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Processing large-scale Graphs with G-Signatures
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Abstract

Graph neural networks (GNNs) have evolved
into one of the most popular deep learning ar-
chitectures. However, GNNs suffer from over-
smoothing node information and, therefore, strug-
gle to solve tasks where global graph proper-
ties are relevant. We introduce G-Signatures, a
novel graph learning method that enables global
graph propagation via randomized signatures. G-
Signatures use a new graph conversion concept
to embed graph structured information which can
be interpreted as paths in latent space. We fur-
ther introduce the idea of latent space path map-
ping. This allows us to iteratively traverse latent
space paths, and, thus globally process informa-
tion. G-Signatures excel at extracting and pro-
cessing global graph properties, and effectively
scale to large graph problems. Empirically, we
confirm the advantages of G-Signatures at several
classification and regression tasks.

1. Introduction
Graph neural networks (GNNs), like graph convolutional
networks (Kipf & Welling, 2017), GraphSAGEs (Hamilton
et al., 2017), graph attention networks (Veličković et al.,
2018), or message passing GNNs (Gilmer et al., 2017) are
one of the most popular and most successful deep learning
architectures. GNNs are based on the principle of learn-
ing interactions between many entities in forward dynam-
ics (Battaglia et al., 2018) and, therefore, advance physical
simulations of molecular modeling, fluid dynamics, weather
forecasting, and aerodynamics (Batatia et al., 2022; Li et al.,
2019; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021;
Mayr et al., 2021; Brandstetter et al., 2022b; Keisler, 2022;
Lam et al., 2022). However, the multi-layer message aggre-
gation scheme of GNNs is prone to over-smoothing node
information even after a few propagation steps (Li et al.,
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2018; Chen et al., 2020a; Zhu et al., 2021; Alon & Ya-
hav, 2021), yielding node representations that tend to be
similar to each other. Furthermore, since GNNs usually
process information as messages across edges, the number
of messages grows exponentially with the width of a GNN’s
receptive field, resulting in over-squashing for more prop-
agation steps (Zhu et al., 2020; Chen et al., 2020a; Alon
& Yahav, 2021). Consequently, whole-graph classification
and regression tasks that comprise long-range dependencies
are very challenging for GNNs (Xu et al., 2018). There has
been extensive work to mitigate effects of over-smoothing
and over-squashing (Chen et al., 2020b; Hu et al., 2020; Liu
et al., 2020b; Gu et al., 2020; Yang et al., 2021; Kim et al.,
2021; Liu et al., 2022; Alon & Yahav, 2021; Rampášek
et al., 2022). Prominent examples of such are Gated GCNs
(Bresson & Laurent, 2017) or Graph Transformers (Dwivedi
& Bresson, 2021), which are amongst the best performing
methods for longer-range graph interactions (Dwivedi et al.,
2022; Rusch et al., 2023a;b; 2022). However, all these GNN
variants are still underperforming when predicting global
properties of graphs.

In this work, we introduce G-Signatures, which efficiently
learn randomized signatures to solve various graph tasks
via gradient descent. Most notably, G-Signatures enable
global graph propagation since at their core G-Signatures
replace the local concept of message aggregation by glob-
ally traversing the graph. We achieve this by interpreting
graphs as paths and calculate the signature thereof. Roughly
speaking, a path is a mapping from an interval into a space
where its signature describes the path uniquely in an effi-
cient, computable way (Chen, 1954; 1957; 1958). However,
the signature cannot be computed directly since it is an
infinite sequence. Truncated signatures approximate this
sequence by cutting at a specific level. G-Signatures use
randomized signatures, which approximate truncated signa-
tures via random feature mappings. Truncated signatures
have been suggested as a layer in neural networks to rep-
resent input data (Kidger et al., 2019). Furthermore, ran-
domized signatures have already been used for differential
equations (Cuchiero et al., 2021), and for time series predic-
tion (Compagnoni et al., 2022). Signatures have been used
for (character) recognition tasks in machine learning (Yang
et al., 2015; Li et al., 2017; Xie et al., 2018; Yang et al.,
2017), as well as for data streams and pricing in finance
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Figure 1. Schematic sketch of G-Signatures. G-Signatures apply randomized signature layers in latent space, which enables to globally
and efficiently process graphs. (A) Graph structured data that is converted and interpreted as “path” along one dimension in latent space.
(B) Latent space path mappings (LSPM) via randomized signature layers which traverse the converted graph iteratively on a per-feature
basis. (C) The latent path is mapped to the target representation.

(Lyons et al., 2014; 2019; Kalsi et al., 2019), and for rough
paths (Friz & Victoir, 2010; Lyons, 1998). Likewise, (Toth
et al., 2022) model the local neighborhood of a given node
in a GNN by interpreting it as a path over nodes with a lim-
ited path length, and summarize the path information with
truncated signatures. In contrast to these approaches, we use
randomized signatures to represent information as a path
over the features of the nodes in a graph. G-Signatures learn
how to refine the random mappings via gradient descent, that
is, they learn to extract task-relevant information from the
signature representation of a path. In doing so, we are, to the
best of our knowledge, the first to present a framework for
learning to extract signature information from graph struc-
tured data. In this work we introduce two novel concepts:
(i) graph conversion, i.e., an efficient merging and embed-
ding of graph information which we interpret as a path in
latent space, and (ii) latent space path mappings (LSPM),
i.e., new layers that map from one path to another in latent
space. These two concepts constitute G-Signatures, which
is a novel deep learning architecture with its own learning al-
gorithm sketched in Figure 1. G-Signatures resemble GNNs,
but in contrast to GNNs they offer an efficient and scalable
solution to whole-graph classification and regression tasks.
G-Signatures are a paradigm shift from collecting informa-

tion locally for each node towards collecting information
along paths through the graph. In G-Signatures, the signa-
ture transform is used in a similar way as Fourier analysis
on Euclidean domains (Li et al., 2020) and, most notably, as
spectral graph theory which can be seen as Fourier analysis
on non-Euclidean domains (Bronstein et al., 2017; 2021).
The largest disadvantage of spectral graph theory is that the
eigendecomposition of the graph Laplacians is computation-
ally expensive, especially for large graphs (Defferrard et al.,
2016; Kipf & Welling, 2017). In contrast, G-Signatures
allow for efficient layer-wise propagation of global graph
information. To summarize, the contributions of this paper
are:

• We introduce G-Signatures for global graph propaga-
tion based on randomized signatures.

• We establish the concepts of graph conversion and
latent space path mappings (LSPM) which enable us to
apply randomized signatures to graph structured data.

• In experiments, we demonstrate that G-Signatures (i)
are able to learn global graph characteristics, (ii) offer
an efficient and scalable solution to large graph prob-
lems, and (iii) are a more generally applicable method

2
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not limited to typical GNN tasks.

2. Background and Related Work
In this section we discuss graph structured data, the random-
ized signature transform, and graph conversion.

Learning on graph structured data. We consider undi-
rected graphs G = (V, E) with nodes vi ∈ V , and edges
eij ∈ E , where d-dimensional node features hi ∈ Rd are
attached to each of the nodes. Whether an edge between a
pair of nodes (vi, vj) is contained in the graph G depends
on the connectivity criterion between two nodes. For ex-
ample, if distance is chosen as criterion, we might insert
an edge when the cut-off radius rcut-off is below a thresh-
old: eij ∈ E ⇐⇒ d(vi, vj) ⩽ rcut-off . The connectiv-
ity is summarized in the adjacency matrix A ∈ RN×N ,
which can be binary or weighted. Graph neural networks
(GNNs) (Scarselli et al., 2009; Battaglia et al., 2018) are
designed to learn from graph structured data and are by
construction permutation equivariant with respect to the
input.

Path. A path X : [a, b] → Rd is a continuous mapping
from an interval [a, b] to Rd (Chevyrev & Kormilitzin, 2016).
For a given path, the signature of the path summarizes its
statistics (see Appendix A), whereas the mapping from a
path to its signature is the signature transform.

