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Abstract

Contrastive learning is a form of distance learning that aims
to learn invariant features from two related representations.
In this work, we explore the hypothesis that an image and
caption can be regarded as two different views of the under-
lying mutual information, and train a model to learn a uni-
fied vision-language representation space that encodes both
modalities at once in a modality-agnostic manner. We first
identify difficulties in learning a one-tower model for vision-
language pretraining (VLP), and propose One Representa-
tion (OneR) as a simple yet effective framework for our goal.
We discover intriguing properties that distinguish OneR from
the previous works that have modality-specific representation
spaces such as zero-shot localization, text-guided visual rea-
soning and multi-modal retrieval, and present analyses to pro-
vide insights into this new form of multi-modal representa-
tion learning. Thorough evaluations demonstrate the potential
of a unified modality-agnostic VLP framework.

Introduction
Self-supervised learning (SSL) is the core driving force be-
hind recent boom in large scale training (Devlin et al. 2018;
Radford et al. 2018) as it provides means to leverage a huge
stack of unlabeled data handily accessible from the web.
In the computer vision community, contrastive learning is
one of the most popular SSL frameworks that essentially
aims to maximize the mutual information between two re-
lated representations, i.e., views. When training with im-
ages, this is realized by first generating different views from
random augmentations and encouraging the model to learn
the augmentation-invariant features.

Meanwhile, the seminal work of CLIP (Radford et al.
2021) has declared the opening of the Vision-Language Pre-
training (VLP) era, where many works (Li et al. 2022; Mu
et al. 2021; Li et al. 2021; Yang et al. 2022; Yu et al. 2022;
Yuan et al. 2021; Zhu et al. 2022) have leveraged the con-
trastive objective for connecting images and their descrip-
tions. However, they fundamentally differ from the afore-
mentioned SSL contrastive framework in that they learn
two separate representation spaces each for vision and lan-
guage, respectively. The features from each modality are
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Figure 1: Typical architectures of vision-language models. (a)
is the basic form, with one transformer encoder and a projec-
tor for each modality. (b) adds fusion encoder blocks on top.
(c) uses a single transformer encoder, but has separate pro-
jections. (d) unifies the two modalities with a generic one-
tower model (OneR).

compared only after sufficient abstraction operations, typ-
ically done with self-attention layers in transformers and
separate learnable projections. This renders them short for
modality-agnostic representation learning, a promising re-
search direction towards a generic perceptual agent.

A modality-agnostic representation learner should be ca-
pable of both 1) mapping visual and linguistic information
into a unified representation space at the global sequence
level and 2) mixing information within an input sequence
in a modality-blind manner with generic token level atten-
tions. First we hypothesize that an image (e.g. a photo of
panda) and its linguistic description (e.g. the phrase “a
photo of panda”) contains common information, which can
be viewed as two different representations of implicit under-
lying information, analogous to the augmented views of an
image. Hence, we apply contrastive SSL approach, MoCo-
v3 (Chen, Xie, and He 2021), in VLP setting to congre-
gate relevant semantics, either from visual signals, linguistic
symbols, or their mixture, in a single unified representation
space. This way, our model learns to associate visual signals
with structured symbols from the lowest level, breaking the
boundaries between the two.

As shown in Fig. 1, our approach is distinguished from
the conventional counterparts that acknowledge the innate
differences between the two modalities and encode rele-
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Figure 2: A truly unified vision-language representation space displays intriguing properties. (top) Visualization of embedding
similarities between image patches and the text prompt. (bottom left) Steering image classification with additional text input
provided as simple token sequence concatenation. Here, we plot the attention map of [CLS]. (bottom right) This mixture input
can also control image retrieval by combining the information from two modalities.

vant inductive bias into the model architecture. We adopt
a generic single-tower model, thus a single representation
space, to handle two different modalities at once. We em-
pirically demonstrate that the failure of naive single-tower
image-text contrastive learning is due to the modality gap,
and propose cross-modal mixup as a simple yet effective
remedy. Furthermore, we train our model to learn to ag-
gregate information within each sequence in a modality-
agnostic manner by forwarding concatenation of image and
text for contrastive loss computation. This allows our model
to form integrated representations even from mixed inputs
of image and text, achieving both of our previous desiderata.
We name our framework OneR, short for One Representa-
tion that suits both modalities.

