
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADCORDA: CLASSIFIER REFINEMENT VIA ADVERSAR-
IAL CORRECTION AND DOMAIN ADAPTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper describes a simple yet effective technique for refining a pretrained clas-
sifier network. The proposed AdCorDA method consists of two stages - adversarial
correction followed by domain adaptation. Adversarial correction uses adversarial
attacks to correct misclassified training-set classifications. The incorrectly classi-
fied samples of the training set are removed and replaced with the adversarially
corrected samples to form a new training set, and then, in the second stage, domain
adaptation is performed back to the original training set. Extensive experimen-
tal validations show significant accuracy boosts of over 5% on the CIFAR-100
dataset and 1% on the CINIC-10 dataset. The technique can be straightforwardly
applied to the refinement of weight-quantized neural networks, where experiments
show substantial enhancement in performance over the baseline. The adversarial
correction technique also results in enhanced robustness to adversarial attacks.

1 INTRODUCTION

Training of deep neural networks is an eternal struggle to improve accuracy, and many methods
have been developed to eke out additional gains in performance from pretrained networks. These
improvements are particularly important for smaller networks, such as those targeting edge devices,
as their baseline performance is relatively low. In this paper, we present a novel alternative to standard
neural network fine-tuning methods. We call this method AdCorDA, which stands for Adversarial
Correction and Domain Adaptation. This method takes a classifier network pretrained using standard
back-propagation methods and refines it with a domain adaptation step that adapts from a synthetic
dataset, on which the pretrained network has perfect training accuracy, back to the original dataset.
The synthetic dataset is constructed by performing adversarial correction on the dataset samples
for which the pretrained network gets incorrect. Adversarial correction is the process of applying
adversarial attacks to alter these dataset images such that the network classifies them correctly.

Our approach focuses on small networks to optimize performance on edge devices, and we therefore
limit our experiments to small networks commonly used in such environments. Experiments show
that our approach produces substantial enhancements in performance on image classification datasets,
for both full-precision and quantized networks, and also induces a significant measure of robustness
to adversarial attacks.

2 BACKGROUND

As mentioned in the introduction, our approach has two stages - first modify the training set to increase
the total training accuracy, and second adjust the weights to improve performance on the original
training set. In our work we looked at two methods for altering the training set. The first method is
based on curriculum learning, and the second is based on what we call adversarial correction.

2.1 CURRICULUM LEARNING

Curriculum learning, first proposed by Bengio et. al Bengio et al. (2009), aims to improve the speed
and accuracy of network training, by presenting data samples from the training set in an ordered
fashion. Typically, easier samples are presented before difficult samples as the training progresses. It
is not obvious how to properly define the notions of “easy” and “hard”, however, and indeed many
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different definitions exist. Some of these definitions are based solely on the structure of the input
examples, without consideration of the network being trained. Table 2 in the survey paper of Wang
et. al Wang et al. (2021) lists no less than nineteen different types of pre-defined input difficulty
measures that have been used to guide curriculum learning. But the difficulty of an input can also
depend on the network being trained. Problems that some networks find difficult may be easy for
other networks, and vice-versa. So-called Self-Paced-Learning (SPL) methods, such as proposed
by Kumar et. al Kumar et al. (2010) use dynamic measures of problem difficulty that are provided
by the network itself as it trains. In the SPL method, easy problems are defined as those problems
for which the network’s training loss is less than a (dynamically changing) threshold value. We
propose to use the curriculum separation of the training set into easy and hard problems, as defined
by the training loss threshold, for our approach. We consider that, over the original training set, our
pre-trained network achieves a particular loss value. If we remove the training set samples for which
the loss is above a threshold, then we are left with a (modified) training set for which the average
(and maximum) loss is less than that of the original training set. To avoid having to set a suitable
threshold value, we propose using the pre-trained network to define easy vs. hard using the simple
expedient of considering easy problems to be ones the network classifies correctly. This will naturally
result in a separation of input samples based on loss. We use this procedure to satisfy the first step of
our AdCorDA process - altering the inputs to reduce the loss. Although we are not altering the loss
for individual samples in this method, the average loss on a batch level is being altered.