Signature (transform) of a path. For a path X :
[a, b]→ Rd with coordinate paths X1

t , . . . , X
d
t , where each

Xi[a, b]→ R is a real-valued path, the signature transform
as originally introduced by (Chen, 1954; 1957; 1958) is
defined as:

S(X)i1,...,ika,t :=

∫

a<tk<t

. . .

∫

a<t1<t2

dXi1
t1 . . . dX

ik
tk

, (1)

where multi-index i1, . . . , ik ∈ {1, . . . , d}k and

S(X)i1a,t :=

∫

a<s<t

dXi1
s = Xi1

t − Xi1
0 (2)

integrates each dimension separately, i.e., computes the per-
coordinate increments. The pointwise evaluation S(X)i1a,· :
[a, b] → R is again a path. The collection of all feature
increments concludes the first level of the signature. The
second level is defined as:

S(X)i1,i2a,t : =

∫

a<s<t

S(X)i1a,s dX
i2
s (3)

=

∫

a<r<s<t

dXi1
r dXi2

s , (4)

with all further levels defined likewise. The double iterated
integral of Equation (3) integrates one path, i.e., S(X)i1

against the other Xi2 . The collection of all iterated integrals
of a path X in the interval [a, b] is called the signature of the
path X , and is denoted as S(X)a,b (Cuchiero et al., 2021):

S(X)a,b := (1,S(X)1a,b, . . . , S(X)da,b,

S(X)1,1a,b, . . . , S(X)d,da,b , . . .) .
(5)

The signature itself exhibits a universal non-linearity prop-
erty, that is linear functionals on the signature are dense
in the set of functions on X (Arribas, 2018). An informal
excerpt of this result is the following: A continuous function
f(X) of a path X can be approximated with an error lower
or equal to ϵ by a linear mapping L of the signature S(X):

∀ϵ > 0 ∃L : ∥f(X)− L(S(X))∥ ⩽ ϵ . (6)

Hence, the signature of a path X ∈ Rd acts as a reservoir in
terms of reservoir computing (Cuchiero et al., 2021), that
is the signature acts as a fixed non-linear system and maps
input signals into higher dimensional computational spaces.
As a result, the signature gives a basis representation of
functions on X in the Euclidean domain.

Truncated signature. The signature of Equation (5) itself
cannot be computed, as it is an infinite sequence. Cutting
this sequence at a specific level yields the truncated signa-
ture at level M :

S(X)Ma,b :=
(
1, S(X)1a,b, . . . , S(X)d,...,da,b

)
, (7)

where the superscript of the last entry is the multi-index
denoting M -times the d-th coordinate of the path X ∈ Rd

analog to Equation (1). In general, the number of signature
terms at level M is

∣∣S(X)Ma,b
∣∣ = (dM+1 − 1)/(d− 1) . (8)

Randomized signature. The randomized signature is
based on the Johnson-Lindenstrauss Lemma (Johnson &
Lindenstrauss, 1984), which describes a distance-preserving,
low-dimensional embedding of high-dimensional data. For
a path X : [0, T ] → Rd where X consists of d coordinate
paths sampled at N points 1 < . . . < N = T (Com-
pagnoni et al., 2022). The k-dimensional randomized signa-
ture SR(X) of X is the vector zT ∈ Rk which is obtained
via N incremental updates. zT approximates the signature
of path X , with a vanishing error as k →∞. For more de-
tails see Theorem 3.3 of (Compagnoni et al., 2022). In the
following, we refer to zT and the respective N−1 preceding
incremental update steps, i.e., (z1, . . . ,zT )

T as randomized
signature matrix Z ∈ RN×k, which again is a path itself.
A transposed and for G-Signatures modified computation
can be seen in Algorithm 1 with a path X : [0, T ] → RN

sampled at d points 1 < . . . < d = T .

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Under review at ICML 2024 AI for Science workshop

Algorithm 1 Randomized Signature Layer

Require: Matrix X ∈ Rd×N represents a path sampled at
d points 1 < . . . < d = T , randomized signature size
k, activation function σ, and number of signature heads
p

Ensure: z0 ∈ Rk, Ai ∈ Rk·p×k, bi ∈ Rk·p from
N (0, 1/k),
and W ∈ Rk×k·p, o ∈ Rk from U(−1/

√
k·p, 1/√k·p).

1: for j = 1 to d do
2: δzj ←W

(∑N
i=1 σ

(
Aizj−1 + bi

)
Xi

j

)
+ o

3: zj ← zj−1 + δzj
4: end for

The computation of the randomized signature can be seen
as being part of the broad family of gated deep neural ar-
chitectures, such as LSTMs (Hochreiter, 1991; Hochreiter
& Schmidhuber, 1996; 1997), GRUs (Cho et al., 2014), or
Highway Networks (Srivastava et al., 2015).

Randomized signature of graphs. For a given graph
G = (V, E) with N nodes and node features hi ∈ Rd

attached to them, we can interpret the graph as a path
G : [0, T ]→ RN where G consists of N coordinate paths
sampled at d points 1 < . . . < d = T . Put differently,
time step j in the path consists of features {hi,j}Ni=1 taken
from all N nodes in the graph. The path is defined over
features instead of nodes in order to keep favorable GNN
properties like permutation invariance of processing node
information. This also enables the processsing of global
information of the entire graph in each step without depend-
ing on the concept of local information aggregation as in
Message Passing GNNs (MPNNs). In Appendix C we give
further intuition based on two important examples where
the ability to propagate global graph information is vital to
solve the given tasks. When interpreting a path as a ran-
dom variable (Chevyrev & Kormilitzin, 2016; Chevyrev &
Oberhauser, 2018) have shown that the signature extracts
information about the statistical moments. More details can
be found in Appendix A. This, paired with the signature’s
summarization and approximation capabilities (Chevyrev &
Kormilitzin, 2016), makes it a natural candidate for path pro-
cessing. The k-dimensional randomized signature SR(G)
of G is the vector zT ∈ Rk which is obtained via d incre-
mental updates. The randomized signature matrix of the
graph Z ∈ Rd×k refers to the collection of d update steps
leading to zT . By interpreting a graph with N nodes as a
path with N coordinate paths as illustrated in Figure 2, we
can process global feature information of the entire graph
in each iterative step of Algorithm 1. Consequently, we
have interpreted node information of any graph structured
data as a path, and have shown how to calculate the ran-
domized signature thereof. We define a procedure for edge
embedding.

Edge embedding. Following (Roth et al., 2003; Duda
et al., 2001; Schölkopf et al., 1998), we obtain an edge
embedding via the eigendecomposition of the adjacency
matrix A ∈ RN×N :

−1

2
QAQ = V ΛV T , (9)

where Q = IN − 1/N (11, . . . , 1N )
T
(11, . . . , 1N ) is used

for normalization, and IN is the N × N identity matrix,
V = (v1, . . . ,vN ) is a matrix with the eigenvectors as its
columns, and Λ = diag (λ1, . . . , λN ) is the diagonal matrix
of the accompanying eigenvalues, sorted in decreasing order.
The edge embedding matrix EA ∈ RN×m is obtained by

EA = Vm

√
Λm , (10)

where 0 < m < N is the embedding dimension (hyper-
parameter), Λm ∈ Rm×m is the submatrix with the m
largest eigenvalues on its diagonal and Vm ∈ RN×m with
the corresponding eigenvectors. For more details about the
embedding procedure see Appendix B. Similar to the node
information, we can now view ET

A ∈ Rm×N as N coordi-
nate paths sampled at m points, and thus have also found
a way to interpret edge information as a path. The edge
embedding procedure also holds if A is replaced with an
arbitrary dissimilarity matrix, e.g., when positional informa-
tion is given as with point clouds, which is exemplified in
Figure 3.

3. G-Signatures
We follow the Encode-Process-Decode framework
of (Battaglia et al., 2018) and (Sanchez-Gonzalez et al.,
2020). For the encoding, we introduce graph conversion
which allows us to “convert” graph structured data to
a latent representation. In latent space, we process the
paths via randomized signature layers which traverse the
converted graph on a per-feature basis by introducing
the concept of latent space path mappings (LSPM).
Finally, we decode the extracted information into a target
representation.

