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ABSTRACT

In typical multimodal contrastive learning, such as CLIP, encoders produce one
point in the latent representation space for each input. However, one-point repre-
sentation has difficulty in capturing the relationship and the similarity structure of
a huge amount of instances in the real world. For richer classes of the similarity,
we propose the use of weighted point clouds, namely, sets of pairs of weight and
vector, as representations of instances. In this work, we theoretically show the
benefit of our proposed method through a new understanding of the contrastive loss
of CLIP, which we call symmetric InfoNCE. We clarify that the optimal similarity
that minimizes symmetric InfoNCE is the pointwise mutual information, and show
an upper bound of excess risk on downstream classification tasks of representations
that achieve the optimal similarity. In addition, we show that our proposed simi-
larity based on weighted point clouds consistently achieves the optimal similarity.
To verify the effectiveness of our proposed method, we demonstrate pretraining of
text-image representation models and classification tasks on common benchmarks.

1 INTRODUCTION

CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) established one of the most common
frameworks for multimodal representation learning (Guo et al., 2019). In this framework, to obtain
the text-image representation, two encoders that map inputs from different modalities onto a shared
space are trained with a contrastive loss (Chopra et al., 2005). Recent studies have shown that a
CLIP model pretrained on a large-scale text-image dataset provides transferable features to various
downstream tasks such as linear classification (Radford et al., 2021; Jia et al., 2021), text-to-video
retrieval (Lin et al., 2022), and text-conditioned image generation (Ramesh et al., 2022). Other
work has shown that a CLIP model can be used to feed vision information to large language models
(Alayrac et al., 2022). In addition to text and image modalities, this multimodal contrastive learning
framework can be applied to other combinations of modalities such as text-audio representations
(Elizalde et al., 2023) and combinations of more than two modalities (Guzhov et al., 2022; Wu et al.,
2022; Girdhar et al., 2023).

Despite the success of CLIP models, it is still arguable whether the similarity structure and repre-
sentations they provide are suitable for modeling concepts in the real world. Typical CLIP encoders
transform each input image or text into one point embedding in a latent space, and encoders are
trained to enhance the similarity of paired concepts in a training dataset, which is defined by the
cosine similarity of their embeddings. However, concepts in the real world have a broadness that
raises the relationship of inclusion and many-to-many correspondences. For example, the text “a
photo of dogs” can conceivably be the caption of any number of different images, while another
text, “a photo of poodles”, could be the caption of the subset of dog photos, and the photo of poodles
should be linked to the multiple captions. Considering these relationships, representations of concepts
should be provided in a manner that goes beyond a singular point and exhibit innate broadness.

In this paper, we propose the use of a weighted point cloud, namely a set of pairs of a scalar weight and
a vector point, as the representation of each concept, which we call Weighted Point Cloud Embedding
(WPCE). We define the similarity of two weighted point clouds with a kernel function that defines
the similarity of two points. We also provide a theoretical rationale of the proposed weighted point

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cloud embedding through a new understanding of the contrastive loss utilized in CLIP, which we
call the symmetric InfoNCE loss. First, we highlight the fact that minimization of the symmetric
InfoNCE loss is achieved when the similarity of two features in the loss is represented by the
pointwise mutual information. Second, we show, under some assumptions, that the optimal (possibly
nonlinear) classifier in downstream classification tasks can be constructed by a linear classifier over
learned representations when the optimal similarity is achieved. Last, we show that the proposed
similarity of weighted point clouds has richer representation capacity than the cosine similarity,
which is the bilinear similarity in the latent space. Moreover, to demonstrate the effectiveness of
the proposed method, we conduct experiments on the Conceptual Caption datasets and common
benchmark datasets.

2 RELATED WORK

2.1 MULTIMODAL CONTRASTIVE REPRESENTATION LEARNING IN PRACTICE

CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) utilize contrastive loss to obtain text-image
representations, inspired by a series of studies of deep metric learning and unimodal contrastive
learning such as multi-class N-pair loss (Sohn, 2016), InfoNCE (Oord et al., 2018), SimCLR (Chen
et al., 2020), and ConVIRT (Zhang et al., 2022). Both works have shown the success of pretrained
models with large-scale paired datasets and the contrastive loss, which we call the symmetric InfoNCE
in this paper, in zero-shot settings and downstream tasks.

One approach to extending this contrastive framework is to modify the similarity in the symmetric
InfoNCE loss. Fürst et al. (2022) proposed using modern Hopfield networks for computing similarities
to enrich the covariance structure of data, while also replacing the InfoNCE with the InfoLOOB.
Desai et al. (2023) proposed using the Lorentzian distance in a hyperbolic space as the similarity to
capture a hierarchy structure of visual and linguistic concepts. Following this approach, we propose
enriching the class of the similarity based on a nonlinear kernel and weighted point clouds. In contrast
to the above studies, we provide an analysis of excess risk in downstream linear classifications.

2.2 THEORETICAL UNDERSTANDING OF CONTRASTIVE LOSS

Early works attributed the success of the InfoNCE loss (Oord et al., 2018) to the fact that it is
a lower bound of mutual information and its optimization leads to maximization of the mutual
information between two views of data (Hjelm et al., 2019; Bachman et al., 2019; Tian et al., 2020).
However, Tschannen et al. (2020) demonstrated through a thought experiment and empirical results
that maximizing tighter bounds on mutual information can result in worse representations. Li et al.
(2021) also showed that different representations with the same mutual information can exhibit
different qualities. In an alternative perspective, Wang & Isola (2020) investigated alignment and
uniformity to understand the InfoNCE. This idea has affected subsequent works on theoretical
analysis of contrastive learning (Li et al., 2021; Zimmermann et al., 2021; Huang et al., 2023).

Regarding the theoretical relationship to downstream tasks, Saunshi et al. (2019) showed that the
downstream classification loss is upper bounded by a quantity monotonically increasing with respect to
the contrastive loss. Although Saunshi et al. (2019) relied on the strong assumption of the conditional
independence of two samples, subsequent studies have mitigated this problem. HaoChen et al. (2021)
proposed the spectral contrastive loss and provided an upper bound of the linear probe performance
based on the augmentation graph. Tosh et al. (2021) analyzed the excess loss of linear predictors on
the landmark embedding from the perspective of multi-view redundancy. Wang et al. (2022) showed
upper and lower bounds for downstream performance through the conditional feature variance and
the augmentation overlap effect. Ash et al. (2022) investigated upper bounds of a supervised loss in
terms of the number of negative samples. Huang et al. (2023) analyzed the performance of the nearest
neighbor classifier through (σ, δ)-augmentation. Shi et al. (2023) investigated the trade-off between
label efficiency and universality under assumptions of linear data. Waida et al. (2023) proposed the
kernel contrastive loss and showed an upper bound of the classification error. Chen et al. (2024)
studied zero-shot transfer capability of CLIP with an awareness of unexpected positive pairs. Zhai
et al. (2024) analyzed self-supervised representation learning through the lens of RKHS induced by
augmentations.
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However, we argue that there are still three issues to be resolved in terms of understanding the
framework of CLIP. First, some works provided only upper bounds of downstream losses. If there
is a certain gap between the upper bounds and the optimal value, reducing the contrastive loss does
not always mean a better performance in the downstream task. Second, some works changed the
target of theoretical analysis from the actual setting of CLIP or InfoNCE and provided guarantees on
their proposed losses or different features from usual contrastive learning. Last, some upper or lower
bounds included various statistics (e.g., variance) of the obtained presentations. While such bounds
are useful when a perfect alignment is achieved, the perfect alignment is not always practical in the
case of multimodal learning, where paired samples are not generated by augmentations of the same
instance and a data sample in a modality has relationship to many samples in another modality.

Our work differs from the above studies in the following ways. First, we consider not only an
upper bound of the performance but also the gap from the optimal classifier. Second, we analyze
the symmetric InfoNCE and linear classifiers that are constructed using an approach similar to the
actual setting of CLIP. Last, our assumptions for theoretical results are relatively mild in the case of
multimodal representation learning, which is explained in Section 4.2.

3 PROBLEM SETUP

In this section, we introduce the notations and problem settings that we use in following sections. We
formalize the multimodal contrastive representation learning and the downstream linear classification
task , which is commonly utilized to evaluate representation learning methods (Chen et al., 2020;
Radford et al., 2021).

