in-depth explana- 044

tions of code functionality. 045

However, when it comes to low-resource pro- 046

gramming languages (LRPLs), the instruction- 047

following abilities of LLMs are significantly di- 048

minished (Cassano et al., 2022). This limits 049

LLMs’ ability to effectively support developers 050

working with LRPLs (Zheng et al., 2023; Orlan- 051

ski et al., 2023), preventing these developers from 052

fully benefiting from the advanced capabilities that 053

LLMs provide for High-Resource Programming 054

Languages (HRPLs). This uneven distribution 055

of benefits exacerbates digital inequality, further 056

widening the gap between developers in different 057

programming ecosystems. 058

While research has been conducted on low- 059

resource natural languages (LRNLs) (Xue, 2020; 060

Lample, 2019; Huang et al., 2019; Conneau et al., 061

2019; Hu et al., 2020), LRPLs remain relatively un- 062

derexplored and present distinct challenges. First, 063

1



unlike NLs, where one language can address a064

broad range of tasks, specific PLs are often de-065

signed for specialized domains, limiting their ver-066

satility. Second, programming demands greater067

attention to the logical structure and coherence of068

PL. Finally, programming tasks require generating069

responses that seamlessly combine both NL (e.g.,070

instructions or comments) and PL (the actual code),071

adding a significant layer of complexity to LRPLs.072

As illustrated in Figure 1, this interplay between073

NL and PL introduces what we refer to as the NL-074

PL Gap—a disconnect arising from the need to075

align NL instructions with outputs in both NL and076

PL. While LLMs exhibit some proficiency in LR-077

PLs derived from indirect sources, this gap limits078

their fully ability and often results in suboptimal079

outputs. However, by first leveraging LLMs’ ca-080

pabilities in HRPLs to generate an intermediate081

Code-Bridge, the model can produce more accu-082

rate responses. The Code-Bridge, which contains083

both the HRPL solution and NL-formatted com-084

ments explaining it, replaces purely NL-based in-085

structions. This approach offers two key benefits:086

(1) enhancing task comprehension by incorporating087

both NL and PL information, and (2) leveraging088

PL’s logical structure to guide the generation of089

more accurate and coherent outputs in LRPLs.090

In light of this, we propose a two-stage approach091

to develop an enhanced model, Bridge-Coder, for092

improving performance in LRPLs. The first stage,093

Bridge-Assisted Generation, begins by leveraging094

LLMs’ general knowledge for task screening to095

ensure that the selected tasks are answerable within096

the LRPL context. We then synthesize the Code-097

Bridge and let LLMs use in-context learning abil-098

ities to reference this bridge when responding to099

instructions in LRPLs, enabling it to generate more100

accurate and coherent results. Given the existence101

of the NL-PL Gap, it is critical to effectively utilize102

this data to help LLMs better address LRPL tasks.103

To this end, the second stage, Bridged Alignment,104

begins with assisted alignment, where intermediate105

guidance is provided to help the LLM gradually106

bridge the NL-PL Gap, avoiding an abrupt learning107

leap. This is followed by direct alignment, which108

focuses on enhancing the model’s ability to inde-109

pendently respond to NL instructions in LRPLs.110

To thoroughly evaluate our approach, we se-111

lect four functionally diverse yet relatively low-112

resource programming languages (LRPLs): R, D,113

Racket, and Bash. We conduct experiments on114

two comprehensive benchmarks, M-HumanEval 115

and N-MBPP, each featuring hundreds of tasks 116

per language that require passing numerous test 117

cases to ensure correctness. The results demon- 118

strate that our method significantly enhances the 119

model’s performance in LRPLs. Additionally, we 120

perform extensive experiments to validate the tech- 121

nical choices within our approach, which may offer 122

valuable insights into the underexplored domain of 123

low-resource programming languages. 124

In summary, our contributions are: 125

• We identify the NL-PL Gap as the primary 126

factor behind LLMs’ poor performance in 127

LRPLs. This gap emerges due to program- 128

ming language datasets containing both PL 129

and NL components (e.g., instructions, com- 130

ments), complicating the alignment between 131

NL instructions and PL outputs. 132

• We introduce a two-stage method to ob- 133

tain Bridge-Coder that has enhanced perfor- 134

mance in LRPLs by first leveraging LLMs’ 135

potential to generate high-quality data, then 136

following assist and direct alignment steps. 137

• Through extensive experiments across various 138

LRPLs, we demonstrate the effectiveness and 139

generalization of Bridge-Coder. Moreover, 140

we provide valuable insights that can guide 141

future research in the underexplored field of 142

low-resource programming languages. 143

2 Related Work 144

2.1 Code LLMs 145

Foundation Models. Training on code samples 146

with billions of tokens using hundreds of high- 147

performance GPUs, decoder-only code foundation 148

LLMs have been proven to have strong code gen- 149

eration ability across various tasks. Specifically, 150

Codex (Chen et al., 2021a) is OpenAI’s earliest 151

domain-specific LLM for coding and is believed to 152

support the Copilot service, which helps with auto- 153

matic code completion across different IDEs (Mi- 154

crosoft, 2023). Additionally, the open-source com- 155

munity has developed a series of code LLMs, such 156

as InCoder (Fried et al., 2022) and CodeT5 (Wang 157

et al., 2021), to further support the development of 158