Graph conversion. For a given graph G = (V, E) with
N nodes and node features hi ∈ Rd attached to them, we
can summarize the nodes to G ∈ Rd×N , and the transposed
edge embedding of Equation (10) to ET

A ∈ Rm×N . De-
pending on the task at hand, we can either use G, or ET

A, or
concatenate them in the first dimension. For the encoding,
we sequentially map each dimension into a latent space such
that we get a latent graph representation X ∈ Rh1×h2 with
hidden dimensions h1 and h2. This representation can be
interpreted as a path X : [0, T ]→ Rh2 sampled at h1 points
1 < . . . < h1 = T . The current graph conversion procedure
is designed for homogeneous graphs, i.e., graphs with the
same number of nodes and the same connectivity. We think

4
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Graph Conversion

GRAPH CONVERSION EXAMPLE

Figure 2. Example showcasing our proposed graph conversion concept. Graph conversion allows us to efficiently compress graph
structured data into a latent representation while preserving node as well as adjacency information. For visual clarity the latent adjacency
information is depicted in a simplified way where it is actually computed according to Equation (10).

that the graph conversion concept can be extended to het-
erogeneous graphs. Similarly, the edge embedding can be
extended to edge features beyond scalar connectivity infor-
mation. We will address these two extensions in future work.
Both, graph conversion and our edge embedding strategy
allow us to efficiently compress large-scale graphs without
losing edge connectivity information. This in turn forms
the basis for efficient propagation of graph information as
evidenced in experiments where our method needs only a
fraction of memory and runtime compared to baselines.

Latent space path mappings (LSPM). LSPM comprises
a sequence of stacked randomized signature layers. More
precisely, for l ∈ {1, . . . , L} where L is the number of
signature layers the input path to the lth randomized sig-
nature layer X l ∈ Rh1×h2 is mapped to an output path
X l+1 ∈ Rh1×h2 in the same space. The mapping is based
on the procedure as described in Algorithm 1, with the differ-
ence that Ai, and bi are learnable parameters. G-Signatures
learn how to refine the random mappings via gradient de-
scent, that is, they learn to extract task-relevant information
from the signature representation of a path. This is done in a
bidirectional manner along the axis that represents the time
steps of the underlying path 1 < . . . < h1 = T , resulting
in the randomized signature matrix Zl ∈ Rh1×2k (again,
Zl is a path itself). We map the randomized signature ma-
trix Zl ∈ Rh1×2k back to X ′ ∈ Rh1×h2 , adding it to the
input path via a residual connection: X l+1 = X l + X ′.
Consequently, we can stack several randomized signature
layers, and thus enable mappings between paths in latent
space. The randomized signature layers are easily par-
allelizable to multiple signature “heads” in similar vein
to Multihead Attention (Vaswani et al., 2017). An overview
of the LSPM procedure is visualized in the Appendix in Fig-

ure 9 with a more detailed sketch in Figure 8.

Characteristics of LSPM implementation. Since the naive
application of the randomized signature does not produce
desirable results we made important adjustments. In order
to obtain an adequate learning behavior, three important
adjustments to Algorithm 1 are required: (i) sparsity of the
learnable weights Ai, (ii) suitable weight initialization, and
(iii) proper activation functions. Concerning (i), we experi-
mentally found that dense parameters Ai dilute the signal
X l (similar to graph over-smoothing) leading to outputs
with high noise-levels. We prevent the signal from diluting
by sparsifying Ai. Furthermore, we found that initializing
the components of Ai, bi from N (0, 1) is prone to produce
high weight values that lead to unfavorable learning dynam-
ics. We, thus, reduce the weight magnitude by adaptively
reducing the variance depending on the signature size k to
N (0, 1/k). Finally, to prevent exploding signal values, we
use the identity as activation function scaled by 1/h2. Ex-
ploding signal values arise due to the double summation of
the bidirectional signature for large h2 and non-vanishing
Xi

j in Algorithm 1. The activation function compensates
for large numbers of summation steps in case of a high-
dimensional path space and implicitly reduces the variance
of Ai, bi by a factor of 1/h2

2. We validate the importance of
these adjustments by ablation studies shown in Appendix G.

Decoding. For the decoding, we use a similar approach
as for the encoding, and sequentially map the latent space
dimensions to the output dimensions.

5
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4. Experiments
We test G-Signatures on several tasks, i.e., (i) global graph
classification on the CoMA dataset (Ranjan et al., 2018), (ii)
node regression on the Kardar–Parisi–Zhang (KPZ) (Kar-
dar et al., 1986) equation with varying degrees of noise,
and (iii) large graph edge regression on estimated time of
arrival (ETA) tasks with varying sparsity degrees. For non-
gridded graph structured data, i.e., CoMA and ETA tasks,
we compare against Gated Graph Convolutional Networks
(GGCNs) (Bresson & Laurent, 2017) and Graph Trans-
formers (GTs) (Dwivedi & Bresson, 2021) since they are
amongst the best performing methods in several long range
graph benchmarks (Dwivedi et al., 2022). GGCNs (Bresson
& Laurent, 2017) are a GCN (Kipf & Welling, 2017) based
representative that uses learned edge gates to improve the
aggregation procedure. GTs (Dwivedi & Bresson, 2021)
generalize transformer networks on arbitrary graphs via
node attention and pairwise modification of the attention
scores via edge attributes. For the KPZ equation, we com-
pare against ResNets (He et al., 2016) and Fourier Neural
Operators (FNOs) (Li et al., 2020) on regularly-gridded data.
We describe each task in detail, further information can be
found in Appendix H.

4.1. Recognizing facial expressions

The convolutional mesh autoencode (CoMA) dataset (Ran-
jan et al., 2018) consists of 20465 graphs where each graph
comprises 5023 nodes with 3 (positional) node features
each, and 29990 edges, see Figure 3 for visualized data-
points. The task is to predict the facial expression for 12
different target labels. We use the 1483 samples test dataset
as provided by the CoMA dataset implementation, and split
the given training dataset into 17499 training and 1483 val-
idation samples in a stratified way. For all methods, i.e.,

Figure 3. Exemplary samples in the CoMA dataset. Left: the
original datapoints, right: their corresponding embedded versions,
according to (Roth et al., 2003). Most relevant information of
the original graph is visually contained in the converted graph
representation.

G-Signatures, GGCNs, and GTs, we use the edge embed-
ding of Equation (10) and set m = 3. This results in network
inputs of R3×5023. GGCNs use 4 layers with a hidden di-
mension of 70, resulting overall in 104k parameters. GTs
use 10 attention layers, with 8 attention heads each and a
hidden dimension of 80, resulting in 913k parameters. For

GGCNs, adjacency information is additionally provided to
the graph convolution layers. G-Signatures benefit from the
fact that we convert the graph to a latent space path of di-
mension h1×h2 = 39×39, which substantially reduces the
cost of memory and compute. G-Signatures outperform the
baseline methods with an accuracy (evaluated on three repli-
cates) of 93.74± 0.76, compared to 92.85± 0.42 for GTs,
and 76.74± 1.19 for GGCNs. Most notably, G-Signatures
are much less memory consumptive, and have much lower
inference and training times as shown in Table 1.