3.1 CONTRASTIVE REPRESENTATION LEARNING AND SYMMETRIC INFONCE

Let X and Y denote the input space of two modalities. For the sake of simplicity, we focus on
text-image representation learning, and we denote the image space by X and the text space by
Y . Let pX,Y(x, y) denote the density of the joint data distribution over X × Y , and let pX(x) and
pY(y) denote the density of the marginal distribution over X and Y , respectively. If there is no
ambiguity, we omit subscripts of probability (density) functions such as p(x, y), p(x), and p(y). We
denote the conditional probability density of y given x as pY(y|x). For a subset Y ′ ⊆ Y , we denote
the probability with which y ∈ Y ′ as PY(Y ′) :=

∫
y∈Y′ p(y)dy. We also denote the conditional

probability of a subset Y ′ given x as PY(Y ′|x) :=
∫
y∈Y′ p(y|x)dy. For a probability density function

p, we denote the support of the probability as supp p.

Given a batch of N image-text pairs (x1, y1), . . . , (xN , yN ) ∼ DX×Y , CLIP (Radford et al., 2021)
introduced the following contrastive loss to train an image encoder fX : X → Rd, a text encoder
fY : Y → Rd, and a trainable temperature parameter τ ∈ R>0.

L̂(fX , fY , τ) =
1

2

[
− 1

N

N∑
i=1

ln
exp
(
fX (xi)

⊤fY(yi)/τ
)∑N

k=1 exp
(
fX (xk)⊤fY(yi)/τ

)
− 1

N

N∑
i=1

ln
exp
(
fX (xi)

⊤fY(yi)/τ
)∑N

k=1 exp
(
fX (xi)⊤fY(yk)/τ

)] (1)

We call this the symmetric InfoNCE loss. By minimizing it, the similarity of two features from
paired samples (xi, yi) is expected to be large, and the similarity of two features from independent
samples xi and yj (i ̸= j) is expected to be small. Here, the similarity of two features is measured
by the cosine similarity fX (x)⊤fY(y). Note that the features fX (x) and fY(y) of typical CLIP are
L2-normalized. For a generalized formulation, we replace the scaled similarity fX (x)⊤fY(y)/τ with
a function g : X × Y → R of two samples (x, y) ∈ X × Y . In addition, following the asymptotic
form of the InfoNCE in Wang & Isola (2020), we consider the population expectation form of the
symmetric InfoNCE. By considering the limit as N → ∞, we have the population expectation form
of the symmetric InfoNCE:

LNCE(g) =
1

2
E

p(x,y)

[
− ln

exp g(x, y)

EpX(x′) [exp g(x′, y)]

]
+

1

2
E

p(x,y)

[
− ln

exp g(x, y)

EpY(y′) [exp g(x, y′)]

]
, (2)

where we omit the constant term that comes from lnN .
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3.2 DOWNSTREAM CLASSIFICATION TASK

As a common evaluation of the learned representations with the symmetric InfoNCE, we consider
a supervised classification task with K labels. For an integer M , we define [M ] := {1, . . . ,M}.
Let PC(c|x) be the conditional probability of the label c ∈ [K] given the data x ∈ X . We define
p(x, c) = PC(c|x)pX(x) as the density of the joint distribution of data x and its label c. We assume
that pairs of data and its label (x, c) can be drawn from p(x, c). In this supervised learning setting,
a classifier h : X → RK is often trained by minimization of the softmax cross-entropy loss given
by Lsup(h) := Ep(x,c)

[
− ln exph(x)c∑K

i=1 exph(x)i

]
, where h(x)i denotes the i-th entry of h(x) ∈ RK .

In downstream linear classifications after the contrastive learning, h is constructed as a linear
classifier over the learned representation. Given the encoder fX , we formalize this linear classifier as
h(x; fX ) := W⊤fX (x)+ b, where W ∈ Rd×K is a weight and b ∈ RK is a bias. With this h(x; fX ),
the downstream classification task is formalized as the minimization problem of Lsup with respect to
W and b: minW∈Rd×K ,b∈RK Lsup(h(x; fX )).

4 THEORETICAL GUARANTEE VIA POINTWISE MUTUAL INFORMATION

In this section, we derive the upper bound for the performance of downstream classification tasks.
First, we highlight that the optimal similarity of the symmetric InfoNCE loss is represented by the
pointwise mutual information. Second, we show that if the optimal similarity is obtained, there is a
linear classifier on the learned representation that is close to the optimal (possibly nonlinear) classifier.
Last, we investigate an error caused by the deviation from the optimal similarity.

4.1 POINTWISE MUTUAL INFORMATION AS OPTIMAL SIMILARITY

Our analysis starts with the following fact shown by Zhang et al. (2023) that the optimal similarity of
the symmetric InfoNCE is represented by the pointwise mutual information.

Proposition 4.1 (Restatement of Proposition 1 in Zhang et al. (2023)). Let X and Y denote two
random variables having the joint probability density p. Then, the mutual information of X and
Y , I(X,Y ) := Ep(x,y)

[
ln p(x,y)

p(x)p(y)

]
is an upper bound of −LNCE(g). Moreover, if the function g

satisfies g(x, y) = ln p(x,y)
p(x)p(y) + const, then the equality I(X,Y ) = −LNCE(g) holds.

In other words, when we consider the minimization problem of LNCE(g) in terms of the measurable
function g over X × Y , the optimal similarity is equal to the pointwise mutual information up to a
constant. We denote this optimal similarity by g∗(x, y) := ln p(x,y)

p(x)p(y) + Γ for some Γ ∈ R.

4.2 POINTWISE MUTUAL INFORMATION ESTIMATOR LEADS TO A GOOD LINEAR CLASSIFIER

Next, we show that, under some conditions, there exists a linear classifier over learned representations
that is close to the optimal classifier h∗ = argminh Lsup(h) if we successfully obtain encoders
that achieve the optimal similarity g∗(x, y). It is known that the log probability of the label c
conditioned by data x is the minimizer of Lsup up to a constant: h∗(x)i = lnPC(i|x) + const,
for i ∈ [K]. This is because Lsup is represented by using the cross entropy H(·, ·) as follows:
Lsup(h) = Ep(x)

[
H
(
PC(·|x), QC(·|x;h)

)]
, where QC(c|x;h) := exph(x)c∑K

i=1 exph(x)i
.

To explain our theoretical results, we define several probability (density) functions. We consider
K disjoint subsets Yi (i ∈ [K]) ⊆ Y , i.e., for i ̸= j, Yi ∩ Yj = ∅. Let Ỹ = Y1 ∪ Y2 ∪ · · · ∪ YK .
Note that Ỹ is not necessarily equal to Y . We assume that P (Yi) ̸= 0 for every i. We define
the conditional probability of y given Yi as pY(y|Yi) :=

p(y)
P (Yi)

if y ∈ Yi, otherwise 0. Note that
pY(y|Yi) is a probability density function on Y (i.e.,

∫
y∈Y pY(y|Yi)dy = 1). Similarly, we define

the conditional probability of y given x and Yi as pY(y|x,Yi) :=
p(y|x)
P (Yi|x) if y ∈ Yi, otherwise 0.

For a label c ∈ [K], we define the conditional probability of a subset Yc given x and the union of
disjoint subsets Ỹ as PC(Yc|x, Ỹ) := PY(Yc|x)

PY(Ỹ|x) . We regard this as a probability function of labels over
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[K] as
∑

i∈[K] PC(Yi|x, Ỹ) = 1. Last, we construct a linear classifier on learned representations.
Given the disjoint subsets (Yi)i∈[K] and the components of similarity g(x, y) = fX (x)⊤fY(y)/τ ,
we define h̄g(x) := W̄⊤fX (x) + b̄, with a weight W̄ := [w̄1, w̄2, . . . , w̄K ] ∈ Rd×K , w̄i :=

EpY(y|Yi)

[
1
τ fY(y)

]
∈ Rd, and a bias b̄ := [lnPY(Y1), lnPY(Y2), . . . , lnPY(YK)]

⊤ ∈ Rd.