stronger or domain-specific code assistants. More 159

precisely, Deepseek-coder (Guo et al., 2024) fam- 160

ily models and StarCoder (Li et al., 2023) fam- 161

ily models trained their model parameters from 162

2



scratch with trillions of tokens scraped from web163

pages related to code. Code-Llama (Roziere et al.,164

2023) and Code-Qwen (Hui et al., 2024) family165

models perform post-training from general-purpose166

models with code-related datasets to achieve high-167

performance code foundation models.168

Downstream Models. Besides developing code169

foundation models, researchers often finetune these170

code foundation models for specific applications.171

Maigcoder (Wei et al., 2023) utilizes open-source172

code snippets to create instruction datasets for fur-173

ther improving code LLMs’ instruction-following174

abilities. Wizard-Coder (Luo et al., 2024) and Wav-175

Coder (Yu et al., 2023) use evol-instruct (Xu et al.,176

2023) to extract effective instruction-code pairs177

from proprietary LLMs through few-shot prompt-178

ing and self-improvement. OctoCoder (Muen-179

nighoff et al., 2023) uses Git commits and code180

changes to generate instruction-following data and181

enhance the model’s coding ability. Besides these182

works, there exist several works (Paul et al., 2024;183

Sun et al., 2024) focusing on using intermediate184

representation like from LLVM to improve Code185

LLMs. Cassano et al. (2024) proposed to translate186

high resource PLs to low resource PLs with the187

help of compiler.188

2.2 LLMs’ Inherent Capabilities189

Large Language Models (LLMs) possess several190

intrinsic capabilities that are a result of the ex-191

tensive training. One of their core strengths is192

general knowledge reasoning (Liang et al., 2022),193

which arises from the vast amount of diverse data194

they are trained on (Touvron et al., 2023a,b; Guo195

et al., 2024). This general reasoning ability en-196

ables LLMs to provide accurate responses to a wide197

range of tasks across different domains. Another198

most powerful capability of LLMs is In-Context199

Learning (ICL) (Brown et al., 2020). ICL enables200

models to generate more accurate responses by201

learning from the context provided in the input,202

without the need for further training. As a training-203

free approach, ICL is highly flexible and can be204

applied in various ways, including data genera-205

tion (Wang et al., 2022), personalized conversa-206

tions (Pi et al., 2024), where the model adapts to207

user preferences; and task-specific guidance, where208

context helps refine and improve response accuracy.209

ICL’s versatility makes it a valuable tool for enhanc-210

ing performance across different applications.211

Leveraging these capabilities, our approach uses212

general knowledge reasoning for task screening to 213

ensure solvable tasks are selected and applies ICL 214

to utilize the Code-Bridge for more accurate LRPL 215

outputs. 216

2.3 Low-Resource Programming Languages 217

LRPL Benchmarks. An ideal multilingual code 218

generation benchmark requires diverse text queries, 219

verified test cases, and execution environments. 220

MultiPL-E(Cassano et al., 2022) fulfills these cri- 221

teria by extending HumanEval and MBPP to mul- 222

tiple programming languages through human ex- 223

pert translation and modification, while also pro- 224

viding verified test cases and execution sandboxes. 225

In contrast, other benchmarks like FIM(Face, 226

2023), CrossCodeEval (Ding et al., 2024), and 227

CodeXGLUE (Lu et al., 2021) either lack a focus 228

on text-to-code generation or do not specifically 229

address LRPLs, which is the primary focus of our 230

work. 231

LRPL Transcompilers. Although transcompil- 232

ers (source-to-source compilers) can theoretically 233

translate code between programming languages 234

(PL-to-PL), they fail to address the NL-PL Gap 235

(NL+PL-to-NL+PL), which is central to our re- 236

search. Transcompilers also require significant en- 237

gineering effort and become impractical for many 238

language pairs, such as Python, Java, D, Racket, R, 239

and Bash, which result in 36 combinations (Emre 240

et al., 2021). Existing works like IRCoder (Paul 241

et al., 2024) focus on PL-only semantics using inter- 242

mediate representations. In contrast, our approach 243

targets NL-PL pairs, offering a holistic solution 244

that integrates natural language understanding with 245

programming language consistency. 246

3 NL-PL Gap 247

The NL-PL Gap refers to the disparity that arises 248

when LLMs are tasked with following natural lan- 249

guage (NL) instructions in programming language 250

(PL). This gap is particularly pronounced in low- 251

resource programming languages (LRPLs). The 252

NL-PL gap stems from the following key factors: 253

Data Imbalance. The statistics in Table 9 high- 254

lights the stark data imbalance between high- 255

resource and low-resource programming languages. 256

Languages like JavaScript, Python, and Java have 257

millions of files in the StarCoder dataset, providing 258

LLMs with extensive NL-PL aligned data. In con- 259

trast, low-resource languages such as R, Racket, 260

3



Figure 2: An illustration of Bridge-Coder. In Bridge-Assisted Generation, the LLM first identifies tasks suitable
for the target low-resource programming language (LRPL). Then, it generates a code-bridge in a high-resource
programming language (HRPL), combining both code and comments to explain the solution. This code-bridge
is then used to help bridge the NL-PL gap in LRPLs. In Bridged Alignment, the model is first guided by the
code-bridge to assist in aligning the NL-PL gap, and later progresses to generating responses directly from natural
language instructions without the code-bridge.