2.2 ADVERSARIAL CORRECTION

We can take the curriculum approach outlined in the previous section a step further, by doing what
we call adversarial correction to further modify the training set. This results in a larger training
set than the curriculum approach. The concept of adversarial attack is well known in the machine
learning community Li et al. (2022). Given a classifier network trained on a particular dataset, an
adversary can modify an input slightly in such a way that the network gives a different classification
output. In this paper, rather than focusing on correct outputs being changed by adversarial attacks,
we look at the effect of adversarial attacks on the outputs that the network already gets wrong. In
such a situation, things cannot get any worse, as the network is already wrong, but they could get
better if the adversarial perturbation of the input actually causes the network to provide the correct

answer. We can help the process by using targeted attacks, where the target of the adversarial attack
in this case is the correct output. But even non-targeted attacks may help by weakening support for
the incorrect label relative to the true label. We will refer to this as adversarial correction, as opposed
to adversarial attack.

Adversarial correction is well-suited to working with quantized networks, as some adversarial attacks
do not need to compute the gradients with respect to the weights. However, many attacks do
need gradient information and deep domain adaptation techniques generally require gradient-based
optimization with respect to the weights to adapt models effectively across domains. Thus, in
this paper, we focus on post-training quantization methods Jacob et al. (2018), and we apply the
adversarial correction on the samples the quantized network gets wrong, rather than those of the full
precision network.

2.3 DOMAIN ADAPTATION

At this point in the method we have a modified dataset consisting of either only samples that the
original network gets correct, or the same augmented with samples that have been adversarially
corrected. Either way, our original trained network has an accuracy of 100% on this modified dataset.
But, how does this help us? After all, what we really want to do is increase accuracy (reduce the loss)
on the original dataset, not some other dataset. This is the goal of the second stage of the input space
training, namely finding a set of network weights that results in a lower loss on the original training
set, starting from the modified training set.

Denote the original training set by T , and consider the altered training set T 0 as our starting point for
the second stage of the AdCorDA process. The original training set can be thought of as a distribution
shift of the altered training set. How can we deal with this distribution shift, where we go from a
distribution where the network does well (perfectly, in fact), to a distribution where the network
performs less well? There is substantial literature addressing this problem: domain adaptation.
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Domain adaptation methods aim to transfer knowledge about one domain (the source domain) into
a second, similar, domain (the target domain) Zhang (2021). All domain adaptation methods have
the goal of increasing performance on the target domain, starting from a network that does well on
the source domain. Shen et. al Shen et al. (2023) showed that applying domain adaptation from
easy to hard after the early stages of curriculum learning speeds up training. Motivated by these
considerations we choose the final step in our AdCorDA method to be a domain adaptation from T 0

to T .

3 METHODOLOGY: ADCORDA

3.1 OVERVIEW

Putting together the two stages of the input space training method as detailed above, we arrive at
what we call the AdCorDA (Adversarial Correction and Domain Adaptation) method. The AdCorDA
method proceeds as depicted in Fig. 1, with the following steps:

Figure 1: Overview of the proposed AdCorDA classifier refinement method. T is the original training
set; Tc is the subset of T that the pretrained network labels correctly, and Tw the subset that is labeled
incorrectly; Ta is the set of samples that have been adversarially corrected; T 0 is the union of Tc and
Ta. The network is adapted from T 0 as the source domain back to T as the target domain.

Step 1: Train a network to solve a classification problem using standard training techniques on a
training set T .

Step 2: Separate the original set of training samples T into two subsets: Tc and Tw, where Tc are
training samples for which the trained network predicts correctly, and Tw are training samples for
which the network gives wrong predictions.

Step 3: For each sample in Tw, use adversarial attack techniques to create adversarial inputs, where
in this case we wish to perturb the input such that the network gives the class provided by the training
label (true label). Note that typically not all attacks will successfully coax the network to output the
true label. Let the set of successfully perturbed samples be denoted as Ta. This may be smaller than
the set Tw. This step can be omitted, in which case we are using the curriculum learning strategy. We
refer to this in our experiments as the “None” or “Non-attack” case.

Step 4: Merge the subsets Tc and Ta into one new training set, T 0. The samples for which the
adversarial correction failed have been removed, so the accuracy of the network on T 0 is 100%, and
the number of elements in T 0 may be less than that of the original dataset T .