Aside from the academic pursuit of general intelligence,
unifying multi-modal representation space with a single
generic model has been shown to have benefits in scalabil-
ity and cross-modal/cross-task transferability (Wang et al.
2021b; Mustafa et al. 2022). We further observe that our
OneR’s capacity to associate low-level visual signals to lan-
guage symbols makes it an excellent zero-shot object lo-
calizer, and we can steer its visual reasoning with auxil-
iary language guidance thanks to its natural ability to pro-
cess image+text mixture inputs. The fact that mixture in-
puts are mapped to the same One Representation space fur-
ther renders operations like multi-modal retrieval straight-
forward unlike two-leg baselines (e.g., ALBEF (Li et al.
2021)). We note that these properties do not rely on any
modality-specific heads, segment tokens, nor special cross-
attention modules, but are natural outcomes of embedding

Figure 3: Patch embedding similarity map w.r.t. the text
query. This clearly shows that two towers (e.g., CLIP), two
legs (e.g., ALBEF) and two heads all learn modality-specific
features spaces, forbidding similarity operations between
embeddings. Projections are not applicable since they are
only suited for the [CLS] token.

similarity and input concatenation.
Our key contributions can be summarized as:

• We analyze the collapse of naive single-tower vision-
language contrastive learning, and propose cross-modal
mixup to mitigate the modality gap.

• We present OneR, a simple modality-agnostic represen-
tation learning framework that combines cross-modal
mixup with contextual modality invariance to form a uni-
fied embedding space.

• We conduct extensive qualitative and quantitative eval-
uations to demonstrate the advantage of our approach,
which includes distinguished capabilities in zero-shot ob-
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(a) Naive single-tower ITC. (b) OneR at the beginning and the end of the training.

Figure 4: T-SNE (Van der Maaten and Hinton 2008) representation visualization. Single-tower model trained with naive image-
text contrastive objective fails to blend two distant modalities (left). Note that image features (blue dots) almost perfectly overlap
with concatenation features (green dots), possibly due to sequence length bias (best viewed zoom-in). Cross-modal mixup maps
embeddings from two disjoint modalities to a common middle ground, and the corresponding image, text and image+text
embeddings are well clustered after 40 epochs of training (right).

ject localization, text-guided visual reasoning and multi-
modal retrieval (See Fig. 2).

Overcoming Modality Gap with
Cross-Modal Mixup

A typical vision-language pretraining framework with con-
trastive objective employs batch-dependent InfoNCE (Oord,
Li, and Vinyals 2018) that pulls positive {image, text} pairs
together and pushes others apart. We state this image text
contrastive (ITC) loss as

LITC = ctr(F(I),F(T )), (1)
where ctr(A,B) = (NCE(A,B) + NCE(B,A))/2 em-
ploys the generic InfoNCE formulation, NCE(l, r), with
the right term (r) being the EMA (exponential moving av-
erage) model output in our setting. F(X) refers to the final
transformer hidden state, and I, T stands for image and text
respectively.

This formulation works well in two-tower settings
(Fig. 1a, 1b) with separate modality-specific encoders (Rad-
ford et al. 2021; Li et al. 2021), but we have observed train-
ing failure for a generic single-tower model (Fig. 1d, Tab.
1). Visualization of the representation space in Fig. 4a indi-
cates the presence of a severe modality gap, as visual signals
and linguistic symbols are significantly dissimilar. Hence,
the model fails to blend these two distant modalities in a
unified representation space, being unable to encode posi-
tive {image, text} pair close together.

Cross-Modal Mixup
Mixup (Zhang et al. 2017) was originally introduced in
the vision community as a data-augmentation routine that
improves classification performance, model robustness and
generalization by extending the training data distribution
with linear interpolation. Recently, a concurrent work (Hao
et al. 2022) has incorporated mixup into VLP in a simi-
lar spirit, applying mixup augmentation within each modal-
ity separately. Different from this, we boldly apply mixup

Imagenet 0-shot Top-1 Acc. Top-5 Acc.
ITC 1.65 5.25
ITC (two heads) 17.46 35.32
ITC + XMC 22.12 42.12
ITC + XMC + CIC 22.86 42.88
ITC + CMC 23.70 43.15

Table 1: Zero-shot Imagenet (Deng et al. 2009) evaluations.
Note that all models are one tower except for the second row.
Adding XMC enables one tower contrastive learning, and
enforcing modality-blind token attentions further improves
the performance. Masked modeling is included in all abla-
tion models.

across modality, not as a means to augment the training data
but as a projection to map image and text embeddings to
a common middle ground. We find it to be an extremely
simple yet effective starting point to evade the image-text
modality gap, from which the traditional contrastive learn-
ing successfully guides the model for instance discrimina-
tion. The formal definition of our cross-modal mixup con-
strastive (XMC) loss can be stated as

LXMC = ctr(
F(I) + F(T )

2
,
F(I) + F(T )

2
), (2)

where we use an online model and its momentum (EMA)
counterpart for feature extraction in practice1. This straight-
forward approach to mitigate modality gap works surpris-
ingly well, blending representations from the two distant
modalities into a single embedding space successfully and
thereby stabilizing training. Full quantitative evaluations are
presented in Tab. 6.

