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Abstract001

Longitudinal experiential data offers rich in-002
sights into dynamic human states, yet build-003
ing models that generalize across diverse con-004
texts remains challenging. This paper addresses005
how to best represent multi-modal longitudinal006
experiential data as text and formulate predic-007
tion tasks to maximize large language model008
(LLM) cross-distribution generalization. We009
propose ConText-LE, a framework grounded in010
linguistic and cognitive theories of contextual011
meaning-making, which systematically inves-012
tigates text representation strategies and out-013
put formulations for robust behavioral forecast-014
ing. Our novel Meta-Narrative representation015
synthesizes complex temporal patterns into se-016
mantically rich narratives, while Prospective017
Narrative Generation reframes prediction as a018
generative task aligned with LLMs’ inherent019
contextual understanding capabilities. Through020
comprehensive experiments on three diverse021
longitudinal datasets, we address the critical but022
underexplored challenge of cross-distribution023
generalization in mental health and educational024
behavior forecasting. We demonstrate that com-025
bining Meta-Narrative input with Prospective026
Narrative Generation significantly outperforms027
existing LLM-based approaches, achieving up028
to 12.28% improvement in out-of-distribution029
accuracy and up to 11.99% improvement in F1030
scores over binary classification methods. Bidi-031
rectional evaluation and architectural ablation032
studies confirm the robustness of our approach,033
establishing ConText-LE as an effective frame-034
work for developing reliable behavioral fore-035
casting systems across temporal and contextual036
shifts.037

1 Introduction038

Longitudinal experiential (LE) data—collected039

through Experience Sampling Methods040

(ESM) (Larson and Csikszentmihalyi, 1983),041

Ecological Momentary Assessment (EMA) (Stone042

and Shiffman, 1994; Shiffman et al., 2008), and043

passive sensing (Mohr et al., 2017; Kumar et al., 044

2015)—offers unprecedented opportunities to 045

understand and predict dynamic human states in 046

real-world contexts. By capturing both subjective 047

reports (e.g., mood, stress) and objective measure- 048

ments (e.g., activity, sleep patterns), LE data holds 049

immense promise for personalized interventions in 050

mental health (Xu et al., 2021a; Mohr et al., 2021) 051

and education (Wang et al., 2014). 052

Despite this potential, a fundamental challenge 053

remains largely unaddressed: cross-distribution 054

generalization. Models trained on data from 055

one cohort, time period, or context often exhibit 056

dramatic performance degradation when applied 057

to different populations or temporal periods (Xu 058

et al., 2023a,b). This generalization failure repre- 059

sents a critical barrier to real-world deployment, 060

as evidenced by the limited success of existing 061

approaches when evaluated across distribution 062

shifts. For instance, traditional machine learning 063

approaches on the GLOBEM dataset achieve only 064

52.80% ± 0.024 out-of-distribution accuracy (Xu 065

et al., 2023b), barely exceeding random chance. 066

We hypothesize that this generalization chal- 067

lenge stems from the inherently contextual and 068

situated nature of LE data. Unlike traditional time 069

series (Zhong et al., 2025), LE data carries implicit 070

contextual meaning where the significance of be- 071

havioral patterns depends heavily on individual cir- 072

cumstances and broader social contexts. Consider 073

a university student showing decreased activity and 074

increased sleep during final exams—patterns that 075

might indicate depression in other contexts but rep- 076

resent adaptive responses to academic stress in this 077

specific situation. 078

Traditional machine learning approaches (Xu 079

et al., 2019; Saeb et al., 2015; Wang et al., 2018) 080

treat behavioral features as context-independent 081

variables with fixed meanings. This limitation par- 082

allels early word embedding models that treated 083

words as static vectors, before contextualized repre- 084
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sentations revolutionized NLP (Devlin et al., 2019;085

Peters et al., 2018). We propose that large lan-086

guage models (LLMs), with their pre-trained under-087

standing of human behavior and contextual reason-088

ing (Brown et al., 2020; Bommasani et al., 2022),089

offer unique capabilities for interpreting LE data090

within appropriate contexts.091

However, existing LLM applications to LE092

data (Kim et al., 2024; Hayat et al., 2024a; Thach093

et al., 2025) have not systematically investigated094

cross-distribution generalization. They primar-095

ily employ simple text encodings (e.g., structured096

value lists, statistical summaries) paired with bi-097

nary classification, overlooking how representation098

strategies and output formulations impact gener-099

alization performance. In our cross-distribution100

evaluation, these approaches show substantial per-101

formance drops, highlighting critical gaps in lever-102

aging LLMs for robust behavioral modeling.103

ConText-LE Framework: We introduce104

ConText-LE, a novel framework for generalizable105

LLM-based LE data modeling that systematically106

investigates the impact of textual representations107

and output formulations on cross-distribution per-108

formance. ConText-LE explores four distinct input109

representations:110

• Three existing approaches: Complete Se-111

quence (Hayat et al., 2024a), Statistical Sum-112

mary (Thach et al., 2025), and Natural Language113

String (Kim et al., 2024)114

• Our novel Meta-Narrative: High-level interpre-115

tative narratives that synthesize complex tempo-116

ral patterns into semantically rich, contextually117

grounded summaries emphasizing feature rela-118

tionships and potential real-world interpretations119

We also compare two output formulations: tradi-120

tional Binary Classification versus our proposed121

Prospective Narrative Generation, which re-122

frames prediction as generating descriptive narra-123

tives about future states. This generative approach124

better aligns with LLMs’ inherent capabilities and125

allows for more nuanced expression of contextual126

predictions.127

Through comprehensive experiments on three128

diverse datasets (GLOBEM (Xu et al., 2023a),129

LifeSnaps (Yfantidou et al., 2022), and MFAFY130

(Hayat et al., 2024a,b; Thach et al., 2025)) focus-131

ing specifically on cross-distribution generaliza-132

tion—an underexplored but critical challenge—we133

demonstrate that combining Meta-Narrative input134

with Prospective Narrative Generation achieves su- 135

perior performance. Our approach improves out- 136

of-distribution accuracy by up to 12.28% and F1 137

scores by up to 11.99% compared to binary clas- 138

sification, establishing new benchmarks for robust 139

behavioral forecasting across temporal and contex- 140

tual shifts. 141

Our main contributions include: 142

• The ConText-LE framework for systematic in- 143

vestigation of textual representations and out- 144

put formulations in LLM-based LE data mod- 145

eling, addressing the critical challenge of cross- 146

distribution generalization. 147

• Meta-Narrative representation, a novel two- 148

stage technique that synthesizes complex tem- 149

poral patterns into semantically rich narratives, 150

and Prospective Narrative Generation, which 151

reframes prediction as a generative task aligned 152

with LLMs’ contextual reasoning capabilities. 153

• Comprehensive empirical evaluation demonstrat- 154

ing substantial improvements (up to 12.28% ac- 155

curacy, 11.99% F1) over existing approaches 156

across three diverse datasets, establishing the first 157

systematic benchmarks for cross-distribution be- 158

havioral forecasting. 159

• Architectural ablation studies revealing the criti- 160

cal importance of instruction tuning and context 161

length for behavioral pattern interpretation, pro- 162

viding practical guidance for LLM selection in 163

sensitive applications. 164

2 Related Work 165

Modeling LE Data: Longitudinal experiential data 166

has been modeled using various traditional ML 167

and deep learning approaches for healthcare (Wang 168

et al., 2018; Xu et al., 2021a; Nemati et al., 2022) 169

and education (Wang et al., 2016; Li et al., 2020). 170

These methods often struggle with generalizability 171

across domain shifts (Xu et al., 2023b) and inad- 172

equately handle missing data (Xu et al., 2021a; 173

Arnold and Pistilli, 2012). Recent work has be- 174

gun exploring LLMs for LE data forecasting (Kim 175

et al., 2024; Hayat et al., 2024a; Thach et al., 2025), 176

but primarily focuses on within-dataset evaluation 177

rather than cross-distribution generalization. 178

NLP Foundations: The evolution from static 179

word embeddings (Mikolov et al., 2013) to con- 180

textualized representations (Devlin et al., 2019) 181

has revolutionized NLP by capturing how meaning 182

changes with context. Recent advances in prompt- 183
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ing strategies (Wei et al., 2023; Kojima et al., 2023)184