4.2. Surrogate models for stochastic PDEs

Next, we show that our method can competitively per-
form with strong baselines on tasks it was not primarily
designed for, making it a candidate for more general us-
age scenarios. More precisely, we stress-test the ability of
G-Signatures to model spatially connected data, and, thus,
force G-Signatures to not only traverse information on a
per-feature basis, but also aggregate across nodes. Further-
more, using regularly gridded data, and comparing against
state-of-the-art methods on those, i.e., FNOs (Liu et al.,
2020a) and ResNets (He et al., 2016), presents a litmus test
for each graph-tailored method. We, therefore, aim to learn
surrogates on temporal evolving noisy data, that is from data
obtained from numerical partial differential equation (PDE)
solvers. Concretely, we look at the Kardar–Parisi–Zhang
(KPZ) equation, which is a stochastic PDE that describes
the spatial temporal change of u(x, t):

∂u

∂t
= ν∆u+

λ

2
(∇u)2 + η(x, t) (11)

where ν and λ ∈ R are diffusion and viscosity coefficient,
∆ and ∇ are Laplace- and Nabla-operator, and η(x, t) is
white Gaussian noise, find more information in Appendix D.
The task can be interpreted as node regression task on an
equidistant graph where the temporal inputs are the node fea-
tures. We test for different noise levels, comparing against
FNOs (Li et al., 2020), and ResNets (He et al., 2016), fol-
lowing the experimental setup presented in (Brandstetter
et al., 2022a). Both architectures are built from translation
equivariant layers, and are heavily used on equidistant grids.
The input and output of the models are 10 timesteps in the
channel dimension. The ResNet18 is a 1D variant of (He
et al., 2016) with 4 × 2 residual blocks, and 128 hidden
channels. Overall this results in 801k parameters. The FNO
architecture uses 4 1D FNO layers as proposed in (Li et al.,
2020) with 12 Fourier modes, resulting in 863k parameters.
These layers have residual connections and are intertwined
with GeLU (Hendrycks & Gimpel, 2016) non-linearities.
G-Signatures convert the graph to a latent space represen-
tation X ∈ Rh1×h2 with 81 ⩽ h1 = h2 ⩽ 89. We use
one randomized signature layer for LSPM, overall resulting
in an architecture with 53.7k parameters for the high noise
dataset, 101k parameters for the low noise dataset, and 64.4k
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Method Accuracy #Parameters[k] #Layers Memory[MiB] Fwd.[s] Fwd.+Bwd.[s]

GGCNs 76.74± 1.19 104 4 1,581 0.005 0.025
GTs 92.85± 0.42 913 10 1,875 0.052 0.101
G-Sigs. 93.74± 0.76 430 1 1,361 0.002 0.022

Table 1. Comparison of accuracy, parameter count, network depth, and memory/time consumption of compared methods on the CoMA
dataset. Memory and time consumption is measured per datapoint.

parameters for the zero noise dataset. In Table 2 model
performances are compared at different noise levels. See
Figure 7 of the Appendix for more information. Although
not tailored to regularly gridded data, G-Signatures are com-
petitive with FNO and ResNet baselines, surpassing both
baselines in the zero, and low noise settings. In the high
noise setting, G-Signatures perform second best. This shows
that G-Signatures keep up with strong baselines on regularly
gridded tasks without using convolution operations, making
it a more generally applicable method not limited to typical
graph representation learning tasks.

4.3. Estimated time of arrival

The estimated time of arrival (ETA) is the time it is ex-
pected to take a vehicle, or a person, to arrive at a certain
place (Derrow-Pinion et al., 2021; Hu et al., 2022; Wang
et al., 2018). We model the ETA task by a graph with adja-
cency matrix A. Each component Aij represents the time it
takes to get from node i to node j if the nodes are connected.
On a map the nodes could for example represent intersec-
tions and only if a connecting street between nodes i and
j exists, the value in the adjacency matrix will be the time
it takes to get from i to j. Otherwise, we set the value of
the edge connecting node i and j to infinity. The task is to
predict the shortest travel time from node i to j by possibly
traversing other nodes. By increasing the sparsity in the
adjacency matrix, more nodes have to be traversed to get
from node i to node j. We conducted experiments on graphs
with 3 different node counts with 3 different connectivity
levels (number of edges) each, resulting in 9 experimental
settings, find more information in Appendix E. Gated GCNs
and Graph Transformers additionally use connectivity in-
formation about the nodes as edge features for information
aggregation across nodes. GGCNs use 10 layers with a
hidden dimension of 70, resulting overall in 254k parame-
ters. GTs use 8 attention layers, with 8 attention heads each
and a hidden dimension of 32, resulting in 119k parameters.
G-Signatures again benefit from the fact that we convert the
graph to a latent space representation X ∈ Rh1×h2 with
32 ⩽ h1 = h2 ⩽ 95. This substantially reduces the cost of
memory and compute. The more the connectivity decreases
the more important global aspects of the graph become since
connecting two nodes can require propagating over many
nodes in the graph. Each node-pair needs to be regressed

as a scalar and we use MSE to measure the performance.
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Figure 4. Results on ETA. When increasing the sparsity of the
graphs, G-Signatures substantially outperform the competitors,
often by an order of magnitude. See Table 4 of the Appendix for
precise numerical results with error bounds.

Results are reported in Figure 4 and Table 4 in Appendix,
confirming the advantage of global graph propagation via
G-Signatures. All compared methods have very similar per-
formance in case of high connectivity. This attributes to
the fact that in these scenarios the propagation of global
information is less important since all node pairs share an
edge thus sufficient information can be processed locally.
For example, GGCNs need relatively few steps to propagate
information through the graph. However, when increasing
the sparsity of the graphs, G-Signatures substantially out-
perform the competitors, often by an order of magnitude.
GTs, to exchange information, are not restricted to the local
neighborhood of each node at a given message passing itera-
tion. Nevertheless, for ETA prediction information collected
along the possible paths between distant source and sink
nodes has to be propagated over many transit nodes what
also exposes GTs to the risk of over-squashing. Whereas
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Noise
level

Standard
deviation ResNets[MSE] FNOs[MSE] G-Signatures[MSE]

High 5× 10−3 4.501× 10−3± 0.004× 10−3 4.866× 10−3± 0.022× 10−3 4.774× 10−3± 0.013× 10−3

Low 1× 10−3 0.991× 10−3± 0.018× 10−3 1.197× 10−3± 0.025× 10−3 0.980× 10−3± 0.007× 10−3

Zero 0× 10−3 0.075× 10−3± 0.006× 10−3 0.160× 10−3± 0.014× 10−3 0.068× 10−3± 0.002× 10−3

Table 2. Performance on the KPZ datasets with three different noise levels. The reported deviation is the standard error of the mean. The
noise level is steered by the standard deviation of Gaussian noise η. G-Signatures benefit from lower noise levels.

#Nodes #Edges GGCNs GTs G-Sigs.

2.50× 105 4,401 4,881 1,373
500 1.25× 105 2,901 3,205 1,383

2.50× 104 1,815 1,823 1,353

1.00× 106 13,257 14,861 1,425
1,000 5.00× 105 7,355 9,399 1,417

1.00× 105 2,655 2,987 1,411

4.00× 106 48,905 55,023 1,655
2,000 2.00× 106 39,756 46,165 1,635

4.00× 105 6,295 7,027 1,639

Table 3. Memory consumption of compared methods for process-
ing one graph during training on all estimated time of arrival (ETA)
datasets measured in MiB.

G-Signatures can easily propagate information on a global
scale by using only a fraction of the memory consumption
compared to state-of-the-art methods, summarized in Ta-
ble 3.

5. Conclusion
We have introduced, G-Signatures, a novel learning
paradigm for learning on graph structured data. G-
Signatures are built around the concepts of graph conver-
sion, which allows us to treat graph structured data as paths
in latent space, and latent space path mapping (LSPM),
which performs global graph propagation via randomized
signature layers. Consequently, in contrast to conventional
GNNs or Graph Transformers, G-Signatures excel at ex-
tracting global graph properties with substantially reduced
memory and compute budget. We have further shown that
G-Signatures are a more generally applicable method not
limited to GNN-specific tasks.

Limitations and future work. In the current setting,
G-Signatures are designed for homogeneous graphs, i.e.,
graphs with the same number of nodes and the same con-
nectivity. For future work, we aim to extend G-Signatures
towards heterogeneous graphs to provide applicability for
a larger set of problems, e.g., molecular modeling. Fur-
thermore, we plan to extend the edge embedding to edge

features beyond scalar connectivity information. Finally,
the current version traverses paths along one dimension, but
we aim to traverse paths along concurrent dimensions, and
thus combine information with a much denser and richer
content.
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P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. ArXiv, 2104.13478, 2021.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem
for graph neural networks from the topological view.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 3438–3445, 2020a. doi:
10.1609/aaai.v34i04.5747.