Now, we show an upper bound on the excess risk of the downstream classification when we obtain
encoders that achieve the optimal similarity of the symmetric InfoNCE.
Theorem 4.2. Let (Yi)i∈[K] be any choice of disjoint subsets in Y . Assume that g∗(x, y) :=
1
τ∗ f

∗
X (x)⊤f∗

Y(y) = ln p(x,y)
p(x)p(y) + const holds for any x ∈ supp p(x) ⊆ X and any y ∈ Ỹ . Then,

Lsup(h̄
g∗
)−Lsup(h

∗)≤ E
p(x)

[
DKL

(
PC(·|x)

∥∥∥PC(Y·|x, Ỹ)
)]

+ E
p(x,c)

[DKL(pY(·|Yc)∥pY(·|x,Yc))] .

(3)

We defer the proof to Appendix B.1.

Remark. The first term in RHS of Eq. (3) becomes zero when, for any c and x, the conditional
probability PY(Yc|x) is proportional to the conditional probability of label PC(c|x). The second term
in RHS becomes zero when y is independent of x given a prior knowledge that y is in Yc. Considering
the prompt ensembling in zero-shot classifications (Radford et al., 2021) and the properties of text
data, we claim that there exist subsets (Yi)i∈[K] that satisfy most of those conditions. To construct
a classifier in zero-shot classification, Radford et al. (2021) proposed ensembling embeddings of
prompt templates such as “a photo of a {}” and “an example of a {}”, where the brackets are replaced
with the labels such as “dog” and “cat”. Since the set of prompts for each label is generated simply
by inserting words representing the label into templates, the probability of each set should be roughly
proportional to the probability of the label. In addition, prompt templates lack most of the information
specific to images, so each prompt in the set can be considered more or less independent of images.
Assuming these properties of the text data domain, the excess risk of the linear classifier is close to
zero when trained encoders achieve the optimal similarity, which is the pointwise mutual information.

4.3 EXCESS RISK ANALYSIS VIA THE GAP FROM THE POINTWISE MUTUAL INFORMATION

We have observed that a similarity equal to the pointwise mutual information (up to a constant)
leads to a small excess risk of linear classifiers on the downstream classification. However, an
actual similarity g(x, y) obtained in pretraining is possibly different from g∗(x, y) because of the
non-convexity of the optimization problem and the insufficient representational capability of the class
of similarity,

{
(x, y) 7→ fX (x)⊤fY(y)/τ

∣∣ fX (x), fY(y) ∈ Rd, τ ∈ R>0

}
. To consider the effect

of the gap in the similarity, we decompose the risk of the downstream task as follows:

Lsup(h̄
g)− Lsup(h

∗) =
(
Lsup(h̄

g)− Lsup(h̄
g∗
)
)
+
(
Lsup(h̄

g∗
)− Lsup(h

∗)
)
. (4)

The second term in RHS of Eq. 4 is already bounded by Theorem 4.2. Regarding the first term, we
have the following bound.
Lemma 4.3. Assume that, there exists ∆ ≥ 0 such that |g(x, y)−g∗(x, y)| ≤ ∆ for all x ∈ supp p(x)
and all y ∈ supp p(y). Then, it holds that

∣∣Lsup(h̄
g)− Lsup(h̄

g∗
)
∣∣ ≤ 2∆.

We defer the proof to Appendix B.2. From Theorem 4.2, Lemma 4.3 and the fact that
minW∈Rd×K ,b∈RK Lsup(W

⊤fX (·) + b) ≤ Lsup(h̄
g), we have the following result.

Theorem 4.4. Assume that there exist K disjoint subsets Yi (i ∈ [K]) ⊆ Y such that

DKL

(
pC(·|x)

∥∥∥pC(Y·|x, Ỹ)
)
≤ ε1, and DKL (pY(·|Yc)∥pY(·|x,Yc)) ≤ ε2, for all x ∈ supp p(x),

for all c ∈ [K], and for some non-negative constants ε1, ε2 ≥ 0. Assume that the uniform approxi-
mation error of the optimization problem argming LNCE(g) is bounded by a constant ∆ ≥ 0, i.e.,
|g(x, y)− g∗(x, y)| ≤ ∆ for all x ∈ supp p(x) and y ∈ supp p(y). Then, it holds that

min
W∈Rd×K ,b∈RK

Lsup(W
⊤fX (·) + b)− Lsup(h

∗) ≤ ε1 + ε2 + 2∆. (5)
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Image input

Text input

Weighted point clouds

Image
encoder

Text
encoder

Similarity

Embeddings

Figure 1: Overview of proposed method. Each encoder produces a weighted point cloud from an
input. The encoders are optimized with the symmetric InfoNCE using the similarity matrix.

Remark. ∆ indicates the gap between actually obtained similarity g(x, y) and the optimal similarity
g∗(x, y), which is the pointwise mutual information. Theorem 4.4 implies that the approximation error
of the optimal similarity in pretraining may degrade the performance of downstream classifications.

5 AUGMENTED SIMILARITY BY WEIGHTED POINT CLOUDS

We have observed that the optimal similarity of symmetric InfoNCE for pretraining leads to a small
excess risk on downstream classifications. Here, a question arises: “To what extent can the class of
similarity approximate the pointwise mutual information?” In this section, we show a limitation of
the typical similarity that is commonly utilized in CLIP. To overcome the issue, we propose a new
class of similarities and show a theoretical guarantee of the approximation capability of the proposed
class.

5.1 LIMITATION OF THE INNER-PRODUCT SIMILARITY IN FINITE DIMENSIONAL SPACES

Consider a d-dimensional feature space. We assume there are N(> d + 1) pairs of samples,
(x1, y1), . . . , (xN , yN ) ∈ X × Y . We define ZX , ZY ∈ Rd×N as the concatenation of features of
samples as ZX := [fX (x1), . . . , fX (xN )] and ZY := [fY(y1), . . . , fY(yN )]. During pretraining with
the symmetric InfoNCE, the similarity matrix Z⊤

XZY is fit to the optimal similarity matrix G ∈ RN×N

up to a constant Γ ∈ R, where Gij = ln
p(xi,yj)

p(xi)p(yj)
. Regarding the gap ∆ to the optimal similarity,

it holds that ∆ ≥ supx∈supp p(x),y∈supp p(y)|g(x, y) − g∗(x, y)| ≥ supi,j
∣∣(Z⊤

x Zy)ij − Γ − Gij

∣∣.
However, it also holds that rank

(
Z⊤
x Zy + ΓJ

)
≤ d+ 1, where J ∈ RN×N is the matrix in which

all entries are 1 (See Proposition C.1). Thus, if the rank of G is N > d + 1, there exists a certain
error of the approximation of G. In other words, to completely capture the structure of the pointwise
mutual information, the dimension of feature d is required to be more than the number of intrinsic
instances in the data space, which is infeasible in real-world scenarios.

5.2 AUGMENTED SIMILARITY BY A NONLINEAR KERNEL AND WEIGHTED POINT CLOUDS

Increasing the dimension of the feature is the simplest way to enhance the capability of the similarity.
However, this often requires a larger deep neural network model, which leads to heavier computation
both in the contrastive learning phase and in the downstream tasks. As an alternative approach, we
propose enriching the class of similarity by using a nonlinear kernel function and weighted point
clouds (namely, sets of a pair of weight and point). Figure 1 shows the overview of the proposed
method. We replace the similarity in the symmetric InfoNCE with a similarity between two weighted
point clouds produced by encoders.

Following CLIP, we use two encoders that transform inputs from each modality. Instead of one
vector in a latent space, the encoders are modified to produce a weighted point cloud, namely,

6
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a set of M pairs of weight and vector: {(wi, vi)}i∈[M ], where wi ∈ R and vi ∈ Rd for each

i ∈ [M ]. We define the similarity of two weighted point clouds,
{
(w

(X )
i , v

(X )
i )

}
i∈[M(X)]

and{
(w

(Y)
i , v

(Y)
i )

}
i∈[M(Y)]

(containing M (X ) and M (Y) pairs of weight and vector, respectively), with

a kernel function k(·, ·) : Rd × Rd → R, as follows:

g

({(
w

(X )
i , v

(X )
i

)}
i∈[M(X)]

,
{(

w
(Y)
j , v

(Y)
j

)}
j∈[M(Y)]

)
:=
∑
i,j

w
(X )
i w

(Y)
j k(v

(X )
i , v

(Y)
j ) . (6)

This similarity can be regarded as the inner product of high-dimensional representers of a lin-
ear combination of Dirac measures (Muandet et al., 2017) as

∑
i,j w

(X )
i w

(Y)
j k(v

(X )
i , v

(Y)
j ) =〈∑

i w
(X )
i k(v

(X )
i , ·),

∑
j w

(Y)
j k(v

(Y)
j , ·)

〉
H

. Here, ⟨·, ·⟩H denotes the inner product of the repro-
ducing kernel Hilbert space (RKHS) associated with k. In the following theorem, we show that our
proposed similarity based on weighted point clouds consistently achieves the optimal similarity.

