
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POSITIVE DISTRIBUTION SHIFT AS A FRAMEWORK FOR
UNDERSTANDING TRACTABLE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study a setting where the goal is to learn a target function f(x) with respect to
a target distribution D(x), but training is done on i.i.d. samples from a different
training distribution D′(x), labeled by the true target f(x). Such a distribution
shift (here in the form of covariate shift) is usually viewed negatively, as hurting
or making learning harder, and the traditional distribution shift literature is mostly
concerned with limiting or avoiding this negative effect. In contrast, we argue that
with a well-chosen D′(x), the shift can be positive and make learning easier– a
perspective we call Positive Distribution Shift (PDS). Such a perspective is central
to contemporary machine learning, where much of the innovation is in finding
good training distributions D′, rather than changing the training algorithm. We
further argue that the benefit is often computational rather than statistical, and
that PDS allows computationally hard problems to become tractable even using
standard gradient-based training. We formalize different variants of PDS, show
how certain hard classes are easily learnable under PDS, and make connections
with membership query learning.

1 INTRODUCTION

We consider a setting where our goal is to obtain good performance on some target distribution D,
but instead train on i.i.d. data from a different training distribution D′. This type of distribution shift
scenario is usually seen as less preferable than training on data from the target D itself. For example,
we may want accurate pedestrian detection on images taken from cars in New York, but only have
training data collected in California. Or we may wish to classify sentiment in scientific papers, yet
train on Reddit posts. In practice, we rely on D′ as a proxy because D is inaccessible, too costly to
collect, or only available in very small amounts, while data from a different, but related, D′ is easier
to obtain. Indeed, most of the distribution shift literature is concerned with ensuring that training on
D′ is not (much) worse than training on D.

The phenomenon that we study here is how training on an alternate training distribution D′ ̸= D can
be beneficial, and lead to improved learning compared to training on the same number of samples
from D. We are particularly interested in how this can be achieved without changing the training
algorithm, but by simply running the “standard” training algorithm, such as Stochastic Gradient
Descent (SGD) on some standard architecture. This matches current training practices, where much
of the innovation and competitive advantage is not from new training algorithms nor new models,
but rather from finding good training distributions D′. In this paper, we set out to provide a concrete
framework and theoretical foundation for studying this phenomenon.

We emphasize the computational benefit of the distribution shift, where the main benefit of training on
an alternative D′ is not in reducing the number of training examples required information theoretically,
but in allowing training to be tractable (e.g. possible in polynomial time)1. We argue that this is
the main benefit in practice, since sophisticated deep models are information theoretically learnable
with sample complexity corresponding to the number of parameters, but also provably (worst case)
computationally hard to learn. The real challenge in deep learning is therefore computational, and

1In this regard, our work differs from work on “helpful teachers” and the teaching dimension (Goldman et al.,
1993; Goldman & Kearns, 1995; Zilles et al., 2011), which focus on reducing the number of examples required
ignoring computational issues.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

success rests on not being in this theoretical “worst case”. Our goal is to show that with an appropriate
distribution shift, tractable learning is possible, even with SGD.

The specific form of distribution shift that we consider here is covariate shift in supervised classifi-
cation, where the goal is to learn a predictor h : X → Y under some input distribution D over X ,
and we train using a different input distribution x ∼ D′ but the same target conditional distribution
y|x. We use y|x = f(x) to denote this conditional distribution, where one can think of f(x) as a
random variable with a law determined by x.2 We use (x, y) ∼ (D, f) to denote the joint distribution
over (x, y) specified by x ∼ D, y = f(x). We are therefore interested in a predictor h = A(S)
obtained by running some (possibly randomized) learning rule A on a training set S ∼ (D′, f)

m

of m i.i.d. samples from D′, and the error LD,f (h) := Pr(x,y)∼(D,f) [h(x) ̸= y] of this predictor on
the true target D. We focus on realizable learning, where f(x) = h∗(x) ∈ H is deterministic and
assumed to lie in some hypothesis class H ⊆ YX ; as well as learning with random classification noise
where Y is binary and ∀x Pr [f(x) = h∗(x)|x] = 1− η for some h∗ ∈ H and a (known or unknown)
noise level η ∈ [0, 1/2). Our Positive Distribution Shift (PDS) learning framework is thus captured
by the following definition, applicable in the realizable setting and with random classification noise:
Definition 1.1. A learning rule A PDS learns (D, f) using the training distribution D′, with sample
size3 m(ϵ) and runtime T (ϵ) if for every ϵ > 0,

ES′∼(D′,f)m(ϵ)

[
LD,f (A(S′))

]
≤ L∗ + ϵ

and A(S′) runs in time at most T (ϵ), where L∗ = 0 in the realizable case, and L∗ = LD,f (h
∗) = η

with label noise.

What Definition 1.1 is missing, and we will make concrete in different ways in subsequent Sections,
are quantifiers over the learning rule A and training distribution D′, which are essential for discussing
learning non-trivially.4

In this paper, we ask and formalize what it means to be able to learn a hypothesis class with “positive
distribution shift”, and give examples of what is, and is not, tractably learnable in this sense. To
this end, we consider several hypothesis classes which are (information theoretically easy but)
computationally hard to learn in a standard PAC setting (e.g. no poly-time learning algorithm can
ensure learning with matching target and training distributions). Ultimately, we would like to ask, and
rigorously answer, whether such classes are tractably learnable with positive distribution shift (under
some concrete formalization), by training a typical neural network using standard SGD. Rigorously
proving learnability using standard SGD on standard networks remains mostly elusive5. Towards this
goal, for different classes, we give evidence in the form of (a) proving PDS learnability using some
tractable algorithm (but not SGD on a network); (b) proving PDS learnability using a “stylized” SGD
on some specific network; and/or (c) showing PDS learnability experimentally using standard SGD
on a standard network.

2 WARM-UP: PARITIES ARE EFFICIENTLY LEARNABLE WITH PDS

To illuminate how positive distribution shift (PDS) can help tractability, we first consider the case of
parity functions. A parity is a Boolean function χS : {±1}d → {±1} defined as χS(x) =

∏
i∈S xi,

where S ⊆ [d] is a subset of the coordinates of size k ≤ d. Under uniform input distribution
(x ∼ Unif{±1}d), parities are statistically easy to learn: since there are

(
d
k

)
candidate supports

and each random labeled example rules out about half, O(k log(d)) random samples suffice to
identify the true support with high probability. Even in the presence of label noise, the sample
complexity remains poly(d), thus distribution shift is not needed from an information-theoretical

2Formally, f specifies a conditional distribution law for y|x, and for every observed xi, the corresponding
label yi is drawn independently from this conditional distribution–this is not a random function drawn once
where f(xi) and f(xj) would then be dependent.

3For simplicity, we state learnability in expectation, however, all results hold with high probability, except
for Theorem 4.5.

4Any single function f is trivially and meaninglessly “learnable” with hard-wired A that just always outputs
f .

5Very few papers, if at all, truly analyze “standard” SGD, and even stylized SGD analysis is often technically
complex.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

standpoint. Computationally, however, parities under the uniform distribution are believed to be hard.
In particular, no efficient algorithm is known for learning noisy parities, and it is widely conjectured
that even learning log(d)-sparse parities requires super-polynomial time (Kearns, 1998; Blum et al.,
2003; Applebaum et al., 2010; Feldman et al., 2006).

However, training on a different distribution D′ can provide significant computational benefits, as
it may reveal structure that is invisible under uniform inputs. For instance, consider a product
distribution where the bits in the parity’s support have non-zero bias. In this case, supported
coordinates exhibit a nonzero correlation with the label, whereas unsupported coordinates remain
uncorrelated. This additional structure and correlations (that is not visible on the uniform distribution)
makes the problem analogous to finding a linear predictor, so we find the parity support tractably, and
the resulting predictor generalizes back to the uniform distribution. In the terminology of Abbe et al.
(2023a), this is a positive distribution shift that makes the target function be a staircase in the Fourier
basis of D′, making it easy to learn. Either way, uniform inputs only reveal the relevant features
through a k-way interaction, while the shift creates separate correlations for each relevant coordinate,
turning an intractable problem into a tractable one.

However, when learning with gradient descent on standard architectures that are agnostic to the
parity structure, training on a biased distribution alone is not sufficient, as our experiments show
(Figure 1 (Right)). Malach et al. (2021) empirically demonstrated that when both the training and test
distributions are taken to be D′ = (1− p)Uniform + pBiased for some p > 0, noiseless parities of
sparsity log(d) can be learned with a two-layer network of width 128 trained with Adam on d = 128.
They show that for p > 0, the network learns the parity with respect to D′ (which includes the bias),
whereas for p = 0 (i.e., D′ = D = Uniform), it does not. Their focus is thus on PAC learning
under the specific non-uniform distribution D′. Our perspective differs: we aim to learn with respect
to the uniform distribution D = Uniform (or, more generally, any downstream test distribution),
while only modifying the training distribution. In this setting, mixing biased and uniform samples is
beneficial: the biased component reveals hidden correlations, while the uniform component ensures
generalization to D and prevents overfitting to the biased distribution. Some of our analysis parallels
that of Malach et al. (2021), but our view is different. Furthermore, we account for the presence of
label noise. On the other hand, Cornacchia & Mossel (2023) show that training first on a randomly
biased distribution D1 and then on D = Uniform enables learning parities under D. Their emphasis
is on curriculum learning as an instance of positive distribution shift with computational benefits. By
contrast, we argue that the essential factor is not the order of training (curriculum) but the overall
training distribution D′.

In Section 4, we present our formal results on PDS learning of parities. First, in Theorem 4.3, we show
that there is a simple tractable PDS learning algorithm for learning any parity function. Secondly, we
show that parities are PDS learnable with analyzable (i.e. with layerwise training) gradient descent
on a standard feed-forward neural network. Finally, we empirically show that even dense parities
are PDS learnable with standard gradient descent on a two-layer feed-forward ReLU network. This
extends both the results (Malach et al., 2021) and (Cornacchia et al., 2025), since their results only
consider sparse parities. For a more comprehensive discussion of related work, see Appendix A.

3 ALL FUNCTIONS ARE EASY, WITH THE RIGHT TRAINING DISTRIBUTION

In Section 2, we saw that a computationally hard class, namely noisy parities, is easy to learn with
PDS. A natural question to ask is: what classes are tractably PDS learnable? Is it possible to PDS
learn all functions representable by neural networks, i.e., all circuits? Note that even constant-depth
circuits are hard in the PAC framework (Kharitonov, 1993; Daniely & Shalev-Shwartz, 2016; Daniely
& Vardi, 2021). To answer these questions, we first introduce the most basic framework of positive
distribution shift (PDS) learning, namely f-PDS learning. In this setting, the auxiliary distribution
may depend not only on the test distribution D but also on the target function f (hence the name
function-dependent PDS). The training points are sampled from such a distribution D′, and the
learner’s goal is to achieve low error on D.

Definition 3.1 (f-Dependent Positive Distribution Shift (f-PDS)). A class H is f-PDS learnable with
sample size m(ε) and runtime T (ε) if there exists a learning algorithm A such that, for every labeling
rule f : X → ∆(Y) and every distribution D over X , there exists an auxiliary distribution D′ over

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

X (allowed to depend on both D and f) such that for any ε > 0 with m(ε) samples from D′, A has
runtime T (ε) and ES′∼(D′,f)m(ε)

[
LD,f (A(S′))− L∗] ≤ ε.

It turns out that allowing the training distribution to depend on the target f , we can learn all poly-sized
circuits with label noise. The algorithm is gradient descent on a non-standard neural network, namely,
a network with non-standard topology or a fully connected feedforward network with non-standard
activation functions and non-standard initialization. The algorithm is based on encoding f in Df and
reconstructs the encoding from the samples.

Boolean circuits: Let B be the set of gates {AND, OR, NOT}. A Boolean circuit C on d inputs is a
finite directed acyclic graph (DAG) with input nodes x1, . . . , xd, internal nodes labeled by gates in
B, and one output node. For x ∈ {0, 1}d, values propagate along edges to define fC(x) ∈ {0, 1}.
The size of the circuit is the number of gate nodes.

Theorem 3.2 (Any Poly-sized Circuit with Label Noise is f-PDS Learnable with a Non-Standard
Network). For any d and s there exists a fixed non-standard feed-forward neural network6, an
initialization, and a sequence of learning rates, such that any function f : {0, 1}d → {0, 1}
representable by (i) a circuit of size at most s, or (ii) a neural network of size at most s with
poly log(s) bits of precision, is f-PDS learnable with label noise by SGD on this neural network with
samples and runtime m(ϵ), T (ϵ) = poly(d, s, 1

ϵ).

For the proof of Theorem 3.2 see Appendix B. Note that the sample complexity and the number of
steps do not depend on the noise because we encode f in Df . Encoding f in Df amounts to a form
of "cheating", and the results rests on simulating PAC learning algorithms with (non-standard) GD on
networks from (Abbe & Sandon, 2020). It shows that the notion of f-PDS might not be restrictive
enough, i.e. it allows us to take an impossible choice for Df that we couldn’t be able to construct
during training. It also makes the gradient descent variant considered here highly non-standard. Yet,
Theorem 3.2 suggests the broader promise of f-PDS learning and naturally leads us to ask:

Open Question 3.3 (Universality of f-PDS Learnability). Is every function representable by a neural
network (i.e. any computable function) f-PDS learnable by standard gradient descent on a neural
network with standard7 activation and initialization?

This shifts the study about tractable learnability with neural networks to asking under what assump-
tions on the training distribution D′ is the target PDS learnable.

4 A NEW LEARNING FRAMEWORK: DS-PAC

In this section, we prefer to not have the auxiliary distribution D′ depend on the target f , but rather
allow D′ to depend only on the hypothesis class H and the target distribution D. We introduce
two variants of such positive distribution shift: deterministic, where the training set is sampled
directly from the auxiliary distribution, and randomized, where we first draw a distribution from a
meta-distribution (a distribution over distributions) and then sample the training set from it.

Definition 4.1 (Deterministic Distribution-Shift PAC (D-DS-PAC)). A hypothesis class H is Deter-
ministic Distribution Shift PAC (D-DS-PAC) learnable with sample size m(ε) and runtime T (ε) if
there exists a learning algorithm A with runtime T (ε) such that, for every distribution D over X and
labeling rule f : X → ∆(Y), there exists an auxiliary distribution D′ over X (allowed to depend on
D and H but not on f) such that ES′∼(D′,f)m(ε)

[
LD,f (A(S′))− L∗

]
≤ ε.