Step 5: Seeing that T and T 0 represent two (overlapping) domains, do domain adaptation of the
trained network, adapting from the corrected dataset T 0 as the source domain, back to the original
dataset T as the target domain.

In the experiment section, we examine the effectiveness of the AdCorDA method, as well as an
ablation case where we omit steps 3 and 4, using only the curriculum subset as T 0.
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3.2 ADVERSARIAL ATTACKS

To apply adversarial attacks on misclassified images of train domains, we use a selection of methods,
including three major types of gradient-based attacks: basic iterative method Kurakin et al. (2017)
and its variants, iterative least likely class Kurakin et al. (2017), decoupled direction and norm Rony
et al. (2019), as well as a non-gradient-based salt and pepper noise attack. These are briefly described
below.

Untargeted Basic Iterative (BI) Kurakin et al. (2017): This extends the “fast” method Goodfellow
et al. (2015), which generates adversarial images through iterative processes using a small step size
(↵) and clip pixel values of intermediate results at each step to ensure that they remain within an
✏-neighbourhood of the source image Kurakin et al. (2017):

XBI

N+1
= Clip

X,✏

n
XBI

N
+ ↵ sign

�
rXJ(XBI

N
, ytrue)

�o
, XBI

0
= X, (1)

where X represents an image, ytrue denotes the true class for the image X , J(X, y) is the cross-
entropy cost function of the neural network, Clip

X,✏

{X0} is the per-pixel clipping function applied to

the image X0 to ensure it falls within an L1 ✏-neighbourhood of the original image X .

Basic Iterative method with Highest probability class (BIH): When attacking a correct image, BI
uses the true class gradient, where the highest-probability class aligns with the true class. However,
when targeting an incorrect output, this changes – the highest probability class no longer represents
the truth. Therefore, we adapt BI to use the gradient of the highest probability class to weaken the
accuracy of the incorrect output, illustrated below:

XBIH

N+1
= Clip

X,✏

n
XBIH

N
+ ↵ sign

�
rXJ(XBIH

N
, yH)

�o
, yH = argmax

y

{p(y|X)}. (2)

Targeted Variant of Basic Iterative (VBI): In addition to the standard untargeted BI method, we
created a targeted variant called VBI. Unlike BI (Eq. 1), which moves away from the true label, VBI
(Eq. 3) operates in the opposite direction, moving towards the true label by negating the sign of the
gradient sign function.

XVBI

N+1
= Clip

X,✏

n
XVBI

N
� ↵ sign

�
rXJ(XVBI

N
, ytrue)

�o
. (3)

Iterative Least-Likely class (LL) Kurakin et al. (2017): This method generates an attack targeting
the least-likely class, as predicted by the trained model on the source image:

XLL

N+1
= Clip

X,✏

n
XLL

N
� ↵ sign

�
rXJ(XLL

N
, yLL)

�o
, yLL = argmin

y

{p(y|X)}. (4)

The LL method moves the input in the direction of the gradient toward the least probable class. While
this may lower the probability of the true class, it may also lower the probability of the maximum
probability (incorrect) class by a larger amount, potentially correcting the output label.

Decoupled Direction and Norm (DDN) Rony et al. (2019): This attack is an iterative approach
that refines the noise added to the input image in each iteration to make it adversarial. At iteration
i, the adversarial input image, xi, is generated as xi = x + ⌘i, where ⌘i is the noise with a norm
of �i. If xi is adversarial, the norm of the next iteration noise is decreased i.e., �i+1 = �i(1 � ✏).
Otherwise, the norm of the next noise is increased i.e., �i+1 = �i(1 + ✏). This process repeats until
the minimum required perturbation is found Rony et al. (2019). The DDN method is a targeted attack
that moves the network output towards the true label.

Salt and Pepper noise (SP): A non-gradient-based attack that repeatedly adds SP noise to the input
to fool the model.