1Note that ctr by definition in Eq. (2) uses two separate feature
extractors (online and EMA) symmetrically.
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Towards Modality-Agnostic Representations
In the previous section, we have identified modality gap as
the primary obstacle for learning a unified vision-language
representation space, and proposed XMC loss to reconcile
the distant modalities. Stepping further, under the hypothe-
sis that paired image and text contain similar information, a
modality-agnostic representation should depend only on the
content of the underlying information, not the modality (for-
mat; text or image) it is expressed in. In other words, the final
embedding should be similar whether it uses image or text as
the context (i.e., key and value in self-attention). To enforce
such behavior, we devise Contextual Invariance Contrastive
(CIC) loss and incorporate it into our framework.

Contextual Modality Invariance
The high level idea is to encourage the model representa-
tion from an image context to be close to that from the text
context. Specifically, from a pair, we choose either the im-
age or the text to be the query. Then, at one side, we use
image tokens for key and value, while on the other side, we
use the text tokens. CIC penalizes the distance between the
final representations from each side, guiding the model to
extract similar information regardless of the modality of the
context. Combining it with XMC in Eq. (2), the formal def-
inition becomes

LCIC = ctr(
F(I|T ) + F(T |I)

2
,
F(I|I) + F(T |T )

2
), (3)

where F(X|Y ) refers to the final embedding of X (query)
given Y as the context (key and value). We note that F(X)
in Eq. (1) and Eq. (2) is an abbreviated expression equivalent
to F(X|X).

Contextual Mixup Contrast (CMC)
As apparent from Tab. 1, CIC improves overall performance
by encouraging the model to not only embed paired im-
age and text close together but also utilize information from
image and text tokens in a similar fashion from the lowest
level. To maximally leverage CIC’s generic information ag-
gregation capacity, we adapt our model for mixed modal-
ity input scenario. Formally, we replace the left contrastive
term in Eq. (3) with simple concatenation of {image, text}
(F(I, T )) and train the model to optimize Contextual Mixup
Contrastive (CMC) objective instead.

LCMC = ctr(F(I, T |I, T ), F(I|I) + F(T |T )
2

) (4)

This is a generalized form that further integrates XMC and
CIC, which explicitly guides the model to embed mixed
modality inputs to the unified V-L representation space af-
ter adequate integration of information from two different
modalities. We utilize this property for text-aided visual rea-
soning (Table 3) and multi-modal retrieval (Fig. 2). The
high-level idea is that the self-attention feature of concate-
nated input can be roughly decomposed to self-attention fea-
ture of each plus the cross-attention features, and the theo-
retical verification is provided in the supplementary.

Figure 5: Overview of OneR. Image-text contrastive and
contextual mixup contrastive objective provide guidance in
parallel with masked modeling for three input types: image,
language and multi-modal (image+text).

Method Formulation
ITC F(I) F(T )
XMC (F(I) + F(T ))/2 (F(I) + F(T ))/2
CIC (F(I|T ) + F(T |I))/2 (F(I) + F(T ))/2
CMC F(I, T |I, T ) (F(I) + F(T ))/2

Table 2: Summary of the contrastive objectives.

One Representation (OneR)
Fig. 5 illustrates the overall pipeline of OneR. Model input
can be one of image, text or image+text, and CMC objective
in Eq. (4) is combined with the traditional image-text con-
trastive (ITC) loss. Masked modeling is also carried out for
all three input types (i.e., image, text and multi-modal). Our
framework employs no modality-specific architectural com-
ponent except for the initial token embedding layer, making
our model generic and modality-agnostic with minimal in-
ductive bias. Tab. 2 summarizes the overall formulations.