Definition 4.2 (Randomized Distribution Shift PAC (R-DS-PAC)). A hypothesis class H is Ran-
domized Distribution-Shift PAC (R-DS-PAC) learnable with sample size m(ε) and runtime T (ε) if
there exists a learning algorithm A with runtime T (ε) such that, for every distribution D over X and
labeling rule f : X → ∆(Y), there exists a meta-distribution MD over distributions on X (allowed
to depend on D and H but not on f) such that ED′∼MDES′∼(D′,f)m(ε)

[
LD,f (A(S′))− L∗

]
≤ ε.

6the network is non-standard in either its topology and initialization or it is fully connected with special
initialization and activation function.

7Here, standard initialization refers to sampling from a fixed, reasonable distribution (e.g., Gaussian) with
parameters independent of the target function f .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Formally, we say that a class H is D-DS-PAC (R-DS-PAC) learnable with label noise, if Definition 4.1
(4.2) holds where the labeling rule is induced by some h∗ ∈ H with a label flipping noise η ∈ [0, 1/2).

In what follows, we study parities and juntas from the three perspectives on PDS learning: tractable,
with analyzable GD, and empirical with standard GD.

Parities. For x, a ∈ {0, 1}d, define the parity χa(x) =
⊕d

i=1 aixi = ⟨a, x⟩ mod 2. The parity
class over d bits is defined as Parityd = {χa : a ∈ {0, 1}d}. We consider also k-sparse parities,
Paritykd = {χa : a ∈ {0, 1}d, ∥a∥0 = k}. In this part, we establish the following: (i) noisy parities
are D-DS-PAC learnable with a tractable algorithm (Theorem 4.3); (ii) noisy parities are f-PDS
learnable using gradient descent on a feed-forward fully connected neural network (Theorem 4.4),
and, noisy parities are D-DS-PAC learnable with a slightly stylized, analyzable variant of gradient
descent (where the initialization depends on the sparsity of the parity; Theorem 4.5); (iii) empirically,
standard gradient descent on a feed-forward neural network successfully learns noisy parities within
the D-DS-PAC framework (Figure 1). This is in contrast to learning parity functions with noise in the
PAC learning framework, which is believed to be computationally hard (Kearns, 1998; Blum et al.,
2003; Applebaum et al., 2010; Feldman et al., 2006), both in general and even in the log(d)-sparse
case.

Theorem 4.3 (Noisy Parities are Tractably D-DS-PAC Learnable). There exists a distribution D′

and an efficient D-DS-PAC learning algorithm A such that for any distribution D, the algorithm
A D-DS-PAC learns the class of parity functions Parityd with label noise η < 1

2 using m =

O
(

d2 log 2d
ϵ

(1−2η)2

)
samples from D′ with runtime T (ϵ) = O

(
d3 log 2d

ϵ

(1−2η)2

)
.

Furthermore, noisy parities are PDS learnable even when restricting our learning algorithm to gradient
descent on neural networks. We show that noisy parities are f-PDS learnable with standard analyzable
gradient descent on a neural network, namely using layerwise training procedure where we first train
the bottom layer while holding the top layer fixed and then train the top layer while holding the bottom
layer fixed. This assumption is standard in the theory of neural network learning literature (Abbe
et al., 2023a; Barak et al., 2022; Bietti et al., 2022; Dandi et al., 2023). Our experiments use standard
joint training of both layers and confirm the theoretical results.

Theorem 4.4 (Noisy Parities are f-PDS Learnable with Analyzable GD). The parity class Parityd
with label noise η < 1

2 is f-PDS learnable using a two-layer network with a ReLU activation function
fNN (x; θ) =

∑
j∈[N] ajσ (⟨wj , x⟩+ bj), where θ = (a,W, b) ∈ RN(d+2). We use a layer wise

training procedure, where we train wj’s with one gradient step and aj’s with SGD. In other words,
there exist a width N = poly(d), an initialization, and step sizes, such that for any target distribution
D and any noisy parity f , there exists a distribution D′ over {0, 1}d, such that after training the
two-layer neural network of width N with T steps of gradient descent with the square loss, using m

samples from D′, and chosen initialization and step size, with m,T = O

(
d9 log2(d

ε2(1−2η)2
)

ε3(1−2η)6

)
, we

have that ES′∼(D′,f)m [LD,f (fNN (x; θ(T)))] < ϵ+ η.

If we allow a slightly stylized version of gradient descent, we obtain a stronger PDS result. Specifi-
cally, we show that parities are D-DS-PAC learnable by gradient descent on a feed forward network
with ℓ1 regularization and initializations that depend on the sparsity of the parity. Note that, in contrast
to f-PDS, here the auxiliary distribution may depend only on the class of parities (and the sparsity)
but not on the target function itself. For the proofs of Theorem 4.3, Theorem 4.4, and Theorem 4.5,
see Appendix C.

Theorem 4.5 (Noisy Parities are D-DS-PAC Learnable with Stylized Analyzable GD). For any fixed
sparsity k ≤ d, say k = d/2, of a parity function, the class Parity

d/2
d with label noise η < 1

2 is
D-DS-PAC learnable using GD on a two-layer network with layerwise training where we use ℓ1
regularization on the first layer and where the hyperparameters depend on k, with carefully chosen
regularization parameter λ. That is, there is a two-layer network of width N such that for any
distribution D there exists a distribution D′such that with m samples and T steps of SGD with

square loss with m,T = O

(
d9 log(d

ϵ2(1−2η)2
)

ϵ3(1−2η)6

)
, for any d/2 sparse noisy parity target f we have

ES′∼(D′,f)m [LD,f (fNN (x; θ(T)))] < ϵ+ η.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r
PDS, = 0
PDS, = 0.02
PDS, = 0.05
no PDS, = 0
no PDS, = 0.02
no PDS, = 0.05

′ = 0 ′ = 1
2 0.96 + 1

2 0
′ = 0.96

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r

Error on 0.96
Error on 0

Figure 1: Noisy Parities. We study learning a degree-25 parity over 50 bits with label noise
η ∈ {0, 0.02, 0.05}, using a two-layer ReLU network with 1024 hidden units trained by SGD (batch
size 64, fresh samples, square loss, learning rate 0.01, both layers trained jointly). In the PDS
setting, training samples are drawn from D′ = 1

2D0.96 +
1
2D0, where Dµ = Rad((µ + 1)/2)⊗d

for µ ∈ [−1, 1]; in the standard setting, from D′ = D0. The left panel shows test error on D0

during training, where PDS yields markedly more efficient learning; dotted lines indicate Bayes
error (η). The right panel compares D′ = D0, D′ = 1

2D0.96 +
1
2D0, and D′ = D0.96, plotting test

error on D0.96 (blue) and D0 (orange) after 106 steps. Only the mixture distribution achieves PDS
generalization to the target D0.

We empirically verify Theorem 4.5 using standard gradient descent on a two-layer fully connected
ReLU network with standard initialization and training (Figure 1). For µ ∈ [−1, 1], let Dµ be
the distribution on {±1}d with i.i.d. coordinates from Rad(µ+1

2), so that D0 = Unif{±1}d. We
study a degree-k = 25 parity over d = 50 bits with label noise, targeting the uniform distribution
D = D0. In the PDS setting, training samples come from D′ = 1

2D0.96 +
1
2D0; in the standard

setting from D. Figure 1 (left) shows the evolution of the test error on D during training, where
PDS yields significantly faster learning. The right panel compares training on D′ = D0 (left),
D′ = 1

2D0.96 +
1
2D0 (center), and D′ = D0.96, showing that only the mixture distribution (center),

supports PDS generalization to the target D.

Juntas. For k ≤ d, the k-junta class is Juntakd = {f : {0, 1}d → {0, 1} : ∃S ⊆ [d], |S| ≤ k, ∃g :
{0, 1}S → {0, 1} s.t. f(x) = g(xS)}, where xS denotes the restriction of x to the coordinates S.
In this part, we establish the following: (i) noisy juntas are D-DS-PAC learnable by a Correlational
Statistical Query (SQ) algorithm (Theorem 4.6), (ii) noisy juntas are R-DS-PAC learnable with a
stylized layerwise GD on a two-layer network with covariance loss, see Def. D.3 (Theorem 4.7),
and (iii) empirically, noisy juntas are R-DS-PAC learnable with standard stochastic gradient descent
with square loss on a feed-forward neural network (Figure 2). On the other hand, log(d)-juntas are
believed to be hard to learn in the PAC model, even in the realizable case (Applebaum et al., 2010;
Chandrasekaran & Klivans, 2025).

Correlational Statistical Queries (CSQ) algorithms (Bendavid et al. (1995); Bshouty & Feldman
(2002)) access the data via queries ϕ : Rd → [−1, 1] and return Ex,y[ϕ(x)y] up to some error
tolerance τ .
Theorem 4.6 (Noisy Juntas are D-DS-PAC Learnable with a CSQ Algorithm). There exists an input
distribution D′ and a CSQ algorithm A such that for every target distribution D, the class of k-sparse
juntas Juntakd, with label noise η < 1/2, is D-DS-PAC learnable using A with n = O(dk + 2k)
queries on D′ of error tolerance τ = O((1− 2η)2−k).

We remark that a similar result can also be derived from Bshouty & Costa (2016) together with
the connections between PDS and learning with membership queries established in Section 5 (see
Appendix F for details). Our proof, however, shows D-DS-PAC learnability of noisy juntas directly
by a different method, namely via correlation statistical queries.

Now, we show that juntas are R-DS-PAC learnable with stylized analyzable GD, up to a multiplicative
constant in the accuracy.
Theorem 4.7 (Noisy Juntas are R-DS-PAC Learnable with Stylized Analyzable GD). For any
k = Od(1), the class of k-sparse juntas Juntakd, with label noise η < 1/2, is R-DS-PAC learn-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r
PDS, = 0
PDS, = 0.02
PDS, = 0.05
no PDS, = 0
no PDS, = 0.02
no PDS, = 0.05

1026 × 101

Input dimension (d)

106

107

nb
 o

f s
am

pl
es

PDS, = 0
PDS, = 0.02
PDS, = 0.05
no PDS, = 0
no PDS, = 0.02
no PDS, = 0.05

Figure 2: Noisy juntas. (Left) We consider learning f9 (see Sec. 4) over d = 50 bits on D =
Unif{±1}d with a two-layer ReLU network (1024 hidden units) trained with SGD (batch size 64,
fresh samples, square loss, l.r. 0.01, both layers trained jointly). In the PDS setting we train on
D′ = 1

2Dµ + 1
2D0, with µ ∼ Unif[−1, 1]⊗d (and where Dµ := ⊗i∈[d]Rad((µi + 1)/2)), while in

the standard (no PDS) setting D′ = D. We plot the test error on D during training; the dotted lines
show the Bayes error (i.e. η). (Right) We consider learning f7 on D = Unif{±1}d and we plot the
sample complexity needed to reach within 0.01 of Bayes error versus the input dimension. In both
plots, PDS training is markedly more efficient.

able with respect to the uniform distribution D using GD on a two-layer network with layerwise
training and using covariance loss (Def. D.3). That is, for any ϵ > 0 and noise level η < 1/2,
there exists a meta distribution MD′ such that after sampling D′ from MD′ , layerwise-SGD with
batch size B = Ω̃(d log(1/ϵ)) from D′ on a two-layer network of width Ω̃(ϵ−1(1 − 2η)−1) af-
ter T = Ω̃(ϵ−2(1 − 2η)−2) steps of SGD learns any k sparse noisy junta target f with error
EMDES′∼(D′,f)m [L(D,f)(fNN (x; θ(T)))] < C(η + ϵc), for constants c, C > 0 that depend only on
k.

Theorem 4.7 builds on (Cornacchia et al., 2025, Theorem 5), extending it to include label noise and
our PDS training distribution, which is not a product measure. It remains an open question whether
D-DS-PAC learnability can be established using GD. The proofs of Theorem 4.6 and Theorem 4.7
are in Appendix D.

Finally, we empirically verify Theorem 4.7 holds for standard gradient descent training on a two-layer
fully-connected ReLU network in Figure 2. For µ ∈ [−1, 1]⊗d, let Dµ be the distribution on {±1}d
with coordinates xi ∼ Rad((µi + 1)/2), i ∈ [d] (thus D0 = Unif{±1}d). For k ∈ {7, 9}, we
consider learning the following k-juntas: fk(x) :=

∏k−2
i=1 xi · (1 + xk−1 + xk − xk−1xk), with

x ∈ {±1}d and label noise, on the uniform target distribution (i.e. D = D0). Thus, fk is a k-junta
with {±1} labels and minimum degree Fourier coefficient k − 2. In the PDS setting (R-DS-PAC),
training uses samples from D′ = 1

2Dµ+ 1
2D0, with µ ∼ Unif[−1, 1]⊗d, while in the standard setting

(no PDS) it uses D. In the left panel of Figure 2, we plot the evolution of the test error during training
for learning f9 on d = 50 bits, and observe that PDS yields far more efficient learning. In the right
panel, we consider learning f7 on varying input dimensions, and observe that the benefits of PDS
increase with input dimension. We refer to Appendix G for the experiment’s details and additional
plots.

We would like to explore PDS learning for additional well-studied hypothesis classes. We will now
do so by connecting PDS learning to learning with membership queries.

5 DS-PAC AND MEMBERSHIP QUERIES

In this section, we connect our PDS framework to the classical model of learning with membership
queries (MQ). In this model, the learning algorithm can actively query specific points and obtain
their labels from the target function f , in addition to sampling random labeled examples from the
target distribution. The MQ model is strictly stronger than PAC (see Appendix A). Importantly,
queries can be issued adaptively, that is, based on previously obtained labels, making it strictly more

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

powerful than our “passive” PDS model, where examples are drawn non-adaptively from an auxiliary
distribution.

The non-adaptive setting, defined below, has also been studied for specific concept classes (in the
realizable case), including parities and DNFs under the uniform distribution (Feldman, 2007), juntas
(Bshouty & Costa, 2016), and decision trees of logarithmic depth in the input dimension (Bshouty,
2018).
Definition 5.1 (Non-Adaptive Membership Queries (NA-MQ)). A hypothesis class H over domain
X is NA-MQ learnable with sample size m(ε) if there exist integers mrand(ε) and mmq(ε) with
mrand(ε)+mmq(ε) = m(ε), a distribution Q over batches S̃X ∈ Xmmq(ε), and a learning algorithm
A, such that the following holds. For every distribution D over X and every labeling rule f : X →
∆(Y), the distribution Q may depend on D and on known complexity parameters of H, but not on the
unknown target f and not on any observed labels. The learner has access to an i.i.d. labeled sample
Srand = {(x, f(x)) : x ∼ D} of size mrand(ε), and to a non-adaptive query batch S̃X ∼ Q of size
mmq(ε) with labels Smq = {(x, f(x)) : x ∈ S̃X }. The algorithm outputs A(Srand, Smq) such that

ESrand∼(D,f)mrand(ε),S̃X∼Q

[
LD,f (A(Srand, Smq)) − L∗

]
≤ ε. We say the learner is deterministic

NA-MQ if Q is a point mass (the query set is fixed), and randomized NA-MQ otherwise.