and D are vastly underrepresented, with only a frac-261

tion of the data available. This disparity limits the262

model’s ability to learn effective mappings from263

NL to PL in LRPLs, significantly contributing to264

the NL-PL Gap. The GitHub and TIOBE indices265

further reflect this imbalance, reinforcing the chal-266

lenges faced by LLMs when generating code for267

underrepresented languages.268

Complexity of Mapping NL to PL. Unlike269

purely natural language tasks, coding tasks require270

models to first understand NL instructions and then271

generate executable PL code, often together with272

NL comments to explain the code. In HRPLs, mod-273

els excel due to the abundance of NL-PL aligned274

data. However, for LRPLs, this mapping is more275

difficult due to limited data. As shown in our exper-276

iments, directly generating code for LRPLs leads to277

lower-quality outputs, whereas using a code-bridge278

as a transitional step improves code quality by mit-279

igating the NL-PL gap.280

4 Methodology281

In this section, we present the details of our ap-282

proach to obtain Bridge-Coder, including two283

phases: Bridge-Assisted Generation (Section 4.1)284

and Bridged Alignment (Section 4.2). The key idea285

of Bridge-Assisted Generation is fully leveraging286

LLMs’ intrinsic capabilities to generate instruction 287

following data for low-resouce programming lan- 288

guages (LRPLs). Afterward, Bridged Alignment 289

gradually helps the model overcome the NL-PL 290

Gap, improving its performance on LRPLs. An 291

illustration of Bridge-Coder is shown in Figure 2. 292

4.1 Bridge-Assisted Generation 293

This section introduces a novel approach for gen- 294

erating training data for LRPLs. We first leverage 295

the LLM’s general knowledge reasoning abilities 296

to identify the task set T that can be effectively 297

solved using the target LRPL, denoted as PLtar. 298

Next, we utilize the LLM’s strong understanding 299

and generation capabilities in a HRPL to generate 300

the code-bridge, denoted as PLbdg. Finally, by us- 301

ing the LLM’s in-context learning (ICL) abilities, 302

we rephrase the task T with the help of PLbdg, 303

which enables the LLM to generate the desired 304

response in the target LRPL PLtar. 305

4.1.1 Task Screening 306

Existing code instruction datasets often include 307

general-purpose tasks, while others can only be 308

solved with specific programming languages. If 309

unsuitable tasks are not filtered out, the model may 310

fail to respond when the task is unanswerable in 311

the target language. Even more concerning, several 312

4



studies (Spiess et al., 2024; Shum et al., 2024) have313

highlighted that, due to mis-calibration, LLMs tend314

to confidently generate incorrect answers in such315

cases. This issue further emphasizes the impor-316

tance of task screening to prevent such errors and317

improve response quality.318

We observe that while current LLMs struggle319

with LRPL code generation, they perform much320

better in classification tasks that simply judge321

whether a task can be solved using a specific LRPL.322

This is because classification tasks, unlike code323

generation, do not require the LLM to bridge the324

NL-PL Gap. Instead, the model can rely on its gen-325

eral reasoning abilities to provide a straightforward326

‘Yes’ or ‘No’. answer. Additionally, as the model’s327

accuracy improves, we enhance this process by re-328

quiring the LLM to provide logical explanations329

for its judgments, further validating its decision-330

making process. We validate the importance of331

this screening step with experimental evidence in332

Section 6.3.4, showing its critical role in improving333

output quality.334

4.1.2 Code-Bridge Synthesis335

When LLMs answer task T , they first need to com-336

prehend the natural language (NL) instructions and337

then generate a response in the programming lan-338

guage (PL), which often includes adding NL com-339

ments to the code. This makes NL-PL alignment in340

the training data crucial. In high-resource program-341

ming languages (HRPLs), the abundance of NL-PL342

aligned data in the training sets allows LLMs to343

perform effectively.344

Here, we leverage the existing capabilities of345

LLMs in HRPLs to follow the NL instruction. Fur-346

thermore, we also ask LLMs to include comments347

explaining the key steps and the thought process348

behind the solution. In this way, we create the349

code-bridge PLbdg, which combines both NL (i.e.,350

comments) and PL (i.e., code). This serves as351

a reinterpretation of the NL instruction from the352

perspective of PL logic, transforming what might353

seem like simple instructions in NL into a more354

explicit and detailed process in PL. Programming355

languages often require a step-by-step breakdown356

and precise logic that natural language tends to ab-357

stract away, making PLbdg an essential way for358

bridging this gap. This approach ensures that even359

with limited NL-PL aligned data in LRPLs, LLMs360

can still effectively generate correct and coherent361

solutions by leveraging the detailed structure and362

reasoning provided by the code-bridge.363

4.1.3 Guided Code Transfer 364

For LRPLs, which are underrepresented in training 365

data, the NL-PL Gap presents a major challenge. 366

Although LLMs possess some code generation ca- 367

pabilities, the lack of well-aligned data between NL 368

instructions and PL reasoning leads to suboptimal 369

solutions, making it difficult to generate accurate 370

responses to NL instructions in LRPLs. 371

To overcome this, we utilize the previously gen- 372

erated code-bridge to mitigate the NL-PL gap. Dur- 373

ing this step, when generating responses in LRPLs, 374

the code-bridge is appended to the instruction as 375

additional context. By harnessing the in-context 376

learning (ICL) capabilities of LLMs, this approach 377

allows the model to reference the PL logic in the 378

code-bridge, guiding it when responding to NL in- 379

structions. This significantly improves the quality 380

of the model’s output in LRPLs. 381

This process is analogous to a non-native English 382

speaker first drafting their thoughts in their native 383

language and then translating them into English. 384

The code-bridge acts as a “draft" in PL, enabling 385

the LLM to better interpret NL instructions and 386

produce more accurate answers in LRPLs. 387

4.2 Bridged Training 388

We draw inspiration from the concept of curriculum 389

learning (Bengio et al., 2009) and apply it to the 390

learning of LRPLs. To effectively bridge the NL- 391

PL gap and improve LLM performance in low- 392

resource programming languages, we divide the 393

training process into two stages. 394

Assist Alignment. In the first stage, the primary 395

goal is to assist the LLM in bridging the NL-PL gap 396

by providing additional support through the code- 397

bridge. The input includes the instruction of task 398

T , along with the code-bridge in the high-resource 399

programming language PLbdg, which serves as a 400

guide. The LLM uses this reference to assist in 401

generating the target response in the low-resource 402

programming language PLtar. The loss function 403

can be formalized as: 404

Lassist = −
T∑
t=1

logP (yPLtar
t | yPLtar

<t , T , PLbdg)

Direct Alignment. In the second stage, the fo- 405

cus shifts to helping the LLM adapt to real-world 406

scenarios by asking it to directly follow NL instruc- 407

tions without any assistance from the code-bridge. 408

This approach ensures the model becomes more 409

5



Models M-HumanEval pass@1 M-MBPP pass@1

R D Bash Racket Avg R D Bash Racket Avg

CodeLlama 18.42 11.76 10.09 12.34 13.15 24.75 20.75 19.77 21.50 21.69
CodeGemma 20.92 10.47 8.10 9.04 12.13 24.73 15.94 11.57 20.57 18.20