To investigate the effect of our proposed method on the adversarial robustness of the corrected models,
we evaluated the models against AutoAttack Croce & Hein (2020a) on CIFAR-10 and CIFAR-100
test sets. Composed of four different attacks from those used in our experiments for the correction,
AutoAttack is a well-known, powerful, and diverse ensemble of parameter-free attacks. We applied
the standard version of AutoAttack: APGDCE, targeted APGDDLR Croce & Hein (2020a), targeted
FAB Croce & Hein (2020b), and Square Attack Andriushchenko et al. (2020) with `1�norm. The
attacks were applied sequentially.
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3.3 DOMAIN ADAPTATION

In the domain adaptation stage, we utilize Deep CORAL Sun & Saenko (2016), which aligns the
second-order covariance matrices between a source domain and a target domain through CORAL loss.
This alignment helps to bridge the distribution gap between the domains and improve the model’s
performance on the target domain. Aligning the implementation with the original paper, CORAL
loss is only applied to the last classification layer in the neural networks. The total loss is the sum of
the classification loss and the CORAL loss Sun & Saenko (2016), defined as

Lloss = Lclass + �Lcoral, Lcoral =
1

4d2
kCS � CT k2F , (5)

where � is a weight between classification and CORAL loss, CS and CT are the covariance matrices
of features induced by samples from the source domain and target domain, respectively, and the
norm is the squared-matrix Frobenius norm. By minimizing the distance between the second-order
statistics of the source and target domain feature representations, CORAL loss implicitly regularizes
the learned feature space. In our application, the source domain is the adversarially corrected training
dataset (T 0) and the target domain is the original training dataset (T ).

3.4 NETWORK QUANTIZATION

We also test the effectiveness of the AdCorDA method on network quantization, which reduces the
precision of computations and weight storage by using lower bit-widths instead of floating-point
precision. To obtain quantized models, we compress the baseline models using post-training static
quantization (PTSQ) Jacob et al. (2018), which is one of the most common and fastest quantization
techniques in practice. This technique determines the scales and zero points prior to inference.
Specifically, we quantize the full-precision 32-bit (FP32) weights (e.g., w 2 [↵,�]) and activations
of the trained baseline models to 8-bit integer (INT8) values (e.g., wq 2 [↵q,�q]). The quantization
process is defined as

wq = round

✓
1

s
w + z

◆
, s =

� � ↵

�q � ↵q

, z = round

✓
�↵q � ↵�q

� � ↵

◆
, (6)

where s is the scale and z is the zero-point.

4 EXPERIMENTAL SETUP

ResNet baseline models on CIFARs. We validated our approach through experiments on the CIFAR-10
and -100 datasets, each containing 50K images, which are randomly split into 45K training data
and 5K validation data. Each dataset has a separate test set of 10K images. We split the training
and validation datasets using three random seeds: 1, 2, and 5. We first initialize ResNets He et al.
(2016) of different sizes (i.e., ResNet-18, ResNet-34, ResNet-50) and EfficientNetV2-M Tan &
Le (2021) with parameters pre-trained on the ImageNet dataset Deng et al. (2009) from PyTorch
Paszke et al. (2019) and then fine-tune Yosinski et al. (2014) on the CIFAR training sets to obtain
the corresponding baseline models. Input images are resized to 224 ⇥ 224 and use the same data
transform. To determine the optimal hyper-parameters for our model, we perform a basic parameter
grid search for the batch size, base learning rate, and weight decay of the stochastic gradient descent
(SGD) optimizer. During the fine-tuning, we use an SGD optimizer Bottou (2010) with a momentum
of 0.9, a weight decay of 1e-4, a batch size of 128 for ResNets on and of 64 (due to limitations in
computing resources) for EfficientNetV2-M, a fixed learning rate of 1e-4, and we train for a total
of 100 epochs on both CIFAR datasets. We define the fine-tuned models with the best validation
accuracy as our baseline models.

ResNet baseline models on CINIC-10 Darlow et al. (2018). We further validated our method on a
larger dataset, CINIC-10. Constructed from ImageNet and CIFAR-10, it allocates 90K images for
training, validation, and testing, respectively. To mitigate potential pre-trained model exposure to
the training data, we utilize an alternative pre-trained model trained on a separate large-scale dataset,
diverging from ImageNet, for unbiased fine-tuning. We first initialize ResNets with parameters
pre-trained on the Places365-Standard dataset Zhou et al. (2017), which train set contains ⇠1.8M
images from 365 scene categories and each category has at most 5K images. Then, we shuffle
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the dataset and fine-tune the CINIC-10 training sets to get its baseline models using the same data
transform and preprocessing as the pre-trained Places365 models, including the implementation of
random crop functions for better model generalization. Ensuring reproducibility in the dataloader is
imperative for subsequent adversarial correction steps. For fine-tuning on CINIC-10, we use a batch
size of 64 and a fixed learning rate of 1e-3.