Experiments
Training Setup
Datasets Following prior works (Li et al. 2021; Yang et al.
2022; Gan et al. 2020), we train OneR on the combination
of CC3M (Sharma et al. 2018), SBU Captions (Ordonez,
Kulkarni, and Berg 2011), Visual Genome (Krishna et al.
2017) and COCO (Lin et al. 2014), which sums up to 4M im-
ages and 5.1M image-text pairs. Ablation models are trained
on CC3M.
Implementation Details We adopt the model architecture
of Masked AutoEncoder (He et al. 2022) with BERT (De-
vlin et al. 2018) word embeddings and language modeling
head. Unlike most prior works on VLP, we initialize our en-
tire model from scratch, as neither ViT nor BERT suits our
goal towards a unified VL representation space 2. 1D and 2D

2Two-legged models typically initialize their encoders with a
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Figure 6: Qualitative evaluation for object-level scene understanding. We simply compute token similarities for OneR, and
Grad-CAM is used for CLIP and ALBEF. It is visually apparent that OneR correctly associates low-level visual signals to its
corresponding language symbol, resulting in segmentation-map-like patch similarity maps.

Bootstrapped Guidance INet 0-shot CIFAR100 0-shot
top-1 top-5 top-1 top-5

OneR (4M) 27.33 50.17 31.45 57.52
OneR-B (4M) 28.00 50.69 32.23 58.24

Table 3: Evaluation with bootstrapped language guidance.
We can feed predicted class labels in simple concatenation
to the input image to further improve accuracy. Note that
this is not possible with two-tower or two-leg models, as the
former does not accept mixture inputs and the latter forms a
separate feature space after fusion, forbidding the similarity
operation.

sinusoidal positional embeddings are added to text and im-
age respectively, and a single [CLS] token is prepended to
all three input types. Special modality indicator tokens (e.g.,
[SEP] or [SEG]) are further removed from typical one
tower baselines in order to train a fully modality-agnostic
representation learner. We train our model with 32 A100
GPUs for 40 epochs under PyTorch framework. Details on
hyperparameters are listed in the supplementary.

Properties of One Representation
Zero-shot Localization Conventional vision-language
transformers typically rely on [CLS] cross-attention map
or Grad-CAM (Selvaraju et al. 2017) for visualization.
However, the former attributes the global semantics to each

pretrained ViT and a pretrained language model such as BERT,
which makes the training much simpler.

Cross-modal Transfer Arch. INet MS COCO
Acc. TR@1 IR@1

SBU two heads 7.28 8.88 5.73
one tower 6.49 8.60 5.77

SBU + CC3M caption two heads 8.59 10.41 6.87
one tower 8.54 11.31 7.20

Gain two heads 1.31 1.53 1.14
one tower 2.07 2.71 1.43

Table 4: Cross-modal knowledge transfer. Under a unified
representation space, additional training in one modality
benefits performance in the other modality with bigger mar-
gins. TR and IR is for text and image retrieval, respectively.

local region, rendering it unsuitable for complex scene
understanding such as multi-class localization (Fig. 2),
while the latter requires a separately devised procedure that
involves back propagation. One of the most distinguished
qualities of OneR is its natural proficiency for object
localization. Throughout the paper, we simply compute the
cosine similarities between image patch embeddings and
the average-pooled text embedding for visualization. This is
possible only because OneR maps both visual and textual
information to a unified embedding space where their
feature similarity correctly indicates the semantic relevance.
Otherwise, the token level similarity map conveys no
meaningful information, as illustrated in Fig. 3.

We present qualitative comparison on zero-shot local-
ization with two competitive baselines, CLIP and ALBEF,
where Grad-CAM is used for their visualizations as it yields
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Method Architecture Pre. #Images
Zero-shot MS-COCO (5K) Fine-tuned MS-COCO (5K)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

ImageBert† One Tower O 6M 44.0 71.2 32.3 59.0 66.4 89.8 50.5 78.7
ViLT One Tower O 4M 56.5 82.6 40.4 70.0 61.5 86.3 42.7 72.9
Uni-Perceiver One Tower X 44.3M 57.7 85.6 46.3 75.0 64.7 87.8 48.3 75.9
OneR One Tower X 4M 62.9 86.3 47.0 74.7 66.1 87.8 48.3 76.0
CLIP Two Towers X 400M 58.4 81.5 37.8 62.4 - - - -
FLAVA Two Legs O 70M 42.7 76.8 38.4 67.5 - - - -
ALBEF Two Legs O 4M 68.7 89.5 50.1 76.4 73.1 91.4 56.8 81.5
TCL Two Legs O 4M 71.4 90.8 53.5 79.0 75.6 92.8 59.0 83.2