DeepSeek-Coder-Base 29.28 20.73 24.51 19.84 23.59 38.23 30.83 28.67 32.48 32.55
Magicoder-DS 38.31+9.03 19.47-1.26 29.17+4.66 29.17+9.33 29.03+5.44 41.13+2.90 32.49+1.66 28.52-0.15 37.75+5.27 34.97+2.42

Magicoder-S-DS 40.63+11.35 24.60+3.87 33.06+8.55 30.50+10.66 32.20+8.61 44.03+5.80 31.76+0.93 24.43-4.24 37.83+5.35 34.51+1.96

DeepSeek-Coder-DG 37.56+8.28 27.76+7.03 37.26+12.75 30.95+11.11 33.38+9.79 46.74+8.51 36.47+5.64 34.26+5.59 33.96+1.48 37.86+5.31
DeepSeek-Coder-IC 42.93+13.65 31.39+10.66 37.26+12.75 33.81+13.97 36.35+12.76 47.12+8.89 38.52+7.69 34.16+9.65 37.30+4.82 39.28+6.73
DeepSeek-Coder-BC 49.11+19.83 35.51+14.78 42.99+18.48 41.57+21.73 42.30+18.71 50.53+12.30 43.51+12.68 35.83+7.16 43.57+11.09 43.36+10.81

Table 1: Comparison of different models on two mainstream benchmarks for multilingual code generation, each
featuring multiple test inputs per case. To ensure a comprehensive and challenging evaluation, we adopt pass@1,
allowing models only a single attempt to produce the correct solution. Here, -DG denotes DeepSeek-Coder-Base
fine-tuned on data from direct generation, -IC on data generated via in-context learning, and -BC using our proposed
framework. We also compare Magicoder-DS (Wei et al., 2023) which also finetuned based on the our base model.
Bold values indicate the best performance. + and − represent the difference compared to DeepSeek-Coder-Base.

capable of solving tasks independently, as it would410

in practical applications where such assistance is411

not available. The training loss for this phase is412

calculated as:413

Ldirect = −
T∑
t=1

logP (yPLtar
t | yPLtar

<t , T )414

This two-step process facilitates a smooth and415

effective learning progression, moving from guided416

learning with assistance to independent problem-417

solving in LRPLs, as validated in the subsequent418

experiments in Section 6.2, highlighting the bene-419

fits of this approach.420

5 Evaluation Settings421

5.1 LRPLs and Benchmarks422

LRPLs. To fully validate the generalization abil-423

ity of our method, we selected four low-resource424

programming languages: R, D, Racket, and Bash.425

These languages cover a broad range of functional-426

ities, including statistical computing, systems pro-427

gramming, language creation, and automation. De-428

tailed descriptions of these languages can be found429

in the Appendix A.2.430

Benchmarks. We utilize the adapted versions431

of two widely recognized benchmarks that also432

contain low-resource programming languages,433

M-HumanEval(Chen et al., 2021b) and M-434

MBPP(Austin et al., 2021b).1 Both benchmarks435

are highly challenging due to their rigorous require-436

ments: each programming task consists of hun-437

dreds of problems, where a solution must pass nu-438

merous test cases to be considered correct. For439

example, M-HumanEval evaluates over 150 tasks440

1We use the MultiPL-E (Cassano et al., 2022) framework
for evaluation to evaluate models on this two benchmarks.