Note that random classification noise is defined in the same way as in the PAC model, namely by
flipping labels returned by f . As we show below, this non-adaptive model plays a central role in the
DS-PAC framework. The proof is in Appendix E.
Theorem 5.2 (NA-MQ → R-DS-PAC; deterministic NA-MQ → D-DS-PAC). Fix a hypothesis class
H and a distribution D over X . Suppose there is a (possibly randomized) non-adaptive MQ learner
A for H under D that, using at most m0(ε) queries, outputs ĥ with E

[
LD,f (ĥ)

]
≤ L∗ + ε. Then H

is R-DS-PAC-learnable under D with sample size m(ε) = O
(
m0(ε/2)

(
logm0(ε/2) + log(1/ε)

))
.

Moreover, if A is deterministic non-adaptive, then H is D-DS-PAC-learnable under D with the same
sample bound.

As an immediate application, we obtain that DNFs under the uniform distribution and decision trees
of logarithmic depth are R-DS-PAC learnable. Moreover, note that R-DS-PAC learnability trivially
implies learnability with non-adaptive MQ. Hence, learnability in the realizable setting in R-DS-PAC
also implies learnability in the presence of label noise: after sampling a training set, we can resample
each query sufficiently many times so that, by the coupon collector argument, every queried example
is observed multiple times, and the true label can be recovered by majority vote.

Natural open problems include the following: (i) Can DNFs and decision trees be learned with PDS
by training a neural network with gradient descent? (ii) DNFs under the uniform distribution and
log-depth decision trees are learnable in NA-MQ by identifying heavy Fourier coefficients. A natural
broader question is whether the class of sparse functions, those with only a few non-zero Fourier
coefficients, is also NA-MQ learnable under the uniform distribution using a number of queries
polynomial in the dimension and the sparsity parameter, and hence R-DSPAC learnable. This is
known to hold in the adaptive MQ model (Mansour, 1994). (iii) Can we separate learning with
adaptive MQ from NA-MQ/R-DS-PAC for natural classes? We note that Feldman (2007) sketches
such a separation for certain artificial classes. For functions representable by polynomial-size circuits,
we know that they are not R-DS-PAC learnable because constant-depth circuits are known to be hard
to learn even with adaptive membership queries (Kharitonov, 1993).

6 SUMMARY AND OPEN QUESTIONS

Much of the effort in the current practice of ML is in “dataset selection” or finding the best training
distribution D′ in order to get good results on a target D. It is important to develop a framework,
language, methodology and theory to capture this. This paper is our attempt to make progress toward
this goal.

In Section 3 on f-PDS, we asked which targets are learnable using some training D′, with the f-PDS
framework. The definition allows D′ to depend on f , so this is not a “recipe” where one can construct
D′

f during training. In particular, our Theorem 3.2 shows the existence of D′
f by “cheating” and

leaking information through an unnatural and impossible choice of D′
f , thus not providing insight but

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

rather helping us refine the question to ask. This is done in Open Question 3.3 where we limit training
to a fixed training rule that does not process “leaked” information: SGD on a regular neural net—the
main contribution of this Section is thus in formulating Open Question 3.3. The insight is two-fold:
(a) by understanding which D′

f allows learning (D, f), we can gain insight on the type of properties
of “good” training distributions D′, and hopefully guidance into the “dataset selection” problem; (b)
shift the study about tractable learnability of neural networks from asking “which subset of functions
representable by neural networks are tractably learnable” (e.g. in Daniely & Vardi (2020); Daniely
et al. (2023)), or even “under what simple, e.g. uniform/Gaussian/etc input distribution” (e.g. as in
Chen et al. (2022); Daniely & Vardi (2021)), to asking, “for any function f representable by a neural
network and input D, under what assumptions on the training distribution D′ is it PDS learnable?”.

In Sections 4 and 5 on DS-PAC and membership queries, we turned to a more prescriptive order of
quantifiers, where here the training distribution D′ depends only on the hypothesis class H and input
distribution D, but not on the target f . We present concrete definitions of a notion of learnability
that we advocate studying, and initial results showing its power and depth. In particular, we show
strong connections with membership query learning, and especially non adaptive membership query
learning. NA-MQ has only been sporadically studied in the past, and frequently not explicitly but by
providing MQ methods that do not require adaptation. We hope this will reignite interest in NA-MQ,
and more directly in DS-PAC learning.

If we allow an arbitrary tractable algorithm and to randomly choose a training distribution D′, then
DS-PAC is “equivalent” (with a small increase in sample complexity) to NA-MQ. With DS-PAC,
unlike NA-MQ, we are mainly interested in using a particular learning rule, namely SGD on a neural
network. Our work raises the following Open Question: are interesting hypothesis classes that
are tractably learnable with NA-MQ (and thus also R-DS-PAC) also DS-PAC learnable using SGD
on a neural network? E.g., decision trees? An interesting candidate class of particular interest is
the class of functions with a sparse Fourier decomposition. Open Question: Are sparse functions
DS-PAC learnable? What about with using SGD on a neural network? On the negative side, it
would be good to show hardness of DS-PAC learning, which is equivalent to hardness of NA-MQ
learning. Open Question: Are there natural classes that are MQ learnable, but not NA-MQ/DS-PAC
learnable? We are not aware of any work specifically on showing adaptivity is necessary for MQ, i.e.
seperating A-MQ and NA-MQ for natural classes. Another open question concerns the necessity of
randomization in R-DS-PAC. That is, whether there are classes that as R-DS-PAC learnable but not
D-DS-PAC, and whether this gap exists specifically for SGD on a neural network. In particular, are
juntas D-DS-PAC learnable with SGD on a neural network? Overall, we hope our work will create
interest in PDS learning, which we view as an important learning paradigm.We can summarize the
PDS hierarchy implied by our work as

PAC →↚ D-DS-PAC → R-DS-PAC ↔ NA-MQ →↚ A-MQ.

Table 1 provides a summary of the current classification of hypothesis classes in the PDS hierarchy.

Class Tractable Algorithm "Analyzable" GD Experiment (realistic GD)
Parity D-DS-PAC

Theorem 4.3
D-DS-PACGD

Theorem 4.5
Figure 1

k-Juntas D-DS-PAC
Theorem 4.6

R-DS-PACGD

Theorem 4.7
Figure 2

log(d)-depth Decision Trees R-DS-PAC/NA-MQ
Bshouty (2018)

— —

DNF (uniform dist.) R-DS-PAC/NA-MQ
Feldman (2007)

— —

Poly-Sized Circuits f-PDS
Theorem 3.2

(not R-DS-PAC)

f-PDS (with special
unrealistic network)

Theorem 3.2

—

Table 1: We study the learnability of concept classes under random classification noise across multiple
frameworks. These classes are either known to be hard to learn under well-established cryptographic
assumptions or are widely believed to be hard. We ask whether they can instead be learned efficiently
under positive distribution shift (allowing any algorithm), via provably analyzable gradient descent
on neural networks, and empirically using standard gradient descent. For each concept class, the test
distribution is arbitrary, except for DNFs, where it is restricted to the uniform distribution. Notably,
Theorem 4.7 was also established implicitly by Cornacchia et al. (2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Abbe and Enric Boix-Adsera. On the non-universality of deep learning: quantifying the
cost of symmetry. Advances in Neural Information Processing Systems, 35:17188–17201, 2022.

Emmanuel Abbe and Colin Sandon. Poly-time universality and limitations of deep learning.
arXiv:2001.02992, 2020.

Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon, and Nathan Srebro. On the power of
differentiable learning versus PAC and SQ learning. In Advances in Neural Information Processing
Systems, volume 34, 2021.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022a.

Emmanuel Abbe, Samy Bengio, Elisabetta Cornacchia, Jon Kleinberg, Aryo Lotfi, Maithra Raghu,
and Chiyuan Zhang. Learning to reason with neural networks: Generalization, unseen data and
boolean measures. Accepted at NeurIPS 2022, 2022b.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. SGD learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 2552–2623. PMLR, 2023a.

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. In International Conference on Machine Learning, pp. 31–60.
PMLR, 2023b.

Emmanuel Abbe, Elisabetta Cornacchia, and Aryo Lotfi. Provable advantage of curriculum learning
on parity targets with mixed inputs. Advances in Neural Information Processing Systems, 36:
24291–24321, 2023c.

Emmanuel Abbe, Elisabetta Cornacchia, Jan Hazla, and Donald Kougang-Yombi. Learning high-
degree parities: The crucial role of the initialization. arXiv preprint arXiv:2412.04910, 2024.

David Aldous and Umesh Vazirani. A markovian extension of valiant‘s learning model. Information
and computation, 117(2):181–186, 1995.

Josh Alman, Shivam Nadimpalli, Shyamal Patel, and Rocco A Servedio. Dnf learning via locally
mixing random walks. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing,
pp. 2055–2061, 2025.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and computation,
75(2):87–106, 1987.

Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different
assumptions. In Proceedings of the forty-second ACM symposium on Theory of computing, pp.
171–180, 2010.

Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan. Repetita iuvant:
Data repetition allows SGD to learn high-dimensional multi-index functions. arXiv preprint
arXiv:2405.15459, 2024.

Jan Arpe and Elchanan Mossel. Agnostically learning juntas from random walks. arXiv preprint
arXiv:0806.4210, 2008.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: Sgd learns parities near the computational limit. arXiv preprint
arXiv:2207.08799, 2022.

Peter L Bartlett, Paul Fischer, and Klaus-Uwe Höffgen. Exploiting random walks for learning. In
Proceedings of the Seventh Annual Conference on Computational Learning Theory, pp. 318–327,
1994.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. The Journal of Machine Learning Research,
22(1):4788–4838, 2021.

Shai Bendavid, Alon Itai, and Eyal Kushilevitz. Learning by distances. Information and Computation,
117(2):240–250, 1995.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
shallow neural networks. Advances in Neural Information Processing Systems, 35:9768–9783,
2022.

Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven Rudich.
Weakly learning dnf and characterizing statistical query learning using fourier analysis. In Pro-
ceedings of the twenty-sixth annual ACM symposium on Theory of computing, pp. 253–262,
1994.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

Alon Brutzkus, Amit Daniely, and Eran Malach. Id3 learns juntas for smoothed product distributions.
In Conference on Learning Theory, pp. 902–915. PMLR, 2020.

Nader H Bshouty. Exact learning via the monotone theory. In Proceedings of 1993 IEEE 34th Annual
Foundations of Computer Science, pp. 302–311. IEEE, 1993.

Nader H Bshouty. Exact learning from an honest teacher that answers membership queries. Theoreti-
cal Computer Science, 733:4–43, 2018.

Nader H Bshouty and Areej Costa. Exact learning of juntas from membership queries. In International
Conference on Algorithmic Learning Theory, pp. 115–129. Springer, 2016.

Nader H Bshouty and Vitaly Feldman. On using extended statistical queries to avoid membership
queries. Journal of Machine Learning Research, 2(Feb):359–395, 2002.

Nader H Bshouty and Catherine A Haddad-Zaknoon. Adaptive exact learning of decision trees from
membership queries. In Algorithmic Learning Theory, pp. 207–234. PMLR, 2019.

Nader H Bshouty, Elchanan Mossel, Ryan O’Donnell, and Rocco A Servedio. Learning dnf from
random walks. Journal of Computer and System Sciences, 71(3):250–265, 2005.

Francesco Cagnetta and Matthieu Wyart. Towards a theory of how the structure of language is
acquired by deep neural networks. Advances in Neural Information Processing Systems, 37:
83119–83163, 2024.

Francesco Cagnetta, Leonardo Petrini, Umberto M Tomasini, Alessandro Favero, and Matthieu Wyart.
How deep neural networks learn compositional data: The random hierarchy model. Physical
Review X, 14(3):031001, 2024.

Gautam Chandrasekaran and Adam Klivans. Learning juntas under markov random fields. arXiv
preprint arXiv:2506.00764, 2025.

Sitan Chen, Aravind Gollakota, Adam Klivans, and Raghu Meka. Hardness of noise-free learning
for two-hidden-layer neural networks. Advances in Neural Information Processing Systems, 35:
10709–10724, 2022.

Elisabetta Cornacchia and Elchanan Mossel. A mathematical model for curriculum learning for
parities. In International Conference on Machine Learning, pp. 6402–6423. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elisabetta Cornacchia, Dan Mikulincer, and Elchanan Mossel. Low-dimensional functions are
efficiently learnable under randomly biased distributions. arXiv preprint arXiv:2502.06443, 2025.

Alex Damian, Jason D Lee, and Joan Bruna. The generative leap: Sharp sample complexity for
efficiently learning gaussian multi-index models. arXiv preprint arXiv:2506.05500, 2025.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
neural networks learn, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and Florent Krzakala.
The benefits of reusing batches for gradient descent in two-layer networks: Breaking the curse of
information and leap exponents. arXiv preprint arXiv:2402.03220, 2024.

Yatin Dandi, Luca Pesce, Lenka Zdeborová, and Florent Krzakala. The computational advantage of
depth: Learning high-dimensional hierarchical functions with gradient descent. arXiv preprint
arXiv:2502.13961, 2025.

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning dnf’s. In
Conference on Learning Theory, pp. 815–830. PMLR, 2016.

Amit Daniely and Gal Vardi. Hardness of learning neural networks with natural weights. Advances
in Neural Information Processing Systems, 33:930–940, 2020.

Amit Daniely and Gal Vardi. From local pseudorandom generators to hardness of learning. In
Conference on Learning Theory, pp. 1358–1394. PMLR, 2021.

Amit Daniely, Nati Srebro, and Gal Vardi. Computational complexity of learning neural networks:
Smoothness and degeneracy. Advances in Neural Information Processing Systems, 36:76272–
76297, 2023.

Vitaly Feldman. Attribute-efficient and non-adaptive learning of parities and dnf expressions. Journal
of Machine Learning Research, 8(7), 2007.

Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New results for
learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pp. 563–574. IEEE, 2006.

David Gamarnik. Extension of the pac framework to finite and countable markov chains. In
Proceedings of the twelfth annual conference on Computational learning theory, pp. 308–317,
1999.