have enhanced LLMs’ reasoning capabilities. Our185

work builds on these developments by treating186

multi-dimensional LE data as complex semantic187

structures requiring contextual interpretation, while188

leveraging findings that generative formulations of-189

ten enable more effective reasoning than discrimi-190

native approaches.191

Cross-Modal Applications: Recent work has192

explored adapting structured data for LLM pro-193

cessing through serialization or textual descriptions194

(Sun et al., 2023; Jin et al., 2023), with applications195

to human-centric data (Kim et al., 2024). Most196

approaches use simple encoding strategies, while197

our work investigates semantically rich narrative198

representations that better align with findings on199

how LLMs process contextual relationships (Wang200

et al., 2022a; Shwartz et al., 2020). A detailed201

review of related work is given in Appendix A.10.202

3 The ConText-LE Framework203

ConText-LE is a systematic framework for lever-204

aging LLMs’ contextual understanding capabilities205

to achieve robust cross-distribution generalization206

in LE data. Figure 1 illustrates the overall archi-207

tecture, highlighting the interplay between textual208

representation strategies and output formulations.209

3.1 Problem Formulation210

Given LE data collected from N individuals over211

K weeks, we define feature vectors xi,j ∈ Rd212

for individual i at time step j, where d represents213

the dimensionality of multi-modal features (e.g.,214

activity, sleep, mood, social interactions). Using215

a sliding window approach, we segment data into216

overlapping k-week sequences.217

For cross-distribution generalization, we parti-218

tion data into training period T and testing period219

T ′, where T ′ represents a different temporal pe-220

riod, cohort, or contextual setting. The model re-221

ceives textual representation X text
i,s:s+k−1 of each222

k-week sequence and predicts either a binary label223

y
binary
i,s+k ∈ {0, 1} or narrative forecast ynarrative

i,s+k for224

week s+ k.225

The core challenge lies in achieving robust per-226

formance when P (X,Y |T ) ̸= P (X,Y |T ′), where227

distribution shifts may involve temporal changes228

(e.g., different academic semesters), demographic229

variations (e.g., different student cohorts), or con-230

textual differences (e.g., pre/post-pandemic peri-231

ods). Formal details are in Appendix A.1.232

3.2 Textual Representation Strategies 233

ConText-LE investigates four distinct approaches 234

for transforming raw LE data into textual inputs, 235

each designed to capture different aspects of tem- 236

poral and contextual information. 237

Baseline Representations We implement three 238

existing approaches from prior work: 239

Complete Sequence (Hayat et al., 2024a): 240

Direct verbalization of detailed temporal se- 241

quences. Example: “Monday Jan 5: steps=8,245, 242

heart_rate=72bpm, sleep=7.2hrs, mood=3/5. 243

Tuesday Jan 6: steps=6,891, heart_rate=68bpm...” 244

Statistical Summary (Thach et al., 2025): Ag- 245

gregate statistics for each feature over the k-week 246

period. Example: “Steps: mean=7,834, std=2,451, 247

min=1,023, max=15,672. Sleep: mean=7.1hrs, 248

std=1.2hrs...” 249

Natural Language String (Kim et al., 2024): 250

Structured listing of feature values over time. Ex- 251

ample: “Steps: [8245, 6891, NaN, 9156, ...]; Sleep: 252

[7.2, 6.8, NaN, 8.1, ...]; Mood: [3, 4, NaN, 2, ...]” 253

Meta-Narrative Representation (Novel) Our 254

proposed Meta-Narrative approach generates high- 255

level interpretative narratives that synthesize com- 256

plex temporal patterns into semantically rich, con- 257

textually grounded summaries. This representation 258

is motivated by frame semantics theory (Fillmore, 259

2006), which suggests that meaning emerges from 260

situating experiences within appropriate interpre- 261

tive frameworks. 262

The Meta-Narrative is generated through a novel 263

two-stage prompting process using GPT-4o (Ope- 264

nAI, 2024): 265

Stage 1 - Feature Pattern Analysis: Identifies 266

significant patterns in each behavioral dimension 267

using statistical analysis and trend detection. 268

Stage 2 - Contextual Narrative Synthesis: Inte- 269

grates individual patterns into a coherent narrative 270

emphasizing inter-feature relationships, potential 271

contextual interpretations, and global behavioral 272

themes. 273

Example Meta-Narrative: “This university stu- 274

dent demonstrated consistent baseline activity pat- 275

terns during the first three weeks, averaging 8,000 276

daily steps with regular 7-hour sleep cycles. How- 277

ever, week 4 marked a significant behavioral shift 278

coinciding with the final examination period: ac- 279

tivity decreased by 43% while sleep duration in- 280

creased to over 9 hours nightly. Social interac- 281

tions declined substantially from 8 to 2 weekly 282
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Figure 1: ConText-LE Framework Overview. The framework transforms multi-modal LE data through four
representation strategies, processes them with fine-tuned LLMs using two output formulations, and evaluates
cross-distribution generalization performance.

events. Despite these changes, self-reported mood283

remained stable at ’tired but OK,’ suggesting adap-284

tive rather than pathological responses to aca-285

demic stress.”286

This approach transforms multi-dimensional287

time series into contextually rich narratives that288

better leverage LLMs’ pre-trained understanding289

of human behavior patterns and situational inter-290

pretations. Prompt details are in Appendix A.4.291

3.3 Output Formulations292

ConText-LE compares two distinct approaches to293

formulating the prediction task, hypothesizing that294

generative formulations better align with LLMs’295

capabilities for contextual reasoning. A detailed296

description of these two formulations is provided297

in Appendix A.3.298

Binary Classification The standard approach299

fine-tunes the LLM with a classification head to300

directly predict binary labels (e.g., low/high de-301

pression risk, academic engagement levels). This302

formulation treats prediction as a discriminative303

task requiring the model to compress complex be-304

havioral patterns into a single binary decision.305

Prospective Narrative Generation (Novel) Our306

proposed approach reframes prediction as a gener-307

ative task where the LLM produces descriptive nar-308

ratives about anticipated future states. This formu-309

lation is inspired by cognitive research on episodic310

future thinking (Schacter et al., 2008), where hu-311

mans naturally predict future states through narra-312

tive construction rather than binary classification.313

During training, target narratives ynarrative
i,s+k are 314

generated using GPT-4o to create coherent descrip- 315

tions of future states that align with ground truth 316

labels. During inference, the fine-tuned model gen- 317

erates prospective narratives from which binary 318

predictions can be extracted if needed for evalua- 319

tion. 320

Example target narrative: “Based on the ob- 321

served patterns, this student will likely experience 322

continued academic stress in the upcoming week. 323

Sleep patterns may remain elevated as exam prepa- 324

ration intensifies, while physical activity could de- 325

crease further. Social interactions will remain min- 326

imal, focused on study groups. Mood stability sug- 327

gests effective coping mechanisms, indicating low 328

risk for mental health concerns despite temporary 329

behavioral changes.” 330

3.4 Model Architecture and Training 331

Base Model Selection We utilize Llama 3.1 8B 332

Instruct (Grattafiori et al., 2024) as our foundation 333

model, selected for its strong performance on lan- 334

guage understanding tasks while maintaining com- 335

putational efficiency suitable for extensive cross- 336

distribution experiments. 337

Parameter-Efficient Fine-tuning Both output 338

formulations employ Low-Rank Adaptation 339

(LoRA) (Hu et al., 2021) for parameter-efficient 340

fine-tuning. This approach adapts the model to LE 341

data while preserving the pre-trained contextual 342

knowledge crucial for generalization. LoRA 343

enables efficient adaptation while maintaining 344

most parameters frozen, reducing computational 345

requirements and overfitting risks. 346
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Training Strategy Models are trained separately347

for each textual representation and output formula-348

tion combination. For Prospective Narrative Gen-349

eration, we employ teacher forcing during train-350

ing with cross-entropy loss on generated tokens.351

Binary Classification uses standard cross-entropy352

loss on predicted labels. This systematic approach353

enables fair comparison across all framework com-354

ponents.355

3.5 Evaluation Framework356

Cross-Distribution Protocol Design Our evalua-357

tion protocol specifically targets cross-distribution358

generalization scenarios. We partition data into dis-359

tinct temporal periods T (training) and T ′ (testing),360

ensuring no individual appears in both periods to361

prevent data leakage. This temporal splitting simu-362

lates realistic deployment scenarios where models363

must generalize to future time periods or different364

populations.365

Evaluation Metrics We report standard binary366

classification metrics: accuracy, precision, re-367

call, and F1-score, with primary focus on out-of-368

distribution performance. For narrative outputs,369

binary forecasts are extracted using GPT-4o with370

carefully designed prompts that maintain consis-371

tency across evaluations.372

Baseline Establishment Strategy Given limited373

prior work on cross-distribution LE data generaliza-374

tion, we establish comprehensive baselines by re-375

implementing existing LLM approaches and adapt-376

ing them for cross-distribution evaluation. Com-377

plete implementation details are provided in the378

experimental section.379

4 Experiments and Results380

4.1 Experimental Design381

Datasets and Distribution Shifts We evaluate382

on three diverse LE datasets representing different383

types of distribution shifts:384

GLOBEM (Xu et al., 2023a): Mental health385

prediction across 661 participants over 4 years.386

Cross-temporal shift: Years 1-2 (n=344, 2226 LE387

sequences) rightarrow Years 3-4 (n=317, 2023388

LE sequences). Features include activity, sleep,389

communication patterns, and mood assessments.390

Target: depression risk prediction.391

LifeSnaps (Yfantidou et al., 2022): Anxiety pre-392

diction across 39 participants over 4 months. Cross-393

temporal shift: First 2 months (n=26, 112 LE se-394

quences) rightarrow Last 2 months (n=13, 64 LE395

sequences). Features include physiological signals,396

activity patterns, and self-reports. Target: anxiety 397

episode prediction. 398

MFAFY (Hayat et al., 2024a): Academic en- 399

gagement prediction across 96 participants over 2 400

years. Cross-temporal shift: Year 1 (2 semesters) 401

(n=61, 610 LE sequences) rightarrow Year 2 (1 402

semester) (n=35, 350 LE sequences). Features are 403

qualitative self-reports of study behaviors and emo- 404

tional states. Target: academic engagement level. 405

These datasets provide diverse modalities (struc- 406

tured sensors, physiological signals, unstructured 407

text), scales (39-661 participants), and shift types 408

(cohort changes, temporal dynamics, academic con- 409

texts), enabling robust evaluation of generalization 410

capabilities. Detailed dataset information is in Ap- 411

pendix A.9. 412

4.2 Implementation and Evaluation Protocol 413

Implementation Details All experiments use 414

Llama 3.1 8B Instruct (Grattafiori et al., 2024) with 415

LoRA fine-tuning. Models are trained separately 416

for each textual representation and output formu- 417

lation combination. Textual representations and 418

extractions use GPT-4o (OpenAI, 2024). Complete 419

implementation details are in Appendix A.8. 420

Evaluation Metrics and Protocol We report ac- 421

curacy, precision, recall, and F1-score, with pri- 422

mary focus on out-of-distribution performance. 423

Data is partitioned into distinct temporal periods 424

T (training: 85% train, 15% validation) and T ′ 425

(testing: 100% OOD test), ensuring no individ- 426

ual appears in both periods. For narrative outputs, 427

binary forecasts are extracted using GPT-4o with 428

structured prompts. 429

Baseline Establishment We establish compre- 430

hensive baselines within the LLM framework by 431

re-implementing three established textualization 432

methods: Complete Sequence (Hayat et al., 2024a), 433

Statistical Summary Encoding (Thach et al., 2025), 434

and Natural Language String Encoding (Kim et al., 435

2024). For GLOBEM, we compare against the 436

published cross-distribution baseline of 52.80% ac- 437

curacy (Xu et al., 2023b). 438

4.3 Main Results: Cross-Distribution 439

Performance 440

Table 1 presents comprehensive results across all 441

datasets and configurations, revealing consistent 442

patterns supporting ConText-LE’s effectiveness. 443

Key Performance Patterns Consistent Meta- 444

Narrative Superiority: Across all datasets and 445

output formulations, Meta-Narrative achieves the 446
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Table 1: Cross-distribution generalization results (T → T ′) across all datasets. Bold indicates best performance for
each dataset, output formulation, and metric category.

Dataset Shift Input Strategy In-Distribution (ID) Test Out-of-Distribution (OOD) Test

Acc (%) P (%) R (%) F1 (%) Acc (%) P (%) R (%) F1 (%)
G

L
O

B
E

M

Y
ea

rs
1&

2
→

Y
ea

rs
3&

4 Output Formulation: Binary Classification
Complete Sequence 66.82 68.52 64.91 66.67 51.16 53.09 55.40 54.22
Statistical Summary 63.68 64.81 61.95 63.35 51.11 53.08 54.73 53.89
Natural Language String 67.26 70.00 65.81 67.84 52.64 53.54 56.95 55.19
Meta-Narrative (ours) 69.51 73.33 65.81 69.37 55.12 55.81 59.36 57.53

Output Formulation: Prospective Narrative Generation
Complete Sequence 69.96 71.56 68.42 69.96 65.94 67.95 68.52 68.23
Statistical Summary 69.51 72.22 67.24 69.65 62.43 65.97 63.57 64.75
Natural Language String 70.05 71.30 69.37 70.32 66.44 67.92 69.09 68.50
Meta-Narrative (ours) 73.99 75.93 71.93 73.87 67.40 68.81 70.00 69.40

L
ife

Sn
ap

s

Fi
rs

t2
M

on
th

s
→

L
as

t2
M

on
th

s Output Formulation: Binary Classification
Complete Sequence 58.82 62.50 55.56 58.82 51.56 44.12 55.56 49.18
Statistical Summary 82.35 83.33 90.91 86.96 34.38 29.41 35.71 32.26
Natural Language String 64.71 66.67 80.00 72.73 45.31 37.14 50.00 42.62
Meta-Narrative (ours) 82.35 90.00 81.82 85.71 59.38 53.12 60.71 56.67