Adversarial attack experiments on CIFARs and CINIC-10. We apply adversarial attacks on misclassi-
fied training images while the model is in evaluation mode. For the DDN and SP attacks, we use the
default hyper-parameters provided by the Foolbox framework Rauber et al. (2017; 2020). Note that
the input images are subject to the ImageNet transformation with a lower and upper bound of 0 and
1, respectively. The BI and LL attacks are applied according to the experimental setting outlined in
Kurakin et al. (2017).

AutoAttack experiments on CIFAR. We set ✏ to 5e-4 for all of the AutoAttack experiments. Other
AutoAttack parameters, such as iterations and number of restarts, are identical to the parameters
used in the standard version. The batch size used for ResNet-18, ResNet-34, and EfficientNetV2-M
experiments is 512, 512, and 100, respectively. We reported the average test accuracy obtained across
three random seeds.

Domain adaptation experiments on CIFARs and CINIC-10. Our Deep CORAL experimental setup
follows the guidelines in Sun & Saenko (2016). However, we deviate by using batch sizes of 16 for
ResNets on CIFAR-10 and CIFAR-100, of 16/32 for EfficientNetV2-M on CIFAR-10/100, and 64 for
CINIC-10, differing from the original paper’s settings. Also, we use a fixed learning rate of 1e-3 on
CIFARs and 1e-4 on CINIC-10. We set � as 1/750 for CIFAR-10, 1/25 for CIFAR-100, and 1/2 for
CINIC-10. We initialize the DA model with weights from the baseline models rather than using the
pre-trained models, then apply 20-epoch DA training. These adjustments ensure a fair comparison
with baseline models. When applying DA to quantized models, we facilitate the back-propagation
process by approximating the gradients in these models. We achieve this approximation by utilizing
the gradients derived from their corresponding full-precision models. This approach enables us to
effectively conduct back-propagation on the quantized models. We define the best adapted model as
the one that achieves the highest validation accuracy on the target domain, the original dataset T .

Post-training static quantization. We apply PTSQ on baseline models using the built-in quantization
modules provided by PyTorch. These modules facilitate the fusion of different model components,
calibration of the model using training data to determine suitable scale factors, and the actual
quantization of weights and activations in the model. Note that we perform the adversarial correction
on the training samples that the quantized network gets wrong, rather than the full precision network.

5 RESULTS AND DISCUSSION

Our approach improves the baseline performance through two steps: adversarial correction and
domain adaptation. The “none” case involves only domain adaptation, providing most of the
performance improvement, while the adversarial correction provides incremental improvement. The
“none” attack case corresponds to the situation where we do not apply any adversarial correction,
effectively relying only on the curriculum modification of the training set. Instead of training from
an easy to a hard curriculum, we apply domain adaptation to go from easy to hard curriculum.
Inspired by curriculum learning, we consider data in different difficulty levels as data with different
distributions, i.e., in distinct domains. Therefore, instead of training on more difficult samples, we
can transfer knowledge from one domain of the dataset (e.g., source domain - an easy domain with
100% accuracy) to a related but different domain (e.g., target domain - hard domain) within the
dataset. This is inspired by the work in Shen et al. (2023), who used domain adaptation in this way
in a standard curriculum learning process. They found that this form of curriculum learning was
much faster than standard curriculum learning. Our approach differs in two significant ways from
method stated in Shen et al. (2023): first, it does not require an external scoring function to create the
easy/hard curriculum, instead using the ground truth fidelity. Second, we enhance the source domain
by adding the adversarial corrected data samples, thereby improving the domain adaptation. One
could argue that in doing adversarial correction we are performing a type of dataset augmentation, by
creating new samples with known labels. However, we are not training on this augmented dataset in
a standard manner. Instead, the removal of the incorrect samples and the addition of the corrected
samples provides a more pure representation of the domain that the initial network does well on,
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thereby enhancing the effectiveness of the subsequent domain adaptation step. Indeed, even just
removing the incorrect samples, without adding the adversarial corrections, provides a significant
benefit to the domain adaptation step.