Federica Gerace, Luca Saglietti, Stefano Sarao Mannelli, Andrew Saxe, and Lenka Zdeborová.
Probing transfer learning with a model of synthetic correlated datasets. Machine Learning: Science
and Technology, 3(1):015030, 2022.

Margalit Glasgow. Sgd finds then tunes features in two-layer neural networks with near-optimal
sample complexity: A case study in the xor problem. arXiv preprint arXiv:2309.15111, 2023.

Sally A Goldman and Michael J Kearns. On the complexity of teaching. Journal of Computer and
System Sciences, 50(1):20–31, 1995.

Sally A Goldman, Ronald L Rivest, and Robert E Schapire. Learning binary relations and total orders.
SIAM Journal on Computing, 22(5):1006–1034, 1993.

Parikshit Gopalan, Adam Tauman Kalai, and Adam R Klivans. Agnostically learning decision trees.
In Proceedings of the fortieth annual ACM symposium on Theory of computing, pp. 527–536,
2008.

Alessandro Ingrosso, Rosalba Pacelli, Pietro Rotondo, and Federica Gerace. Statistical mechanics of
transfer learning in fully connected networks in the proportional limit. Physical Review Letters,
134(17):177301, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jeffrey C Jackson. An efficient membership-query algorithm for learning dnf with respect to the
uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 1997.

Nirmit Joshi, Theodor Misiakiewicz, and Nathan Srebro. On the complexity of learning sparse
functions with statistical and gradient queries. arXiv preprint arXiv:2407.05622, 2024.

Nirmit Joshi, Hugo Koubbi, Theodor Misiakiewicz, and Nathan Srebro. Learning single-index models
via harmonic decomposition. arXiv preprint arXiv:2506.09887, 2025.

Adam Tauman Kalai and Shang-Hua Teng. Decision trees are pac-learnable from most product
distributions: a smoothed analysis. arXiv preprint arXiv:0812.0933, 2008.

Adam Tauman Kalai, Alex Samorodnitsky, and Shang-Hua Teng. Learning and smoothed analysis.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 395–404. IEEE,
2009.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983–1006, 1998.

Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings of the
twenty-fifth annual ACM symposium on Theory of computing, pp. 372–381, 1993.

Adam Klivans and Raghu Meka. Moment-matching polynomials. arXiv preprint arXiv:1301.0820,
2013.

Yiwen Kou, Zixiang Chen, Quanquan Gu, and Sham M Kakade. Matching the statistical query
lower bound for k-sparse parity problems with stochastic gradient descent. arXiv preprint
arXiv:2404.12376, 2024.

Matthias Krause and Stefan Lucks. Pseudorandom functions in and cryptographic limitations to
proving lower bounds. computational complexity, 10(4):297–313, 2001.

Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum. SIAM
journal on computing (Print), 22(6):1331–1348, 1993.

Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
polynomials with SGD near the information-theoretic limit. arXiv preprint arXiv:2406.01581,
2024.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform, and
learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

Eran Malach, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. Quantifying the benefit of using
differentiable learning over tangent kernels. In International Conference on Machine Learning, pp.
7379–7389. PMLR, 2021.

Stefano Sarao Mannelli, Yaraslau Ivashinka, Andrew Saxe, and Luca Saglietti. Tilting the odds at
the lottery: the interplay of overparameterisation and curricula in neural networks. arXiv preprint
arXiv:2406.01589, 2024.

Yishay Mansour. Learning boolean functions via the fourier transform. In Theoretical advances in
neural computation and learning, pp. 391–424. Springer, 1994.

Francesca Mignacco and Francesco Mori. A statistical physics framework for optimal learning. arXiv
preprint arXiv:2507.07907, 2025.

Elchanan Mossel. Deep learning and hierarchal generative models. arXiv preprint arXiv:1612.09057,
2016.

Elchanan Mossel, Ryan O’Donnell, and Rocco A Servedio. Learning functions of k relevant variables.
Journal of Computer and System Sciences, 69(3):421–434, 2004.

Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A Erdogdu. Gradient-based feature
learning under structured data. Advances in Neural Information Processing Systems, 36:71449–
71485, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions.
Journal of the ACM (JACM), 51(2):231–262, 2004.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. doi: 10.1017/
CBO9781139814782.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Sébastien Roch. On learning thresholds of parities and unions of rectangles in random walk models.
Random Structures & Algorithms, 31(4):406–417, 2007.

Luca Saglietti, Stefano Sarao Mannelli, and Andrew Saxe. An analytical theory of curriculum
learning in teacher–student networks. Journal of Statistical Mechanics: Theory and Experiment,
2022(11):114014, 2022.

Robert E Schapire and Linda M Sellie. Learning sparse multivariate polynomials over a field with
queries and counterexamples. In Proceedings of the sixth annual conference on Computational
learning theory, pp. 17–26, 1993.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Berfin Şimşek, Amire Bendjeddou, and Daniel Hsu. Learning gaussian multi-index models with
gradient flow: Time complexity and directional convergence. arXiv preprint arXiv:2411.08798,
2024.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

Emanuele Troiani, Yatin Dandi, Leonardo Defilippis, Lenka Zdeborová, Bruno Loureiro, and Florent
Krzakala. Fundamental limits of weak learnability in high-dimensional multi-index models. arXiv
preprint arXiv:2405.15480, 2024.

Zixuan Wang, Eshaan Nichani, Alberto Bietti, Alex Damian, Daniel Hsu, Jason D Lee, and Denny
Wu. Learning compositional functions with transformers from easy-to-hard data. arXiv preprint
arXiv:2505.23683, 2025.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

Sandra Zilles, Steffen Lange, Robert Holte, Martin Zinkevich, and Nicolo Cesa-Bianchi. Models of
cooperative teaching and learning. Journal of Machine Learning Research, 12(2), 2011.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

GD on neural networks. A large body of work has analyzed the sample and time complexity of
learning simple function classes—such as parities, juntas, and single/multi-index models—using
stylized gradient descent on shallow networks under standard symmetric input distributions (e.g.,
uniform Boolean, standard Gaussian) (Ben Arous et al., 2021; Bietti et al., 2022; Abbe et al., 2023a;
Dandi et al., 2023; 2024; Lee et al., 2024; Troiani et al., 2024; Arnaboldi et al., 2024; Şimşek
et al., 2024; Damian et al., 2025; Joshi et al., 2025). For parities, it is known that under uniform
Boolean inputs they are learnable by Stochastic Gradient Descent (SGD) with small batch size on
an emulation network (Abbe & Sandon, 2020), but require at least Ω(

(
d
k

)
) time in the Statistical

Query (SQ) model (Kearns, 1998) or with GD under limited gradient precision (Abbe & Sandon,
2020). Positive results for gradient descent on standard shallow networks exist for sparse parities
(k = Od(1)), matching the SQ lower bound (Barak et al., 2022; Glasgow, 2023; Kou et al., 2024),
and for dense parities depending on the initialization (Abbe & Boix-Adsera, 2022; Abbe et al., 2024).
For juntas under uniform Boolean inputs, complexity is governed by the Fourier-Walsh structure of
the target, captured by the leap for square loss (Abbe et al., 2022a;b; 2023a) and the SQ-leap for
general losses (Joshi et al., 2024). Our work instead seeks to overcome these barriers via Positive
Distribution Shift (PDS).

Beyond symmetric inputs, several works study structured data distributions—e.g., spike-
covariance (Mousavi-Hosseini et al., 2023), hierarchical (Mossel, 2016; Cagnetta et al., 2024;
Cagnetta & Wyart, 2024; Dandi et al., 2025), or non-centered product measures (Malach et al.,
2021; Cornacchia et al., 2025)—showing that structure can reduce sample complexity relative to
unstructured settings. In particular, Malach et al. (2021) analyze sparse parities under a mixture of
uniform and biased distributions, but only for a differentiable model combining a linear predictor
with an appended parity module, and with no label noise. By contrast, we consider standard two-layer
architectures and demonstrate PDS benefits also for high-degree parities, and with label noise. For
juntas, Cornacchia et al. (2025) show gains from training on randomly shifted inputs, but do not
examine whether such favorable distributions can transfer to other target distributions, such as the
uniform.

Other works have studied distribution shift between train and test, as we do here. A prominent line
of research analyzes models tested outside their training domain (e.g., out-of-distribution, length
generalization (Anil et al., 2022; Abbe et al., 2023b; Zhou et al., 2023; Abbe et al., 2022b; Power et al.,
2022)), probing whether neural networks rely on reasoning or memorization. Transfer learning has
also been examined as a way to cope with scarce target data (Damian et al., 2022; Gerace et al., 2022;
Ingrosso et al., 2025). These works often treat distribution shift negatively—either as a stress test of
extrapolation or as a necessity when labeled target data is limited. In contrast, we adopt a positive
perspective, developing a unifying theory showing how a carefully chosen training distribution can
actively facilitate learning. Closer to our approach, curriculum learning studies investigate training on
a sequence of distributions of increasing complexity, and demonstrate benefits of ordering (Saglietti
et al., 2022; Cornacchia & Mossel, 2023; Abbe et al., 2023c; Mannelli et al., 2024; Mignacco & Mori,
2025; Wang et al., 2025). By contrast, we focus on a single positively shifted training distribution and
its ability to transfer to the target distribution, arguing that one well-chosen source can substantially
ease learning.

Smoothed analysis. Smoothed analysis (Spielman & Teng, 2004) blends worst-case and average-
case perspectives by measuring the maximum expected performance of an algorithm under slight
random perturbations of its inputs. Mossel et al. (2004) showed that such perturbations alter the
Fourier coefficients of Boolean functions and can drastically reduce complexity. Subsequent works
established smoothed-analysis guarantees for learning juntas and decision trees under random product
distributions (Kalai & Teng, 2008), and for DNFs (Kalai et al., 2009). The ID3 decision-tree algo-
rithm was later shown to efficiently learn juntas in the smoothed model (Brutzkus et al., 2020), and
these ideas were extended to general Markov Random Fields with a smoothed external field (Chan-
drasekaran & Klivans, 2025). Related work also studied smoothing via additive Gaussian noise in the
Gaussian input setting (Klivans & Meka, 2013). Our work departs from this literature in two key
ways: 1) Positive Distribution Shift (PDS) involves deliberate, often large and typically deterministic
shifts (except in the case of R-DS-PAC), rather than small random perturbations; and 2) we focus on
providing quantitative computational guarantees for concrete algorithms, including gradient descent
on neural networks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Learning with (adaptive) membership queries. Classical results in this model established its
power relative to the standard PAC framework. Angluin’s foundational work showed that finite
automata can be exactly learned from queries and counterexamples Angluin (1987), and that monotone
DNF formulas are efficiently learnable with membership queries Angluin (1988). Subsequent work
extended these results to richer classes: Bshouty (1993) gave polynomial-time algorithms for decision
trees, while Schapire & Sellie (1993) developed methods for learning sparse multivariate polynomials
over GF(2). Fourier-analytic techniques played a central role in later breakthroughs: Linial et al.
(1993) showed that constant-depth circuits (AC0) can be efficiently learned from membership queries
using low-degree Fourier concentration, and Kushilevitz & Mansour (1993) applied similar ideas
to decision trees under the uniform distribution. Building on this line, Jackson (1997) obtained an
algorithm for learning DNF formulas with membership queries under the uniform distribution.

Learning from random walks. The passive learning model via random walks (Aldous & Vazirani,
1995; Bartlett et al., 1994; Gamarnik, 1999; Roch, 2007) lies strictly between uniform-distribution
learning and the membership query model: it is weaker than the latter, yet stronger than the former.
This model has enabled several important results, including learning DNFs and decision trees with
random classification noise under the uniform distribution (Bshouty et al., 2005), learning parities with
noise (as a consequence of (Bshouty & Feldman, 2002; Bshouty et al., 2005)), and agnostic learning
of juntas (Arpe & Mossel, 2008). Similar to the membership query setting, random classification
noise can be tolerated whenever there exists an algorithm for the realizable case. In the context of
this paper, the random walk model can be viewed as a specific case of R-DS-PAC.

B PROOFS FOR F-PDS

Proof of Theorem 3.2. If we have freedom to change the network architecture, activation, initializa-
tion, and learning rate, we can use the PAC-universality of neural networks to show Theorem 3.2.

Note that it suffices to show that we can transmit poly(d) bits by encoding them into a distribution D̃.
We can use this to decode the network using a PAC learning algorithm. Simulating this decoding
algorithm with GD on the non-standard network gives us the desired learning algorithm.

We first show the subroutine of this PAC algorithm for transmitting bits using a distribution.

Lemma B.1 (Transmitting r bits using a distribution). Let θ be a set of r = poly(d) < 2d−1

elements from {0, 1}d. There exists a poly(m, d) procedure DECODE such that for any d and
any r ≤ poly(d) there are a distribution D over {0, 1}d and m ≤ poly(r, d, log 1

ϵ) such that for
S = {xi}mi=1 ∼ (D, f)m and θ̂ = DECODE(S) we have θ̂ = θ with probability at least 1− ϵ.

Proof of Lemma B.1. Associate each x ∈ {0, 1}d with an integer 0, 1, . . . , 2d − 1. Define D as

follows: for i = 1, . . . , r, P (x = i) =

{
2
5r , if θ[i] = 0
3
5r , if θ[i] = 1.

. For i > r, P (x = i) = 0, and

P (x = 0) = 1−
∑

i ̸=0 P (x = i). We will need O
(

r(log r+log 1
ϵ)

(1
r)

2

)
= O

(
r3(log r + log 1

ϵ)
)

samples

from D. Let P̂ be the empirical distribution we get on {0, 1}d from the sample S = (x1, . . . , xm).
With this many samples, we have that with probability ≥ 0.99, we have P̂ (x = i) ∈ (P (x =

i) − 1
20r , P (x = i) + 1

20r), so we can set the threshold P̂ (x = i) = 2.5
5r to recover the bit. The

runtime of this procedure is O(mrd) = poly(r, log 1
ϵ). To see why this many samples are sufficient,

let Yi =
∑m

j=1

1xj=i

m . Note that E (1xi=i) = P (x = i), so by Hoeffding inequality applied to

Yi − P (x = i) with 0 ≤ 1xj=i

m ≤ 1
m

P

(
∩r
i=1|Yi − P (x = i) | < 1

20r

)
≥ 1− 2r exp

(
−

1
202r2

m 1
m2

)
= 1− 2r exp(− m

202r2
).

Therefore, if we recover bits using θ̂i =

{
1 if Yi ≥ 3

5r

0 if Yi <
3
5r

, then with the same probability as above

we recover the bits correctly, P (θ̂ = θ) ≥ 1− 2r exp(− m
202r2). Taking m = O(r2(log r + log 1

ϵ))
suffices to have 2r exp(− m

202r2) ≤ ϵ, i.e. to transmit the bits with probability ≥ 1− ϵ.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Consider learning without noise first. We will add the label noise later.