Table 5: Quantitative evaluations on COCO image and text retrieval. Two-legs models generally perform better as they have
modality-specific encoders and more parameters. Note that previous vision-language models typically initialize their weights
from a pretrained model such as Imagenet ViT or Bert to help training (Pre.). OneR, on the other hand, achieves the best zero-
shot performance among one-tower models without any initialization prior, and compares on par after fine-tuning. † indicates
the use of an additional object detection module.

the best output. Looking at Fig. 6, we can see that Grad-
CAM of ALBEF better captures the spatial details compared
to CLIP, but OneR has the most fine-grained visual reason-
ing, resulting in almost segmentation-map-like patch simi-
larity maps. This clearly shows that OneR has the capacity
to relate low-level visual signals to their corresponding lin-
guistic concepts in a unified vision-language representation
space.
Text-guided Visual Reasoning As illustrated in Fig. 2,
OneR’s ability to understand image+text mixture input
opens up possibilities for diverse forms of multi-modal rea-
soning. For example, we can simply concatenate additional
text to the image input sequence to guide its visual represen-
tation, which can be particularly useful in a complex scene
understanding setting where an image contains more than
one dominant semantic. In such cases, we can tell the model
where to focus to suit our goals. We provide quantitative re-
sults to further demonstrate this property in Table 3, where
we bootstrap with language guidance to improve zero-shot
classification accuracy. Specifically, for each image, we re-
trieve top-10 class labels upon embedding similarity. Then
we concatenate each to the image sequence and compute
similarity once more, similar to sample re-ranking. The intu-
ition is that when image+text input is given, image patches
that attend strongly to the text label are strengthened by the
attention mechanism, resulting in clearer representations.
We note that we do not provide any external guidance during
this procedure, which makes these gains essentially free.
Cross-modal Knowledge Transfer We hypothesize that
under a unified vision-language representation space, addi-
tional training on one modality should benefit performance
in the other modality. Table 4 validates our conjectures,
as additional training with language data results in greater
gains for the unified one-tower model. This could indicate
better scalability of one-tower models, as there is much more
single-modality data available than image-text pairs in the
web, which we leave for future works.

Quantitative Evaluations
Table 5 shows the quantitative comparison with state-of-the-
art methods on widely used image-text retrieval benchmark.

Method INet MS-COCO
Acc. TR@1 TR@5 IR@1 IR@5

CLIP 17.1 15.0 34.8 10.9 26.7
SLIP 23.0 21.7 45.1 15.6 35.2
ITC (two heads) 17.5 10.4 26.8 10.7 26.4
ITC 1.6 0.8 2.5 0.7 2.2
+ XMC 22.1 25.2 48.1 15.2 33.6
+ XMC + CIC 22.9 25.4 48.1 16.3 35.5
+ CMC (OneR) 23.7 25.5 48.2 16.9 36.9

Table 6: Method ablation. Our proposed components con-
sistently improve the performance, with the final CMC out-
performing the two-tower baseline that uses more parame-
ters and intra-modal contrastive loss. Additional ablations
are presented in the supplementary.

Models with modality-specific encoders typically show bet-
ter performance as they have more parameters and archi-
tectural inductive bias. Among one-tower baselines, OneR
shows the best zero-shot performance, sometimes with sig-
nificant margins. We note that OneR achieves such compe-
tent outcome without any initialization prior commonly used
in the literature. This shows that vision and language modal-
ities can be effectively encoded in a single representation
space with minimal inductive bias, once the aforementioned
obstacle (i.e., innate modality gap) is overcome.

In Table 6, we present full ablations for our framework.
Naive ITC with one tower fails due to the modality gap, and
adding modality-specific projectors can be the minimal ar-
chitectural modification that works, but still lags behind our
method. CMC combines XMC and CIC into a concise for-
mulation, which is explained further in the supplementary,
resulting in the best performance that surpasses competent
two-tower baselines.