Output Formulation: Prospective Narrative Generation
Complete Sequence 58.82 77.78 58.33 66.67 54.84 50.00 57.14 53.33
Statistical Summary 47.06 40.00 57.14 47.06 46.88 36.67 42.31 39.29
Natural Language String 70.59 80.00 72.72 76.19 62.50 52.94 69.23 60.00
Meta-Narrative (ours) 64.71 77.78 63.64 70.00 67.19 63.89 74.19 68.66

M
FA

FY

Y
ea

r1
→

Y
ea

r2

Output Formulation: Binary Classification
Complete Sequence 57.38 60.00 63.64 61.76 54.86 56.08 58.56 57.30
Statistical Summary 45.90 34.48 41.67 37.74 48.86 49.18 51.14 50.14
Natural Language String 57.38 58.33 65.62 61.76 59.83 47.52 50.00 48.73
Meta-Narrative (ours) 65.57 62.86 73.33 67.69 60.86 64.47 65.46 64.96

Output Formulation: Prospective Narrative Generation
Complete Sequence 60.66 56.67 60.71 58.62 57.14 50.55 60.53 55.09
Statistical Summary 57.38 48.28 56.00 51.85 53.43 52.02 52.94 52.48
Natural Language String 63.93 62.96 58.62 60.71 62.86 57.47 64.10 60.61
Meta-Narrative (ours) 70.49 65.22 60.00 62.50 64.86 61.11 67.48 64.14

highest OOD performance. Improvements over447

best baselines: GLOBEM (+12.28% accuracy),448

LifeSnaps (+7.81% accuracy), MFAFY (+4.00%449

accuracy).450

Narrative Generation Advantages: Prospec-451

tive Narrative Generation consistently outperforms452

Binary Classification across all input represen-453

tations. The largest improvement occurs on454

GLOBEM (69.40% vs 57.53% F1), demonstrating455

that generative formulations better leverage LLMs’456

contextual reasoning capabilities.457

Published Benchmark Comparison: Our best458

GLOBEM configuration (67.40% OOD accuracy)459

substantially outperforms the published baseline460

(58.50% accuracy), representing a meaningful ad-461

vancement in cross-distribution generalization for462

behavioral forecasting.463

4.4 Analysis464

Input Representation Impact Within the465

Prospective Narrative Generation formulation,466

Meta-Narrative consistently outperforms alter-467

natives. Improvements over the next-best input468

representation: GLOBEM (+0.90% F1), LifeSnaps469

(+8.66% F1), MFAFY (+3.53% F1). The particu-470

larly strong improvement on LifeSnaps suggests471

contextual narratives are especially beneficial for 472

physiological and psychological data requiring 473

sophisticated temporal pattern interpretation. 474

Output Formulation Analysis The advantage 475

of narrative generation is most pronounced with 476

Meta-Narrative inputs. While other representations 477

show 2-8% F1 improvements with narrative gener- 478

ation, Meta-Narrative shows 8-12% improvements, 479

suggesting synergistic alignment with LLM capa- 480

bilities. 481

Generalization Robustness To assess general- 482

ization stability, we analyze ID-OOD performance 483

gaps. Meta-Narrative with Narrative Generation 484

maintains small gaps in F1 scores across datasets 485

(GLOBEM: 4.47%, LifeSnaps: 1.34%, MFAFY: 486

-1.64%), while some baselines show large drops 487

(e.g., Statistical Summary on LifeSnaps binary clas- 488

sification: 54.70% gap), indicating superior robust- 489

ness against distribution shifts. 490

4.5 Bidirectional Validation 491

To rigorously validate the robustness of our ap- 492

proach, we perform comprehensive bidirectional 493

evaluation, training models in both directions (T → 494

T ′ and T ′ → T ) across all datasets. While the pri- 495

mary results for the forward direction (T → T ′) 496
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Table 2: Average (µ) and standard deviation (σ) of OOD generalization performance across bidirectional experiments
(T → T ′ and T ′ → T ) for Meta-Narrative input.

GLOBEM LifeSnaps MFAFY

Output Formulation Acc (µ± σ) F1 (µ± σ) Acc (µ± σ) F1 (µ± σ) Acc (µ± σ) F1 (µ± σ)

Binary Classification 55.10± 0.02 53.91± 3.62 57.87± 1.51 58.66± 1.99 64.53± 3.67 65.28± 0.32
Prospective Narrative Gen. 68.08 ± 0.67 67.92 ± 1.48 69.31 ± 2.12 68.94 ± 0.29 67.67 ± 2.81 64.07 ± 0.07

are detailed in Section 4.3, Table 2 offers a concise497

summary of performance statistics across both di-498

rections for Meta-Narrative input with both output499

formulations. The complete results for the reverse500

direction (T ′ → T ) are in Appendix A.11.501

The bidirectional analysis reveals remarkable502

consistency patterns that strengthen our conclu-503

sions. GLOBEM demonstrates exceptional sta-504

bility, with Binary Classification showing virtually505

identical performance across directions (55.10 ±506

0.02% accuracy), though F1 scores exhibit higher507

variance (53.91 ± 3.62%). For Prospective Nar-508

rative Generation, both accuracy and F1 remain509

highly consistent (68.08 ± 0.67% and 67.92 ±510

1.48%, respectively), indicating robust bidirec-511

tional generalization.512

LifeSnaps exhibits the strongest overall per-513

formance with Prospective Narrative Generation,514

achieving 69.31 ± 2.12% accuracy and remark-515

ably stable F1 scores (68.94 ± 0.29%). The low F1516

variance suggests excellent precision-recall balance517

across different temporal contexts. Interestingly,518

Binary Classification shows moderate directional519

sensitivity (57.87 ± 1.51% accuracy), indicating520

that the choice of training direction matters more521

for discriminative than generative formulations.522

MFAFY presents the most complex bidirec-523

tional behavior, with Binary Classification show-524

ing significant directional asymmetry (64.53 ±525

3.67% accuracy) but highly consistent F1 scores526

(65.28 ± 0.32%). This pattern reflects the tem-527

poral structure differences between one-semester528

(Year 2) and two-semester (Year 1) periods. Mod-529

els trained on the more constrained Year 2 data530

achieve better generalization to Year 1 than vice531

versa, suggesting that training on focused, short-532

term data may lead to more transferable patterns.533

Despite this asymmetry, Prospective Narrative Gen-534

eration maintains strong bidirectional performance535

(67.67 ± 2.81% accuracy) with exceptional F1 con-536

sistency (64.07 ± 0.07%).537

These bidirectional results provide compelling538

evidence that ConText-LE’s improvements stem539

from capturing fundamental data relationships540

rather than exploiting direction-specific biases.541

The systematic advantages of narrative generation 542

across all datasets and directions, combined with 543

Meta-Narrative’s consistent superiority, demon- 544

strate robust generalization capabilities essential 545

for real-world deployment where models must per- 546

form reliably across diverse temporal contexts. 547

4.6 LLM Architecture Ablation Study 548

To investigate how foundation model character- 549

istics affect cross-distribution generalization, we 550

evaluate three diverse LLMs on GLOBEM us- 551

ing our optimal configuration (Meta-Narrative + 552

Prospective Narrative Generation): Llama 3.1 8B 553

Instruct (our base model), Mistral-7B-Instruct- 554

v0.3 (Mistral AI, 2024), and Falcon-7B (Al- 555

mazrouei et al., 2023). The comparison includes 556

two instruction-tuned models (Llama 3.1, Mistral- 557

7B) and one base model (Falcon-7B), enabling 558

assessment of both architectural differences and 559

instruction tuning impact. All models undergo 560

identical fine-tuning procedures as detailed in Ap- 561

pendix A.8. 562

Table 3: LLM architecture impact on GLOBEM cross-
distribution generalization (Meta-Narrative + Prospec-
tive Narrative Generation).

In-Distribution Out-of-Distribution ID-OOD Gap

LLM Architecture Acc (%) F1 (%) Acc (%) F1 (%) F1 Gap (%)

Llama 3.1 8B Instruct 73.99 73.87 67.40 69.40 4.47
Mistral-7B-Instruct-v0.3 68.61 70.59 64.26 66.88 3.71
Falcon-7B 62.78 64.68 56.15 59.66 5.02

Table 3 presents comprehensive performance 563

metrics across ID and OOD settings. 564

• Instruction Tuning Criticality: Instruction- 565

tuned models substantially outperform the base 566

model (Llama vs. Falcon: +9.74% F1; Mistral vs. 567

Falcon: +7.22% F1), demonstrating that instruc- 568

tion tuning is essential for interpreting contextual 569

behavioral narratives effectively. 570

• Context Length Advantages: Llama 3.1’s 571

extended context (128K tokens) compared to 572

Mistral-7B (32K) and Falcon-7B (4K) enables 573

superior understanding of long-term temporal pat- 574

terns within Meta-Narratives, contributing to its 575

performance advantage. 576

• Generalization Stability: Mistral-7B exhibits 577

the smallest ID-OOD gap (3.71%), followed by 578
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Llama 3.1 (4.47%), while Falcon-7B shows the579