per language, with each requiring an average of 441

9.6 test cases to validate correctness, ensuring a 442

stringent evaluation process. Similarly, M-MBPP 443

evaluates nearly 400 tasks per language, further 444

testing the robustness of models under diverse sce- 445

narios. To better reflect real-world demands, we 446

adopt the pass@1 metric, which requires the model 447

to generate a correct solution on the first attempt. 448

5.2 Models 449

Baseline Models. We select five baseline 450

models for comparison: CodeLlama (Roziere 451

et al., 2023); CodeGemma (Team et al., 2024); 452

DeepSeek-Coder-Base (Guo et al., 2024), which 453

serves as the base model for our subsequent fine- 454

tuning experiments; Magicoder-DS (Wei et al., 455

2023), a widely used benchmark model for code 456

generation, trained on the OSS-Instruct dataset 457

and built upon DeepSeek-Coder-Base; and 458

MagicoderS-DS (Wei et al., 2023), an enhanced 459

version of Magicoder-DS, further trained on both 460

the OSS-Instruct and Evol-Instruct datasets (Luo 461

et al., 2024), offering superior performance across 462

various coding benchmarks while also being based 463

on DeepSeek-Coder-Base. 464

Models for Generation. The models used during 465

the Bridge-Assisted Generation process include: 466

Llama3-70B (Dubey et al., 2024), our primary 467

model, which combines strong general-purpose 468

reasoning with high performance in code gener- 469

ation tasks, making it suitable for a wide range 470

of applications; Llama3-8B, a smaller variant of 471

Llama3 that leans more towards general-purpose 472

tasks with moderate code generation capabilities; 473

and StarCoder2-Instruct-15B (Li et al., 2023), 474

a specialized code LLM with strong capabilities 475

for code-related tasks but limited general-purpose 476

6



reasoning abilities.477

5.3 Comparison478

Data Generation. In our experiments, we em-479

ploy two different approaches for generating data:480

DG (Direct Generation): In this approach, the model481

generates code directly from the natural language482

task without any intermediate steps. IC (In-Context483

Examples): This approach utilizes some human484

generated examples to help the model better under-485

stand the task during generation. BC (Ours): This486

approach introduces a code-bridge, which acts as487

an intermediary between the task and the final code488

generation.489

Training Methods. We compare several train-490

ing techniques, where our training data is repre-491

sented as {input; output}. T denotes the NL (natu-492

ral language) task instruction, PLbdg represents the493

HRPLs output that acts as a bridge, and PLtar is494

the answer in the target low-resource programming495

language (LRPL). The Separate Alignment method496

is represented as {T ;PLbdg}∪{T ;PLtar}. Direct497

Alignment involves {T ;PLtar}. Assist Alignment498

combines {T , PLbdg;PLtar}, while Bridged Align-499

ment begins with assist alignment and transitions500

to direct alignment.501

6 Experimental Results502

6.1 Main Results503

As shown in Table 1, the performance of various504

models underscores the challenges of adapting to505

Low-Resource Programming Languages (LRPLs).506

Models like CodeLlama(Roziere et al., 2023) and507

CodeGemma(Team et al., 2024) exhibit strong ca-508

pabilities in HRPLs but struggle significantly on509

LRPLs. For instance, CodeGemma achieves lower510

average scores on both M-HumanEval and M-511

MBPP compared to DeepSeek-Coder-Base, high-512

lighting its limited ability to generalize beyond513

HRPLs. Similarly, CodeLlama, while competitive514

in HRPL scenarios, shows minimal performance515

in languages like Bash and Racket, further empha-516

sizing the difficulty of LRPL adaptation without517

targeted strategies.518

Models such as DeepSeek-Coder-DG and519

DeepSeek-Coder-IC, which incorporate520

directly generated data or in-context learn-521

ing, demonstrate modest improvements over522

DeepSeek-Coder-Base. However, their gains are523

inconsistent and limited, particularly in scenarios524

Training Methods R D Avg
Separate Alignment 46.89 23.87 35.38
Direct Alignment 42.63 32.45 37.54
Assist Alignment 42.93 33.87 38.40

Bridged Alignment 49.11 35.51 42.31

Table 2: Comparison of different aligning methods.

requiring deeper NL-PL alignment. For example, 525

while DeepSeek-Coder-IC performs well in R 526

and Racket, it still lags in Bash, showcasing the 527

limitations of direct data generation strategies for 528

LRPLs. 529

In contrast, our proposed Bridge-Coder frame- 530

work (DeepSeek-Coder-BC) achieves substantial 531

improvements across all LRPLs and benchmarks. 532

By introducing the code-bridge as an intermedi- 533

ate step, our method effectively enhances NL-PL 534

alignment, producing higher-quality LRPL train- 535

ing data that leverages the model’s HRPL strengths. 536

For example, DeepSeek-Coder-BC achieves signif- 537

icant improvements of +19.83 in R and +21.73 in 538

Racket on M-HumanEval, with consistent gains 539

across all benchmarks. It also outperforms all base- 540

lines, with average improvements of +18.71 on 541

M-HumanEval and +10.81 on M-MBPP. 542

6.2 Comparison of Training Methods 543

We compared various training methods to assess 544

their effectiveness in aligning NL instructions with 545

LRPL outputs. As shown in Table 2, Assist Align- 546

ment alone performs worse because the model be- 547

comes overly reliant on the code-bridge and strug- 548

gles to generalize to NL-only instructions. Di- 549

rect Alignment also underperforms, as the model 550

is forced to bridge the NL-PL gap without any 551

support, highlighting the importance of gradual 552

learning. Our Bridged Training approach, which 553

begins with Assist Alignment and transitions to Di- 554

rect Alignment, consistently achieves the best re- 555

sults. To ensure the improvements weren’t solely 556

due to the HRPL component of the code-bridge, 557

we tested Separate Alignment, which showed in- 558

stability in D, confirming that combining the two 559

phases of Bridged Training leads to more robust 560

and effective performance.. 561

6.3 Further Analysis 562

6.3.1 Code LLM Performs Better? 563

One might expect that code-specific models would 564

perform best for generating code-related data, but 565

7



Synthesis Transfer R D Avg
Code Code 29.56 26.61 28.08
Code General 32.22 27.50 29.86

General General 37.53 28.16 32.85
General Code 34.23 25.90 30.07

Table 3: Comparison of code-specific models (Code)
and general-purpose models (General) in different com-
binations of Code-Bridge Synthesis and Guided Code
Transfer. Bold indicates the best result, and underline
indicates the second-best result.

Assist Format R D Avg
PL 42.64 32.57 37.61
NL 40.89 30.72 35.81

NL + PL 44.71 35.51 40.11

Table 4: Comparison of different assist formats in the
Assist Alignment during the second phase.

as shown in Table 3, the combination of code mod-566

els for both Synthesis and Transfer stages actually567

performs the worst. In contrast, general-purpose568

models consistently improve performance, with569

the best results coming from using general models570

for both stages. This can be attributed to the fact571

that Code-Bridge Synthesis primarily leverages the572

model’s HRPL capability, which reduces the per-573

formance gap between code-specific and general574

models. However, in the Guided Code Transfer575

stage, in-context learning (ICL) becomes more crit-576

ical, where general models seem to outperform577

code-specific ones.578

6.3.2 NL vs. PL: Which Matters More?579

In the first phase of our Bridged Training, we ex-580

plored whether using NL-formatted comments or581

PL-formatted code as part of the Assist Alignment582

yields better alignment. As shown in Table 4, train-583

ing with code (PL) alone outperforms comments584

(NL) alone. However, relying solely on code is still585

not the optimal approach. The combination of both586

NL and PL (code & comments) leads to the best re-587

sults, highlighting the complementary nature of NL588

and PL in bridging the NL-PL gap and improving589

overall performance. This also explains why, in our590

generation of the code-bridge, we emphasize the591

need for explanations in the form of NL comments592

to assist and enhance the code output.593

6.3.3 Different HRPLs as Code-Bridge594

The results in Table 5 demonstrate that Python out-595

performs C++ and Java as the code-bridge pro-596

Code-Bridge HRPL R D
Python 47.61 33.87
C++ 44.29 30.62
JAVA 46.47 31.93

Table 5: Further Analysis of different Programming
Languages used as Code-Bridge in the first stage.