5.1 ADVERSARIAL CORRECTION OF FULL PRECISION MODELS

The training, validation, and test accuracy of various networks obtained by applying AdCorDA for
different attack methods on CIFAR-10 and CIFAR-100 are presented in Tab. 1. Our approach overall
enhances the model performance by as much as 2.64% and 5.23% on CIFAR-10 and CIFAR-100,
respectively, when utilizing ResNets of various sizes. As for the effect of our method when applied
to EfficientNet, we note an enhancement ranging from approximately 0.7% to 1.1% across CIFAR
datasets. More specifically, the ResNet-34 baseline model, operating at full precision, achieved a
test accuracy of 78.41% on CIFAR-100. Our adversarial correction method, using a DDN attack,
improves the test accuracy to 83.64%, representing a notable increase of 5.23%. In addition, we
applied AdCorDA to the larger CINIC-10 dataset, and the performance of our pipeline is presented in
Tab. 2. Our approach resulted in approximately a 1% improvement in ResNet model performance.

Table 1: Accuracy (%) of FP32 baselines (denoted as BL), which is fine-tuned on the CIFAR train
domains, and accuracy of baselines after applying our approach (denoted as BL-IST) using different
attacks to generate adversarial domains. “Corr.” represents correction rates after adversarial attacks.

Model Approach Attack
CIFAR-10 CIFAR-100

Corr. Rate Test � Acc Corr. Rate Test � Acc

ResNet-18
(11.19M)

BL - - 93.29±0.37 - - 77.04±0.08 -
BL-IST None - 95.57±0.13 +2.28 - 80.27±0.74 +3.23
BL-IST LL 55/176 95.93±0.15 +2.64 70/451 80.93±0.46 +3.90
BL-IST BIH 99/176 95.87±0.24 +2.58 51/451 80.99±0.45 +3.96

BL-IST VBI 175/176 95.77±0.06 +2.48 446/451 80.54±0.80 +3.50
BL-IST DDN 176/176 95.84±0.07 +2.55 451/451 80.82±0.35 +3.79
BL-IST SP 45/176 95.80±0.08 +2.51 43/451 80.89±0.61 +3.86

ResNet-34
(21.30M)

BL - - 94.22±0.06 - - 78.41±0.10 -
BL-IST None - 96.40±0.05 +2.18 - 82.98±0.07 +4.57
BL-IST LL 25/80 96.31±0.12 +2.09 370/2538 82.69±0.12 +4.28
BL-IST BIH 46/80 96.36±0.07 +2.14 655/2538 83.31±0.06 +4.90
BL-IST VBI 80/80 96.26±0.12 +2.04 2490/2538 83.26±0.45 +4.85
BL-IST DDN 80/80 96.71±0.05 +2.49 2538/2538 83.64±0.06 +5.23

BL-IST SP 23/80 96.22±0.05 +2.00 118/2538 83.25±0.29 +4.84

ResNet-50
(23.57M)

BL - - 94.32±0.59 - - 79.74±0.19 -
BL-IST None - 96.61±0.12 +2.29 - 83.89±0.22 +4.15

BL-IST LL 46/131 96.31±0.11 +1.99 60/775 83.11±0.48 +3.37
BL-IST BIH 69/141 96.11±0.16 +1.79 261/775 83.03±0.43 +3.29
BL-IST VBI 130/131 96.50±0.18 +2.18 741/775 82.87±0.07 +3.13
BL-IST DDN 131/131 96.35±0.12 +2.03 775/775 83.03±0.07 +3.29
BL-IST SP 17/131 96.30±0.15 +1.98 45/775 83.25±0.32 +3.51

EfficientNetV2-M
(52.99M)

BL - - 97.15±0.14 - - 86.88±0.46 -
BL-IST None - 97.76±0.14 +0.61 - 87.36±0.57 +0.48
BL-IST LL 3/9 97.82±0.08 +0.67 17/54 87.52±0.45 +0.64
BL-IST BIH 6/9 97.82±0.09 +0.68 23/54 88.00±0.10 +1.12

BL-IST VBI 8/9 97.80±0.04 +0.65 46/54 87.76±0.16 +0.88
BL-IST DDN 9/9 97.86±0.06 +0.71 54/54 87.81±0.10 +0.93
BL-IST SP 4/9 97.70±0.12 +0.55 18/54 87.89±0.19 +1.01

Table 2: Accuracy (%) of baseline models after applying the AdCorDA approach on CINIC-10.