Theorem 5.1. Assume that Assumption C.2 holds. Define a function g as Eq. 6 with a bounded c0-
universal kernel k : Rd × Rd → R. Then, for any ε > 0, there exist positive integers, M (X ),M (Y) ∈
N and maps, fX : x 7→

{(
w

(X )
i , v

(X )
i

)}
i∈[M(X)]

and fY : y 7→
{(

w
(Y)
j , v

(Y)
j

)}
j∈[M(Y)]

such that

sup
x∈supp p(x),y∈supp p(y)

∣∣∣∣g(fX (x), fY(y))− ln
p(x, y)

p(x)p(y)

∣∣∣∣ < ε. (7)

The proof and Assumption C.2 are provided in Section C.2. The definition of c0-universal kernel is
deferred to Definition C.5 (refer to Sriperumbudur et al. (2011)). For example, the Gaussian kernel
k(u, v) = exp

(
− 1

2σ2 ∥u− v∥22
)

and the inverse multiquadric (IMQ) kernel k(u, v) = c√
c2+∥u−v∥2

2

are c0-universal (Sriperumbudur et al., 2011).

Remark. Theorem 5.1 ensures that the proposed class of similarity is capable of approximating the
point mutual information in arbitrary precision. Unlike the typical class of similarity discussed in
Section 5.1, Assumption C.2 does not require the dimension d proportional to the number of intrinsic
instances. Instead, it requires d larger than or equal to the intrinsic dimensions of subspaces of x ∈ X
and y ∈ Y that have dependency on each other. However, we claim that this assumption on d is
fairly mild because the manifold hypothesis (Bengio et al., 2013) is commonly assumed. Although
increasing M (X ) and M (Y) also leads to heavy computation, at least it provides a different approach
to augmenting representation models than just increasing the number of feature dimensions.

5.3 IMPLEMENTATION

To produce a weighted point cloud from each input, we utilize the structure of transformers, without
any significant change to the model size or computation time (Fig. 2). We use Vision Transformer
(Dosovitskiy et al., 2020) for the image encoder and Transformer (Vaswani et al., 2017) for the text
encoder. A typical Vision Transformer takes projected patches of an image and the special token
[CLS], applies attention layers and the last projection layer to the token sequence, and outputs the
vector at the position of the [CLS] token. To output additional weights, we add a projection layer
for weights in parallel with that for vectors. Moreover, to output a sets of weights and vectors, our
image encoder outputs all resultant vectors. In the same way, we modify the text encoder to output
all resultant weights and vectors instead of just the vector at the position of a special token [EOS]. In
addition, we modify the special tokens of the text encoder for padding, [PAD], to be dependent on its
relative position to [EOS] in order to avoid repeating the same tokens.

For the kernel function, we opted to use a linear combination of the linear kernel and a nonlinear
kernel k̃ with coefficients α1, α2 ∈ R≥0: k(u, v) = α1u

⊤v+α2k̃(u, v). In preliminary experiments,
we found that when the model was trained only with a nonlinear kernel (i.e., (α1, α2) = (0, 1)) the
symmetric InfoNCE loss did not decrease well nor converge. We consider this was possibly because
of the gradient vanishing for points that were far away from each other. To avoid O(M (X )M (Y))
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“lonely kitten seeks comfort 
in the form of a cuddly cat”

Image encoder Text encoder

[CLS] [SOS] lonely cat [EOS] [PAD1] [PADm]

⋯
⋯

⋯

⋯ ⋯⋯

Split into patches

Tokenization

Image

Text

Weighted point cloud for input image Weighted point cloud for input text

weight

point

Figure 2: Proposed modification for encoders to produce a weighted point cloud. Encoders are
modeled by Transformer. The encoders output all resultant vectors instead of just one vector at a
certain position.

times computation of the kernel, we use random Fourier features (RFFs) (Rahimi & Recht, 2007)
for approximating the nonlinear kernel. When the kernel k̃ is shift-invariant, RFF approximates
the kernel k̃(u, v) by the inner product of two D-dimensional vectors, i.e. z(u)⊤z(v) ≈ k̃(u, v).
z(v) ∈ RD is constructed stochastically (for details, see Appendix A.1). By taking the weighted sum
of RFFs, z :=

∑
i wiz(vi), calculated from points in the point cloud, we obtain an embedding of the

weighted point cloud. More rigorously, this can be regarded as the embedding in the RKHS of a linear
combination of Dirac measures where the RFF approximation is applied to obtain finite dimensional
representations of the embeddings. In our implementation, we concatenate the weighted sum of points,
v :=

∑
i wivi, and that of RFFs z, using coefficients α1 and α2 as follows:

[√
α1v

⊤,
√
α2z

⊤]⊤. We
use it as an embedding of weighted point clouds because we can obtain an unbiased estimator of the
similarity in Eq. (6) by simply taking the inner product of embeddings:∑

i,j

w
(X )
i w

(Y)
j k(v

(X )
i , v

(Y)
j ) ≈

∑
i,j

w
(X )
i w

(Y)
j

(
α1v

(X )⊤
i v

(Y)
j + α2z(v

(X )
i )⊤z(v

(Y)
j )

)
=

[√
α1v

(X )

√
α2z

(X )

]⊤ [√
α1v

(Y)

√
α2z

(Y)

]
. (8)

6 EXPERIMENTS

6.1 PRETRAINING

To investigate the performance of the representation based on weighted point clouds, Weighted
Point Cloud Embedding (WPCE), we conducted experiments in which we trained a text-image
representation model. We utilized Conceptual Captions 3M (CC3M) (Sharma et al., 2018) and
Conceptual Captions 12M (CC12M) (Changpinyo et al., 2021) as datasets for pretraining. As the
base architecture of the image encoder, we adopted ViT-B/16 (Dosovitskiy et al., 2020). Following
SLIP (Mu et al., 2022), we used the smallest text Transformer model from CLIP. We modified the
image encoder and the text encoder to produce weighted point clouds (as explained in Section 5.3).
As a nonlinear kernel k̃, we used the Gaussian kernel and the IMQ kernel. After hyperparameter
searching in the range of σ, c ∈ {0.5, 0.75, 1.0}, we show the results of the best model. We also
ran a hyperparameter search on the coefficients (α1, α2) for combination kernels. We searched
(α1, α2) = (0.667, 0.333), (0.6, 0.4), (0.5, 0.5), (0.4, 0.6), (0.333, 0.667). In the tables, we report
the performance of the best model from the hyperparameter search. During the pretraining, we set
the dimension D of RFFs to 1024. For each batch, new ωt and βt for RFFs were sampled during the
pretraining. For comparison, we also trained typical CLIP models from scratch. For more training
details, see Appendix A.2.
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Table 1: Zero-shot classification performance. We report the mean per-class accuracy (%) on
Caltech-101, Aircraft, Flowers, and Pets. On other datasets, we report the top-1 accuracy (%).
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CC3M
CLIP 25.03 19.94 59.25 22.48 75.24 13.05 47.20 1.11 1.38 13.11 10.40 13.56 14.62 34.06

WPCE Gaussian 26.75 21.20 59.95 23.58 80.61 14.56 51.18 1.49 1.35 12.60 19.98 13.40 13.60 34.16
WPCE IMQ 27.04 21.36 61.22 25.91 81.64 13.17 50.15 1.41 1.84 12.14 22.02 13.69 13.88 33.05

CC12M
CLIP 43.78 39.15 74.17 42.98 90.91 47.96 73.58 21.94 2.01 29.71 22.24 22.45 52.29 49.72

WPCE Gaussian 46.12 39.95 81.33 49.49 91.25 50.63 74.66 24.14 2.54 30.11 23.28 21.17 61.41 49.57
WPCE IMQ 45.71 39.26 80.31 47.53 91.83 51.82 73.54 21.92 1.62 29.53 28.36 21.62 57.31 49.54