Figure 3: Ablation of Task Screening.

gramming language. This is likely due to Python’s 597

prevalence in the training data, which enables the 598

model to generate more accurate and effective code- 599

bridges. Python’s extensive library ecosystem for 600

tasks like data science and automation also pro- 601

vides more tools for generating robust code. Ad- 602

ditionally, Python’s simplicity and readability con- 603

tribute to better alignment with natural language 604

instructions, facilitating a smoother NL-PL transi- 605

tion. In contrast, C++ and Java’s more complex 606

syntax and explicit logic make them less effective 607

for generating efficient code-bridges in this context. 608

6.3.4 Ablation of Task Screening 609

Figure 3 highlights the importance of task screen- 610

ing. While the dataset without screening includes 611

more tasks, the performance on unanswerable tasks 612

is poor. With Task Screening (w/ TS), accuracy im- 613

proves significantly across all LRPLs (R, D, Racket, 614

Bash). This demonstrates that filtering out tasks be- 615

yond the model’s capability leads to better results 616

and validates the effectiveness of using LLMs’ gen- 617

eral reasoning for task screening. 618

7 Conclusion 619

This paper tackles the challenge of generating high- 620

quality programs in low-resource languages. By 621

leveraging LLMs’ intrinsic abilities and expertise 622

in high-resource programming languages, we cre- 623

ate a new, high-quality dataset for low-resource lan- 624

guages. We also propose a progressive alignment 625

to mitigate the gap. Experimental results show our 626

methods significantly outperform the baseline. 627

8



Limitations628

Despite strong instruction-following capabilities,629

our work remains confined to repository-level text-630

to-code generation, which involves long-context631

modeling and resolving lost-in-the-middle issues.632

Additionaly, future studies should address multi-633

round text-code challenges, requiring repeated in-634

teractions and more detailed instructions.635

References636

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten637
Bosma, Henryk Michalewski, David Dohan, Ellen638
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.639
2021a. Program synthesis with large language mod-640
els. arXiv preprint arXiv:2108.07732.641

Jacob Austin, Augustus Odena, Maxwell I. Nye,642
Maarten Bosma, Henryk Michalewski, David Dohan,643
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,644
and Charles Sutton. 2021b. Program synthesis with645
large language models. CoRR, abs/2108.07732.646

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,647
and Jason Weston. 2009. Curriculum learning. In648
Proceedings of the 26th annual international confer-649
ence on machine learning, pages 41–48.650

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie651
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind652
Neelakantan, Pranav Shyam, Girish Sastry, Amanda653
Askell, Sandhini Agarwal, Ariel Herbert-Voss,654
Gretchen Krueger, Tom Henighan, Rewon Child,655
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,656
Clemens Winter, Christopher Hesse, Mark Chen, Eric657
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,658
Jack Clark, Christopher Berner, Sam McCandlish,659
Alec Radford, Ilya Sutskever, and Dario Amodei.660
2020. Language models are few-shot learners. In Ad-661
vances in Neural Information Processing Systems 33:662
Annual Conference on Neural Information Process-663
ing Systems 2020, NeurIPS 2020, December 6-12,664
2020, virtual.665

Federico Cassano, John Gouwar, Francesca Lucchetti,666
Claire Schlesinger, Anders Freeman, Carolyn Jane667
Anderson, Molly Q Feldman, Michael Greenberg,668
Abhinav Jangda, and Arjun Guha. 2024. Knowl-669
edge transfer from high-resource to low-resource670
programming languages for code llms. Proceed-671
ings of the ACM on Programming Languages,672
8(OOPSLA2):677–708.673

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-674
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,675
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,676
Molly Q Feldman, et al. 2022. Multipl-e: A scal-677
able and extensible approach to benchmarking neural678
code generation. arXiv preprint arXiv:2208.08227.679

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,680
Henrique Pondé de Oliveira Pinto, Jared Kaplan,681

Harrison Edwards, Yuri Burda, Nicholas Joseph, 682
Greg Brockman, Alex Ray, Raul Puri, Gretchen 683
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 684
try, Pamela Mishkin, Brooke Chan, Scott Gray, 685
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 686
Kaiser, Mohammad Bavarian, Clemens Winter, 687
Philippe Tillet, Felipe Petroski Such, Dave Cum- 688
mings, Matthias Plappert, Fotios Chantzis, Eliza- 689
beth Barnes, Ariel Herbert-Voss, William Hebgen 690
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 691
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 692
William Saunders, Christopher Hesse, Andrew N. 693
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 694
Morikawa, Alec Radford, Matthew Knight, Miles 695
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 696
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 697
Sutskever, and Wojciech Zaremba. 2021a. Evaluat- 698
ing large language models trained on code. CoRR, 699
abs/2107.03374. 700

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 701
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 702
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 703
Brockman, et al. 2021b. Evaluating large lan- 704
guage models trained on code. arXiv preprint 705
arXiv:2107.03374. 706

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 707
Vishrav Chaudhary, Guillaume Wenzek, Francisco 708
Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 709
moyer, and Veselin Stoyanov. 2019. Unsupervised 710
cross-lingual representation learning at scale. In An- 711
nual Meeting of the Association for Computational 712
Linguistics. 713

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 714
Christopher Ré. 2022. Flashattention: Fast and 715
memory-efficient exact attention with io-awareness. 716
Advances in Neural Information Processing Systems, 717
35:16344–16359. 718

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian 719
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra- 720
manathan, Ramesh Nallapati, Parminder Bhatia, Dan 721
Roth, et al. 2024. Crosscodeeval: A diverse and mul- 722
tilingual benchmark for cross-file code completion. 723
Advances in Neural Information Processing Systems, 724
36. 725

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 726
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 727
Akhil Mathur, Alan Schelten, Amy Yang, Angela 728
Fan, et al. 2024. The llama 3 herd of models. arXiv 729
preprint arXiv:2407.21783. 730

Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben 731
Hardekopf. 2021. Translating c to safer rust. Pro- 732
ceedings of the ACM on Programming Languages, 733
5(OOPSLA):1–29. 734