Encoding the network. Let f : {0, 1}d → {0, 1} be boolean circuit satisfying of poly size. Then f
can be encoded in r = poly(d) atoms of {0, 1}d.

For the circuits (i) we use the following encoding: we encode the adjacency matrix of size M ×M
of the DAG representing the boolean circuit, where M = poly(d) is the total number of nodes of the
DAG, with the value at entry (i, i) states whether the node is input, output, or which of the gate node
types, and the value at (i, j) entry represents if there is an edge and if yes what direction the edge is
between node i and node j. Note that from the adjacency matrix we can reconstruct the function in
time poly(d). So, for elements (x1, . . . , xd) ∈ {0, 1}d we encode

• Use the first log poly(d) bits to encode the the size of the circuit, M , and the total number of bits
needed to transmit, r

• Use the next 2 log poly(d) bits to encode the value of the coordinates i and j of the entry (i, j) in
the adjacency matrix.

• Use the next 4 bits to encode the value of the entry.

• Use the remaining bits to mark that the atom is coming from this distribution by setting them to 1,
note that there is at least cn of these for some c (that can be taken to be 1

4 for large enough n).

For poly-sized networks we use the following encoding: We can do the encoding similarly: (i) Use
the first 3 log poly(d) bits to encode the depth L, width W , and total number of bits r, (ii) Use the
next 3 log poly(d) bits to location of the weight in the format (i, j), which represents depth and the
width of that layer in which the weight is located, (iii) use the next d/2 bits encode the weight value
(e.g. if we want rational weights, we can use the first d/4 bits for the numerator and the next d/4 bits
for the denominator, (iv) use the remaining bits to mark that the atom is coming from this distribution
by setting them to 1, note that there is at least cn of these for some c (that can be taken to be 1

4 for
large enough n).

Note that the width and the depth are encoded in all x ∈ θ (and if the whole layer is missing, we can
tell from other points). So, similarly, in the case that we do not recover θ, we can infer that we didn’t
recover it by counting the number of distinct weight positions recovered. In this case, we will return
the zero predictor.

The rest of the proof is analogous for circuits and networks.

Since there is poly(d) gates, this encoding procedure requires r = poly(d) elements xi ∈ {0, 1}d.

PAC Learning Algorithm For f-PDS. Call the set of r elements xi ∈ {0, 1}n that encode the circuit
θ. Now using Lemma B.1, there is a distribution Dθ and a PAC learning algorithm A which using
m = O

(
r2(log r + log 1

ε)
)

samples S from S ∼ Dm
θ recovers A(S) = θ̂ such that θ̂ = θ with

probability at least 1− ϵ.

With probability ϵ it happens that we do not recover all of θ. Note that by the construction of Dθ

from Lemma B.1, any x ∼ Dθ from the support of this distribution is in θ. Note that the size of the
adjacency matrix is encoded in any of the elements in the support of Dθ, so we can tell if do not
recover θ. In this case, we will return the zero predictor.

This gives a PAC learning algorithm A′ to recover f using m = O
(
r2(log r + log 1

ε)
)

samples from

Dθ as described above, A′(S) =

{
A(S) if we recover all of θ
f̂ ≡ 0 if we don’t recover θ.

Note that with m′ := 4m+ log(1/ϵ) = O
(
r2(log r + log 1

ε)
)

samples from Df := 1
2Dθ +

1
2D the

algorithm A′ has the same output with probability at least 1− 2ϵ, i.e. recovers f , and with probability
2ϵ returns 0. This implies that the square loss of A′ over any test distribution is at most 2ϵ, so the
square loss over Df is at most 2ϵ as well. We can rename here ϵ = ϵ

2 .

Adding the noise back, note that A′ does not use the labels, so the same proof shows that with
m = O

(
r2(log r + log 1

ε)
)

samples from Df , A′ learns f exactly with probability 1− ϵ and with
probability ϵ outputs 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

So with noise, A′ achieves population risk of at most ES∼(Df ,f)m [L(D,f (A′(S))] ≤ ϵ(1− η)+ (1−
ϵ)η ≤ ϵ+ η. Furthermore, with the same number of samples A′ achieves expected square loss of at
most ϵ+ η.

Note that A′ is a tractable PAC learning algorithm for learning f on Df . More imporantly, A′ is an
f-PDS learning algorithm for learning f on D with samples from Df , since A′ exactly learns f with
probability 1− ϵ and returns 0 otherwise.

We summarize the f-PDS result in the following lemma and then focus on simulating this with GD
on a non-standard network.

Lemma B.2 (f-PDS Tractable Algorithm For Learning Any Circuit). Let f : {0, 1}d → {0, 1} be
a function that satisfies either (i) f is a circuit of any depth and of size s = poly(d) OR (ii) f is a
fully connected feed forward ReLU network of size s = poly(d) bit precision d

2 . In both cases (i) and
(ii), there exists an f-PDS algorithm A such that for any f : {0, 1}d → {0, 1} with label noise η that
satisfies either (i) or (ii) respectively, and for any D there exists a distribution Df so that A f-PDS
learns f with error ϵ+ η in m = poly(d, 1

ϵ) and runtime T = poly(d, 1
ϵ) with samples from Df .

Note that both in the case of circuits and networks, the runime of A′ is poly(d, 1
ϵ)

Simulating with Gradient Descent. Now we will use the result on simulating PAC learning
algorithm with non-standard gradient descent on neural networks to show that A′ can also be
turned into a gradient descent based algorithm. We will use the result Theorem 1a (for mini-batch
stochastic GD) from (Abbe et al., 2021) or equivalently Theorem 17 and Remark 17 in (Abbe &
Sandon, 2020) for the simulation. The theorem shows that for any dimension d, runtime T , and
q bits of randomness, and sample size m of a PAC learning algorithm, there exists a set of neural
nets N that depend on d and the runtime T = poly(d), with p′ parameters, a initialization with
q′ = r +O(T log b) bits of randomness, a poly time computable activation functions σ, and some
stepsize γ, so that for training using ρ < min{1/8b, 1/12} approximate gradients over batches
of size b on the neural networks from this set N with stepsize γ the following claim holds. For
any δ > 0 and p′ = poly(d,m, r, T, ρ−1, b, δ−1) with T ′ = O(mn/δ) if any such PAC learning
algorithm A learns a distribution D with square loss ϵ + η then there is a neural net in this set
that learns D with square loss at most ϵ + η + δ. Taking A to be the previously described PAC
learning algorithm for f-PDS A′, there exists a fixed neural network N ∈ N such that running
mini batch SGD on this network we learn f with respect to Df with square loss ϵ+ η + δ. Taking

ϵ = ϵ
4 and δ = ϵ

4 , b = 1, ρ = 1
d , we have that for p′ = poly(d, 1

ϵ), T
′ = O(

r2(log r+log 1
ϵ)d

ϵ), and

r′ = O(
r2(log r+log 1

ϵ)d

ϵ), the network N ∈ N achieves square loss at most ϵ/2+η on learning f over
Df , i.e. ES∼(Df ,f)[E(Df ,f)(N(S)− f)2] ≤ ϵ/2 + η, where the expectation is over the initialization
and the mini batches from Df .

In the theorem that we used, the training and testing distributions are the same and equal to Df ,
so we want to bound the error of the neural network N on D based on its error on D. Note that
Df = 1

2D + 1
2Dθ so we can write

ES∼(Df ,f)m [EDf
[(N(S)− f)2)]] =

1

2
ES∼(Df ,f)m [ED[(N(S)− f)2]]

+
1

2
ES∼(Df ,f)m [EDθ

[(N(S)− f)2]].

Note that both of the errors are at least η, so ES∼(Df ,f)m [EDθ
[(N(S)− f)2]] ≥ η. Therefore, we

have that ES∼(Df ,f)m [ED[(N(S)− f)2]] ≤ 2ES∼Dm
f
[EDf

[(N(S)− f)2]]− η which implies that
N achieves square loss at most ϵ+ η for leaning f over D if we take samples from Df , i.e.

ES∼(Df ,f)m [ED[(N(S)− f)2]] ≤ ϵ+ η.

This implies that 0− 1 error is also bounded by ϵ+ η, which finishes the proof.

Remark Note that we can extend the set of allowed functions to include all f : {0, 1}d → {0, 1}
functions that can be encoded on poly(d) bits of {0, 1}d. For example, this set includes all short
description functions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C LEARNING PARITY FUNCTIONS

Proof of Theorem 4.3. Let S be the support of the parity. Recall that under random classification
noise y = ξχS(x) with ξ = Rad(1− η). Set the distribution D′ = Rad(1− 1

d)
⊗d and denote D̃′ the

distribution of (y,x) with x ∼ D′. Let’s compute the correlation of the label with each coordinate
xi, for i = 1, . . . , d: using that ERad(1− 1

d)
[xi] = 1− 2/d,

ED̃′(yxi) = (1− 2η)ED′(χS(x)xi) =

{
(1− 2η)(1− 2

d)
|S|+1 if i /∈ S

(1− 2η)(1− 2
d)

|S|−1 if i ∈ S.

Then, ∆ = (1− 2η)(1− 2
d)

|S|−1(1− (1− 2
d)

2) is the difference in the correlation between i ∈ S
and i /∈ S. Note that ∆ = Θ((1− 2η)/d).

Let T̂i =
1
m

∑m
j=1 y

jxj
i be the empirical estimate of ED̃′ [yxi]. We estimate the support Ŝ of the

parity by taking the set of i ∈ [d] such that T̂i >
1
2 (mini T̂i +maxi T̂i). By Hoeffding and union

bound,

Pr[sup
i∈[d]

|T̂i − ED̃′(yxi)| > t] ≤ 2d exp(−2mt2).

Taking t = ∆
8 , and m = 64

∆2 log
2d
ϵ , with probability 1− ϵ we have that for all i |T̂i−ED̃′(yxi)| < ∆

8

so in particular T̂i >
1
2 (mini T̂i +maxi T̂i) if and only if i ∈ S. Thus we recover the parity function

with number of sample m = O(
d2 log 2d

ϵ

(1−2η)2). Therefore, for the 0− 1 loss it holds that it is at most ϵ+ η

in this case.

Proof of Theorem 4.5. We consider a parity function χS(x) on the hypercube, with k := |S| = d/2.
The goal is to learn this function with a two-layer neural network with activation ReLu(x) = (x)+.
Denote wS the vector with 1 on the support S and 0 otherwise, and gS : R → R a function such that
χS(x) = gS(⟨wS ,x⟩) (i.e., gS(k − 2j) = (−1)j). For simplicity, we assume below that k is odd.
Note that we can take

gS(x) = − ReLu(x+ k + 1) + ReLu(x) + 2

(k−1)/2∑
j=0

(−1)j · ReLu(x+ k − 2j)

+ ReLu(−x+ k + 1)− ReLu(−x)− 2

(k−1)/2∑
j=0

(−1)j · ReLu(−x+ k − 2j).

(1)

Let D1 = Rad(1−1/d)⊗d, i.e. each coordinate is 1 with probability 1−1/d and −1 with probability
1/d. Let D2 be defined as sampling of x in the following way: Draw k ∼ Unif({d, d − 2, d −
4, . . . ,−d}), and then sample x conditioned on 1Tx = k uniform on the hypercube (i.e. it is a
reweighted distribution on the sliced hypercube, where each slice has equal distribution). Then take

D′ =
1

2
D1 +

1

2
D2.

Therefore, we have that

ED̃′ [yxi] = (1− 2η)ED′ [χS(x)xi] =
1− 2η

2
(ED1

[χS(x)xi] + ED2
[χS(x)xi]) .

Similarly as above, we have

ED1
[χS(x)xi] =

{
(1− 2/d)|S|+1 if i ̸∈ S,

(1− 2/d)|S|−1 If i ∈ S.

while the expectation with respect to the second distribution yields

ED1
[χS(x)xi] =


0 if |S| is even,

1
|S|−1 if |S| odd and i ∈ S

1
|S|+1 if |S| odd and i /∈ S.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We consider a two-layer neural network as follow:

fNN(x;θ) =
∑
j∈[N]

ajReLu(⟨wj ,x⟩+ bj),

where θ = (a,W , b) ∈ RN(d+2) are the parameters of the network. We will choose as initialization
a0j ∼i.i.d. Unif({±1}), w0

j = 0, and b0j ∼i.i.d. Unif({−d − 1,−d, . . . , d, d + 1}). We can either
use N sufficiently large (but polynomial in d) or for simplicity we take exactly (4d+ 6) neurons, one
for each combination (a0, b0). Note that with this choice,

fNN(x;θ
0) = 0.

We will consider a layerwise training procedure, where we first train the wj’s with one gradient step
with step size s, followed by training the aj’s with (online) SGD.

We consider a ℓ1-regularization on the first layer weights, with regularization parameter λ. Let’s first
consider what happens for population gradient: we get

w1
j = s · ρλ ((1− 2η)ED′ [χS(x)x1[bj ≥ 0]]) ,

where ρ(x;λ) = sign(x)(|x| − λ)+ denotes soft-thresholding and applies component wise. From
the computation above we can choose the regularization parameter λ so that λ is inbetween these
values for xi ∈ S and xi /∈ S:

λ =

{
(1− 2η)(1− 2/d)|S| if |S| is even,
(1− 2η)(1− 2/d)|S| + 1

|S| if |S| odd.

By the choice of λ as above and stepsize s as

s =

{
[(1− 2η)(1− 2

d)
|S|−1/d]−1 if |S| is even

[(1− 2η)((1− 2
d)

|S|−1 + 1
|S|−1)/d]

−1 if |S| is odd.

(note that we fix the size the parameter to be |S| = d/2), we get the after one step of population
gradient descent, we have

w1
j = a0jwS1[bj ≥ 0].

Now, let’s consider the empirical gradient update, we have by Hoeffding inequality and union bound,
concentration in ∥ · ∥∞ of the gradient with m samples: it holds with probability at least 1− δ (where
M is the width of the network)

sup
j∈[M]

∥w1
j −w1

j∥∞ ≤
√

1

m
log

dM

δ
.

We will denote Ŵ the first layer weights after this first (empirical) gradient step, and W the first
layer weights after this step with population gradient. In particular, after one population gradient step,
we get the 2d+ 4 neurons:

ReLu(⟨wS ,x⟩+ bj), ReLu(−⟨wS ,x⟩+ bj), bj ∈ {0, 1, 2 . . . , d+ 1}.