Chen, K. T. Iterated integrals and exponential homomor-
phisms. Proceedings of the London Mathematical Society,
s3-4(1):502–512, 1954. doi: 10.1112/plms/s3-4.1.502.

Chen, K. T. Integration of paths, geometric invariants and a
generalized Baker-Hausdorff formula. Annals of Mathe-
matics, 65(1):163–178, 1957. doi: 10.1112/plms/s3-4.1.
502.

Chen, K. T. Integration of paths–a faithful representation
of paths by noncommutative formal power series. Trans-
actions of the American Mathematical Society, 89(2):
395–407, 1958. doi: 10.2307/1993193.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In III, H. D. and
Singh, A. (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 1725–1735.
PMLR, 13–18 Jul 2020b.

Chevyrev, I. and Kormilitzin, A. A primer on the signature
method in machine learning. ArXiv, 1603.03788, 2016.

Chevyrev, I. and Oberhauser, H. Signature moments to char-
acterize laws of stochastic processes. ArXiv, 1810.10971,
2018.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. In On the Properties of Neural
Machine Translation: Encoder-Decoder Approaches, vol-
ume 1809.09466, 2014.

Compagnoni, E. M., Biggio, L., Orvieto, A., Hofmann, T.,
and Teichmann, J. Randomized signature layers for signal
extraction in time series data. ArXiv, 2201.00384, 2022.

Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., and
Teichmann, J. Expressive power of randomized signa-
ture. In The Symbiosis of Deep Learning and Differen-
tial Equations, 2021. URL https://openreview.
net/forum?id=KWWFPULvmVw.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester,
T., Perez, L., Nunkesser, M., Lee, S., Guo, X., Wiltshire,
B., Battaglia, P. W., Gupta, V., Li, A., Xu, Z., Sanchez-
Gonzalez, A., Li, Y., and Velickovic, P. ETA predic-
tion with graph neural networks in google maps. ArXiv,
2108.11482, 2021.

9

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=KWWFPULvmVw
https://openreview.net/forum?id=KWWFPULvmVw


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Under review at ICML 2024 AI for Science workshop

Duda, R. O., Hart, P. E., and Stork, D. G. Pattern classifica-
tion 2nd ed. John Willey & Sons Inc, 2001.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. ArXiv, 2012.09699, 2021.
presented at AAAI 2021 Workshop on Deep Learning on
Graphs: Methods and Applications.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. ArXiv,
2003.00982, 2020.
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P., and Bengio, Y. Graph attention networks. In Interna-
tional Conference on Learning Representations (ICRL),
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Wang, D., Zhang, J., Cao, W., Li, J., and Zheng, Y. When
will you arrive? estimating travel time based on deep
neural networks. In Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence (AAAI), 2018.

Warshall, S. A theorem on boolean matrices. Journal of the
ACM, 9:216–218, 1962.

Weisfeiler, B. and Leman, A. The reduction of a graph to
canonical form and the algebra which appears therein.
NTI, Series, 1968.

Xie, Z., Sun, Z., Jin, L., Ni, H., and Lyons, T. Learning
spatial-semantic context with fully convolutional recur-
rent network for online handwritten chinese text recogni-
tion. IEEE transactions on pattern analysisand machine
intelligence, 40:1903–1917, 2018.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning (ICML), volume 80 of Proceedings
of Machine Learning Research, pp. 5449–458. PMLR,
2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Yang, W., Jin, L., and Liu, M. Chinese character-level writer
identification using path signature feature, dropstroke and
deep cnn. In 13th International Conference on Document
Analysis and Recognition (ICDAR), 2015.

Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang,
J. Leveraging the path signature for skeleton-based hu-
man action recognition. ArXiv, 1707.03993, 2017.

Yang, Y., Liu, T., Wang, Y., Zhou, J., Gan, Q., Wei, Z.,
Zhang, Z., Huang, Z., and Wipf, D. Graph neural net-
works inspired by classical iterative algorithms. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 11773–
11783. PMLR, 2021.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=Syx4wnEtvH.

Zhu, D.-H., Dai, X.-Y., and Chen, J.-J. Pre-train and learn:
Preserving global information for graph neural networks.
Journal of Computer Science and Technology, 36(6):
1420–1430, 2021. doi: 10.1007/s11390-020-0142-x.

12

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Under review at ICML 2024 AI for Science workshop

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 7793–7804. Curran Associates, Inc.,
2020.

Zwicker, D. py-pde: A python package for solving par-
tial differential equations. Journal of Open Source Soft-
ware, 5(48):2158, 2020. doi: 10.21105/joss.02158. URL
https://doi.org/10.21105/joss.02158.

13

https://doi.org/10.21105/joss.02158


715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Under review at ICML 2024 AI for Science workshop

A. Statistical moments from the signature
Interpreting the path X as random variable with a realization resulting in the dataset {Xi}Ni=1 (Chevyrev & Kormilitzin,
2016) have shown that truncating the signature at level L determines statistical moments up to level L. This is exemplary
demonstrated for the first two moments. Using the canonical cumulative lead-lag embedding of {Xi}Ni=1 we get

S(X)1 = S(X)2 =

N∑

i=1

Xi

S(X)1,1 = S(X)2,2 =
1

2

(
N∑

i=1

Xi

)2

S(X)1,2 =
1

2



(

N∑

i=1

Xi

)2

+

N∑

i=1

X2
i




S(X)2,1 =
1

2



(

N∑

i=1

Xi

)2

−
N∑

i=1

X2
i


 .

From this we get that

Mean(X) =
1

N
S(X)1

V ar(X) = −N + 1

N2
S(X)1,2 +

N − 1

N2
S(X)2,1.

For a 1-dimensional path X its corresponding signature is

S(X) =

(
1, XN −X1,

(XN −X1)
2

2!
, · · · , (XN −X1)

k

k!
, · · ·

)
.

Similarly, interpreting X as stochastic process its expected signature is then

E[S(X)] =

(
1,E[XN −X1],

E[(XN −X1)
2]

2!
, · · · , E[(XN −X1)

k]

k!
, · · ·

)

which motivates the question of how this moment-like sequence relates to the law of X . (Chevyrev & Oberhauser, 2018)
have shown that under certain assumptions the expected signature of a path X : [a, b]→ Rd indeed characterizes its law
such that it can be thought of as a generalization of the moment-generating function of a real-valued random variable.

B. Edge Embedding
Following (Roth et al., 2003; Duda et al., 2001; Schölkopf et al., 1998), edge information is included into the nodes via the
eigendecomposition of a dissimilarity matrix D ∈ RN×N :

Q = In −
1

n
(11, . . . , 1n)

T
(11, . . . , 1n) ,

Sc = −1

2
QDQ = V ΛV T ,

(12)

This formula is derived from the following statements. Let M ∈ {0, 1}n×k be a binary stochastic assignment matrix with∑k
ν=1 Miν = 1. The pairwise clustering cost function is used to derive meaningful embedding vectors {xi}ni=1 from a

corresponding dissimilarity matrix D with Dij = d(xi,xj). The pairwise clustering cost function is defined as:

Hpc =
1

2

k∑

ν=1

∑n
i=1

∑n
j=1 MiνMjνDij∑n
l=1 Mlν

, (13)
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where D is an arbitrary dissimilarity matrix between embedding vectors {xi}ni=1. Assuming d(x,y) = ∥x− y∥2 as the
dissimilarity function of choice the pairwise clustering cost function Hpc is equal to the k-means cost function iff Sc as
described in Equation (12) is positive semidefinite (Duda et al., 2001; Roth et al., 2003). Minimizing Hpc leads to an optimal
assignment matrix M . For possibly indefinite Sc, the given dissimilarity matrix D needs to be centralized and shifted with
and en = (11, . . . , 1n). A diagonal shift of Equation (12) corresponds to an off-diagonal shift of the dissimilarity matrix D
with the smallest eigenvalue of λ(Sc):