Hugging Face. 2023. Open llm leaderboard-a hugging 735
face space by huggingfaceh4. 736

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, 737
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, 738

9

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://api.semanticscholar.org/CorpusID:207880568
https://api.semanticscholar.org/CorpusID:207880568
https://api.semanticscholar.org/CorpusID:207880568


Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:739
A generative model for code infilling and synthesis.740
CoRR, abs/2204.05999.741

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai742
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,743
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the744
large language model meets programming–the rise of745
code intelligence. arXiv preprint arXiv:2401.14196.746

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-747
ham Neubig, Orhan Firat, and Melvin Johnson.748
2020. Xtreme: A massively multilingual multi-task749
benchmark for evaluating cross-lingual generaliza-750
tion. ArXiv, abs/2003.11080.751

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,752
Linjun Shou, Daxin Jiang, and M. Zhou. 2019. Uni-753
coder: A universal language encoder by pre-training754
with multiple cross-lingual tasks. In Conference on755
Empirical Methods in Natural Language Processing.756

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-757
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,758
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder759
technical report. arXiv preprint arXiv:2409.12186.760

G Lample. 2019. Cross-lingual language model pre-761
training. arXiv preprint arXiv:1901.07291.762

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas763
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc764
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.765
2023. Starcoder: may the source be with you! arXiv766
preprint arXiv:2305.06161.767

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris768
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian769
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-770
mar, et al. 2022. Holistic evaluation of language771
models. arXiv preprint arXiv:2211.09110.772

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey773
Svyatkovskiy, Ambrosio Blanco, Colin Clement,774
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.775
Codexglue: A machine learning benchmark dataset776
for code understanding and generation. In Thirty-777
fifth Conference on Neural Information Processing778
Systems Datasets and Benchmarks Track (Round 1).779

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-780
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,781
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:782
Empowering code large language models with evol-783
instruct. International Conference on Learning Rep-784
resentations (ICLR).785

Microsoft. 2023. Github copilot – your ai pair program-786
mer. GitHub repository.787

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai788
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam789
Singh, Xiangru Tang, Leandro Von Werra, and790
Shayne Longpre. 2023. Octopack: Instruction tun-791
ing code large language models. arXiv preprint792
arXiv:2308.07124.793

Daye Nam, Andrew Peter Macvean, Vincent J. Hellen- 794
doorn, Bogdan Vasilescu, and Brad A. Myers. 2023. 795
Using an llm to help with code understanding. 2024 796
IEEE/ACM 46th International Conference on Soft- 797
ware Engineering (ICSE), pages 1184–1196. 798

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey 799
Hui, Joshua Howland, Jonathan Malmaud, Jacob 800
Austin, Rishabh Singh, and Michele Catasta. 2023. 801
Measuring the impact of programming language dis- 802
tribution. In International Conference on Machine 803
Learning, pages 26619–26645. PMLR. 804

Indraneil Paul, Jun Luo, Goran Glavaš, and Iryna 805
Gurevych. 2024. Ircoder: Intermediate representa- 806
tions make language models robust multilingual code 807
generators. arXiv preprint arXiv:2403.03894. 808

Renjie Pi, Jianshu Zhang, Tianyang Han, Jipeng Zhang, 809
Rui Pan, and Tong Zhang. 2024. Personalized visual 810
instruction tuning. arXiv preprint arXiv:2410.07113. 811

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 812
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 813
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023. 814
Code llama: Open foundation models for code. arXiv 815
preprint arXiv:2308.12950. 816

Services. 2023. A. w. ai code generator - amazon code- 817
whisperer - aws. Amazon Page. 818

Noam Shazeer and Mitchell Stern. 2018. Adafactor: 819
Adaptive learning rates with sublinear memory cost. 820
In International Conference on Machine Learning, 821
pages 4596–4604. PMLR. 822

KaShun Shum, Minrui Xu, Jianshu Zhang, Zixin 823
Chen, Shizhe Diao, Hanze Dong, Jipeng Zhang, and 824
Muhammad Omer Raza. 2024. First: Teach a reliable 825
large language model through efficient trustworthy 826
distillation. arXiv preprint arXiv:2408.12168. 827

Claudio Spiess, David Gros, Kunal Suresh Pai, Michael 828
Pradel, Md Rafiqul Islam Rabin, Susmit Jha, Prem 829
Devanbu, and Toufique Ahmed. 2024. Quality 830
and trust in llm-generated code. arXiv preprint 831
arXiv:2402.02047. 832

Tao Sun, Linzheng Chai, Jian Yang, Yuwei Yin, 833
Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun 834
Yang, and Zhoujun Li. 2024. Unicoder: Scaling 835
code large language model via universal code. arXiv 836
preprint arXiv:2406.16441. 837

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua 838
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, 839
Christopher A Choquette-Choo, Jingyue Shen, Joe 840
Kelley, et al. 2024. Codegemma: Open code models 841
based on gemma. arXiv preprint arXiv:2406.11409. 842

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 843
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 844
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 845
Azhar, et al. 2023a. Llama: Open and effi- 846
cient foundation language models. arXiv preprint 847
arXiv:2302.13971. 848

10

https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://api.semanticscholar.org/CorpusID:214641214
https://api.semanticscholar.org/CorpusID:214641214
https://api.semanticscholar.org/CorpusID:214641214
https://api.semanticscholar.org/CorpusID:214641214
https://api.semanticscholar.org/CorpusID:214641214
https://api.semanticscholar.org/CorpusID:202541545
https://api.semanticscholar.org/CorpusID:202541545
https://api.semanticscholar.org/CorpusID:202541545
https://api.semanticscholar.org/CorpusID:202541545
https://api.semanticscholar.org/CorpusID:202541545
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://api.semanticscholar.org/CorpusID:259937834
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-849
bert, Amjad Almahairi, Yasmine Babaei, Nikolay850
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti851
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-852
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,853
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,854
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-855
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan856
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,857
Isabel Kloumann, Artem Korenev, Punit Singh Koura,858
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-859
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-860
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-861
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-862
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,863
Ruan Silva, Eric Michael Smith, Ranjan Subrama-864
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-865
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,866
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,867
Melanie Kambadur, Sharan Narang, Aurélien Ro-868
driguez, Robert Stojnic, Sergey Edunov, and Thomas869
Scialom. 2023b. Llama 2: Open foundation and870
fine-tuned chat models. CoRR, abs/2307.09288.871