Let’s run SGD on the second layer weights aj’s with ridge regularization as in (2). Let’s apply
Lemma C.1 to our setting. We have p = 2d+ 4. There exists a universal constant C > 0 such that

By = 1, Bϕ = Cd, ∥a0∥22 ≤ Cd.

Consider acert = (1−2η)a∗ with a∗ as defined in (1): we have fNN (x,acert,W) = (1−2η)χS(x).
It follows that

∥fNN(acert, Ŵ)− (1− 2η)χS∥2L2
= ∥fNN(acert, Ŵ)− fNN(acert,W)∥2L2

≤ M2∥acert∥2∞∥σ(⟨wj , ·⟩+ bj)− σ(⟨ŵj , ·⟩+ bj)∥2∞
≤ Cd2M2 sup

j∈[M]

∥ŵj −wj∥2∞.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Thus we get

Lλ(acert) ≤ C
d2M2

m
log

dM

δ
+ Cλd.

We choose λ = (1−2η)2ϵ
Cd , s = (1−2η)4ϵ2

Cd8 log(d/((1−2η)2ϵδ)) and T = C d9 log2(d/((1−2η)2ϵδ))
ϵ3 such that with

probability at least 1− δ,

∥(1− 2η)χS − fNN(a
T ; Ŵ)∥2L2 + λ∥aT ∥22 ≤ (1− 2η)2ϵ,

with steps and sample complexity scaling as

m,T = O

d9 log2
(

d
ϵδ(1−2η)2

)
ϵ3(1− 2η)6

 .

Let’s show that this implies that

∥χS − sign(fNN(a
T ; Ŵ))∥L∞ ≤ ϵ,

so that it implies a test error bounded by ϵ+ η for any test distribution. First,

∥fNN(x, âT , Ŵ)− fNN(x, âT ,W)| ≤ dM∥âT ∥∞ sup
j

∥ŵj −wj∥∞.

Furthermore

|fNN(x, âT ,W)− (1− 2η)χS(x)|

=

k=|S|∑
k=−|S|

Pr(⟨wS ,x⟩ = k)

∣∣∣∣∣∣
M∑
j=1

âj(k + bj)+ − (1− 2η)χS(k)

∣∣∣∣∣∣
2

.

Thus,

∥fNN (âT ,W)− (1− 2η)χS(x)∥∞ ≤ ∥fNN(â,w∗)− (1− 2η)χS∥L2√
mink=−|S|,...,|S| P (⟨wS ,x⟩ = k)

.

Note that P (⟨wS ,x⟩ = k) ≥ D2(⟨wS ,x⟩ = k) = 1
d

∑d
i=−d Pr(⟨wS ,x⟩ = k|⟨1,x⟩ = i) =

1
d

∑d
i=0 Pr(k + 1 in first |S| coordinattes|i total +1 coordinates) = 1

n

∑d−|S|+k
i=k

(|S|
k)(

d−|S|
i−k)

(di)
=

1
d

d+1
|S|+1 . This implies that P (⟨wS ,x⟩ = k) ≥ 1

|S|+1 ≥ 1
d+1 . Therefore, we have that

∥fNN(x, âT ,W)− (1− 2η)χS(x)∥∞ ≤
√
d+ 1∥fNN(â,W)− χS∥L2 .

Note that

∥fNN(â,W)− χS∥L2 ≤ ∥fNN(â, Ŵ)− χS∥L2 + ∥fNN(â, Ŵ)− fNN(â,W)∥L2 .

Combining the above bounds, we obtain

∥fNN(âT , Ŵ)− (1− η)χS∥∞

≤
√
d+ 1

(
∥fNN(â,W)− fNN(â, Ŵ)∥L2 + ∥fNN(â,W)− χS∥L2

)
+ dM∥âT ∥∞ sup

j
∥ŵj −w∗

j ∥∞

≤
√
d+ 1

(
dM∥âT ∥∞ sup

j
∥ŵj −wj∥∞ + ∥fNN(acert, Ŵ)− fNN (acert,W)∥L2 +

1

T c

)
+ ∥âT ∥∞ sup

j
∥ŵj −wj∥∞dM.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Therefore, we have

∥fNN (x, âT , ŵ)− χS(x)∥∞ ≤ (1 + 2
√
d+ 1)∥âT ∥∞ sup

j
∥ŵj −w∗

j ∥∞dM +

√
d+ 1

T c

≤ (1 + 2
√
d+ 1)∥âT ∥∞dM

√
1

m
log

M

δ
+

√
d+ 1

T c
.

We can take m = poly(d, 1
ϵ , log

1
δ) and T = poly(d, 1

ϵ) (since M = 4d+6) so that with probability
at least 1− δ

∥fNN (x, âT , ŵ)− χS(x)∥∞ ≤ ϵ.

This implies that the 0− 1 loss is bounded by ϵ with probability δ, so we can take δ = ϵ so that in
expectation it’s bounded by 2ϵ.

We recall the following useful upper bound on online SGD on a ridge regularized linear regression
with features ϕ(x) ∈ Rp. Denote the loss

L(a) = 1

2
Ex

[
(E[y|x]− ⟨a, ϕ(x)⟩)2

]
, Lλ(a) = L(a) + λ

2
∥a∥22.

We run online SGD
at+1 = (1− λ)at + s(yt − ⟨at, ϕ(xt)⟩)ϕ(xt). (2)

Lemma C.1 (Online SGD on ridge regression (Abbe et al., 2023a)). There exists a universal constant
C > 0 such that the following holds. Suppose there exists By, Bϕ ≥ 1 such that ∥φ(x)∥2 ≤ Bϕ and
|y| ≤ By , then for any λ ≤ 1 and acert ∈ Rp, we have

L(at) ≤ Lλ(acert) + CB2
ϕ

{
(1− λs)2t

(
∥a0∥22 +

B2
y

λ

)
+ log

(
t

δ

)
sB4

ϕB
2
y

λ2

}
with probability at least 1− δ.

Lemma C.2 (Positive distribution shift to learn a parity function). Consider learning a k-sparse
parity function f∗ : {±1}d → {±1}, f∗ =

∏
i∈S xi, S ⊂ [d], |S| = k using a two-layer neural

network with a ReLU activation function

fNN (x; θ) =
∑
j∈[N]

ajσ (⟨wj , x⟩+ bj) ,

where θ = (a,W, b) ∈ RN(d+2). We use a layerwise training procedure, where we train wj’s with
one gradient step and aj’s with SGD. Let D be the uniform distribution over {0, 1}d. There exist

N = poly(d), an initialization, stepsizes, a distribution D̃ over {0, 1}d, and m,T = O
(

d9 log2(d
εδ)

ε3

)
such that after training the neural network with T steps of gradient descent and m samples from D̃,
we learn f∗ with error ε with respect to D,

ED
(
(f∗ − fNN (x; θT))2

)
≤ ε.

Proof of Theorem 4.4. We will define the distribution νS as the distribution where we have uniform
over the hypercube outside the support, and all xi on the support equal to +1 with probability 1/2,
and −1 with probability 1/2. We consider learning our k-parity using the distribution DS given by

DS =
1

2
(ν0 + νS) .

We consider a two-layer neural network as follow:

fNN(x;θ) =
∑
j∈[N]

ajReLu(⟨wj ,x⟩+ bj),

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where θ = (a,W , b) ∈ RN(d+2) are the parameters of the network. We will choose as initialization
a0j ∼i.i.d. Unif({±1}), w0

j = 0, and b0j ∼i.i.d. Unif({−d − 1,−d, . . . , d, d + 1}). We can either
use N sufficiently large (but polynomial in d) or for simplicity we take exactly (4d+ 6) neurons, one
for each combination (a0, b0). Note that with this choice,

fNN(x;θ
0) = 0.

We will consider a layerwise training procedure, where we first train the wj’s with one gradient step,
followed by training the aj’s with (online) SGD.

We will use concentration over the gradient at initialization to do one gradient step and noise on the
population loss (we will only require m = O(d log(d)) samples to do so). For simplicity, we will
simply write the gist of the argument.

After one-gradient step:

w1
j = η(1− 2σ)a0jEDS

[χS(x)x] · 1[bj ≥ 0].

We have

EDS
[χS(x)x] =

1

2
EνS

[gS(⟨wS ,x⟩)x] =
1

4
[gS(k)wS − gS(−k)wS] =

1

2
wS .

We consider (for simplicity) the step size η = 2. Hence, for a0j = +1 and b0j ≥ 0, we get w1
j = wS ,

and for a0j = −1 and b0j ≥ 0, we get w1
j = −wS . For the rest w1

j = 0. Hence, after one gradient
step, we get the 2d+ 4 neurons:

ReLu(⟨wS ,x⟩+ bj), ReLu(−⟨wS ,x⟩+ bj), bj ∈ {0, 1, 2 . . . , d+ 1}.

The rest of the proof follows from a similar argument as the previous proof.

D LEARNING K-JUNTAS

D.1 D-DS-PAC LEARNABILITY BY CSQ

We recall that Correlational Statistical Queries (CSQ) algorithms (Bendavid et al. (1995); Bshouty &
Feldman (2002)) access the data via queries ϕ : Rd → [−1, 1] and return Ex,y[ϕ(x)y] up to some
error tolerance τ . Here, we give a construction that shows D-DS-PAC learnability of juntas by CSQ
algorithms.

Theorem D.1 (Juntas are D-DS-PAC learnable by CSQ). Let Juntakd be the class of k-juntas. There
exists an input distribution D′ over {±1}d and a CSQ algorithm such that for any f∗ ∈ Juntakd,
and for any label noise ratio η < 1/2, after n = O(dk + 2k) queries on D′ of error tolerance
τ ≤ c 1−2η

2k log k
, for a universal constant c > 0, outputs an estimator f̂ such that:

f̂(x) = f∗(x), ∀x ∈ {±1}d. (3)

Proof. Let f∗ : {±1}d → {±1} be a k-junta. Fix a label noise ratio η ∈ [0, 1/2). Choose k distinct
interpolation nodes µ1, ..., µk defined as:

µr =
1

2
cos((2r − 1)π/(2k)), r = 1, ..., k. (4)

For r ∈ [k] let Dr := Rad(1+µr

2)⊗d be the product distribution on {±1}d with E[xi] = µr for all
i ∈ [d]. Let D′ := 1

k

∑k
r=1 Dr.

For r ∈ [k], let pr(x) be the density of Dr and let p(x) = 1
k

∑k
r=1 pr(x) be the density of D′. Define

ϕr(x) = 1
k
pr(x)
p(x) and note that |ϕr(x)| ≤ 1, thus these are valid CSQ queries. Let D̃′ (resp. D̃r)

denote the joint distribution over x ∼ D′ (resp. x ∼ Dr) and y = f(x)ξ, with ξ ∼ Rad(1− η). For
each coordinate i ∈ [d], and for each r ∈ [k], denote:

mr := k · ED̃′ [yϕr(x)] = ED̃r
[y], vi,r := k · ED̃′ [yxiϕr(x)] = ED̃r

[yxi]. (5)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Define the ‘denoising’ function si(r) := vi,r − µrmr and note that

si(r) = (1− 2η)(1− µ2
r) ·

∑
T :i∈T

f̂(T)µ|T |−1
r = (1− 2η)(1− µ2

r)Pi(µr), (6)

where f̂(T) are the Fourier-Walsh coefficients of f under the standard basis, and where we defined
Pi(µr) :=

∑
T⊂[d]:i∈T f̂(T)µ

|T |−1
r . Note that Pi(µ) is a polynomial of degree at most k − 1.

Furthermore, Pi(µ) ̸= 0 if and only if i is in the support of f . Run the following algorithm to identify
the support of f :

• For r ∈ [k] and i ∈ [d] get mr and vi,r with k + dk queries, and compute si(r).

• For each coordinate i, form evaluations: Ẑi(r)/(1− µ2
r).

• Interpolate the unique polynomial Qi of degree < k that passes through (µr, Ẑi(r)).

• Output the support estimate: Ŝ = {i ∈ [d] : Qi is not identically zero}.

Suppose each query is perturbed by at most τ . Then, µr and vi,r are each τ -close to their true values,
so si(r) has error at most 2τ . Dividing by 1 − µ2

r ≥ 3/4 (since |µr| ≤ 1/2), the error in each
evaluation Ẑi(r) is at most (8/3)τ . Note that µr, r ∈ [k], are Chebyshev interpolation nodes, thus the
polynomial interpolation operator has Lebesgue constant Λk = θ(log(k)) at these nodes. Hence, the
reconstructed polynomial Qi differs from (1− 2η)Pi by at most Cτ log(k), for a universal constant
C > 0, that does not depend on d, k or f∗. Because f∗ is a k-junta, its nonzero Fourier-Walsh
coefficients have magnitude at least 2−k. Therefore, if Cτ log(k) < 1

2 (1 − 2η)2−k, then every
relevant coordinate i has some coefficient of Qi remaining strictly nonzero, while every irrelevant
coordinate’s coefficients remain below threshold. Thus, Ŝ = supp(f∗). Since f∗ is fully specified
by its restriction to {±1}Ŝ , these values can be recovered by an additional O(2k) CSQ queries
ED̃′ [1(xŜ = z)y], each revealing the sign of E[y|xŜ = z] for z ∈ {±1}Ŝ . Hence, the algorithm
outputs a hypothesis f̂ that equals f∗ on all inputs.

D.2 GD ON NEURAL NETWORKS

Theorem D.2 (Formal statement of Theorem 4.7). Let F := {f ∈ Juntakd : ED[f(x)] = 0},
where D denotes the uniform distribution over {±1}d. Consider a two-layer network with a ReLU
activation function: fNN(x; θ) =

∑
j∈[N] ajσ(⟨wj , x⟩ + bj), where θ = (a,W, b) ∈ RN(d+2).

We use a layerwise training procedure, where we train wj’s with one gradient step and aj’s with
SGD with the covariance loss (Def D.3). For any ϵ > 0 and any noise level η < 1/2, there
exist N = O(log(1/ϵ)ϵ−1(1 − 2η)−1), an initialization, stepsizes, a meta-distribution MD̃ over

distributions D̃ over {±1}d, m = Õ(d log(1/ϵ)), T = O
(

1
ϵ2(1−2η)2

)
such that for any f∗ ∈ F ,

after training the neural network with T steps of gradient descent and m samples from D̃, we have:

ED̃∼MD̃
Px∼D

(
f∗(x) ̸= fNN (x; θT)

)
≤ C(η + ϵc),

for some constants c, C > 0 that depend only on k.