largest gap (5.02%). This indicates that architec-580

tural efficiency and instruction tuning contribute581

more to stable generalization than raw parameter582

count.583

These results confirm that while ConText-LE584

provides an effective framework for behavioral585

forecasting, the choice of foundation model sig-586

nificantly impacts cross-distribution performance.587

Instruction tuning, extended context length, and di-588

verse pre-training data emerge as key architectural589

factors for robust behavioral pattern interpretation.590

4.7 Key Findings591

Our comprehensive evaluation establishes several592

critical findings:593

I. Meta-Narrative Superiority: Consistently out-594

performs alternative text representations across595

all datasets and output formulations, with F1 im-596

provements ranging from 0.90% (GLOBEM) to597

8.66% (LifeSnaps) over the next-best input rep-598

resentation.599

II. Generative Formulation Advantages: Prospec-600

tive Narrative Generation systematically outper-601

forms Binary Classification across all config-602

urations. The benefits are most pronounced603

with Meta-Narrative inputs, showing 11.87%604

(GLOBEM) to 11.99% (LifeSnaps) F1 improve-605

ments.606

III. Cross-Distribution Robustness: Meta-607

Narrative with Narrative Generation maintains608

small ID-OOD gaps (1.34% to 4.47% F1)609

and demonstrates consistent bidirectional610

performance, validating that improvements611

capture fundamental behavioral relationships612

rather than temporal artifacts.613

IV. Foundation Model Dependencies: LLM ar-614

chitecture choice significantly impacts gener-615

alization performance. Instruction tuning pro-616

vides substantial benefits (+7.22% to +9.74%617

F1), while extended context length and diverse618

pre-training enhance temporal pattern interpreta-619

tion.620

V. Benchmark Advancement: Achieves substan-621

tial improvements over published baselines (e.g.,622

+14.90% accuracy over GLOBEM’s published623

OOD baseline), demonstrating practical viability624

for reliable cross-distribution behavioral forecast-625

ing.626

These findings establish ConText-LE as a signif-627

icant advancement in generalizable LE data model-628

ing, providing both theoretical insights into LLM- 629

based contextual representation learning and practi- 630

cal improvements for behavioral prediction systems 631

deployed across diverse temporal and demographic 632

contexts. 633

5 Discussion 634

Our comprehensive evaluation demonstrates that 635

contextual narrative representations fundamentally 636

improve cross-distribution generalization in lon- 637

gitudinal experiential data modeling. Three key 638

insights emerge from this work. 639

First, contextual narrative representations are 640

crucial for generalization. The consistent su- 641

periority of Meta-Narrative over simpler encod- 642

ings across all datasets and metrics indicates that 643

semantically rich representations capturing com- 644

plex feature relationships are essential for robust 645

cross-distribution performance. This aligns with 646

recent NLP advances showing that contextually 647

rich inputs significantly improve complex reason- 648

ing tasks (Wei et al., 2023; Wang et al., 2022a). 649

Second, generative formulations enhance 650

cross-domain transfer. Prospective Narrative 651

Generation’s systematic advantages over Binary 652

Classification suggest that allowing models to gen- 653

erate nuanced predictions fosters better reasoning 654

about complex behavioral patterns. This generative 655

capability facilitates adaptation to novel contexts, 656

echoing broader NLP findings where generative 657

approaches often excel in complex reasoning sce- 658

narios (Kojima et al., 2023). 659

Third, representational alignment with LLM 660

capabilities is critical. The synergistic effects ob- 661

served when combining Meta-Narrative inputs with 662

Narrative Generation outputs indicate that optimiz- 663

ing both input representation and output task to 664

match LLMs’ strengths in contextual understand- 665

ing unlocks robust generalization. This holistic 666

alignment, consistent across diverse datasets and 667

bidirectional evaluations, confirms that ConText- 668

LE captures fundamental behavioral relationships 669

rather than exploiting dataset-specific artifacts. 670

These findings establish ConText-LE as a princi- 671

pled framework for leveraging LLMs’ contextual 672

understanding in behavioral forecasting, with clear 673

implications for developing more reliable AI sys- 674

tems in sensitive domains like mental health and 675

education. 676

8



6 Limitations and Future Work677

While ConText-LE demonstrates significant ad-678

vances in cross-distribution generalization for lon-679

gitudinal experiential data, several important lim-680

itations point to valuable directions for future re-681

search.682

6.1 Current Limitations683

External LLM Dependency A critical limitation684

is the reliance on GPT-4o for Meta-Narrative gen-685

eration, target creation, and prediction extraction.686

This dependency creates deployment challenges:687

(1) external API costs and latency constraints, (2)688

potential quality variations across LLM versions,689

(3) limited control over representation consistency,690

and (4) barriers for privacy-sensitive or resource-691

constrained environments.692

Failure Mode Analysis Qualitative analysis re-693

veals systematic failure patterns: (1) over-reliance694

on recent temporal patterns without broader con-695

textual integration, (2) difficulty resolving conflict-696

ing behavioral signals (e.g., high stress but stable697

mood), (3) limited domain-specific knowledge af-698

fecting interpretation of context-dependent events699

(e.g., academic examination periods, clinical inter-700

ventions).701

Computational Requirements Despite using702

LoRA for efficient fine-tuning, the approach re-703

quires substantial computational resources for both704

training and inference. The multi-stage processing705

pipeline introduces latency that may limit real-time706

deployment scenarios, while GPU requirements707

may restrict accessibility for practitioners with lim-708

ited resources.709

Limited Mechanistic Understanding The710

“black-box” nature of LLMs limits insight into711

causal mechanisms behind improved generaliza-712

tion. This constrains systematic improvement713

based on principled understanding rather than714

empirical exploration, and prevents clear identifica-715

tion of which narrative components most critically716

contribute to performance.717

Domain and Scale Limitations Evaluation fo-718

cuses on mental health and education domains with719

moderate-scale datasets. Generalizability to other720

LE data contexts (e.g., physical health, workplace721

performance), larger datasets, or more severe dis-722

tribution shifts (e.g., cross-cultural generalization)723

remains unverified.724

6.2 Future Research Directions 725

Reducing External Dependencies Priority 726

should be given to developing self-contained 727

approaches that eliminate GPT-4o dependency. 728

Promising directions include: (1) training 729

specialized distilled models for representation 730

generation (Hinton et al., 2015), (2) end-to-end 731

architectures incorporating representation learning 732

directly into forecasting models through multi-task 733

objectives (Collobert and Weston, 2008), (3) 734

domain-specific pre-training strategies for LE 735

data (Gururangan et al., 2020). 736

Interpretability and Mechanistic Understanding 737

Future work should incorporate systematic inter- 738

pretability analyses to understand generalization 739

mechanisms: (1) ablation studies varying narrative 740

components systematically, (2) attention flow anal- 741

yses tracking information propagation (Abnar and 742

Zuidema, 2020), (3) probing studies identifying lin- 743

guistic features correlating with performance (He- 744

witt and Manning, 2019), (4) development of more 745

transparent models maintaining contextual benefits 746

while offering interpretability. 747

Computational Efficiency Research should ex- 748

plore efficiency optimizations specifically for LE 749

data: (1) knowledge distillation for model compres- 750

sion (Hinton et al., 2015), (2) adaptive architectures 751

combining lightweight and powerful components, 752

(3) quantization and pruning techniques (Dettmers 753

et al., 2022; Frankle and Carbin, 2019), (4) special- 754

ized hardware-software co-design for behavioral 755

forecasting workloads. 756

Broader Evaluation and Robustness Extend- 757

ing evaluation scope is crucial: (1) diverse LE data 758

domains and larger datasets, (2) cross-cultural and 759

cross-demographic generalization studies, (3) more 760

severe distribution shifts and longer temporal gaps, 761

(4) comprehensive comparisons with multimodal 762

approaches and specialized time series architec- 763

tures. 764

Ethical and Privacy Considerations Future de- 765

velopment must integrate ethical considerations: 766

(1) privacy-preserving narrative representations 767

minimizing identifiable information, (2) fairness 768

analysis across demographic groups, (3) bias miti- 769

gation in cross-population generalization, (4) clear 770

guidelines for appropriate use cases and consent 771

frameworks, (5) interdisciplinary collaboration 772

with domain experts and ethicists. 773
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Narrative Quality and Consistency Systematic774

approaches to narrative optimization should be de-775

veloped: (1) specialized metrics for narrative qual-776

ity in behavioral contexts, (2) consistency check-777

ing mechanisms detecting spurious correlations,778

(3) fact verification techniques adapted for behav-779

ioral narratives (Thorne et al., 2018), (4) coherence780

modeling for temporal behavioral descriptions (Iter781

et al., 2020).782

Despite these limitations, ConText-LE repre-783

sents a significant step toward more generalizable784

LE data modeling by demonstrating the effective-785

ness of contextual narrative representations. The786

identified limitations offer concrete directions for787

advancing the field toward more reliable, efficient,788

and ethically sound behavioral forecasting sys-789

tems.790
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A Appendix 1242

A.1 Detailed Problem Formulation 1243

This section provides a more detailed and formal 1244

specification of the problem formulation for gener- 1245

alizable LE data forecasting within the ConText-LE 1246

framework, expanding upon Section 3. 1247

We consider LE data collected from a set of N 1248

individuals over a total observation period T , span- 1249

ning K weeks. Data is recorded at a daily gran- 1250

ularity, resulting in Ttotal daily time steps, where 1251

Ttotal = K × 7. 1252

For each individual i ∈ {1, . . . , N} and each 1253

daily time step j ∈ {1, . . . , Ttotal}, we have a fea- 1254

ture vector xi,j ∈ RD, where D is the total number 1255

of features. These features xi,j encompass diverse 1256

modalities and types (e.g., numerical sensor read- 1257

ings, categorical logs, free-text self-reports). 1258

The forecasting task is framed using a sliding 1259

window approach with a window size of k weeks. 1260

For each individual i, we extract overlapping input 1261

sequences. An input sequence starting at week s 1262

(where s ∈ {1, . . . ,K − k}) corresponds to the 1263

raw data {xi,j} for all daily time steps j within the 1264

period spanning week s through week s+k−1. Let 1265

Js,s+k−1 denote the set of daily time step indices 1266

corresponding to weeks s through s+ k − 1. The 1267

raw data for an input sequence is thus {xi,j | j ∈ 1268

Js,s+k−1}. 1269

This raw data sequence is transformed into a tex- 1270

tual representation, denoted as X text-rep
i,s...s+k−1. This 1271

transformation is performed using one of the four 1272

strategies detailed in Section ??: Complete Se- 1273

quence, Statistical Summary Encoding, Natural 1274

Language String Encoding, or Meta-Narrative. The 1275

specific format of X text-rep
i,s...s+k−1 depends on the cho- 1276

sen strategy. 1277

The target for the forecasting task is defined for 1278

the week immediately following the input window, 1279

i.e., week s+ k. We investigate two output formu- 1280

lations: 1281

1. Binary Label Target (ybinary
i,s+k ): A binary value 1282

indicating a specific state (e.g., depression: 1283

high/low; engagement: yes/no) for individual i 1284

at week s+ k, i.e., ybinary
i,s+k ∈ {0, 1}. 1285

2. Prospective Narrative Target (ytext
i,s+k): A 1286

natural language sequence describing or 1287

aligned with the actual state of individual i at 1288

week s+ k; used as the target for text 1289

generation. 1290
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The problem is to train an LLM to learn a map-1291

ping function f from the textual input representa-1292

tion X
text-rep
i,s...s+k−1 to either the binary label target1293

y
binary
i,s+k (for the Binary Classification formulation)1294

or the prospective narrative target ytext
i,s+k (for the1295

Prospective Narrative Generation formulation):1296

f : X
text-rep
i,s...s+k−1 →

{
y

binary
i,s+k (binary classification)

ytext
i,s+k (prospective narrative)