D̃ = D − 2λn (S
c)
(
eTnen − In

)
. (14)

Substituting Dij with D̃ij in Equation (13) gives us the k-means cost function. Equivalently to Equation (12), the centralized
squared Euclidean scoring matrix is

S̃c = −1

2
D̃c = −1

2
QD̃Q . (15)

Following the definition of the kernel principal component analysis (PCA), the original embedding vectors can be recon-
structed by an eigendecomposition of Equation (16) (Schölkopf et al., 1998; Roth et al., 2003):

Q = In −
1

n
(11, . . . , 1n)

T
(11, . . . , 1n) ,

S = −1

2
QDQ = V ΛV T ,

(16)

where V = (v1, . . . ,vn) is a matrix with the eigenvectors as its columns, and Λ = diag (λ1, . . . , λn) is the diagonal matrix
of the corresponding eigenvalues, sorted in decreasing order. The embedding vectors are recovered by

X = Vm (Λm)
0.5

, (17)

where 0 < m < n is the embedding dimension, X ∈ Rn×m, Λm ∈ Rm×m is the submatrix with the m largest eigenvalues
on its diagonal and Vm ∈ RN×m with the corresponding eigenvectors.

C. G-Signatures can propagate global graph information in each step
. Global positional encoding

Prediction tasks on peptides molecular datasets as in (Dwivedi et al., 2022) require a model to capture long-range interactions
among atoms. For a given peptide they contain the peptide sequence, molecular graph, function, and 3D structure of the
peptide. However, the graphs used for modeling the peptides correspond to 1D amino acid chains that do not have 2D or 3D
peptide structure information included. This leads to large graphs with approx. 150 nodes each, and makes it important for
the used ML model to identify the location of an amino acid in the graph. To enable this, a common candidate solution is
global positional encoding (Dwivedi et al., 2020) for each node.

To illustrate this more precisely we use the following simplified examples from (Rampášek et al., 2022). One of the tasks is
to differentiate between two Circular Skip Link (CSL) graphs (Murphy et al., 2019) as in the first two columns of Figure 5.
In the first row thereof it can be seen that the 1-Weisfeiler-Lehman test (1-WL) (Weisfeiler & Leman, 1968) produces the
same coloring of all nodes in the two non-isomorphic graphs. This means that the 1-WL cannot differentiate between them.
This also holds for MPNNs since their expressive power is upper-bounded by 1-WL (Xu et al., 2019; Morris et al., 2019).
This problem can be solved by using a global positioning encoding as shown in the second row. Similarly, in the third
column for a Decalin molecular graph which has two rings of all Carbon atoms 1-WL (and thus MPNNs) would generate
the same color for nodes a, b, and c, d, respectively. Thus, for link prediction the potential links (a, d) and (b, d) would be
indistinguishable. Again, this issue can be solved by global positional encoding.

However, for large graphs with many nodes MPNNs miss to propagate such global structural information between distant
nodes. This is caused by the well-known over-squashing phenomenon which is due to the local information aggregation
mechanism for node updates. This means that crucial location information cannot be propagated by MPNNs. On the other
hand, G-Signatures have access to this information as they do not rely on message passing and process the information for a
given feature (and thus positional encoding) of all nodes at once.
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a b

d c

A – FIRST ORDER WEISFEILER-LEMAN GRAPH ISOMORPHISM TEST (1-WL)

a b

d c

B – GLOBAL POSITIONAL ENCODING (EIGENVECTORS OF LAPLACIAN)

Figure 5. Showcasing the importance of global positional encoding for graph structured problems. (A) In the left two columns the 1-WL
incorrectly identifies the two graphs as being isomorphic. Similarly, it cannot distinguish for example node pairs (a,d) and (b,d) in the
right column. (B) When using a global positional encoding on the other hand these graphs and node pairs can be distinguished. Figure is a
modified version of Figure C.1 in (Rampášek et al., 2022).

a

b

c

?

Figure 6. Showcasing the importance of global information propagation at the example of the neighbors match problem. To solve the
task neighborhood information of distant nodes has to be propagated to the node marked with a question mark which can easily lead to
over-squashing. Figure is a modified version of Figure 2 in (Alon & Yahav, 2021).

. Neighbors Match Problem

Another task where global graph propagation plays an important role is for real-world problems where computer program
code is modeled as a graph (Allamanis et al., 2018). For example, long-range dependencies due to the usage of the same
variable in distant locations are considered in this context. One such application would be the detection of variable misuses
based for example on the variable types and values.

A simplified abstraction of this task is the Neighbors Match problem from (Alon & Yahav, 2021). In the example illustrated
in Figure 6 the goal is to predict the correct label of the target node marked with a question mark. In this case the correct
label is ”c” since the node with label ”c” has the same number of neighbors as the node in question. For large graphs this
task can easily lead to over-squashing in MPNNs, since the information from all nodes has to be propagated to the target
node, whereas G-Signatures can immediately process this information for the entire graph.
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D. Surrogate Models for Stochastic PDEs
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target
prediction

Figure 7. First row: Visualization of the dynamics of the KPZ equation unrolled over time. Second row: Exemplary comparison of
G-Signatures predictions to target values at a fixed timestep of the above trajectory.

The term λ
2 (∇u)2 in Equation (11) is responsible for modeling shock waves. In one spatial dimension the KPZ equation

corresponds to a stochastic version of the viscous Burgers’ equation – a widely used PDE which occurs e.g., in fluid
mechanics, or traffic modeling. Similarly, larger values for ν have a smoothing effect, and both smaller values for ν and
larger values for λ result in larger shock formations. The noise component η(x, t) presents an additional difficulty in
modeling the dynamics of Equation (11). We aim to learn the mapping of u(x, t) to later points in time, We consider a
modified implementation of the py-pde package (Zwicker, 2020), obtaining data on nx = 64 spatial grid with temporal
resolution of ∆t = 0.2. The data is split into 512 training trajectories, 128 validation trajectories, and 128 test trajectories.
Each time point of the respective training trajectories is used as individual starting point to obtain one training sample. The
task is to predict the dynamics 10 timesteps into the future given 10 input timesteps, where performance is measured using
the mean squared error (MSE).

E. Estimated Time of Arrival
We use the Floyd-Warshall (Floyd, 1962; Warshall, 1962) algorithm of the Python package NetworkX (Hagberg et al., 2008)
to obtain ground truth values for the travel time along the shortest path between two nodes. Each node has 3 features and we
use the edge embedding of Equation (10) setting m = 3 such that the network inputs for e.g. a graph with 500 nodes are in
R3×500, which is the input to G-Signatures. We split each dataset in a random way, such that 512 graphs contribute to the
training set, 128 graphs to the validation set, and 128 graphs to the test set. During training, each graph of the training set is
augmented by applying a random permutation with respect to its nodes. This increases the potential total count of differently
arranged training graphs by a factor of {500!, 1000!, 2000!} for the respective ETA dataset.
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#Nodes #Edges GGCNs[MSE] GTs[MSE] G-Signatures[MSE]

2.50× 105 1.936× 10−5± 0.242× 10−8 1.951× 10−5± 9.466× 10−8 1.979× 10−5± 0.523× 10−8

500 1.25× 105 4.444× 10−4± 0.027× 10−7 4.444× 10−4± 0.237× 10−7 0.785× 10−4± 0.421× 10−7

2.50× 104 1.846× 10−2± 0.171× 10−5 1.846× 10−2± 0.177× 10−5 0.196× 10−2± 0.067× 10−5

1.00× 106 0.490× 10−5± 0.983× 10−8 0.489× 10−5± 1.108× 10−8 0.493× 10−5± 0.206× 10−8

1,000 5.00× 105 1.317× 10−4± 0.304× 10−7 1.317× 10−4± 0.168× 10−7 0.197× 10−4± 0.024× 10−7

1.00× 105 0.548× 10−2± 0.069× 10−5 0.548× 10−2± 0.001× 10−5 0.049× 10−2± 0.008× 10−5

4.00× 106 0.123× 10−5± 0.229× 10−8 0.126× 10−5± 2.221× 10−8 0.124× 10−5± 0.016× 10−8

2,000 2.00× 106 0.383× 10−4± 0.014× 10−7 0.383× 10−4± 0.094× 10−7 0.049× 10−4± 0.010× 10−7

4.00× 105 0.163× 10−2± 0.018× 10−5 0.163× 10−2± 0.003× 10−5 0.012× 10−2± 0.001× 10−5

Table 4. Results on the estimated time of arrival (ETA) datasets. The performance is reported by the mean squared error (MSE) with
the standard error of the mean as the deviation. G-Signatures, Gated GCNs, and Graph Transformers are compared for different graph
sizes, and different sparsity levels. When increasing the sparsity (reducing the number of edges) of the graphs, G-Signatures substantially
outperform the competitors, often by an order of magnitude.