D.3 PROOF OF THEOREM D.2

Training distribution. For µ ∈ [−1, 1]d, denote:

Dµ := ⊗i∈[d]Rad

(
µi + 1

2

)
, (7)

where Rad(p), p ∈ [0, 1], denotes the Rademacher distribution with parameter p (i.e. z ∼ Rad(p) if
and only if P(z = 1) = 1 − P(z = −1) = p). Let us denote D̃µ = 1

2D + 1
2Dµ. We consider the

meta-distribution MD̃ such that

MD̃ = Unifµ∈[−1,1]d

[
D̃µ

]
. (8)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

In words, we first sample µ ∼ Unif[−1, 1]d, and then we draw the training samples from a mixture
of the uniform (target) distribution and the shifted Dµ.

The covariance loss. We use the covariance loss, defined as follows (see also Abbe et al. (2023c)).

Definition D.3 (Covariance loss). Let (X,Y) = {(xs, ys)}s∈[m] be a dataset with xs ∈ X and
ys ∈ {±1}, and let ȳ = 1

m

∑
s∈[m] y

s. Let f̂ : X → R be an estimator. The covariance loss is
defined as:

Lcov(x, y, ȳ, f̂) = (1− cyȳ) · (1− yf̂(x))+, (9)

where c is a positive constant such that c · ȳ < 1.

This choice of loss is particularly convenient because it allows us to get non-zero initial population
gradients on weights incident to the coordinates in the support of the target k-junta, and zero initial
gradients outside the support, simplifying our construction. For binary classification tasks, a small
covariance loss implies a small classification error (see e.g. Proposition 1 in Abbe et al. (2023c)). In
particular, we note that if ED[f(x)] = 0, then Lcov corresponds to the standard hinge loss. In our
case, for any training distribution D̃µ ∼ MD̃, we have |ED̃µ

[f(x)]| < 1/2, and since we assumed
ED[f(x)] = 0. Therefore, we take c = 2. Our experiments in Figure 2 use the more common squared
loss, and confirm our theoretical findings.

Lemma D.4. Let {xs}s∈[m] be i.i.d. inputs from D′, for an input distribution D′. Let ȳ =
1
B

∑
s∈[B] y

s. If B ≥ 2C log(d)/ζ2, with probability at least 1− d−C ,

|ȳ − E(D′,f)[y]| ≤ ζ. (10)

Proof. By Hoeffding’s inequality,

P(|ȳ − E(D′,f)[y]| ≥ ζ) ≤ 2 exp

(
−Bζ2

2

)
≤ 2d−C . (11)

Setup and algorithm. Without loss of generality, we assume that S = [k], where S denotes
the set of relevant coordinates. We assume label noise with parameter η, i.e. for each sample s,
ys = f(xs)ξs, where the ξs ∼ Rad(1−η) and are independent across samples. We train our network
with layer-wise stochastic gradient descent (SGD), defined as follows:

wt+1
ij = wt

ij − γt
1

B

B∑
s=1

∂wt
ij
Lcov(x

s, ys, ȳ, fNN(x
s; θt)),

at+1
i = ati − ξt

1

B

B∑
s=1

∂at
i
Lcov(x

s, ys, ȳ, fNN(x
s; θt)),

where Lcov is the covariance loss, B ∈ N is the batch size, and γt, ξt ∈ R are appropriate learning
rates. We set γt = γ1(t = 0) and ξt = ξ1(t > 0), for ξ, γ ∈ R, which means that we train only
the first layer for one step, and then only the second layer until convergence. We initialize the first
layer weights w0

ij = 0 for all i ∈ [N], j ∈ [d], and the second layer weights a0i = κ, for i ∈ [N/2]

and a0i = −κ, for i ∈ [N/2], where κ > 0 is a constant. Thus, at initialization fNN(x; θ
0) = 0 for all

x ∈ {±1}d. The biases are initialized to b0i = κ, for all i ∈ [N]. After the first step of training, we

drawn b1i
i.i.d.∼ Unif[−L,L], where L ≥ κ.

First layer training. Let us fix our training distribution to be D̃µ, and let us denote by D̃µ,f

the joint distribution over the input x ∼ Dµ and label y = f(x)ξ, ξ ∼ Rad(1 − η). Let f(x) =∑
S⊆[d] f̂µ(S)χS,µ(x) be the Fourier-Walsh expansion of f with orthonormal basis elements under

Dµ (see O’Donnell (2014)), where χS,µ(x) :=
∏

i∈S
xi−µi√
1−µ2

i

are the basis elements and f̂µ(S) :=

EDµ [f(x)χS,µ(x)] are the Fourier-Walsh coefficients of f . We further denote by f̂(S) := f̂0(S) the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

coefficients under the uniform distribution. Let us first compute the initial population gradients of the
first layers’ weights, which we denote by Ḡw0

ij
. Given our assumptions on the initialization, we have:

Ḡw0
ij
:=

= ED̃µ,f

[
∂w0

ij
Lcov(x

s, ys, ȳ, fNN(x
s; θt))

]
= ED̃µ,f

[a0i1(w
0
i x+ b0i > 0)xj · y]− 2ED̃µ

[a0i1(w
0
i x+ b0i > 0)xj] · ȳ

(a)
= (1− 2η) ·

(
ED̃µ

[a0i1(w
0
i x+ b0i > 0)xj · f(x)]− 2ED̃µ

[a0i1(w
0
i x+ b0i > 0)xj] · ED̃µ

[f(x)]
)
+ r

(b)
= κ(1− 2η) ·

(
ED̃µ

[xjf(x)]− 2ED̃µ
[xj]ED̃µ

[f(x)]
)
+ r

(c)
= κ(1− 2η) ·

(
1

2
f̂({j}) + 1

2
EDµ [xjf(x)]−

1

2
EDµ [xj]EDµ [f(x)]

)
+ r

=
1

2
κ(1− 2η)(f̂({j}) + ·ED̃µ

[f(x)(xj − µj)]) + r

(d)
=

1

2
κ(1− 2η)(f̂({j}) + f̂µ({j})

√
1− µ2

j) + r

(e)
=: αj + r

where: (a) follows from Lemma D.4 with |η| ≤ ζ , (b) holds because of the initialization that we have
chosen, in (c) and (d) we used the definitions of the Fourier coefficients of f , and in (e) we defined

αj := 1
2κ(1 − 2η)(f̂({j}) + f̂µ({j})

√
1− µ2

j). The following lemma bounds the discrepancy
between the effective gradients, estimated through B samples, and the population gradients.

Lemma D.5. Let Gw0
ij
:= 1

B

∑B
s=1 ∂w0

ij
Lcov(x

s, ys, ȳ, fNN(x
s; θ0)) denote the effective gradient.

For ϵ > 0, if B ≥ 2ζ−2κ2 log
(
Nd
ϵ

)
, with probability 1− 2ε, then

|Gw0
ij
− Ḡw0

ij
| ≤ ζ,

for all i ∈ [N] and for all j ∈ [d].

Proof. We apply Hoeffding’s inequality, noticing that |Gw0
ij
| ≤ 2κ,

P
(
|Gw0

ij
− Ḡw0

ij
| > ζ

)
≤ 2 exp

(
−ζ2B

2κ2

)
≤ 2ε

Nd
.

The result follows by a union bound.

We make use of the following Lemma, whose proof can be found in (Cornacchia et al. (2025)[Lemma
10]), which guarantees enough diversity among the hidden features after the first step.

Lemma D.6 (Cornacchia et al. (2025), Lemma 10). Let αj =
κ(1−2η)

2 (f̂{j}) + f̂µ({j})
√

1− µ2
j).

For ϵ > 0, there exists a constant C > 0 such that, with probability 1−O(ϵ
1

k+1) over µ:

• For all s, t ∈ {±1}k, such that s ̸= t,
∣∣∣∑k

j=1 αj(sj − tj)
∣∣∣ ≥ Cκ(1− 2η)ϵ.

Second layer training. We show that the previous lemmas imply that there exists an assignment of
the second layer’s weights that achieves small error.

Lemma D.7. Assume that bi ∼ Unif[−L,L], with L ≥ κ. Let αj = κ(1 − 2η)(f̂({j}) +
f̂µ({j})

√
1− µ2

j), for j ∈ [k]. Assume κ, γ = θ(1). For ε1, ε2 > 0, if the number of hidden

neurons N > Ω(L log(1/ε2)ε
−1
1 (1− 2η)−1), with probability 1−O(ε

1
k+1

1 + ϵ2), there exists a set

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

of hidden neurons {i}i∈[2k] and a vector a∗ ∈ R2k with ∥a∗∥∞ ≤ O(ε−1
1 (1− 2η)−1) such that for

all x ∈ {±1}d,

f(x) =

2k∑
i=1

a∗iReLU

γ

k∑
j=1

αjxj + bi

 . (12)

Proof. For all s ∈ {±1}k, let vs := γ
∑k

j=1 αjsj , and let us order the (vsl)l∈[2k] in increasing order,
i.e. such that vsl < vsl+1

for all l ∈ [2k − 1]. For simplicity, we denote vl = vsl . By Lemma D.6, we

have that with probability 1−O(ε
1

k+1

1) over µ, minl∈[2k−1] vl+1 − vl > Cγκε1(1− 2η), for some
constant C > 0. If N > Ω(L log(1/ε2)ε

−1
1), then with probability 1− O(ε2) there exists a set of

2k hidden neurons (bl)l∈[2k] such that for all l ∈ [2k], bl ∈ (vl−1, vl), where for simplicity we let
v0 = −L. Let us define the matrix M ∈ R2k×2k , with entries:

Mn,m = ReLU(vn − bm), n,m ∈ [2k].

Then, by construction, M is lower triangular, i.e. Mn,m = 0 if m ≥ n + 1. Furthermore, by the
construction above, the diagonal entries of M are non-zero. Thus, M is invertible. Let us denote
by F ∈ R2k the vector such that for all l ∈ [2k], the l-th entry is given by Fl = f(sl). Then,
a∗ = M−1F and

∥a∗∥∞ ≤ ∥M−1∥∞∥F∥∞

≤ C · 1

γκε1(1− 2η)
,

for a constant C > 0.

By combining the lemmas above, we obtain that for κ, γ, L = θ(1), B ≥ Ω(d log(d)2 log(Nd/ε)),
N ≥ Ω(log(1/ε)ε−1(1− 2η)−1) with probability 1− O(εc), for some c > 0, there exists a set of
2k hidden neurons {i}i∈[2k] such that

∀j ∈ [k], i ∈ [2k] : |w1
ij − γαj | <

1√
d log(d)

;

∀j ̸∈ [k], i ∈ [2k] : |w1
ij | <

1√
d log(d)

;

and the bi are such that (12) holds. By a slight abuse of notation, let us denote by a∗ ∈ RN the
N -dimensional vector whose entries corresponding to the hidden neurons {i}i∈[2k] are given by
Lemma D.7, and the other entries are zero. For all i ∈ [N], let w∗

i ∈ Rd be such that w∗
ij = γαj1(j ∈

[k]). Let θ̂ = (a∗i , w
1
i , bi)i∈[N] and θ∗ = (a∗i , w

∗
i , bi)i∈[N]. Then, for all (x, y) ∼ D̃µ,f we have:∣∣∣1− yfNN(x; θ̂)| =

∣∣∣y − fNN(x; θ̂)
∣∣∣ (13)

≤
∣∣∣y − f(x)

∣∣∣+ ∣∣∣f(x)− fNN(x; θ
∗)
∣∣∣+ ∣∣∣fNN(x; θ∗)− fNN(x; θ̂)

∣∣∣ (14)

(a)

≤ 21(y ̸= f(x)) +
∣∣∣ N∑
i=1

a∗i
(
ReLU(w1

i x+ bi)− ReLU(w∗
i x+ bi)

) ∣∣∣
where (a) follows because, by Lemma D.7, the second term of (14) is zero. Note that,∣∣∣ReLU(w1

i x+ bi)− ReLU(w∗
i x+ bi)

∣∣∣ ≤ ∣∣∣ k∑
j=1

(w1
ij − γαj)xj

∣∣∣+ ∣∣∣ d∑
j=k+1

w1
ijxj

∣∣∣ (15)

≤ 2k√
d log(d)

+
∣∣∣ d∑
j=k+1

w1
ijxj

∣∣∣. (16)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Now,
∑d

j=k+1 w
1
ijxj =

∑d
j=k+1 w

1
ijµj +

∑d
j=k+1 w

1
ij(xj − µj) := mi + Zi. Then,

EZ2
i =

d∑
j=k+1

w2
ijVar(xj) = O(1/ log(d)2). (17)

One the other hand, since µj are i.i.d. in [−1, 1], mi is sub-Gaussian with Var(mi) ≤ 1/ log(d)2.
Hence,

P(|mi| > t) ≤ 2 exp(−t2 log2(d)/2). (18)

Setting t = O(1/
√
log(d)), we get that with probability 1− 1/d over µ, |mi| < 1/

√
log(d). Let E

denote such event. Combining terms,

EDµ

∣∣∣ d∑
j=k+1

w1
ijxj

∣∣∣∣∣∣E
 = O(1/

√
log(d)). (19)

Thus,

EDµ,f
[Lcov(x, y, ȳ, fNN(x; θ̂))] (20)

≤ 2 · ED̃µ,f
|1− yfNN(x; θ̂)| (21)

≤ 2

(
2η +

N∑
i=1

|a∗i |ED̃µ

∣∣∣ReLU(w1
i x+ bi)− ReLU(w∗

i x+ bi)
∣∣∣) (22)

≤ 2

(
2η + ∥a∗∥2 ·

N∑
i=1

ED̃µ

[(
ReLU(w1

i x+ bi)− ReLU(w∗
i x+ bi)

)2])
(23)

= 4η +O

(
ε−2(1− 2η)−2

log(d)1/2

)
(24)

We then use the following well-known result on the convergence of SGD on convex losses, to show
that training only the second layer with a convex loss achieves small error.

Theorem D.8 (Shalev-Shwartz & Ben-David (2014)). Let L be a convex function and let a∗ ∈
argmin∥a∥2≤B L(a), for some B > 0. For all t, let αt be such that E [αt | at] = −∇atL(at) and
assume ∥αt∥2 ≤ A for some A > 0. If a(0) = 0 and for all t ∈ [T] at+1 = at+γαt, with γ = B

A
√
T

,
then

1

T

T∑
t=1

L(at) ≤ L(a∗) + BA√
T
.

We choose B = Ω(ε−1(1− 2η)−1). In our case we have ∥αt∥2 ≤ 2.