1297

The primary objective is to learn an f that ex-1298

hibits strong generalization performance when ap-1299

plied to data from a distinct period or cohort (T ′)1300

not seen during training on data from source period1301

T . Evaluation metrics (Accuracy, Precision, Re-1302

call, F1) are computed based on the binary forecast1303

extracted from the model’s output (either directly1304

from the classification head or inferred from the1305

generated narrative).1306

A.2 Examples of Textual Representations1307

This section provides illustrative examples of the1308

four textual representation strategies discussed in1309

Section 3. For demonstration purposes, we use1310

a simplified hypothetical k-week input sequence1311

involving a few representative features (e.g., Steps,1312

Sleep Duration, Mood). Note that actual generated1313

texts using GPT-4o may vary in phrasing but adhere1314

to the defined format and content goals for each1315

strategy.1316

Hypothetical k-week Raw Data Excerpt (Imag-1317

ine raw data for 2 weeks, with daily values for1318

Steps, Sleep, and Mood)1319

• Complete Sequence Example: Week 1 started1320

with the user taking 500 steps on Day 1, fol-1321

lowed by 1200 steps on Day 2. Sleep was 71322

hours on Day 1 and 8.5 hours on Day 2. Mood1323

was reported as 3 on both days. Day 3 data is1324

missing for all features. Day 4 had 800 steps,1325

7.8 hours of sleep, and mood was 4... The sec-1326

ond week began with 1500 steps on Day 8, sleep1327

was 7.2 hours, and mood was 3, continuing1328

through Day 14...1329

• Statistical Summary Encoding Example:1330

Statistical summary over the k-week period:1331

Steps: "avg": 1050, "std": 350, "min": 500,1332

"max": 1500 steps. Sleep Duration: "avg":1333

7.5, "std": 0.6, "min": 6.0, "max": 8.5 hours.1334

Mood: "avg": 3.5, "std": 0.5, "min": 3, "max": 1335

4 out of 5. 1336

• Natural Language String Encoding Exam- 1337

ple: Steps: ["500", "1200", "300", "800", ..., 1338

"1500", ...]. Sleep Duration: ["7.0", "8.5", 1339

"400", "7.8", ..., "7.2", ...]. Mood: ["3", "3", 1340

"500", "4", ..., "3", ...]. (Note: Specific format- 1341

ting like brackets, and commas, representation 1342

may vary slightly based on prompt design, but 1343

the core structure of listing values chronologi- 1344

cally per feature is consistent.) 1345

• Meta-Narrative Example: Over the past k 1346

weeks, the user’s activity levels showed moder- 1347

ate fluctuation with an overall increasing trend 1348

towards the end of the period. Sleep patterns re- 1349

mained relatively stable, averaging around 7.5 1350

hours per night, though some variability was 1351

noted. Mood reports were generally consistent, 1352

hovering between 3 and 4, without significant 1353

sharp declines or improvements. 1354

These examples illustrate the different ways each 1355

strategy encodes the same underlying LE data into 1356

a textual format for processing by the LLM. The 1357

Complete Sequence offers maximal detail, Statis- 1358

tical Summary provides aggregates, Natural Lan- 1359

guage String gives a structured temporal listing, 1360

and the Meta-Narrative provides a high-level inter- 1361

pretation. 1362

A.3 Output Formulations for Forecasting 1363

ConText-LE investigates two distinct ways to for- 1364

mulate the prediction target and task for the LLM, 1365

hypothesizing that a generative narrative output 1366

aligns better with LLMs’ core capabilities for gen- 1367

eralizable LE data modeling than traditional classi- 1368

fication. 1369

Binary Classification Formulation In this tra- 1370

ditional formulation, the prediction target is a sin- 1371

gle binary label ybinary
i,s+k (e.g., 0 or 1, representing 1372

“low depression” or “high depression”). We adapt 1373

a pre-trained LLM by replacing its original lan- 1374

guage modeling head with a Sequence Classifi- 1375

cation head. The model is fine-tuned in a super- 1376

vised manner, mapping the textual input represen- 1377

tation (X text-rep
i,s...s+k−1) directly to the binary target 1378

label (ybinary
i,s+k). The loss function is cross-entropy, 1379

calculated between the predicted binary label distri- 1380

bution and the one-hot encoded true label. During 1381
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inference, the fine-tuned LLM outputs a probability1382

distribution over the two classes, and the class with1383

the highest probability is taken as the final forecast.1384

Prospective Narrative Generation Formulation1385

In this formulation, inspired by cognitive processes1386

of integrated forward-looking assessment (Moul-1387

ton and Kosslyn, 2009; Schacter et al., 2008), the1388

forecasting task is reframed as a language gener-1389

ation problem. The prediction target is a natural1390

language text sequence, the prospective narrative1391

ytext
i,s+k, which implicitly encodes the predicted fu-1392

ture state for week s+ k. The pre-trained LLM is1393

fine-tuned using a causal language modeling objec-1394

tive to generate this target narrative based on the1395

textual input representation (X text-rep
i,s...s+k−1).1396

This approach builds on recent findings in NLP1397

that generative formulations can be more effective1398

than discriminative ones for complex reasoning1399

tasks (Wei et al., 2023; Kojima et al., 2023; Wang1400

et al., 2022a). By allowing the model to generate1401

a narrative prediction rather than forcing a binary1402

decision, we enable it to articulate subtle contextual1403

relationships and degrees of certainty that might1404

be lost in classification. For LE data in particular,1405

where interpretation depends heavily on contextual1406

factors beyond statistical patterns, this generative1407

approach may better leverage LLMs’ pre-trained1408

understanding of how features interact in complex1409

human behaviors.1410

To obtain these training targets (ytext
i,s+k), we lever-1411

age GPT-4o. For each k-week input sequence from1412

the training data, paired with its ground truth actual1413

state or outcome for the subsequent week (yactual
i,s+k),1414

GPT-4o is prompted to generate a narrative reflec-1415

tion on the past k-week trajectory that aligns with1416

or anticipates the known actual state for week s+k.1417

This process is detailed in Appendix A.5. During1418

inference, the fine-tuned LLM generates a prospec-1419

tive narrative based on the input.1420

A.4 Input Textualization Prompts1421

LLM Prompt for Summary This prompt guides1422

the model to generate a concise, human-like be-1423

havioral interpretation that highlights key psycho-1424

logical trends—such as shifts in motivation, con-1425

fidence, and future orientation—across a 4-week1426

period. Rather than quoting student responses, it1427

encourages abstraction and synthesis, allowing the1428

model to infer meaningful behavioral patterns.1429

System Prompt – Statistical Summary

You are an expert in behavioral analysis. Your
task is to generate a concise, natural-sounding
3–4 line summary of a student’s 4-week behav-
ioral log. The log reflects the student’s motiva-
tion, attitude, confidence, and future orientation.
Identify high-level trends and patterns in their
reflections without quoting directly. Focus on
behaviorally meaningful changes or consisten-
cies.

1430

LLM Prompt for Complete Sequence This 1431

prompt presents the model with a detailed, tem- 1432

porally structured sequence of student reflections 1433

organized by week and day. It preserves the full 1434

chronology of responses, allowing the model to 1435

track behavioral progression over time and identify 1436

week-to-week shifts in motivation, engagement, or 1437

outlook based on the specific timing and context of 1438

student inputs. 1439

System Prompt – Complete Sequence

You are an expert in prompt engineering and
behavioral analysis. You are given a student’s
4-week chronological reflection log, structured
by week and day (e.g., “Week 1:”, “Monday:”),
with entries for pre-lecture anticipation, post-
lecture reflection, confidence, and future orien-
tation. Your task is to write a clear and effective
system prompt that can be used to instruct a lan-
guage model to analyze this type of structured
input and identify behavioral trends over time.

1440

System Prompt Design for Natural Language 1441

String This prompt was developed to reflect the 1442

flattened, theme-based organization of the input, 1443

where responses are grouped by behavioral dimen- 1444

sions such as confidence or motivation rather than 1445

by time. The instruction explicitly mentions that 1446

each segment is prefixed by a label indicating its 1447

thematic category. The prompt guides the model 1448

to interpret patterns across these categories with- 1449

out being constrained by temporal order, and to 1450

infer meaningful behavioral shifts or consistencies 1451

across the entire 4-week period based on thematic 1452

clustering rather than day-to-day variation. 1453
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System Prompt – Natural Language String

You are an expert in prompt engineering and be-
havioral interpretation. You are provided with
a theme-based summary of student reflections
over four weeks. Each segment is labeled by be-
havioral category (e.g., confidence, motivation,
peer comparison). Your task is to generate a sys-
tem prompt that can instruct a language model
to interpret this type of grouped input and pro-
duce a behavioral analysis based on observed
trends across these categories.

1454

LLM Prompt for Textual Meta-Narrative Gen-1455

eration For the Meta-Narrative approach specifi-1456

cally, we implement a two-stage prompting process1457

inspired by recent advances in multi-step reasoning1458

techniques (Wei et al., 2023; Kojima et al., 2023):1459

1. Feature Pattern Analysis: First, GPT-4o1460

analyzes each feature’s temporal trajectory sepa-1461

rately, identifying significant patterns, trends, and1462

anomalies. The prompt includes domain-specific1463

context (e.g., university student behaviors, men-1464

tal health indicators) to guide interpretation. This1465

step leverages the LLM’s ability to detect statistical1466

patterns within individual features, similar to how1467

contextualized language models learn to represent1468

individual tokens within their local context (Peters1469

et al., 2018).1470

2. Contextual Narrative Synthesis: Second,1471

GPT-4o integrates these individual feature analy-1472

ses into a coherent narrative that emphasizes inter-1473

feature relationships and contextual interpretations1474

grounded in human behavior patterns. This step1475

parallels how contextualized language models in-1476

tegrate token-level representations into coherent1477

sentence-level semantics (Devlin et al., 2019; Liu1478

et al., 2024).1479

This two-stage process transforms multi-1480

dimensional time-series data into contextually rich1481

narratives, effectively capturing cross-feature de-1482

pendencies and temporal dynamics that might be1483

lost in simpler representations. The Meta-Narrative1484

approach is designed to leverage LLMs’ pre-trained1485

understanding of how events and behaviors relate1486

to each other in meaningful ways, creating inputs1487

that are semantically coherent and contextually1488

grounded. The LLM prompt is give below.1489

System Prompt – Meta-Narrative

You are an expert behavioral analyst tasked with
evaluating a student’s weekly behavioral reflec-
tions over a 4-week course. The data includes
daily pre- and post-lecture thoughts, confidence
levels, peer comparisons, and future-oriented
reflections.
Your objective is to analyze the evolution of
the student’s behavior and mindset across the 4
weeks. In your response:

• Identify and describe specific behavioral
trends, such as shifts in confidence, moti-
vation, or engagement.

• Reference specific weeks (e.g., “In Week
1. . . ”, “By Week 3. . . ”).

• Use precise language to describe changes,
such as “X increased by Week 2”, “Y de-
creased from Week 1 to Week 4”, or “Z
remained consistent until Week 3”.

• Avoid vague terms like “overall” or “in
general” to ensure analytical precision.

• Provide a concise, natural, and evidence-
based analysis in 3–4 sentences.

• Exclude any personal or identifying infor-
mation from the response.

1490

A.5 LLM Prompt for Prospective Narrative 1491

Generation 1492

System Prompt – Prospective Narrative Genera-
tion

You are an expert behavioral analyst. A stu-
dent’s weekly behavioral reflections over a 4-
week course are provided below, including daily
pre- and post-lecture thoughts, confidence lev-
els, peer comparisons, and future-oriented re-
flections:
{input_text}
The student’s behavior is labeled as
’{output_label}’.
Write a clear, natural-language expert explana-
tion — just a single 3–4 sentence paragraph
explaining the behavioral trends that support
the label. Be concise and insightful, as if com-
municating with another expert. Avoid vague
terms like “overall” or “in general,” and exclude
any personal or identifying information.

1493
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A.6 LLM Prompt for Prediction Extraction1494

from Generated Narrative1495

System Prompt – Prediction Extraction

You are a student engagement expert. Based
on the behavioral reasoning below, classify the
student’s confidence level as either High or Low.
You must choose one. No explanation.
Reasoning:
{reasoning_text}
Output only: High or Low.