F. Latent Space Path Mapping

W Σ(Ai, bi,X0,Z0)︸ ︷︷ ︸
×p heads

+o
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RANDOMIZED SIGNATURE LAYER (bidirectional)

LATENT SPACE PATH MAPPING (×L layers)

Zl X ′ X l+1X l
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Figure 8. Illustration of the G-Signatures architecture. Graph conversion allows us to map graph structured data into a path X : [0, T ] →
Rh2 in the latent space sampled at h1 points. This constitutes the latent space representation of a graph. Latent space path mappings
(LSPM) process this latent representation sequentially via stacked randomized signature layers. The decoder maps the latent graph
representation to a task dependent output space.
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B – LATENT SPACE PATH MAPPING
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A – INITIAL LATENT SPACE REPRESENTATION
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Figure 9. Latent space path mappings (LSPMs) traverse the initial latent space representation of a graph iteratively on a per-feature basis
by applying randomized signature layers. In each iteration the randomized signature layers access global information of the entire latent
graph in a parallel fashion, thus mitigating any negative smoothing and squashing effects. Exemplary, we showcase finding the maximum
feature value of all latent nodes in purple. As our method operates on all latent nodes in parallel, the maximum value per feature is found
in a single step.
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G. Ablation Studies
We compare results of G-Signatures against ablated versions thereof on the KPZ dataset with a low noise level. We
investigate the effect of all combinations of our adjustments. We apply the same hyperparameter search procedure as for the
main experiments of G-Signatures. Each entry in Table 5 shows the corresponding result by omitting a certain combination
of adjustments. The diagonal elements of both sub-tables indicate the omission of the respective row/column element, e.g., a
combination of SPARSITY and SPARSITY corresponds to the omission of just the sparsity adjustment, a combination of
SPARSITY and INITIALIZATION corresponds to the omission of the sparsity, as well as the initialization adjustments. The
”· · · ” serves as a placeholder since the lower sub-table is symmetric, and ”—” indicates that the given combination is not
applicable. The TRAINABILITY ablation refers to a fixed randomized signature, i.e. Ai and bi are kept fixed. It can be
clearly seen that each adjustment is necessary to improve the performance of G-Signatures, and that omitting them steadily
worsens the results for all of their combinations.

Ablations NONE (OURS) TRAINABILITY ALL (ORIGINAL)

None (ours) 0.980× 10−3± 0.007× 10−3 — —
Trainability — 1.022× 10−3± 0.005× 10−3 —

All (original) — — 1.308× 10−3± 0.018× 10−3

Ablations SPARSITY INITIALIZATION ACTIVATION

Sparsity 0.983× 10−3± 0.001× 10−3 · · · · · ·
Initialization 0.994× 10−3± 0.008× 10−3 0.987× 10−3± 0.007× 10−3 · · ·
Activation 0.996× 10−3± 0.009× 10−3 1.003× 10−3± 0.005× 10−3 0.990× 10−3± 0.005× 10−3

Sigmoid — — 0.993× 10−3± 0.004× 10−3

TanH — — 0.998× 10−3± 0.004× 10−3

Table 5. Performance results of G-Signatures compared to its ablated versions on the KPZ dataset with a low noise level. The reported
deviation is the standard error of the mean. G-Signatures perform best with all LSPM adjustments applied.

It is notable that when omitting the sparsity adjustment, i.e., using dense matrices for Ai, both the performance decreases
and the method is much less memory- and compute-efficient. More precisely, there is a quadratic instead of a linear scaling
for Ai, as can be seen in Figure 10.
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Figure 10. Memory consumption in MiB of G-Signatures on an NVIDIA A100 GPU 40GB for a single sample during training. All
hyperparameters are kept fixed, except size k of Ai and bi of the randomized signature layer (see Algorithm 1 for details).

Additionally, many hyperparameter settings of the ablated versions cannot even be trained successfully. We illustrate this in
more detail starting from Figure 11 to Figure 18. For this, we investigate for all ablations in Table 5 the magnitude of the
values computed by the signature based on Algorithm 1. In each of the figures the absolute values per timestep and signature
size (averaged over samples) are plotted in the lower-right sub-figure. The range of these values across the signature sizes
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per step is visualized in the upper-right plot. The range across the steps per signature size is shown in the left sub-figure. It
can be seen that in most cases the computation leads to exploding values after a few steps already.
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Figure 11. Ablation NONE (OURS). Lower right: Mean Absolute Values (MAVs) of randomized signature computation per step and
randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs across steps
per randomized signature size. Our modified version does not suffer from exploding signals.

21



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Under review at ICML 2024 AI for Science workshop

10
6

10
13

10
20

M
ea

n 
A

bs
ol

ut
e 

Va
lu

e

1 2 3 4 5 6 7 8 9 10
Step

24

25

26

27

28

29

210

211

212

R
an

do
m

iz
ed

 S
ig

na
tu

re
 S

iz
e 

k

10
6

10
13

10
20

Mean Absolute Value

24

25

26

27

28

29

210

211

212

R
an

do
m

iz
ed

 S
ig

na
tu

re
 S

iz
e 

k

10
4

10
8

10
12

10
16

10
20

10
24

Figure 12. Ablation ALL (ORIGINAL). Lower right: Mean Absolute Values (MAVs) of randomized signature computation per step and
randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs across steps
per randomized signature size. The original computation of the randomized signature immediately produces exploding values.
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Figure 13. Ablation SPARSITY. Lower right: Mean Absolute Values (MAVs) of randomized signature computation per step and
randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs across steps
per randomized signature size. Omitting the sparsity adjustment keeps computation stable at the expense of memory.
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Figure 14. Ablation INITIALIZATION. Lower right: Mean Absolute Values (MAVs) of randomized signature computation per step and
randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs across steps
per randomized signature size. Omitting the initialization adjustment results in a larger value magnitude.
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Figure 15. Ablation ACTIVATION. Lower right: Mean Absolute Values (MAVs) of randomized signature computation per step and
randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs across steps
per randomized signature size. Omitting the activation adjustment renders the randomized signature computation susceptible to large
signals.
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Figure 16. Ablation INITIALIZATION/SPARSITY. Lower right: Mean Absolute Values (MAVs) of randomized signature computation per
step and randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs
across steps per randomized signature size. Omitting both initialization and sparsity adjustments results in exploding signals.
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Figure 17. Ablation ACTIVATION/SPARSITY. Lower right: Mean Absolute Values (MAVs) of randomized signature computation per step
and randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs across
steps per randomized signature size. Omitting both activation and sparsity adjustments leads to exploding values.
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Figure 18. Ablation INITIALIZATION/ACTIVATION. Lower right: Mean Absolute Values (MAVs) of randomized signature computation
per step and randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs
across steps per randomized signature size. Omitting both initialization and activation adjustments results in exploding signals.
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Figure 19. Ablation ACTIVATION (SIGMOID). Lower right: Mean Absolute Values (MAVs) of randomized signature computation per
step and randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs
across steps per randomized signature size. Exchanging our activation adjustment with a sigmoid non-linearity renders the randomized
signature computation susceptible to large signals. Additionally, the consistency of the MAVs indicate a string saturating effect.
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Figure 20. Ablation ACTIVATION (TANH). Lower right: Mean Absolute Values (MAVs) of randomized signature computation per step
and randomized signature size. Upper right: Range of MAVs across randomized signature sizes per step. Left: Range of MAVs across
steps per randomized signature size. Exchanging our activation adjustment with a tanh non-linearity renders the randomized signature
computation susceptible to large signals for small k. This effect is pronounced for higher step counts.
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H. Hyperparameter Selection
For Gated GCNs and Graph Transformers we use hyperparameters that were already successfully applied to learn depen-
dencies across longer node paths in (Dwivedi & Bresson, 2021; Dwivedi et al., 2022). We complement this by a manual
hyperparameter search which results in the following hyperparameter search spaces.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs
{
1, {2 + 2i}5i=0, 16