Visual Reasoning Analysis
We further analyze the visual reasoning mechanism of OneR
to provide insights into the properties of unified vision-
language representation space.
Robustness Fig. 7 shows an example of how OneR recog-
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Figure 7: As OneR learns to associate low-level visual sig-
nals to the language, it shows robust visual reasoning even
with a relatively small pretraining dataset. Above, OneR ro-
bustly recognizes bicycle from different visual clues (e.g.,
handles, wheels or the body).

nizes an object (bicycle, in this case) with different visual
clues. OneR recognizes a bicycle even from partial images
of handles or wheels, which we believe is key to its robust-
ness in visual understanding. We present additional results
in the supplementary materials, including inference in unfa-
miliar domains.
Multi-level vision-language connection Looking at Fig. 8,
OneR recognizes the moon as being visually similar to ba-
nana in terms of embedding similarity, while ALBEF con-
denses the global semantic in [CLS], resulting in a ran-
domly scattered Grad-CAM. Although this can be viewed
as a failure case of OneR, it reveals how OneR perceives the
visual signals. On the right, we can see that zebra and gi-
raffe are visually similar, and their definitions contain simi-
lar phrases such as ‘an African mammal’, resulting in some
overlaps in the two similarity maps. However, after abstract-
ing the linguistic semantics, the model correctly identifies
each, which shows its ability to process high-level seman-
tics as well. Overall, OneR learns both low-level and high-
level vision-language connections, making it a competent
modality-agnostic representation learner.

Related Works
Vision-Language Pretraining CLIP (Radford et al. 2021)
first demonstrated the effectiveness of large-scale vision-
language contrastive learning. ALIGN (Jia et al. 2021)
scaled up the training with noisy alt-text pair data. Another
line of works (Li et al. 2020b,a; Chen et al. 2020b; Gan et al.
2020; Kim, Son, and Kim 2021) leveraged an off-the-shelf
object detector to extract visual concepts first, which were
then used to train the multi-modal transformer. In an attempt
to learn cross-modal interactions, ALBEF (Li et al. 2021),
TCL (Yang et al. 2022), FLAVA (Singh et al. 2022), and Flo-
rence (Yuan et al. 2021) adopted multi-modal fusion layers
on top of modality-specific transformer encoders. Another
group of works (Li et al. 2022; Yu et al. 2022; Wang et al.
2021b; Mokady, Hertz, and Bermano 2021) explored gener-
ative modeling, typically in the form of image captioning, to

Figure 8: (left) Patch embedding similarity (OneR) and
Grad-Cam (ALBEF). (right) Patch embedding similarity
map w.r.t. definitions of zebra and giraffe.

further improve performances on challenging tasks such as
visual question answering.
Unified VL Framework Uni-Perceiver (Zhu et al. 2022)
adopted a single-tower transformer architecture to tackle dif-
ferent V-L tasks in a unified manner. Unified-IO (Lu et al.
2022) further used a pretrained VQ-VAE to model a wide
range of tasks with a generic sequence-to-sequence frame-
work. These works have demonstrated promising direction
towards a unified perception system, but the fact that they
employ multi-task pretraining strategy renders them less
scalable compared to CLIP or ALIGN. UFO (Wang et al.
2021a) has shown that a single transformer model suffices
for typical VLP when combined with two modality-specific
projectors. LIMoE (Mustafa et al. 2022), a concurrent work
of ours, also explores single-tower (two heads) VLP but with
a new set of inductive biases, i.e., mixture of experts. OneR,
in contrast, learns a common embedding space without any
modality-specific components, which empowers the model
with unique capabilities previously demonstrated.
Self-supervised Learning Self-supervised learning first
bloomed in the NLP domain as masked language model-
ing (MLM) and language modeling (LM) enabled pretrain-
ing large language models with huge stock of unlabeled text
corpus (Devlin et al. 2018; Radford et al. 2018; Lewis et al.
2019; Liu et al. 2019). In the vision community, contrastive
learning has led the rise of SSL. MoCo (He et al. 2020) and
SimCLR (Chen et al. 2020a) are the pioneers to demonstrate
the potential of contrastive representation learning, which
we adapt for VLP setting. BYOL (Grill et al. 2020) and Sim-
Siam (Chen and He 2021) explored new settings with no
negative samples that mitigate the batch size dependency.
Recent works (Caron et al. 2021; Chen, Xie, and He 2021;
Jang et al. 2021) actively employ ViT (Dosovitskiy et al.
2020) to improve the performance and discover new proper-
ties. This architecture is also widely used in VLP as it can
model data from different modalities in an integrated man-
ner.

Conclusion
Modality-agnostic representation learning is a meaningful
step towards a generic perceptual agent that understands
the environment in a similar way as humans do. In this
work, we explore the difficulties of unifying modalities
into a single representation space, and introduce OneR
as a generic framework that shows unique qualities as a
modality-agnostic representation learner.
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