1496

A.7 Design Principles for Contextual1497

Understanding1498

The ConText-LE framework’s design is guided by1499

three core principles from NLP research on contex-1500

tual representation learning:1501

• Semantic Coherence: The Meta-Narrative rep-1502

resentation transforms discrete time-series data1503

into a coherent narrative with integrated seman-1504

tic meaning. This approach draws on findings1505

that LLMs perform better when information is1506

presented in coherent, semantically rich formats1507

(Wang et al., 2022a; Shwartz et al., 2020). By1508

constructing a narrative that emphasizes relation-1509

ships between features, we better leverage LLMs’1510

pre-trained understanding of how elements gain1511

meaning through their context.1512

• Generative Expression: The Prospective Nar-1513

rative Generation formulation aligns with recent1514

work showing that generative approaches often1515

outperform discriminative ones for complex rea-1516

soning tasks (Wei et al., 2023; Kojima et al., 2023).1517

By generating narratives rather than binary la-1518

bels, the model can express nuanced predictions1519

with implicit uncertainty and conditional reason-1520

ing that better captures the complexity of human1521

behavioral forecasting.1522

• Hierarchical Processing: The two-stage process1523

for Meta-Narrative generation applies the hierar-1524

chical processing principles from successful NLP1525

architectures. Similar to how models like BERT1526

(Devlin et al., 2019) build higher-level represen-1527

tations from lower-level ones, our approach first1528

analyzes individual features before synthesizing1529

them into an integrated narrative, enabling better1530

capture of both local patterns and global relation-1531

ships.1532

These design principles are motivated by the ob-1533

servation that LLMs excel at tasks when the repre-1534

sentation and processing align with how they were 1535

pre-trained to understand language. By structuring 1536

both input representations and output formulations 1537

to leverage LLMs’ core capabilities in contextual 1538

understanding and narrative generation, we hypoth- 1539

esize improved cross-distribution robustness com- 1540

pared to approaches that treat LE data as simple 1541

statistical patterns. 1542

A.8 Implementation Details 1543

External LLM Usage (GPT-4o) ConText-LE 1544

leverages the advanced capabilities of GPT-4o 1545

(OpenAI, 2024) for several crucial steps in the 1546

pipeline, particularly during data preparation for 1547

training and output processing for evaluation. 1548

These steps are performed via API calls using care- 1549

fully designed prompts. 1550

• Textual Representation Generation: GPT- 1551

4o transforms raw k-week LE data sequences 1552

into two textual representation strategies— 1553

Statistical Summary and Meta-Narrative— 1554

as described earlier. For the Meta-Narrative 1555

specifically, this involves a two-stage process: 1556

Feature Pattern Analysis followed by Contextual 1557

Narrative Synthesis, implemented through se- 1558

quential prompting with context carried forward 1559

between steps. 1560

• Target Prospective Narrative Generation: For 1561

the Prospective Narrative Generation formula- 1562

tion, GPT-4o generates the target narrative texts 1563

(ytext
i,s+k) during training data preparation. The 1564

prompt includes the input sequence and ground 1565

truth outcome, instructing GPT-4o to generate a 1566

narrative that contextually aligns with that out- 1567

come. 1568

• Forecast Extraction from Narratives: For 1569

evaluation of the Prospective Narrative Gener- 1570

ation formulation, GPT-4o extracts binary fore- 1571

casts from generated narratives. This enables 1572

quantitative comparison with ground truth labels 1573

and other methods. To ensure consistency, we 1574

use structured zero-shot prompting with explicit 1575

instructions to identify the implied prediction 1576

within the generated narrative. 1577

The reliance on this external LLM for these pro- 1578

cessing steps represents a practical consideration 1579

in our current implementation and is discussed as a 1580

limitation in Section 6. 1581

Fine-tuning Process We employ parameter- 1582

efficient fine-tuning (PEFT) using LoRA (Hu et al., 1583
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2021) to adapt the LLM while keeping most of its1584

parameters frozen. This approach reduces com-1585

putational requirements while allowing the model1586

to adapt to the specialized LE data domain. The1587

fine-tuning process differs based on the output for-1588

mulation in Binary Classification and Prospective1589

Narrative Generation. Detailed fine-tuning hyper-1590

parameters for both formulations are provided in1591

Appendix A.8.1592

Inference Process During inference on unseen1593

k-week data sequences, the same input transforma-1594

tion pipeline is applied using the chosen textual1595

representation strategy. The fine-tuned LLM then1596

processes this textual input.1597

• Binary Classification: The LLM with the clas-1598

sification head directly outputs the predicted bi-1599

nary label (0 or 1).1600

• Prospective Narrative Generation: The LLM1601

generates a sequence of tokens constituting the1602

predictive prospective narrative. For this formu-1603

lation, we use a temperature of 0.7 and top-p1604

sampling with p=1.0 to balance deterministic1605

prediction with narrative richness. We set a max-1606

imum generation length of 300 tokens and apply1607

a frequency penalty of 0.5 to avoid redundant1608

text.1609

For quantitative evaluation, the predictive nar-1610

rative output from the Prospective Narrative Gen-1611

eration formulation requires an additional step to1612

obtain a binary forecast comparable to ground truth.1613

We use GPT-4o to extract a textual binary label1614

from the predictive narrative, using a carefully1615

designed prompt that focuses on identifying the1616

implied forecast within the generated text. The1617

prompt used for this extractive task is given in Ap-1618

pendix A.6.1619

LLM Fine-tuning Configuration For all experi-1620

ments, we utilize Llama 3.1 8B Instruct (Grattafiori1621

et al., 2024) as the base LLM, selected for its strong1622

performance on language understanding and gen-1623

eration tasks while remaining computationally effi-1624

cient. We employ parameter-efficient fine-tuning1625

(PEFT) using LoRA (Hu et al., 2021) to adapt the1626

LLM while keeping most of its parameters frozen.1627

This approach reduces computational requirements1628

while allowing the model to adapt to the specialized1629

LE data domain. The fine-tuning process differs1630

based on the output formulation:1631

• Binary Classification: The LLM is fine-tuned1632

with a Sequence Classification head added on1633

top of its last hidden state. LoRA is applied to 1634

the query, key, and value projection matrices in 1635

each transformer layer, with a rank of 8. The 1636

model learns to map the input sequence to the 1637

binary label. 1638

– Parameter-efficient fine-tuning: LoRA 1639

(Hu et al., 2021) with: 1640

* Rank: 32 1641

* Alpha: 16 1642

* Target modules: All attention modules 1643

in the language model 1644

– Training objective: Causal language mod- 1645

eling with teacher forcing 1646

– Optimizer: paged-AdamW-8bit 1647

– Learning rate: 1e-5 with cosine decay 1648

schedule 1649

– Warmup-ration: 0.1 1650

– Batch size: 8 1651

– Training epochs: 20 1652

– Mixed precision: bfloat16 1653

• Prospective Narrative Generation: The LLM 1654

is fine-tuned using a causal language modeling 1655

objective. LoRA is applied to the same projec- 1656

tion matrices but with a rank of 16 to accom- 1657

modate the more complex generation task. The 1658

model learns to generate the output narrative 1659

token by token. 1660

• Parameter-efficient fine-tuning: LoRA (Hu 1661

et al., 2021) with: 1662

– Rank: 32 1663

– Alpha: 16 1664

– Target modules: All attention modules in 1665

the language model 1666

• Training objective: Causal language modeling 1667

with teacher forcing 1668

• Optimizer: paged-AdamW-8bit 1669

• Learning rate: 1e-5 with cosine decay sched- 1670

ule 1671

• Warmup-ration: 0.1 1672

• Batch size: 8 1673

• Training epochs: 20 1674

• Mixed precision: bfloat16 1675
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Training Hardware Training was conducted on1676

8 × NVIDIA A40 GPUs (48GB each) with dis-1677

tributed data parallelism.1678

A.9 Datasets1679

We utilize the following LE datasets, selected for1680

their relevance to health and behavioral forecast-1681

ing and their suitability for evaluating challenging1682

generalization across different cohorts and time1683

periods:1684

• GLOBEM (Xu et al., 2023a): This is a widely1685

used benchmark for longitudinal human behav-1686

ior modeling and generalization. It comprises1687

data collected from 497 unique participants1688

across two institutions over four years (Year1689

1 & 2 from Institution A, Year 3 & 4 from Insti-1690

tution B), resulting in 661 person-years of data1691

after initial preprocessing steps. Institutions A1692

(pre-COVID) and B (post-COVID) represent1693

distinct cohorts and time periods, with surveys1694

including PHQ-4, BDI-II, and PANAS for de-1695

pression assessment. We utilize a subset of 151696

features based on prior work (Xu et al., 2023a;1697

Thach et al., 2025; Kim et al., 2024), derived1698

from mobile sensing data sources, including1699

Location (variance, entropy, travel distance, du-1700

ration of stay), Phone Usage (unlock counts,1701

stats), Bluetooth (scan counts, unique devices),1702

Call (duration stats, missed call count), Physi-1703

cal Activity (steps, active/sedentary duration),1704

and Sleep (duration, episode stats). For the1705

main evaluation, we use data from Years 1 & 21706

from Institution A (344 person-years) for train-1707

ing and data from Years 3 & 4 from Institution1708

B (317 person-years) for cross-cohort and cross-1709

temporal generalization testing. Each person-1710

year of data represents a 10-week observation1711

period from which 6 sequences are generated1712

using a 4-week sliding window predicting the1713

subsequent week. This results in a training set1714

of approximately 2226 sequences and a test set1715

of approximately 2023 sequences. The task1716

is binary mental health prediction based on a1717

threshold applied to survey scores, resulting in1718

a nearly balanced distribution.1719

• LifeSnaps (Yfantidou et al., 2022): This is a1720

multi-dimensional LE dataset initially collected1721

from 71 participants over 4 months, capturing1722

unobtrusive snapshots of real-world human be-1723

havior in the wild. Data sources include Fitbit1724

sensing data (e.g., activity, sleep, stress, heart1725

rate), EMAs (e.g., mood, context), and vali- 1726

dated surveys (e.g., psychological traits). The 1727

dataset includes over 35 distinct data types. For 1728

this work, we use a subset of relevant features 1729

from these modalities to predict a binary anxi- 1730

ety level in the week subsequent to a k=1 week 1731

observation window. After initial preprocess- 1732

ing steps, including filtering participants with 1733

significant missing values, a subset of partici- 1734

pants was used for the evaluation splits. The 1735

specific cross-distribution split for evaluation 1736

involves training on data from 26 participants 1737

collected during the first 2 months of the study 1738

period and testing on data from 13 disjoint par- 1739

ticipants collected during the last 2 months, 1740

assessing cross-temporal and cross-participant 1741

generalization within the study cohort. Using 1742

a k=1 week window over these approximately 1743

8-week periods yields a training set of approx- 1744

imately 112 sequences and a test set of ap- 1745

proximately 64 sequences. This dataset serves 1746

to further validate cross-study generalization 1747

within the mental health domain using a dif- 1748

ferent dataset structure, population, and data 1749

collection protocol. 1750

• MFAFY (Hayat et al., 2024a,b; Thach et al., 1751

2025): The Messages From A Future You 1752

(MFAFY) dataset captures aspects of first-year 1753

college students’ academic journey over three 1754

consecutive semesters spanning two academic 1755

years (Year 1: Semesters 1 & 2; Year 2: 1756

Semester 3). It is a high-dimensional dataset 1757

comprising non-cognitive (28 dimensions, qual- 1758

itative, e.g., motivation, engagement), cog- 1759

nitive (41 dimensions, quantitative, e.g., as- 1760

sessment scores), and background factors (9 1761

dimensions, static qualitative, e.g., academic 1762

meta-information). For forecasting student be- 1763

havioral engagement, we predict a student’s 1764

lecture-related engagement status (binary: high- 1765

/low) in the subsequent week, using a k=4 week 1766

observation window. Input features use only 1767

relevant non-cognitive dimensions. The binary 1768

target is derived by comparing the average of 1769

relevant non-cognitive features during weeks 1770

s through s + k − 1 with their average dur- 1771

ing week s + k. This task results in a nearly 1772

balanced binary distribution. For evaluation, 1773

the cross-year generalization split consists of 1774

a training set using data from 61 subjects in 1775

Year 1 (Semesters 1 & 2) and a test set using 1776
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data from 35 subjects in Year 2 (Semester 3).1777