By (24), L(a∗) ≤ 4η + δ/2, for d large enough. Thus, to achieve loss at most 4η + δ, we need
at least T = Ω

(
1

δ2ε2(1−2η)2

)
training steps. Since we assume ED[f(x)] = 0, then f cannot be a

constant function, thus c · |ȳ| < 1− 1/C, for some C > 0. We then use Proposition 1 in Abbe et al.
(2023c) to conclude that since |ȳ| < (1− 2η), then 1(sign(fNN(x; θ̂)) ̸= f(x)) < C(η + δ). Since
the conditions of Lemma D.7 happen with probability 1 − ϵc, for some c > 0, taking expectation
over MD we get the theorem statement.

E DS-PAC AND MEMBERSHIP QUERIES: PROOFS

Proof of Theorem 5.2. Let A be the given NA-MQ learner. Run A only to generate its query list
Q = (x1, . . . , xm) and m ≤ m0(ε/2), Let U = supp(Q), so |U | ≤ m. Define the auxiliary
distribution D′

Q to be the uniform distribution over U . Let MD be the distribution over auxiliary

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

distributions induced by running A (which can be randomized) to generate its query list Q and setting
D′

Q uniform over Q.

Choose failure probability δ = ε/2. By the coupon-collector bound, if m̃ ≥ Ω(|U |(log |U | +
log(1/δ))), then with probability at least 1− δ every u ∈ U appears in S. On this event, the learner
reconstructs the full labeled set {(u, f(u)) : u ∈ U} (taking the first occurrence for each u). It then
runs A on this set to obtain ĥ.

Conditioned on full coverage of U , the distribution of the reconstructed labeled query list is exactly
the NA-MQ transcript that A expects. Thus

E
[
LD,f (ĥ)

∣∣∣coverage
]
≤ inf

h∈H
LD,f (h) + ε/2.

On the failure event (probability ≤ δ), the learner outputs a fixed h0 ∈ H, which adds at most δ to
the error. Therefore,

E[LD,f (ĥ)] ≤ inf
h∈H

LD,f (h) + ε/2 + δ ≤ inf
h∈H

LD,f (h) + ε.

Using |U | ≤ m0(ε/2) and δ = ε/2, we have

m̃ = O
(
m0(ε/2)

(
logm0(ε/2) + log(1/ε)

))
.

This gives the RDSPAC sample bound. The procedure is polynomial-time assuming A is.

Deterministic case. If A is deterministic, then Q (and hence U) is fixed given D, so the auxiliary
distribution can be chosen deterministically as D′ := D′

Q. This yields DDSPAC learnability with the
same sample bound.

F CLASSIFYING HYPOTHESIS CLASSES ACROSS FRAMEWORKS

In this section, we elaborate on the classification of hypothesis classes within the PDS framework
and related learning models.

• Parities: For a ∈ {0, 1}d, define the parity χa(x) =
⊕d

i=1 aixi = ⟨a, x⟩ mod 2. The parity
class over d bits is defined as Parityd = {χa : a ∈ {0, 1}d}. We consider also k-sparse parities,
Paritykd = {χa : a ∈ {0, 1}d, ∥a∥0 = k}.

• Juntas: For k ≤ d, the k-junta class is Juntakd = {f : {0, 1}d → {0, 1} : ∃S ⊆ [d], |S| ≤ k, ∃g :
{0, 1}S → {0, 1} s.t. f(x) = g(xS)}.

• Boolean circuits: Let B be the set of gates {AND, OR, NOT}. A Boolean circuit C on d inputs
is a finite directed acyclic graph (DAG) with input nodes x1, . . . , xd, internal nodes labeled
by gates in B, and one output node. For x ∈ {0, 1}d, values propagate along edges to define
fC(x) ∈ {0, 1}. The size of the circuit is the number of gate nodes. Let Circuitt,sd be the set of all
Boolean functions on d variables that are computable by Boolean circuits of depth at most t and
size at most s.

• Disjunctive normal form (DNF): A term is a conjunction of literals. A DNF with m terms is
a function f(x) = T1(x) ∨ · · · ∨ Tm(x) where each Tj is a term over {x1, . . . , xd}. The class
of DNF formulas with at most s(d) terms over d variables is DNFs

d = {f : {0, 1}d → {0, 1} :
∃m ≤ s(d) s.t. f(x) =

∨m
j=1 Tj(x)}.

• Decision Tree: A (binary) decision tree on variables x1, . . . , xd is a rooted tree whose internal
nodes are labeled by variables and whose edges correspond to outcomes xi = 0 or xi = 1, where
leaves are labeled by outputs in {0, 1}. It computes the function given by evaluating the tested
variables along the unique root-to-leaf path. Let DTt,s

d be the set of all Boolean functions on d
variables that are computed by (binary) decision trees of depth at most t and size at most s.

• Sparse functions: Let f : {0, 1}d → {−1, 1} be a Boolean function with Fourier expansion
f(x) =

∑
S⊆[d] f̂(S)χS(x), where χS(x) = (−1)

∑
i∈S xi are the parity functions. We say that

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

f is s-sparse if the number of nonzero Fourier coefficients is at most s, i.e.,
∣∣{S ⊆ [d] : f̂(S) ̸=

0}
∣∣ ≤ s.

• Deterministic finite automaton (DFA): Let Σ = {0, 1}. A DFA is a tuple M = (Q,Σ, δ, q0, F)
with finite state set Q, transition function δ : Q×Σ → Q, start state q0 ∈ Q, and accept set F ⊆ Q.
For length d, M induces a Boolean function fM : {0, 1}d → {0, 1} by fM (x1, . . . , xd) =
I{δ(d)(q0, x1, . . . , xd) ∈ F}, where δ(d) extends δ to strings. Let DFAs

d be the set of all Boolean
functions on d variables that are computed by a DFA with at most s states.

Juntas. log(d)-Juntas are known to be deterministically NA-MQ learnable in the realizable setting
(Bshouty & Costa, 2016). Because deterministic NA-MQ learners fix their queries in advance, random
classification noise can be overcome by repeating each query sufficiently many times (ensuring, by
the coupon collector argument, that every queried example is observed multiple times) and taking
the majority label. This in turn implies that noisy juntas are also D-DS-PAC learnable. We provide
a direct proof of this fact by a different method (using correlation statistical queries), presenting a
simple Correlational Statistical Query (CSQ) algorithm for D-DS-PAC learning juntas with random
label noise.

In the agnostic setting, this class is learnable in the random walk model Arpe & Mossel (2008), and
hence also in NA-MQ. Since we established the equivalence between R-DS-PAC and NA-MQ, it
follows that juntas are R-DS-PAC learnable in the agnostic setting as well.

DNFs. Feldman (2007) showed that DNFs are learnable under the uniform distribution in the
realizable case using non-adaptive membership queries. Consequently, DNFs are also R-DS-PAC
learnable, including in the presence of random classification noise. It remains an open question
whether this class is D-DS-PAC learnable. Bshouty et al. (2005) further established that DNFs are
learnable in the random walk model, which is a more “passive” setting than NA-MQ, while Bartlett
et al. (1994) had earlier shown the result for 2-term DNFs. Prior to these works, DNFs were known to
be A-MQ learnable under the uniform distribution (Blum et al., 1994; Jackson, 1997). Most recently,
Alman et al. (2025) gave a quasi-polynomial time algorithm for DNFs using (adaptive) membership
queries that applies to arbitrary distributions.

Decision trees. Bshouty (2018) showed that decision trees of logarithmic depth in the dimension
are distribution-free learnable in the realizable case using non-adaptive membership queries. Conse-
quently, they are also R-DS-PAC learnable, including in the presence of random classification noise.
It remains an open question whether this class is D-DS-PAC learnable. Bshouty et al. (2005) further
established that decision trees are learnable in the random walk model. This class has long been
known to be learnable using adaptive membership queries (Kushilevitz & Mansour, 1993), with
subsequent improvements by Bshouty & Haddad-Zaknoon (2019). In the agnostic setting, decision
trees are learnable under the uniform distribution in A-MQ (Gopalan et al., 2008).

Sparse functions. Kushilevitz & Mansour (1993) showed that for all functions f : {0, 1}n →
{0, 1} that are ϵ approximated by a t sparse function in L2, there exists a randomized polynomial
time algorithm using (adaptive) membership queries that on input f and δ returns h such that with
probability 1 − δ, h O(ϵ) approximates f in L2. This implies that sparse functions are A-MQ
learnable for the uniform distribution.

DFAs. A seminal result by Angluin (1987) showed that this class can be learned using adaptive
membership queries. Whether it is also NA-MQ learnable, or whether a separation exists, remains an
open question (to the best of our knowledge).

Circuits. Learning general circuits remains computationally intractable even with membership
queries. For instance, it is known that constant-depth Boolean circuits (AC0) and threshold circuits
(TC0) are hard to learn under the uniform distribution, even in the A-MQ model (Kharitonov, 1993).
While the precise hardness assumptions for Boolean circuits are not always considered “standard”,
threshold circuits already provide strong evidence of intractability: depth-4 TC circuits can implement
pseudorandom functions (Krause & Lucks, 2001; Naor & Reingold, 2004), which implies hardness
of learning with membership queries for every non-trivial input distribution. Moreover, recent work
(Chen et al., 2022, Section 6) shows that such pseudorandom function constructions also yield
hardness results for learning real-valued neural networks of depth 5 or 6 under natural distributions
such as the Gaussian. Together, these results highlight that circuit classes capable of expressing

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

pseudorandom functions are not learnable, even with powerful query access, unless one is willing to
break widely believed cryptographic assumptions.

G EXPERIMENT DETAILS AND ADDITIONAL EXPERIMENTS

G.1 EXPERIMENT DETAILS

All experiments were performed using the PyTorch framework (Paszke et al. (2019)) and they were
executed on NVIDIA Volta V100 GPUs. Each experiment is repeated 5 times and we plot the mean;
shaded regions denote ±1 standard deviation.

Architecture. For the results presented in the main, we used a 2-layer MLP architecture trained by
SGD with the square loss. In this Section, we also present some experiments obtained with a 4-layer
MLP trained by SGD with the squared loss.

• 2-layer MLP. This is a fully-connected architecture, with 1 hidden layer of 1024 neurons, and
ReLU activation.

• 4-layer MLP. This is a fully-connected architecture of 3 hidden layers of neurons of size
512, 512, 64, and ReLU activation.

We use PyTorch’s default initialization, which initializes weights of each layer with
Unif[1√

dimin
,− 1√

dimin
], where dimin is the input dimension of the corresponding layer.

Training procedure. We consider the ℓ2 loss: Lℓ2(ŷ, y) := (ŷ − y)2. We sample fresh batches of
samples at each iterations. We stop training either when the training loss is less than 0.01, or when
106 iterations are performed. We compare PDS with no-PDS, where for PDS is defined as follows for
parities and juntas:

• PDS for Parities: We select samples from D′ = 1
2Unif{±1}d + 1

2Rad(1 − 1/d)⊗d. The test
error is computed on the uniform distribution.

• PDS for Juntas: For each experiment, we independently draw µ ∼ Unif[−1, 1]⊗d. We select
training samples from D′ = 1

2Unif{±1}d+ 1
2 ⊗i∈[d]Rad((µi+1)/2). The test error is computed

on the uniform distribution. The test error is computed on the uniform distribution.

In the no-PDS experiments, we select both training and test samples from Unif{±1}d, for both
parities and juntas. In all experiments, the test-set is of size 8192.

Hyperparameter tuning. The primary goal of our experiments is to conduct a fair comparison
between PDS and no-PDS training. Thus, we did not engage in extensive hyperparameter tuning. We
tried different batch sizes and learning rates, and we did not observe significant qualitative difference.
We chose to report the experiments obtained for a standard batch size of 64 and a learning rate of
0.01 for 2-layer MLP and of 0.05 for 4-layer MLP.

G.2 ADDITIONAL EXPERIMENTS

We complement the main experiments with two additional figures. Figure 3 uses the same PDS
training distribution as Figure 1 but on a sparse (rather than dense) parity, and again shows clear
gains from PDS. Figure 4 studies juntas under the same PDS as Figure 2, now with a 4-layer network.
Interestingly, in the left plot and for no-PDS, some seeds learn faster with label noise than without;
nonetheless, across seeds and noise levels, PDS consistently yields faster and more reliable learning
even with the deeper architecture.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000 14000
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

PDS, = 0
PDS, = 0.02
PDS, = 0.05
no PDS, = 0
no PDS, = 0.02
no PDS, = 0.05

1026 × 101

Input dimension (d)

105

106

107

nb
 o

f s
am

pl
es

PDS, = 0
PDS, = 0.02
PDS, = 0.05
no PDS, = 0

Figure 3: Sparse parity with noise. We compare PDS and standard (no-PDS) learning for a 5-parity
with label noise η ∈ {0, 0.02, 0.05}. (Left) For d = 50, we plot the test accuracy on D versus
gradient descent steps for a 4-layer ReLU network trained with SGD (batch size b = 64) on fresh
samples from D′ (PDS) and from D (no PDS). Dotted lines show Bayes accuracy (i.e., 1−η). (Right)
We plot the sample complexity to reach within 0.01 of Bayes error versus input dimension. We report
the simulations that converged within 106 training steps. In both figures, we see that PDS training is
markedly more efficient.

0 20000 40000 60000 80000 100000
Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

PDS, = 0
PDS, = 0.02
PDS, = 0.05
no PDS, = 0
no PDS, = 0.02
no PDS, = 0.05

1026 × 101 2 × 102

Input dimension (d)

105

106

nb
 o

f s
am

pl
es

PDS, = 0
PDS, = 0.02
PDS, = 0.05
no PDS, = 0
no PDS, = 0.02
no PDS, = 0.05

Figure 4: Sparse juntas with noise. We compare PDS and standard (no-PDS) learning for f9
(see (4)) with label noise η ∈ {0, 0.02, 0.05}. (Left) For d = 50, we plot the test accuracy on D
versus gradient descent steps for a 4-layer ReLU network trained with SGD (batch size b = 64) on
fresh samples from D′ (PDS) and from D (no PDS). Dotted lines show Bayes accuracy (i.e., 1− η).
(Right) For f7, we plot the sample complexity to reach within 0.01 of Bayes accuracy versus input
dimension. In both figures, we see that PDS training is markedly more efficient.

32

	Introduction
	Warm-Up: Parities Are Efficiently Learnable With PDS
	All Functions Are Easy, With the Right Training Distribution
	A New Learning Framework: DS-PAC
	DS-PAC and Membership Queries
	Summary and Open Questions
	Additional Related Work
	Proofs for f-PDS
	Learning parity functions
	Learning k-juntas
	D-DS-PAC learnability by CSQ
	GD on neural networks
	Proof of Theorem D.2

	DS-PAC and Membership Queries: Proofs
	Classifying Hypothesis Classes Across Frameworks
	Experiment Details and Additional Experiments
	Experiment Details
	Additional Experiments