Table 2: Linear classification performance. We report the mean per-class accuracy (%) on Caltech-101,
Aircraft, Flowers, and Pets. On other datasets, we report the top-1 accuracy (%).
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CC3M

CLIP 67.00 51.42 85.51 64.87 91.71 61.71 79.24 27.27 31.81 86.67 93.82 63.19 66.48 67.35
WPCE Gaussian 69.01 56.18 85.00 65.10 92.20 63.71 79.97 30.68 37.85 88.63 94.94 64.15 69.08 69.64

WPCE IMQ 68.23 56.77 85.87 63.48 92.06 64.12 80.78 27.16 33.98 87.47 93.72 63.14 69.06 69.35

CLIP (bef) 72.14 58.33 87.90 70.05 92.64 66.07 82.49 39.46 44.96 91.48 96.02 67.02 71.86 69.56
WPCE Gaussian (bef) 73.77 61.19 87.94 70.36 92.70 69.37 84.03 44.50 47.93 92.10 95.86 67.71 74.10 71.21

WPCE IMQ (bef) 73.81 61.02 88.44 70.10 92.68 68.84 84.39 43.90 47.66 91.98 95.92 67.61 75.94 71.10

CC12M

CLIP 77.89 65.15 91.06 71.75 95.34 77.47 87.24 64.53 41.93 92.50 94.32 72.98 81.71 76.55
WPCE Gaussian 79.08 67.83 91.72 73.06 96.46 79.49 89.18 65.23 44.53 92.09 94.58 72.93 83.56 77.42

WPCE IMQ 78.90 67.11 91.14 72.59 96.48 78.69 88.85 66.32 44.17 92.61 94.70 72.55 83.21 77.31

CLIP (bef) 81.03 69.15 92.04 75.99 95.40 80.13 90.09 70.86 53.72 94.85 96.64 74.89 81.81 77.75
WPCE Gaussian (bef) 82.52 70.94 93.00 77.16 96.53 81.76 91.65 74.28 55.61 95.22 96.30 76.22 85.51 78.62

WPCE IMQ (bef) 82.71 70.90 93.04 77.27 96.60 81.58 91.06 75.53 58.10 95.60 96.28 75.43 85.65 78.19

6.2 ZERO-SHOT TRANSFER

We evaluated the zero-shot classification performance on the following 13 benchmark datasets:
ImageNet (Russakovsky et al., 2015), CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009),
STL-10 (Coates et al., 2011), Food-101 (Bossard et al., 2014), Caltech-101 (Fei-Fei et al., 2006),
Stanford Cars (Krause et al., 2013), FGVC Aircraft (Maji et al., 2013), Oxford Flowers (Nilsback
& Zisserman, 2008), EuroSAT (Helber et al., 2019), Describable Textures Dataset (DTD) (Cimpoi
et al., 2014), Oxford Pets (Parkhi et al., 2012), and SUN397 (Xiao et al., 2010). Following SLIP (Mu
et al., 2022), we adopted prompt ensembling and utilized prompts provided by SLIP for each dataset.
We set the dimension D of RFFs to 512. ωt and βt for RFFs were fixed before the evaluation. To
investigate the effect of the randomness of RFFs, we performed five evaluations for the models that
use RFFs. Table 1 lists the zero-shot classification results, where the results of models using RFFs
have been averaged. Additionally, Table 5 in the Appendix shows the standard deviation. As these
findings show, the proposed method outperformed CLIP on average. In addition, the randomness of
RFFs did not have a significant impact on the overall performance.

6.3 LINEAR CLASSIFICATION

We also performed the linear classification evaluation where we trained linear classifiers on the
embedding vectors obtained by frozen pretrained image encoders. We used the same 13 benchmarks
as the zero-shot classification. To extract embeddings for training linear classifiers, we used two
different settings. In the first setting, we used the embeddings that were used for computation of
the similarity in the symmetric InfoNCE. We set D for RFFs to 512. ωt and βt were fixed before
the evaluation. Based on the robustness of the RFFs shown in Table 5, we did not evaluate multiple
settings of ωt and βt. In the second setting, following common practice (Chen et al., 2021), we used
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the intermediate latent vectors just before the last projection layer of the image encoder. We denote
this setting as “(bef)” in tables. For our WPCE models, weighted sum of the latent vectors with
weights in the output weighted point cloud was used, and no RFF was used.

We basically followed the evaluation procedure in Fürst et al. (2022). We used a logistic regression
classifier with an L-BFGS optimizer (Liu & Nocedal, 1989) and the maximum number of iteration
of 1000. We utilized the implementation from cuML (Raschka et al., 2020). For hyperparameter
tuning of the L2 regularization cost, we followed the protocol of CLIP (Radford et al., 2021). We
ran hyperparameter sweeps over C ∈ [10−6, 106] with a parametric binary search on a validation
split of each dataset. For datasets that do not provide an official validation split, we randomly split
the training dataset into training and validation splits. After the hyperparameter was determined, we
trained a classifier on the combination of training and validation splits and report its performance on
the test split. Table 2 lists the linear classification results. Overall, our proposed method outperformed
CLIP on average.

6.4 ABLATION STUDY

Table 3: Ablation study. Models are trained on
CC3M. Except for WPCE Linear, IMQ kernel was
used.

Model Zero-shot Linear

WPCE 27.04 68.23
WPCE with positive weights 4.22 –

WPCE Linear 27.25 67.40

To investigate the effectiveness of our similar-
ity, we trained two variant models that output
weighted point clouds on CC3M. One model out-
puts weighted point clouds but the all weights
are positive: wi ≥ 0. We used a function
100Sigmoid(·/100) as the last activation for
weights in encoders. We denote this model as
WPCE with postive weights. The other model
also outputs weighted point clouds but the simi-
larity of weighted point clouds are calculated
only with linear kernel, i.e., the coefficients
(α1, α2) are set to (1, 0). We denote this model as WPCE Linear. We also trained the model
with the coefficients (α1, α2) = (0, 1), specifically only with the nonlinear kernel. However, the
training of this model failed due to a NaN loss error. Table 3 shows the average performance of
zero-shot classification and linear classification on the 13 benchmark datasets. For WPCE with posi-
tive weights, we used the same parameters for the combination kernel. This indicates that negative
weights are crucial for a good performance. (We did not perform linear classifications for WPCE with
positive weights.) In comparison to WPCE Linear, it indicates the superiority of the use of non-linear
kernel in the linear classification tasks. We also show the result of ablation study using CC12M in
Appendix A.4.

7 CONCLUSION

We proposed a multimodal representation learning with weighted point clouds. In our method, each
input is transformed by an encoder into a weighted point cloud representation. The similarity between
two weighted point clouds is calculated with a kernel function that defines the similarity of two points.
We also showed the theoretical benefits of using our representation and similarity. We highlighted that
the optimal similarity of the symmetric InfoNCE is represented by the pointwise mutual information
and showed that we can construct a linear classifier close to the optimal classifier of downstream tasks
that is possibly nonlinear when the optimal similarity is obtained. In addition, we clarified the effect
on the performance of downstream tasks caused by the deviation of the obtained similarity from the
pointwise mutual information, and explained that the deviation of the similarity can be suppressed
when using the proposed similarity based on weighted point clouds. Experiments on text-image
datasets demonstrated the superior performance of the proposed method compared to baselines.

ETHICS STATEMENT

In conducting this research on representation learning models, we are committed to upholding ethical
standards. Our work aims to contribute to machine learning research society by theoretical analysis
of representation learning and enhancing the capability of representations. However, we recognize
potential concerns of representation learning models, such as biases in training datasets, license issues
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of scraped datasets and harmful applications. We acknowledge that representation learning models
can have significant impacts on society. Therefore, we commit ourselves to ensuring that our research
activity positively contributes to society while avoiding harm.