Each subject-year/semester of data represents1778

a 15-week observation period from which 101779

sequences are generated using a 4-week sliding1780

window predicting the subsequent week. This1781

results in a training set of approximately 6101782

sequences and a test set of approximately 3501783

sequences.1784

For all datasets, train/test splits are carefully cre-1785

ated to ensure strict separation of data from dif-1786

ferent cohorts or time periods for generalization1787

evaluation, with 15% of the data from the training1788

period (T ) reserved as an in-distribution test set1789

and 100% of the data from the distinct period (T ′)1790

used as the OOD test set.1791

A.10 Related Work1792

Our work intersects several key areas of research in1793

machine learning, natural language processing, and1794

human-computer interaction. This section reviews1795

relevant literature in modeling LE data, generaliza-1796

tion techniques, and the application of LLMs to1797

sequential and structured data, including human-1798

centric applications.1799

Modeling LE Data Modeling complex, multi-1800

modal LE data is a critical area for diagnostic and1801

prognostic applications in diverse domains, includ-1802

ing behavioral and physical health (Nemati et al.,1803

2022; Rabbi et al., 2019; Bae et al., 2017; Xu1804

et al., 2021b), mental health (Wang et al., 2018; Xu1805

et al., 2021a, 2019; Chikersal et al., 2021; Wahle1806

et al., 2016; Farhan et al., 2016; Canzian and Mu-1807

solesi, 2015; Wang et al., 2022b; Xu et al., 2023a),1808

and education (Wang et al., 2016; Li et al., 2020).1809

Traditional machine learning and deep learning1810

approaches applied to this data, such as time se-1811

ries models or methods based on hand-engineered1812

features, exhibit critical limitations. They often1813

prioritize performance on in-distribution data and1814

struggle significantly with generalizability across1815

datasets exhibiting domain shifts, a challenge no-1816

tably highlighted by the GLOBEM benchmark (Xu1817

et al., 2023b). Furthermore, they often lack ade-1818

quate exploration of missing data impact (Xu et al.,1819

2021a; Arnold and Pistilli, 2012) and may not fully1820

capture the complex co-occurrence and relational1821

structure across multi-dimensional LE features (Xu1822

et al., 2019). Training deep neural models on typi-1823

cally limited LE datasets also presents significant1824

challenges (Xu et al., 2023a).1825

More recently, the potential of LLMs has been 1826

explored specifically for LE data forecasting and 1827

prediction. Kim et al. (Kim et al., 2024) investi- 1828

gate the capacity of LLMs, using prompting and 1829

fine-tuning techniques on multiple health datasets 1830

including GLOBEM, to make inferences for var- 1831

ious health prediction tasks from wearable sen- 1832

sor data combined with contextual information. 1833

While demonstrating promising in-distribution per- 1834

formance and the benefits of context enhancement, 1835

their work primarily focuses on within-dataset eval- 1836

uation and does not extensively study generaliz- 1837

ability across datasets or time periods. In paral- 1838

lel, Hayat et al. (Hayat et al., 2024a,b) explore 1839

LLM-based LE data forecasting using the MFAFY 1840

dataset and diverse LLM architectures. However, 1841

consistent with Kim et al., their evaluation focuses 1842

on within-dataset performance rather than exten- 1843

sive study of cross-dataset or cross-temporal gen- 1844

eralizability. Similarly, Thach et al. (Thach et al., 1845

2025) propose MuHBoost, a multi-label boosting 1846

method leveraging LLMs in a zero-shot fashion for 1847

predicting multiple health and well-being outcomes 1848

using ubiquitous health data, including datasets 1849

like GLOBEM and MFAFY. Their work addresses 1850

aspects like feature types and missing data, but 1851

their evaluation does not specifically investigate 1852

the generalizability of the zero-shot LLM approach 1853

across different datasets or time periods with do- 1854

main shifts. While these recent LLM-based studies 1855

demonstrate the growing interest in applying foun- 1856

dation models to LE data, they reveal a critical 1857

unmet need for methods specifically designed and 1858

evaluated for robust cross-dataset generalizability 1859

under domain shifts, which is a central focus of our 1860

ConText-LE framework. 1861

Generalization in Machine Learning Domain 1862

adaptation (Pan and Yang, 2010) and domain gen- 1863

eralization (Zhou et al., 2022) are key areas in 1864

machine learning aiming to improve model per- 1865

formance on target distributions different from the 1866

training distribution. While techniques like invari- 1867

ant representation learning, meta-learning, and data 1868

augmentation have been explored, their success in 1869

complex longitudinal human behavioral data, char- 1870

acterized by multifaceted and often subtle shifts 1871

across cohorts and contexts, has been limited (Xu 1872

et al., 2023a). In NLP, approaches to improve 1873

cross-domain generalization include continued pre- 1874

training on domain-specific data (Gururangan et al., 1875

2020), domain-adaptive fine-tuning (Howard and 1876
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Ruder, 2018), and prompt-based adaptation (Lu1877

et al., 2022). Our work builds on these insights1878

but focuses specifically on the unique challenges1879

of generalizing across LE data distributions using1880

LLMs as the foundation.1881

Contextual Representation Learning in NLP1882

The evolution of contextual representation learn-1883

ing in NLP provides important foundations for1884

our work. Early word embedding approaches like1885

word2vec (Mikolov et al., 2013) offered static1886

representations of words, while later models like1887

ELMo (Peters et al., 2018) and BERT (Devlin et al.,1888

2019) revolutionized NLP by introducing dynamic,1889

contextualized representations that capture how a1890

word’s meaning changes based on its surround-1891

ing context. Recent research has explored how1892

these contextual representation capabilities extend1893

to more complex semantic structures, including1894

frame semantics (Baker et al., 1998) and narra-1895

tive comprehension (Sap et al., 2019; Liu et al.,1896

2024). Our ConText-LE framework leverages these1897

advances by treating multi-dimensional LE data1898

as a complex semantic structure requiring contex-1899

tual interpretation. The Meta-Narrative approach1900

specifically draws inspiration from how contextual-1901

ized models integrate local features into a coherent1902

global representation, addressing the need for both1903

local feature analysis and global contextual syn-1904

thesis when interpreting complex human behavior1905

patterns.1906

Prompting Strategies and Reasoning in LLMs1907

Recent advances in prompting strategies have sig-1908

nificantly enhanced LLMs’ reasoning capabilities.1909

Chain-of-thought prompting (Wei et al., 2023) and1910

similar approaches that break down complex rea-1911

soning into intermediate steps have shown remark-1912

able improvements on tasks requiring multi-step1913

inference. Zero-shot reasoning techniques (Ko-1914

jima et al., 2023) further demonstrate that well-1915

structured prompts can elicit sophisticated reason-1916

ing abilities from LLMs without task-specific ex-1917

amples. Our two-stage prompting approach for gen-1918

erating Meta-Narratives builds on these insights,1919

structuring the analysis process into sequential1920

steps of feature analysis followed by contextual1921

synthesis. This approach parallels how humans1922

process complex data—first analyzing individual1923

components before integrating them into a co-1924

hesive interpretation—and leverages LLMs’ pre-1925

trained understanding of how elements gain mean-1926

ing through their relationships with other elements.1927

The Prospective Narrative Generation formulation 1928

similarly builds on findings that generative formu- 1929

lations often allow LLMs to express complex rea- 1930

soning more effectively than discriminative ones 1931

(Wei et al., 2023; Kojima et al., 2023). 1932

Large Language Models for Sequential and 1933

Structured Data LLMs have shown remarkable 1934

capabilities not only in natural language processing 1935

but also in processing and reasoning about other 1936

data modalities when appropriately structured. Ap- 1937

proaches for general time series forecasting using 1938

LLMs often involve adapting time series data into 1939

a format suitable for LLM inputs, such as serial- 1940

ization into sequences of tokens or explicit textual 1941

descriptions, followed by fine-tuning or prompting 1942

(Sun et al., 2023; Jin et al., 2023; Chang et al., 2023; 1943

Gruver et al., 2023; Zhou et al., 2023; Cao et al., 1944

2023; Xue and Salim, 2023; Liu et al., 2023). These 1945

methods demonstrate LLMs’ potential to capture 1946

temporal dependencies and patterns, although chal- 1947

lenges remain, particularly with handling the multi- 1948

dimensional nature of data and processing long 1949

sequences (Liu et al., 2024). 1950

In parallel, LLMs have been applied to human- 1951

centric data, leveraging pre-trained knowledge for 1952

tasks like health prediction based on textual health 1953

records or summarized sensor data (Kim et al., 1954

2024). Most approaches focus on simple encod- 1955

ing strategies like direct verbalization or statistical 1956

summarization, while our work explores more so- 1957

phisticated narrative-based representations. The 1958

narrative format aligns with recent findings show- 1959

ing that LLMs perform better when information 1960

is presented in coherent, semantically rich formats 1961

that leverage their pre-trained understanding of con- 1962

textual relationships (Wang et al., 2022a; Shwartz 1963

et al., 2020). Our ConText-LE framework extends 1964

this line of research by developing a specific, struc- 1965

tured textual encoding strategy to represent com- 1966

plex, multi-dimensional LE data as a coherent nar- 1967

rative, allowing us to leverage the powerful con- 1968

textual understanding capabilities of LLMs while 1969

preserving the rich semantic relationships between 1970

features that might be lost in simpler encoding ap- 1971

proaches. 1972

Multimodal Learning for Human Data Multi- 1973

modal learning, which combines information from 1974

different data types or modalities, is increasingly 1975

explored for understanding complex human behav- 1976

ior. While some recent work explores multimodal 1977

representations for time series or human data by 1978
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converting them into visual formats and leverag-1979