Model Approach Attack Corr. Rate Train Test

ResNet-18
BL - - 94.75 84.09
BL-IST None - 94.47 84.88 (+0.79)
BL-IST DDN 4723/4723 94.97 84.99 (+0.90)

ResNet-50
BL - - 95.98 86.60
BL-IST None - 95.35 87.60 (+1.00)

BL-IST DDN 3620/3620 95.77 87.58 (+0.98)

Upon incorporating adversarial correction using the LL attack on the training set, we observed a
decrease in the initial training loss from 0.254 (on the original training set T ) to 0.173 (on the
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corrected training set T 0) on CIFAR-100. This shows that the adversarial correction does indeed
reduce the training loss.

5.2 ADVERSARIAL CORRECTION OF QUANTIZED MODELS

Table 3 shows that our method also improves the baseline performance of quantized networks. For
example, the full precision baseline ResNet-34 achieves a test accuracy of 78.41% on CIFAR-100.
The Int8 quantized baseline ResNet-34 has a test accuracy of 77.13% on CIFAR-100. When applying
our method using the BIH attack on quantized ResNet-34, it achieves a test accuracy of 82.18% - an
improvement of +5.05% over its original quantized network (and an improvement of +3.77% over its
original full precision network!).

The quantized ResNet-34 network after using our adversarial correction technique achieves a higher
accuracy (82.18% on CIFAR-100) than even that of a normally trained full-precision ResNet-152
baseline model (81.52%), while significantly reducing the model size (20.76MB vs 223.49MB).

Table 3: Accuracy (%) of quantized (Int8) ResNets of various sizes obtained after applying PTSQ on
its baseline, and the accuracy of Int8 ResNets using our approach.

Model Approach Attack CIFAR-10 CIFAR-100

ResNet-18

BL - 93.29±0.37 77.04±0.08

PTSQ - 92.42±0.17 76.06±0.94

PTSQ-IST None 95.18±0.09 (+2.76) 79.15±0.26 (+3.09)
PTSQ-IST BIH 95.48±0.18 (+3.07) 79.53±0.58 (+3.47)
PTSQ-IST SP 95.29±0.06 (+2.93) 79.79±0.49 (+3.73)

ResNet-34

BL - 94.22±0.06 78.41±0.10

PTSQ - 93.36±0.09 77.13±0.45

PTSQ-IST None 96.08±0.20 (+2.72) 81.94±0.45 (+4.81)
PTSQ-IST BIH 96.05±0.07 (+2.69) 82.18±0.20 (+5.05)
PTSQ-IST SP 95.83±0.19 (+2.47) 82.12±0.20 (+4.99)

5.3 EARLY STOPPING FOR ADVERSARIAL CORRECTION

We investigate the effect of varying the number of baseline training epochs on the overall performance
of our pipeline, as depicted in Fig. 2. Instead of fine-tuning pre-trained models for 100 epochs to
build baselines, we conduct fine-tuning for fewer epochs, such as 20 or 40 epochs. The corresponding
baseline performance with different numbers of training epochs is denoted as “BL” in Fig. 2a.
Subsequently, we apply adversarial correction to the misclassified samples from each baseline,
with the performance of both the none case (0% correction rate) and DDN case (100% correction
rate) presented in Fig. 2a. The total number of misclassified samples increases as the training
accuracy of the baselines decreases due to early stopping. Our findings reveal that with only 20
epochs of baseline training, our approach demonstrates a significant improvement (from 73.48%
to 80.57%) through direct DA (i.e., none case) and achieves further enhancement (from 80.57%
to 83.51%) with adversarial correction. As the number of altered samples decreases due to higher
baseline performance, the effect of adversarial correction diminishes. Nevertheless, DA consistently
contributes to improvements in the baselines. Moreover, as shown in Fig. 2b, we show the effect of
doing DDN adversarial correction using various correction rates on BL. We see that as the number of
corrected incorrect samples increases, we obtain nearly linear improvements in accuracy gain.