REPRODUCIBILITY STATEMENT

Detailed descriptions of our setup of the algorithm and experiments can be found in Section 5.3, 6,
and A. In addition, we will upload our code in a GitHub repository to ensure reproducibility. Its URL
will be shown in the camera-ready version.
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Algorithm 1 Symmetric InfoNCE with similarity of weighted point clouds
Require: vision encoder fX , text encoder fY , batch of paired images and texts {(xb, yb)}Bb=1, distribution pω

associated with the shift-invariant kernel k̃, coefficients α1 and α2, and temperature τ .
1:

{(
w

(X )
b1 , v

(X )
b1

)
, . . . ,

(
w

(X )

bM(X) , v
(X )

bM(X)

)}
← fX (xb) for each b ∈ [B]

2:
{(

w
(Y)
b1 , v

(Y)
b1

)
, . . . ,

(
w

(Y)

bM(Y) , v
(Y)

bM(Y)

)}
← fY(yb) for each b ∈ [B]

3: v
(X )
b ←

∑M(X)

i=1 w
(X )
bi v

(X )
bi

4: v
(Y)
b ←

∑M(Y)

j=1 w
(Y)
bj v

(Y)
bj

5: Draw D i.i.d. samples ω1, . . . , ωD from pω .
6: Draw D i.i.d. samples β1, . . . , βD from Unif[0, 2π).

7: z
(X )
b ←

∑M(X)

i=1 w
(X )
bi z

(
v
(X )
bi ; {ωt}Dt=1, {βt}Dt=1

)
for each b ∈ [B]

8: z
(Y)
b ←

∑M(Y)

j=1 w
(Y)
bj z

(
v
(Y)
bj ; {ωt}Dt=1, {βt}Dt=1

)
for each b ∈ [B]

9: Sbb′ ← τ−1
(
α1v

(X )⊤
b v

(Y)

b′ + α2z
(X )⊤
b z

(Y)

b′

)
for each b, b′ ∈ [B]

10: Compute symmetric InfoNCE from the similarity matrix {Sbb′}bb′ .

A ADDITIONAL DETAILS OF IMPLEMENTATION AND EXPERIMENTS

A.1 IMPLEMENTATION

Random Fourier feature (RFF) Random Fourier feature (Rahimi & Recht, 2007) is a technique for
reducing computational complexity of kernel methods. For a shift-invariant kernel k(u, v) = k(u−v)
on Rd such that k(0) = 1, there exists a probability distribution, pω, of a random variable, ω ∈ Rd

that satisfies:

k(u− v) = E
ω,β

[
2 cos(ω⊤u+ β) cos(ω⊤v + β)

]
,

where β ∈ R is sampled from a uniform distribution, Unif[0, 2π], over [0, 2π]. pω is given by the
Fourier transform of k(u−v). Based on this fact, we can construct an unbiased estimator of k(u, v) as
follows. First, ωt ∈ Rd and βt ∈ R (t = 1, · · · , D) are independently sampled from the distributions
pω and Unif[0, 2π], respectively. Then, a vector z(v) ∈ RD is constructed from v ∈ Rd, {ωt}Dt=1,
and {βt}Dt=1 as

z
(
v; {ωt}Dt=1, {βt}Dt=1

)
=

√
2

D

[
cos
(
ω⊤
1 v + β1

)
, . . . , cos

(
ω⊤
Dv + βD

)]⊤
. (9)

Similarly, z(u) is constructed from u with the same {ωt}Dt=1 and {βt}Dt=1. Last, an estimator of
k(u, v) is obtained by taking the inner product of the vectors: E

[
z(u)⊤z(v)

]
= k(u, v). For the

specific form of pω for Gaussian kernel and IMQ kernel, and further details, see Appendix C in Li
et al. (2021). Algorithm 1 shows a pseudocode for computing our proposed similarity for symmetric
InfoNCE.

Model architecture In addition to the modifications in Section 5.3, we modify Transformer
encoders as follows. To stabilize training, we add an activation function, 100 tanh(·/100), after
the projection layer for weights for restricting the range of weights. In preliminary experiments,
we found that model parameters diverged during pretraining without it. Following CLIP, we apply
L2-nomalization to points vi (i ∈ [M ]) in weighted point clouds, and use an inverse temperature
parameter τ−1 to scale the similarity of weighted point clouds (Algorithm 1). In typical CLIP
implementations, τ−1 is calculated by an exponential activation as τ−1 = exp(θ) with a learnable
parameter θ and clipping to a certain range, such as [1, 100]. However, in preliminary experiments,
we found that τ−1 increased rapidly to the maximum value in the beginning of pretraining when
we use the exponential activation and the weighted point cloud similarity, and that it harmed model
performance. Therefore, we remove the exponential activation and use τ−1 = θ to scale the proposed
similarity. The range for clipping is set to [1, 100].
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A.2 PRETRAINING

The text Transformer model we used is a 12-layer 512-wide transformer with eight attention heads.
We utilized a byte pair encoding (BPE) tokenizer with a vocabulary size of 49K and a maximum
context length of 77. Based on the Transformer architectures, we set M (X ),M (Y), and d of the
weighted point clouds to 197, 77, and 512, respectively. As a data augmentation, images were
randomly resized and cropped with a scaling factor between 0.5 and 1.0 and bicubic interpolation.
Models were trained for 50 epochs on CC3M and for 35 epochs on CC12M. We set the batch size
to 2048. We used the AdamW optimizer with a beta2 of 0.98 and cosine scheduling with a linear
warmup in pretraining. We set the initial learning rate to 0.0005 and used weight decay of 0.5. We
used the built-in automatic mixed precision library in PyTorch (Paszke et al., 2019).

A.3 CLASSIFICATION EVALUATIONS

Table 4: 13 datasets used for classification evaluations.

Dataset Classes Train Val Test

ImageNet (Russakovsky et al., 2015) 1000 1153051 128116 50000
CIFAR-10 (Krizhevsky, 2009) 10 45000 5000 10000
CIFAR-100 (Krizhevsky, 2009) 100 45000 5000 10000
STL-10 (Coates et al., 2011) 10 4500 500 8000
Food-101 (Bossard et al., 2014) 101 68175 7575 25250
Caltech-101 (Fei-Fei et al., 2006) 102 2754 306 6085
Stanford Cars (Krause et al., 2013) 196 7330 814 8041
FGVC Aircraft (Maji et al., 2013) 100 3334 3333 3333
Oxford Flowers (Nilsback & Zisserman, 2008) 102 1020 1020 6149
EuroSAT (Helber et al., 2019) 10 9000 1000 5000
DTD (Cimpoi et al., 2014) 47 1880 1880 1880
Oxford Pets (Parkhi et al., 2012) 37 3312 368 3669
SUN397 (Xiao et al., 2010) 397 76129 10867 21758

The properties of the datasets we used in the classification tasks are listed in Table 4. In Table 5, we
show the results of the same zero-shot classification as presented in Section 6.2 but with the standard
deviation included.

Table 5: Zero-shot classification performance.

CC3M CC12M

Dataset WPCE Gaussian WPCE IMQ WPCE Gaussian WPCE IMQ

ImageNet 21.20 ± 0.05 21.36 ± 0.04 39.95 ± 0.06 39.26 ± 0.06
CIFAR-10 59.95 ± 0.20 61.22 ± 0.51 81.33 ± 0.33 80.31 ± 0.24

CIFAR-100 23.58 ± 0.13 25.91 ± 0.19 49.49 ± 0.16 47.53 ± 0.05
STL-10 80.61 ± 0.37 81.64 ± 0.25 91.25 ± 0.09 91.83 ± 0.13

Food-101 14.56 ± 0.08 13.17 ± 0.05 50.63 ± 0.08 51.82 ± 0.20
Caltech-101 51.18 ± 0.12 50.15 ± 0.10 74.66 ± 0.20 73.54 ± 0.26

Cars 1.49 ± 0.02 1.41 ± 0.08 24.14 ± 0.16 21.92 ± 0.13
Aircraft 1.35 ± 0.12 1.84 ± 0.13 2.54 ± 0.09 1.62 ± 0.15
Flowers 12.60 ± 0.10 12.14 ± 0.15 30.11 ± 0.25 29.53 ± 0.26

EuroSAT 19.98 ± 0.18 22.02 ± 0.92 23.28 ± 0.36 28.36 ± 0.38
DTD 13.40 ± 0.24 13.69 ± 0.13 21.17 ± 0.23 21.62 ± 0.28
Pets 13.60 ± 0.18 13.88 ± 0.16 61.41 ± 0.15 57.31 ± 1.61

SUN397 34.16 ± 0.11 33.05 ± 0.15 49.57 ± 0.11 49.54 ± 0.29

A.4 ABLATION STUDY ON CC12M
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Table 6: Ablation study. Models are trained on
CC12M. Except for WPCE Linear, Gaussian ker-
nel was used.