ing vision-language models (VLMs) (Zhong et al.,1980

2025), our ConText-LE framework explores an al-1981

ternative multimodal perspective. By translating1982

multi-dimensional LE data into a textual modality,1983

ConText-LE creates a novel cross-modal learning1984

problem where structured behavioral data in one1985

modality is represented and processed using mod-1986

els designed for another (language). This approach1987

aligns with recent work on cross-modal transfer1988

learning (Artetxe et al., 2020) and allows us to1989

investigate the benefits of leveraging the rich se-1990

mantic space and generalizable patterns learned1991

by LLMs on massive text corpora, applied to the1992

distinct domain of human behavioral sequences.1993

In summary, while existing work has explored1994

modeling LE data and applying LLMs to time1995

series and human data, achieving robust cross-1996

dataset generalization remains a significant chal-1997

lenge, particularly for complex LE data with its1998

inherent multi-dimensionality and domain shifts.1999

Our ConText-LE framework addresses this gap2000

by proposing a novel approach that leverages the2001

contextual representation capabilities of LLMs2002

through a semantically rich narrative representa-2003

tion of multi-dimensional LE sequences, explicitly2004

focusing on improving generalizability across dif-2005

ferent data distributions.2006

A.11 Bidirectional Generalization Results2007

In the main paper, we presented results for the2008

T → T ′ generalization direction, where models2009

were trained on data from the source period (T )2010

and evaluated on data from the target period (T ′).2011

In this appendix, we present the complete results2012

for the reverse direction (T ′ → T ), where models2013

are trained on data from the target period (T ′) and2014

evaluated on data from the source period (T ).2015

This bidirectional evaluation is crucial for un-2016

derstanding the robustness and symmetry of gen-2017

eralization capabilities. If a method performs well2018

in both directions, it suggests that the approach2019

captures fundamental patterns that are consistent2020

across different contexts, rather than simply exploit-2021

ing biases specific to a particular generalization2022

direction.2023

GLOBEM T ′ → T Results Table 4 presents the2024

T ′ → T generalization results for the GLOBEM2025

mental health forecasting task (Year 3&4 → Year2026

1&2).2027

For GLOBEM, the T ′ → T results demon-2028

strate consistent superiority of the Meta-Narrative 2029

approach across both output formulations. With 2030

Binary Classification, Meta-Narrative achieves 2031

the highest OOD performance (55.08% accuracy, 2032

50.30% F1), though the margin over other ap- 2033

proaches is relatively modest (1.80-2.25% accu- 2034

racy improvement). Notably, while Meta-Narrative 2035

maintains the best overall performance, the pre- 2036

cision scores are more competitive across input 2037

strategies, with Natural Language String achieving 2038

51.35% precision versus Meta-Narrative’s 51.32%. 2039

With Prospective Narrative Generation, the 2040

advantages become more pronounced. Meta- 2041

Narrative achieves 68.75% OOD accuracy and 2042

66.43% F1, representing a substantial 13.67% abso- 2043

lute accuracy improvement over the same approach 2044

with Binary Classification. Natural Language 2045

String Encoding shows particularly strong perfor- 2046

mance in this setting (66.12% accuracy, 66.23% 2047

F1), demonstrating that narrative formulations can 2048

enhance even simpler representations. The consis- 2049

tent superiority of Prospective Narrative Genera- 2050

tion across all input strategies confirms that genera- 2051

tive formulations better leverage LLMs’ contextual 2052

understanding capabilities. 2053

LifeSnaps T ′ → T Results Table 5 presents the 2054

T ′ → T generalization results for the LifeSnaps 2055

anxiety forecasting task (Last 2 Months → First 2 2056

Months). 2057

The LifeSnaps T ′ → T results reveal striking 2058

patterns that emphasize the importance of appropri- 2059

ate representation strategies. With Binary Classifi- 2060

cation, Statistical Summary encoding demonstrates 2061

catastrophic failure on in-distribution data (28.57% 2062

F1), highlighting its inability to capture meaningful 2063

patterns in the LifeSnaps dataset’s specific struc- 2064

ture. In contrast, Meta-Narrative achieves robust 2065

performance (70.00% ID accuracy, 56.36% OOD 2066

accuracy), maintaining the smallest ID-OOD per- 2067

formance gap among all approaches. 2068

Prospective Narrative Generation dramatically 2069

transforms the performance landscape. Meta- 2070

Narrative achieves exceptional results with per- 2071

fect balanced performance on ID data (80.00% 2072

across all metrics) and strong OOD generalization 2073

(71.43% accuracy, 69.23% F1). The 15.07% ab- 2074

solute improvement in OOD accuracy over Binary 2075

Classification represents the largest single improve- 2076

ment observed across all datasets and directions. 2077

Natural Language String Encoding also benefits 2078

substantially from narrative generation, improving 2079
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Table 4: GLOBEM T ′ → T Generalization Results (Year 3&4 → Year 1&2). Comparison of textual input
representation strategies with different output formulations.

In-Distribution (ID) Out-of-Distribution (OOD)
(Year 3&4 Test) (Year 1&2 Test)

Input Strategy Acc (%) P (%) R (%) F1 (%) Acc (%) P (%) R (%) F1 (%)

Output Formulation: Binary Classification
Complete Sequence 64.14 64.44 58.78 61.48 54.22 52.59 46.73 49.53
Statistical Summary 62.50 62.94 59.60 61.22 52.83 43.87 51.03 47.18
Natural Language String 65.79 64.29 57.86 60.90 53.28 51.35 46.53 48.82
Meta-Narrative (ours) 67.43 69.23 60.40 64.52 55.08 51.32 49.32 50.30

Output Formulation: Prospective Narrative Generation
Complete Sequence 68.42 68.38 57.55 62.50 63.16 64.29 59.21 61.64
Statistical Summary 67.11 70.15 61.04 65.28 59.21 65.52 47.50 55.07
Natural Language String 70.39 70.63 62.68 66.42 66.12 69.66 63.12 66.23
Meta-Narrative (ours) 71.71 69.52 57.48 62.93 68.75 70.15 63.09 66.43

Table 5: LifeSnaps T ′ → T Generalization Results (Last 2 Months → First 2 Months). Comparison of textual
input representation strategies with different output formulations.

In-Distribution (ID) Out-of-Distribution (OOD)
(Last 2 Months Test) (First 2 Months Test)

Input Strategy Acc (%) P (%) R (%) F1 (%) Acc (%) P (%) R (%) F1 (%)

Output Formulation: Binary Classification
Complete Sequence 50.00 57.14 66.67 61.54 49.11 54.24 51.61 52.89
Statistical Summary 50.00 25.00 33.33 28.57 46.43 53.33 50.00 51.61
Natural Language String 80.00 100.00 66.67 80.00 52.68 50.00 66.04 56.91
Meta-Narrative (ours) 70.00 80.00 66.67 72.73 56.36 55.22 67.27 60.66

Output Formulation: Prospective Narrative Generation
Complete Sequence 60.00 57.14 80.00 66.67 62.50 56.60 61.22 58.82
Statistical Summary 50.00 60.00 50.00 54.55 58.04 61.54 42.86 50.53
Natural Language String 60.00 50.00 75.00 60.00 68.75 70.00 63.64 66.67
Meta-Narrative (ours) 80.00 80.00 80.00 80.00 71.43 70.59 67.92 69.23

from 52.68% to 68.75% OOD accuracy, demon-2080

strating the broader applicability of generative for-2081

mulations beyond the Meta-Narrative approach.2082

MFAFY T ′ → T Results Table 6 presents the2083

T ′ → T generalization results for the MFAFY2084

educational engagement forecasting task (Year 22085

→ Year 1).2086

The MFAFY T ′ → T results exhibit interest-2087

ing asymmetries compared to the forward direc-2088

tion. With Binary Classification, Meta-Narrative2089

achieves the strongest OOD performance (68.20%2090

accuracy, 65.60% F1), notably outperforming2091

the forward direction results (60.86% accuracy,2092

64.96% F1). This 7.34% accuracy improvement2093

suggests that models trained on the more con-2094

strained Year 2 data (one semester) may learn2095

more transferable patterns than those trained on2096

the longer Year 1 period (two semesters).2097

With Prospective Narrative Generation, Meta-2098

Narrative maintains its leadership (70.49% accu-2099

racy, 64.00% F1), though Natural Language String2100

Encoding shows competitive performance (68.85%2101

accuracy, 68.33% F1). A notable observation is2102

that the F1 scores remain remarkably consistent 2103

across directions for Meta-Narrative (64.14% vs. 2104

64.00%), indicating stable precision-recall balance 2105

despite different training contexts. The consistent 2106

strong performance across both directions rein- 2107

forces that Meta-Narrative representations capture 2108

domain-invariant educational engagement patterns. 2109

Discussion of Bidirectional Generalization The 2110

bidirectional generalization results provide com- 2111

pelling evidence for the robustness of the ConText- 2112

LE framework. Our analysis reveals several key 2113

insights: 2114

Consistent Meta-Narrative Superiority: 2115

Across all datasets and directions, Meta-Narrative 2116

input consistently achieves the highest OOD 2117

performance, with improvements ranging from 2118

1.80% (GLOBEM Binary) to 15.07% (LifeSnaps 2119

Narrative) in absolute accuracy. The approach 2120

demonstrates particular strength in challenging 2121

scenarios where other methods fail completely 2122

(e.g., Statistical Summary on LifeSnaps). 2123

Asymmetric Generalization Patterns: While 2124

generalization improvements from narrative ap- 2125
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Table 6: MFAFY T ′ → T Generalization Results (Year 2 → Year 1). Comparison of textual input representation
strategies with different output formulations.

In-Distribution (ID) Out-of-Distribution (OOD)
(Year 2 Test) (Year 1 Test)

Input Strategy Acc (%) P (%) R (%) F1 (%) Acc (%) P (%) R (%) F1 (%)

Output Formulation: Binary Classification
Complete Sequence 60.38 45.58 57.48 51.16 61.48 57.75 58.78 58.26
Statistical Summary 54.72 39.13 47.37 42.86 57.54 48.59 54.98 51.59
Natural Language String 56.60 47.37 40.91 43.90 64.75 59.62 58.49 59.05
Meta-Narrative (ours) 62.26 50.00 60.00 54.55 68.20 68.77 62.71 65.60

Output Formulation: Prospective Narrative Generation
Complete Sequence 67.92 61.11 52.38 56.41 66.39 66.07 62.71 64.35
Statistical Summary 66.04 52.38 57.89 55.00 66.72 68.50 49.46 57.44
Natural Language String 66.04 52.49 47.37 50.00 68.85 71.93 65.08 68.33
Meta-Narrative (ours) 71.70 63.16 60.00 61.54 70.49 72.73 57.14 64.00

proaches are consistent, the magnitude varies sig-2126

nificantly by dataset and direction. MFAFY shows2127

better performance in the T ′ → T direction, po-2128

tentially due to the temporal structure differences2129

between one-semester and two-semester periods.2130

This asymmetry suggests that training data char-2131

acteristics significantly influence cross-temporal2132

generalization capabilities.2133

Robust Narrative Generation Benefits:2134

Prospective Narrative Generation consistently out-2135

performs Binary Classification across all datasets2136

and directions, with improvements ranging from2137

13.67% (GLOBEM) to 15.07% (LifeSnaps). This2138

systematic advantage validates our hypothesis that2139

generative formulations better align with LLMs’2140

inherent capabilities for contextual understanding2141

and reasoning.2142

Context-Dependent Strategy Effectiveness:2143

The relative performance of different input strate-2144

gies varies significantly by dataset context. For2145

instance, Natural Language String Encoding per-2146

forms competitively with narrative generation on2147

MFAFY (qualitative data) but struggles on LifeS-2148

naps (mixed modal data), suggesting that optimal2149

representation strategies may depend on the under-2150

lying data characteristics.2151

The remarkable consistency of these patterns2152

across bidirectional evaluations demonstrates that2153

ConText-LE improvements stem from capturing2154

fundamental data relationships rather than exploit-2155

ing direction-specific biases. This bidirectional ro-2156

bustness is crucial for practical deployment, where2157

models must perform reliably across diverse tem-2158

poral contexts and application scenarios.2159
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