5.4 ENHANCED ROBUSTNESS TO ADVERSARIAL ATTACKS

Our adversarial correction technique has many similarities to adversarial training methods for
enhancing robustness to adversarial attacks. Such methods generate adversarial examples, for which
networks give the wrong answer, and add these as augmentations of the original dataset. Fine-tuning
on the augmented dataset leads to enhanced robustness against adversarial attacks Madry et al. (2017).
Our approach is similar in that we create new images resulting from adversarial attacks, and use these
in concert with images from the original dataset in further training. There are significant differences,
however, between our method and standard adversarial training. First, we do not augment the original
dataset, but instead replace some of the samples in the original dataset with the adversarial examples.
Second, the adversarial attacks are only applied to samples that the network gets wrong, rather than
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(a) BL vs BL-IST (b) BL-IST-DDN

Figure 2: Performance comparison of ResNet-34 on CIFAR-100. (a) our pipeline results with
BL achieved through fine-tuning across various epoch counts; (b) our pipeline results with DDN
adversarial correction using different correction rates on BL obtained by fine-tuning with 20 epochs.

samples that the network gets right, and we only keep the adversarial examples which are corrective -
that the network now gets right. Finally, rather than doing fine-tuning using standard training on the
augmented training set, we do domain adaptation from the adversarially corrected training set to the
original training set. We tested the robustness of ResNets to the AutoAttack suite of attacks Croce &
Hein (2020a). As seen in Tab. 4, our method provides significant robustness to adversarial attacks.
For CIFAR-10 with ResNet-18 we see an improvement from 15.92% on the baseline model to 50.97%
on the adversarially corrected model with the SP correction method. On CIFAR-100 with ResNet-18
we see an improvement from 7.56% to 21.8%. Note that using only curriculum domain adaptation
(the “None” case) also gives significant robustness. While current state-of-the-art robust network
techniques get higher accuracies under attack than ours (e.g., 27.67% on CIFAR-100 by Addepalli
et al. (2022) and 55.54% on CIFAR-10 by Sehwag et al. (2021), both with ResNet-18), our focus
is on attaining higher clean (before attacks) accuracies, and the enhanced robustness is a welcome
byproduct. Jointly optimizing both clean accuracy and adversarial robustness is an interesting avenue
for future work.

Table 4: Accuracy (%) of FP32 baselines and adapted models using our approach on the clean and
adversarially perturbed CIFAR test sets. AutoAttack is used to generate the adversarial samples.

Model Approach Attack
CIFAR-10 CIFAR-100

Clean AutoAttack Clean AutoAttack

ResNet-18

BL - 93.29±0.37 15.92±1.67 77.04±0.08 7.56±1.14

BL-IST None 95.57±0.13 47.63±1.74 80.27±0.74 20.65±0.82

BL-IST DDN 95.84±0.07 47.97±0.10 80.82±0.35 21.66±0.94

BL-IST SP 95.80±0.08 50.97±0.72 80.89±0.61 21.80±1.87

ResNet-34

BL - 94.22±0.06 13.80±1.05 78.41±0.10 7.90±0.62

BL-IST None 96.40±0.05 50.54±2.90 82.98±0.07 22.37±1.39

BL-IST DDN 96.71±0.05 51.03±2.89 83.64±0.06 20.68±2.19

BL-IST SP 96.22±0.05 50.13±2.41 83.25±0.29 24.47±0.31

EfficientNetV2-M

BL - 97.15±0.14 15.07±0.78 86.88±0.46 11.16±0.45

BL-IST None 97.76±0.14 52.68±3.20 87.36±0.57 23.61±3.08

BL-IST DDN 97.86±0.06 42.42±2.66 87.81±0.10 25.72±2.15

BL-IST SP 97.70±0.12 39.02±2.36 87.89±0.19 25.84±1.79

6 CONCLUSION

In this work, we present a new method for enhancing the performance of trained image classifier
networks. Our approach is particularly useful for small networks with relatively modest performance
(i.e., 70-80%) typically deployed on edge devices. The method has two stages - first the training
set samples for which the network gives incorrect answers are modified via corrective adversarial
attacks so that the network now gives the correct answers. In the second stage, the network is
refined via domain adaptation, using Deep CORAL, from the modified dataset to the original dataset.
Experiments show substantial enhancements in performance on CIFAR datasets of over 5%, and 1%
on CINIC-10.
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Our experiments show that the adversarial correction approach is effective for refining quantized
networks. Also, we observe that the adversarial correction enhances robustness to adversarial attack.
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