Model Zero-shot Linear

WPCE 46.12 79.08
WPCE Nonlinear 44.05 70.99

WPCE Linear 45.87 78.61

In this section, we present the result of abla-
tion study using CC12M. We trained two vari-
ant models that output weighted point clouds.
One model is a WPCE Linear, which we de-
scribed in Section 6.4, with the coefficients
(α1, α2) = (1, 0) and the similarity of weighted
point clouds are calculated only with linear
kernel. The other model has the coefficients
(α1, α2) = (0, 1) and calculates the similarity
of weighted point clouds using only a nonlinear
kernel. We denote this model as WPCE Nonlinear. Additionally, we also trained a WPCE with
postive weights with the last sigmoid activation in the same manner as described inSection 6.4.
However, the training of this model failed due to a NaN loss. Table 6 shows the average performance
of zero-shot classification and linear classification on the 13 benchmark dataset. This indicates that
the combination of the linear kernel and a nonlinear kernel is beneficial for the performance.

B PROOFS OF STATEMENTS IN SECTION 4

B.1 PROOF OF THEOREM 4.2

Proof. From the definition of h̄g(x), the c-th entry of h̄g∗
(x) is calculated as follows:

h̄g∗
(x)c =

(
E

p(y|Yc)

[
1

τ∗
f∗
Y(y)

])⊤

f∗
X (x) + lnP (Yc)

= E
p(y|Yc)

[
1

τ∗
f∗
Y(y)

⊤f∗
X (x)

]
+ lnP (Yc)

= E
p(y|Yc)

[g∗(x, y)] + lnP (Yc)

= E
p(y|Yc)

[
ln

p(x, y)

p(x)p(y)

]
+ lnP (Yc) + Γ.

Since adding a constant to all entries of h(x) doesn’t change the supervised loss Lsup(h), we consider
Γ = 0 for the sake of simplicity. The c-th entry of h̄g∗

(x) is further rearranged as follows:

h̄g∗
(x)c = E

p(y|Yc)

[
ln

p(x, y)

p(x)p(y)

]
+ lnP (Yc)

= E
p(y|Yc)

[
ln

p(x, y)p(x)P (Yc)

p(x)p(y)p(x,Yc)
+ ln

p(x,Yc)

p(x)P (Yc)

]
+ lnP (Yc)

= E
p(y|Yc)

[
ln

p(x, y)/p(x,Yc)

p(y)/P (Yc)

]
+ ln

p(x,Yc)

p(x)

= E
p(y|Yc)

[
ln

p(y|x,Yc)

p(y|Yc)

]
+ lnP (Yc|x)

= lnP (Yc|x)−DKL (pY(·|Yc)∥pY(·|x,Yc)) .
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Therefore, we have

Lsup(h̄
g∗)− Lsup(h

∗)

= E
p(x,c)

[
lnP (c|x)− h̄g∗(x)c + ln

(∑
i

exp h̄g∗(x)i

)]

= E
p(x,c)

[
lnP (c|x)− lnP (Yc|x) +DKL (p(y|Yc)∥p(y|x,Yc))

+ ln

(∑
i

P (Yi|x) · exp(−DKL (pY(·|Yi)∥pY(·|x,Yi)))

)]

≤ E
p(x,c)

[
lnP (c|x)− lnP (Yc|x) +DKL (pY(·|Yc)∥pY(·|x,Yc)) + ln

(∑
i

P (Yi|x)

)]
= E

p(x,c)

[
ln p(c|x)− ln p(Yc|x) +DKL (pY(·|Yc)∥pY(·|x,Yc)) + lnP (Ỹ|x)

]
= E

p(x,c)

[
ln

P (c|x)
P (Yc|x)/P (Ỹ|x)

+DKL (pY(·|Yc)∥pY(·|x,Yc))

]
= E

p(x)

[
DKL

(
PC(·|x)

∥∥∥PC(Y·|x, Ỹ)
)]

+ E
p(x,c)

[DKL (pY(·|Yc)∥pY(·|x,Yc))] .

Here, the inequality holds by the monotonicity of ln(·), the non-negativity of P (Yi|x), and the
non-negativity of KL divergence.

B.2 PROOF OF LEMMA 4.3

Proof. For every i ∈ [K], it holds that∣∣∣h̄g(x)i − h̄g∗
(x)i

∣∣∣ = ∣∣∣∣ E
p(y|Yi)

[g(x, y)− g∗(x, y)]

∣∣∣∣
≤
∣∣∣∣ E
p(y|Yi)

[∆]

∣∣∣∣
= ∆.

Let ςc(z) denote the logarithm of the c-th entry of the softmax function, i.e., ςc(z) := ln ezc∑K
i=1 ezi

.

∣∣∣Lsup(h̄
g)− Lsup(h̄

g∗
)
∣∣∣ = ∣∣∣∣∣ E

p(x,c)

[
− ln

exp h̄g(x)c∑K
i=1 exp h̄

g(x)i
+ ln

exp h̄g∗
(x)c∑K

i=1 exp h̄
g∗(x)i

]∣∣∣∣∣
≤ E

p(x,c)

[∣∣∣−ςc
(
h̄g(x)

)
+ ςc

(
h̄g∗

(x)
)∣∣∣] (10)

ςc(z) is a differentiable function with respect to z, and the partial derivative is given as follows:

∂ςc
∂zc

= 1− ezc∑K
i=1 e

zi
,

∂ςc
∂zj

=
−ezj∑K
i=1 e

zi
for j ̸= c.

By the mean value theorem, there exists ξ on the line segment between h̄g(x) and h̄g∗
(x) such that

−ςc
(
h̄g(x)

)
+ ςc

(
h̄g∗

(x)
)
= ∇ςc(ξ)

⊤
(
−h̄g(x) + h̄g∗

(x)
)
.
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Therefore, we have

E
p(x,c)

[∣∣∣−ςc
(
h̄g(x)

)
+ ςc

(
h̄g∗

(x)
)∣∣∣] = E

p(x,c)

[∣∣∣ςc(ξ)⊤(−h̄g(x) + h̄g∗
(x)
)∣∣∣]

≤ E
p(x,c)

[(
K∑
i=1

∣∣∣∣∂ςc∂zi
(ξ)

∣∣∣∣
)∥∥∥h̄g(x)− h̄g∗

(x)
∥∥∥
∞

]
≤ E

p(x,c)
[2∆]

= 2∆. (11)

Here, the first inequality holds by Hölder’s inequality. At the second inequality, we use

K∑
i=1

∣∣∣∣∂ςc∂zi
(ξ)

∣∣∣∣ = 1− eξc∑K
i=1 e

ξi
+

∑
i ̸=c e

ξi∑K
i=1 e

ξi
≤ 2.

Combining Eq. 10, 11 finishes the proof.

C REPRESENTATIONAL CAPABILITY OF THE CLASS OF SIMILARITIES

C.1 LIMITATION OF THE BILINEAR SIMILARITY

Proposition C.1. Let A,B ∈ Rd×M , and c ∈ R. Let J ∈ RM×M denote the matrix in which all
entries are 1. Then, we have rank(A⊤B − cJ) ≤ d+ 1.

Proof. We define Ã, B̃ ∈ R(d+1)×M as follows:

Ã =

[
A

−1 · · · −1

]
, B̃ =

[
B

c · · · c

]
.

Then, we have Ã⊤B̃ = A⊤B − cJ . Since rank Ã ≤ d + 1 and rank B̃ ≤ d + 1, the statement
holds.

C.2 ADVANTAGE OF SIMILARITY BETWEEN WEIGHTED POINT CLOUDS

In this section, we denote (joint) probability density functions of random variables by using their
corresponding letters. For example, we denote the joint probability density function of the random
variables X,Y and the probability density function of X as pX,Y and pX , respectively.

We impose the following assumptions on the generation process of random variables X ∈ X and
Y ∈ Y .

Assumption C.2 (Generation process). There exist random variables X̃, Ỹ ∈ Rd, Z(X ) ∈ RdX and
Z(Y) ∈ RdY that satisfy the following conditions.

(a) (X̃, Ỹ ), Z(X ), and Z(Y) are mutually independent.