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-872
isa Liu, Noah A Smith, Daniel Khashabi, and Han-873
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-874
guage model with self generated instructions. arXiv875
preprint arXiv:2212.10560.876

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven877
C. H. Hoi. 2021. Codet5: Identifier-aware unified878
pre-trained encoder-decoder models for code under-879
standing and generation. In Proceedings of the 2021880
Conference on Empirical Methods in Natural Lan-881
guage Processing, EMNLP 2021, Virtual Event /882
Punta Cana, Dominican Republic, 7-11 November,883
2021, pages 8696–8708. Association for Computa-884
tional Linguistics.885

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and886
Lingming Zhang. 2023. Magicoder: Source code is887
all you need. arXiv preprint arXiv:2312.02120.888

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian,889
Michael Pradel, and Lingming Zhang. 2024.890
Fuzz4all: Universal fuzzing with large language mod-891
els. In Proceedings of the IEEE/ACM 46th Interna-892
tional Conference on Software Engineering, pages893
1–13.894

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,895
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin896
Jiang. 2023. Wizardlm: Empowering large lan-897
guage models to follow complex instructions. arXiv898
preprint arXiv:2304.12244.899

L Xue. 2020. mt5: A massively multilingual pre-900
trained text-to-text transformer. arXiv preprint901
arXiv:2010.11934.902

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,903
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng904
Yin. 2023. Wavecoder: Widespread and versatile905
enhanced instruction tuning with refined data genera-906
tion. arXiv preprint arXiv:2312.14187.907

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 908
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 909
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023. 910
Codegeex: A pre-trained model for code generation 911
with multilingual evaluations on humaneval-x. CoRR, 912
abs/2303.17568. 913

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. 914
Ldb: A large language model debugger via verify- 915
ing runtime execution step-by-step. arXiv preprint 916
arXiv:2402.16906. 917

A Appendix 918

A.1 Detailed Prompts 919

This is a section in the appendix. 920

A.2 Low-Resource Programming Languages 921

• R: A programming language widely used for 922

statistical computing, data analysis, and vi- 923

sualization. It is highly popular in academia, 924

research, and data science due to its extensive 925

libraries and tools for handling complex data. 926

• D: A systems programming language de- 927

signed for high performance and productiv- 928

ity. It combines the power of C and C++ with 929

more modern features, making it ideal for ap- 930

plications that require efficiency and low-level 931

system access, while maintaining a developer- 932

friendly syntax. 933

• Racket: A functional programming language 934

that excels in language creation and experi- 935

mentation. It is commonly used in academic 936

settings and research for developing new pro- 937

gramming languages, as well as for teaching 938

concepts in computer science and functional 939

programming. 940

• Bash: A Unix shell and command language 941

widely used for scripting and automation tasks 942

in system administration, software develop- 943

ment, and task automation. Bash scripts are 944

frequently used for managing servers, exe- 945

cuting repetitive tasks, and automating work- 946

flows in Linux environments. 947

11

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568


Prompt for Task Screening

You are a highly knowledgeable assistant that specializes in problem-solving across various programming languages.

You should judge whether <Programming Language> can be used to solve the problem below.

You should always respond with either “Yes" or “No", followed by a concise explanation. Be concise and direct in
your responses.

Here is the task: <Task>

Table 6: The prompt for screening tasks that are unanswerable in Low-Resource Programming Language.

Prompt for Bridge-Assisted Generation

You are a highly knowledgeable assistant that specializes in problem-solving across various programming languages.

Help me use <Programming Language> to solve the problem below. In your response, you need to provide detailed
comments to explain the key steps and the reasoning process, rather than only responding the solution.

Here is the task: <Task>

Table 7: The prompt for synthesizing code-bridge in High-Resource Programming Language.

Prompt for Guided Code Transfer

You are a highly knowledgeable assistant that specializes in problem-solving across various programming languages.

Help me use <Programming Language> to solve the problem below.

Here is the task: <Task>

To help you better solve this task, you can refer to this solution in <Programming Language>: <Code-Bridge>

Table 8: The prompt for generating answers in Low-Resource Programming Language. <Code-Bridge> is the
answer in a High-Resource Programming Language.

B Implementation Details948

For optimization, we used the Adafactor (Shazeer949

and Stern, 2018) optimizer with a learning rate of950

5 × 10−5. The model was trained for 2 epochs951

with a warm-up of 15 steps. The batch size was set952

to 512. To improve efficiency, we employed Flash953

Attention (Dao et al., 2022) and used the bf16 preci-954

sion for faster and more memory-efficient training.955

C Statistics956

Language
StarCoder

GitHub (%) TIOBE (%)
Num. files Percentage

Bash - - - 43
C++ 6,377,914 6.379 7.0 4
C# 10,839,399 5.823 3.1 5
D - - - 35
Go 4,730,461 3.101 7.9 12

Java 20,151,565 11.336 13.1 3
JavaScript 21,108,587 8.437 14.3 7
Python 12,962,249 7.875 - 1

R 39,194 0.039 0.05 19
Racket 4,201 0.004 - -
Rust 1,386,585 1.188 1.1 22
Ruby 3,405,374 0.888 6.2 15

Table 9: Programming Language Statistics: The Star-
Coder parts are based on data from their report (Li et al.,
2023). The last two columns are derived from GitHut
2.0 and the 2022 TIOBE Programming Community
Index, as referenced in the MultiPLE benchmark pa-
per (Cassano et al., 2022).

12