}
{6, 12, 32, 70, 100, 138}

{
10−{2,3,4}, 5× 10−4

}
-

GTs {1, 2, 4, 8, 10} {6, 12, 32, 80, 120}
{
10−{2,3,4}, 5× 10−4

} {
2i
}4
i=0

G-Sigs. {1, 2, 3} {32 + i}64i=0 10[−3,−1] {1, 2, 3}

Table 6. Hyperparameter settings for compared methods on CoMA.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs {1, 3, 4, 6, 8, 10, 12} {6, 12, 32, 70, 100}
{
10−{2,3,4}, 5× 10−4

}
-

GTs {1, 3, 4, 6, 8, 10} {6, 12, 32, 80}
{
10−{2,3,4}, 5× 10−4

}
{1, 2, 4, 8}

G-Sigs. {1, 2, 3} {32 + i}64i=0 10[−3,−1] {1, 2, 3}

Table 7. Hyperparameter settings for compared methods on ETA datasets.

Method #Layers Hidden Size Learning Rate #Heads #Modes

ResNets {4, 8, 16} {32, 64, 128} 10[−3,−1] - -
FNOs {3, 4, 5} {32, 128, 256} 10[−3,−1] - {8, 12, 16, 32}
G-Sigs. {1, 2, 3} {32 + i}64i=0 10[−3,−1] {1, 2, 3} -

Table 8. Hyperparameter settings for compared methods on KPZ datasets.

All methods are trained for 1000 epochs with early stopping. The GNN methods are trained with either batch (Ioffe &
Szegedy, 2015), or layer normalization (Ba et al., 2016), and by setting Dropout (Hinton et al., 2012) to 0.0 or 0.1. We test
both averaging and summing over all nodes for the readout function of the respective GNNs. For all methods we use the
LAMB (You et al., 2020) optimizer with an optional cosine annealed learning rate scheduling (Loshchilov & Hutter, 2017).
The signature size hyperparameter of G-Signatures is selected from the set {8 + i}56i=0. All G-Signatures hyperparameter
searches are done in a non-exhaustive way.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 4 70 1.00× 10−3 -
GTs 10 80 1.00× 10−3 8
G.-Sigs. 1 73 3.30× 10−3 2

Table 9. Final hyperparameter settings for compared methods on CoMA. For G-Signatures, the final signature size is set to 63, and the
final weight decay is set to 1.68× 10−5.

27



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Under review at ICML 2024 AI for Science workshop

Method #Layers Hidden Size Learning Rate #Heads #Modes

ResNets 8 128 1.00× 10−2 - -
FNOs 4 128 1.00× 10−2 - 12
G.-Sigs. 1 84 1.05× 10−3 2 -

Table 10. Final hyperparameter settings for compared methods on the KPZ dataset with high noise. For G-Signatures, the final signature
size is set to 27, and the final weight decay is set to 1.31× 10−6.

Method #Layers Hidden Size Learning Rate #Heads #Modes

ResNets 8 128 1.00× 10−2 - -
FNOs 4 128 1.00× 10−2 - 12
G.-Sigs. 1 89 1.19× 10−3 3 -

Table 11. Final hyperparameter settings for compared methods on the KPZ dataset with low noise. For G-Signatures, the final signature
size is set to 47, and the final weight decay is set to 2.47× 10−4.

Method #Layers Hidden Size Learning Rate #Heads #Modes

ResNets 8 128 1.00× 10−2 - -
FNOs 4 128 1.00× 10−2 - 12
G.-Sigs. 1 81 1.01× 10−3 1 -

Table 12. Final hyperparameter settings for compared methods on the KPZ dataset with no noise. For G-Signatures, the final signature
size is set to 61, and the final weight decay is set to 8.46× 10−4.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 8 70 1.00× 10−3 -
GTs 6 32 1.00× 10−3 8
G.-Sigs. 1 86 5.87× 10−3 3

Table 13. Final hyperparameter settings for compared methods on the ETA dataset with 500 nodes and a sparsity of 0.0. For G-Signatures,
the final signature size is set to 35, and the final weight decay is set to 2.55× 10−4.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 10 70 1.00× 10−3 -
GTs 8 32 1.00× 10−3 8
G.-Sigs. 1 95 3.32× 10−3 3

Table 14. Final hyperparameter settings for compared methods on the ETA dataset with 500 nodes and a sparsity of 0.5. For G-Signatures,
the final signature size is set to 43, and the final weight decay is set to 1.82× 10−6.
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Method #Layers Hidden Size Learning Rate #Heads

GGCNs 10 70 1.00× 10−3 -
GTs 8 32 1.00× 10−3 8
G.-Sigs. 1 32 2.84× 10−3 2

Table 15. Final hyperparameter settings for compared methods on the ETA dataset with 500 nodes and a sparsity of 0.9. For G-Signatures,
the final signature size is set to 27, and the final weight decay is set to 3.39× 10−5.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 8 70 1.00× 10−3 -
GTs 6 32 1.00× 10−3 8
G.-Sigs. 1 79 2.91× 10−3 3

Table 16. Final hyperparameter settings for compared methods on the ETA dataset with 1000 nodes and a sparsity of 0.0. For G-Signatures,
the final signature size is set to 40, and the final weight decay is set to 1.82× 10−6.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 10 70 1.00× 10−3 -
GTs 8 32 1.00× 10−3 8
G.-Sigs. 1 71 3.51× 10−3 3

Table 17. Final hyperparameter settings for compared methods on the ETA dataset with 1000 nodes and a sparsity of 0.5. For G-Signatures,
the final signature size is set to 26, and the final weight decay is set to 4.15× 10−5.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 10 70 1.00× 10−3 -
GTs 8 32 1.00× 10−3 8
G.-Sigs. 1 50 4.13× 10−3 2

Table 18. Final hyperparameter settings for compared methods on the ETA dataset with 1000 nodes and a sparsity of 0.9. For G-Signatures,
the final signature size is set to 40, and the final weight decay is set to 1.75× 10−4.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 8 100 1.00× 10−3 -
GTs GTs 6 80 1.00× 10−3 8
G.-Sigs. 1 75 4.81× 10−3 3

Table 19. Final hyperparameter settings for compared methods on the ETA dataset with 2000 nodes and a sparsity of 0.0. For G-Signatures,
the final signature size is set to 64, and the final weight decay is set to 2.29× 10−6.
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Method #Layers Hidden Size Learning Rate #Heads

GGCNs 10 100 1.00× 10−3 -
GTs GTs 8 80 1.00× 10−3 8
G.-Sigs. 1 59 5.06× 10−3 2

Table 20. Final hyperparameter settings for compared methods on the ETA dataset with 2000 nodes and a sparsity of 0.5. For G-Signatures,
the final signature size is set to 53, and the final weight decay is set to 1.95× 10−6.

Method #Layers Hidden Size Learning Rate #Heads

GGCNs 10 100 1.00× 10−3 -
GTs GTs 8 80 1.00× 10−3 8
G.-Sigs. 1 77 2.70× 10−3 2

Table 21. Final hyperparameter settings for compared methods on the ETA dataset with 2000 nodes and a sparsity of 0.9. For G-Signatures,
the final signature size is set to 36, and the final weight decay is set to 2.05× 10−6.
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