(b) There exist continuous bijective mappings hX : Rd × RdX → X and hY : Rd × RdY → Y
such that X = hX (X̃, Z(X )) and Y = hY(Ỹ , Z(Y)).

(c) The support supp pX̃,Ỹ ⊆ Rd × Rd of the distribution pX̃,Ỹ is compact.

(d) The pointwise mutual information PMIX̃,Ỹ (x̃, ỹ) := ln
pX̃,Ỹ (x̃,ỹ)

pX̃(x̃)pỸ (ỹ) of X̃ and Ỹ is an
L-Lipschitz function on supp pX̃ × supp pỸ .

The second assumption means that data samples, X and Y , are generated from low-dimensional
latent variables, (X̃, Z(X )) and (Ỹ , Z(Y)), respectively. The first assumption means that dependency
between X and Y stems only from X̃ and Ỹ , and that Z(X ) and Z(Y) are latent variables specific to
the domain X and Y , respectively. From the first and second assumptions, it follows that there exists
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a 1-to-1 correspondence between (x, y) ∈ X × Y and (x̃, ỹ, z(X ), z(Y)) ∈ Rd × Rd × RdX × RdY ,

and that pX,Y (x,y)
pX(x)pY (y) =

pX̃,Ỹ (x̃,ỹ)p
Z(X) (z

(X))p
Z(Y) (z

(Y))

pX̃(x̃)p
Z(X) (z(X))pỸ (ỹ)p

Z(Y) (z(Y))
=

pX̃,Ỹ (x̃,ỹ)

pX̃(x̃)pỸ (ỹ) .

To prove Theorem 5.1, we use the following statements.
Proposition C.3 ((Aronszajn, 1950; Sriperumbudur et al., 2011)). Let X be a topological space
and let H be a reproducing kernel Hilbert space of the functions on X with k : X ×X → R as its
reproducing kernel. Then,∑

j∈[n]

cjk(·, xj)

∣∣∣∣∣∣ n ∈ N, {cj : j ∈ [n]} ⊂ R, {xj : j ∈ [n]} ⊂ X


is dense in H.
Lemma C.4. Let X be a topological space and let H be a reproducing kernel Hilbert space of the
functions on X with a bounded kernel k : X ×X → R. Let supx∈X k(x, x) ≤ κ. For any f, g ∈ H,
if ∥f − g∥H < ε, then ∥f − g∥∞ <

√
κε.

Proof. For any x ∈ X ,

|f(x)− g(x)| = ⟨k(x, ·), f − g⟩H ≤ ∥k(x, ·)∥H∥f − g∥H <
√
κε.

Definition C.5 (c0-universal, (Sriperumbudur et al., 2011)). A bounded kernel, k with k(·, x) ∈
C0(X),∀x ∈ X on a locally compact Hausdorff space X , is said to be c0-universal if the RKHS, H
induced by k is dense in C0(X) w.r.t. the uniform norm. I.e., for every function g ∈ C0(X) and all
ε > 0, there exists an f ∈ H such that ∥f − g∥∞ ≤ ε.

Proof of Theorem 5.1. First, we fix ε > 0. We prove the statement by explicitly constructing
M (X ),M (Y), fX , and fY that satisfy Eq.7.

From (b) of Assumption C.2, there exist continuous inverse functions of hX and hY . Consider the
following restrictions of the functions h−1

X and h−1
Y : for x = hX (x̃, z(X )) and y = hY(ỹ, z

(Y)), it
holds that

x̃ = h−1
X |X̃(x),

z(X ) = h−1
X |Z(X)(x),

ỹ = h−1
Y |Ỹ (y),

z(Y) = h−1
Y |Z(Y)(y).

Then, from (a) of Assumption C.2, it follows that

pX,Y (x, y)

pX(x)pY (y)
=

pX̃,Ỹ (x̃, ỹ)pZ(X)(z(X ))pZ(Y)(z(Y))

pX̃(x̃)pZ(X)(z(X ))pỸ (ỹ)pZ(Y)(z(Y))

=
pX̃,Ỹ (x̃, ỹ)

pX̃(x̃)pỸ (ỹ)

=
pX̃,Ỹ (h

−1
X |X̃(x), h−1

Y |Ỹ (y))
pX̃(h−1

X |X̃(x))pỸ (h
−1
Y |Ỹ (y))

. (12)

To avoid complicated notations, we simply denote h−1
X |X̃(x) as x̃(x) and h−1

Y |Ỹ (y) as ỹ(y) in the
following.

From (c) of Assumption C.2, Proposition C.3, Lemma C.4, and the definition of the c0-universal
kernel, for any fixed ỹ ∈ supp pỸ , there exist M ∈ N, {cj ∈ R | j ∈ [M ]}, and

{
η̃j ∈ Rd

∣∣ j ∈
[M ]

}
such that, for any x̃ ∈ supp pX̃ ,∣∣∣∣∣∣PMIX̃,Ỹ (x̃, ỹ)−

∑
j∈[M ]

cjk(x̃, η̃j)

∣∣∣∣∣∣ < ε

2
. (13)
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We denote such M, cj , and η̃j as M(ỹ), cj(ỹ) and η̃j(ỹ), respectively.

Meanwhile, we define Br(ỹ) ⊂ Rd as the open ball of radius r and center ỹ ∈ Rd. From (c) of
Assumption C.2, the support of pỸ is compact. Thus, for any ε > 0, there exist J ∈ N and J

points ỹ1, ỹ2, · · · , ỹJ ∈ Rd such that supp pỸ ⊆
⋃J

j=1 Bε/(2L)(ỹj). Given such ỹj (j ∈ [J ]), we
define χ(ỹ) for ỹ ∈ S as one of the points, ỹj (j ∈ [J ]) that satisfies ỹ ∈ Bε/(2L)(ỹj). From (d) of
Assumption C.2, it holds that, for any (x̃, ỹ) ∈ supp pX̃,Ỹ ,∣∣∣PMIX̃,Ỹ (x̃, ỹ)− PMIX̃,Ỹ (x̃, χ(ỹ))

∣∣∣ < ε

2
. (14)

Now, we are ready to construct desirable M (X ),M (Y), fX and fY . Let M (X ) = 1 and M (Y) =

maxj∈[J] M(ỹj). We define fY : y 7→
{(

w
(Y)
j , v

(Y)
j

)}
j∈[M(Y)]

as

w
(Y)
j = cj(χ(ỹ(y))) for 1 ≤ j ≤ M(χ(ỹ(y))),

w
(Y)
j = 0 for M(χ(ỹ(y))) < j ≤ M (Y),

v
(Y)
j = η̃j(χ(ỹ(y))) for 1 ≤ j ≤ M(χ(ỹ(y))).

For v(Y)
j with j such that M(χ(ỹ(y))) < j ≤ M (Y), we can choose any point in Rd. We define fX

as fX (x) = {(w1, v1)} := {(1, x̃(x))}. Then, for every (x, y) ∈ supp pX,Y ⊆ X × Y ,∣∣∣∣ln pX,Y (x, y)

pX(x)pY (y)
− g̃(fX (x), fY(y))

∣∣∣∣
=

∣∣∣∣∣∣PMIX̃,Ỹ (x̃(x), ỹ(y))−
M(X)∑
i=1

M(Y)∑
j=1

w
(X )
i w

(Y)
j k(v

(X )
i , v

(Y)
j )

∣∣∣∣∣∣
≤
∣∣∣PMIX̃,Ỹ (x̃(x), ỹ(y))− PMIX̃,Ỹ (x̃(x), χ(ỹ(y)))

∣∣∣
+

∣∣∣∣∣∣PMIX̃,Ỹ (x̃(x), χ(ỹ(y)))−
M(X)∑
i=1

M(Y)∑
j=1

w
(X )
i w

(Y)
j k(v

(X )
i , v

(Y)
j )

∣∣∣∣∣∣
≤ ε

2
+

∣∣∣∣∣∣PMIX̃,Ỹ (x̃(x), χ(ỹ(y)))−
M(χ(ỹ(y)))∑

j=1

cj

(
χ(ỹ(y))

)
k
(
x̃(x), η̃j(χ(ỹ(y)))

)∣∣∣∣∣∣
<

ε

2
+

ε

2
= ε.

Here, the first inequality holds by the triangle inequality. The second inequality holds from Eq. 14
and the definitions of fX and fY . The third inequality holds from Eq. 13.
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