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Abstract
The Uniform Information Density (UID) prin-001
ciple posits that humans prefer to spread002
information evenly during language produc-003
tion. We examine if this UID principle can004
help capture differences between Large Lan-005
guage Models (LLMs)-generated and human-006
generated texts. We propose GPT-who,007
the first psycholinguistically-aware multi-class008
domain-agnostic statistical detector. This de-009
tector employs UID-based features to model010
the unique statistical signature of each LLM011
and human author for accurate authorship at-012
tribution. We evaluate our method using 4013
large-scale benchmark datasets and find that014
GPT-who outperforms state-of-the-art detec-015
tors (both statistical- & non-statistical) such016
as GLTR, GPTZero, DetectGPT, OpenAI de-017
tector, and ZeroGPT by over 20% across do-018
mains. In addition to superior performance,019
it is computationally inexpensive and utilizes020
an interpretable representation of text arti-021
cles. We find that GPT-who can distinguish022
texts generated by very sophisticated LLMs,023
even when the overlying text is indiscernible.024
UID-based measures for all datasets and code025
are available at https://anonymous.4open.026
science/r/gpt-who-03F8/.027

1 Introduction028

The recent ubiquity of Large Language Models029

(LLMs) has led to more assessments of their po-030

tential risks. These risks include its capability031

to generate misinformation (Zellers et al., 2019;032

Uchendu et al., 2020), memorized content (Car-033

lini et al., 2021), plagiarized content (Lee et al.,034

2023), toxic speech (Deshpande et al., 2023), and035

hallucinated content (Ji et al., 2023; Shevlane et al.,036

2023). To mitigate these issues, researchers have037

proposed automatic and human-based approaches038

to distinguish LLM-generated texts (i.e., machine-039

generated) from human-written texts (Zellers et al.,040

2019; Pu et al., 2022; Uchendu et al., 2023;041

Mitchell et al., 2023).042

Billionaire investor 
Bill Ackman recently suffered a
massive blow, as his holdings

in Valeant Pharmaceuticals and
Herbalife plummeted.

 During Pershing Square’s second
quarter call, Ackman said that results

for his various funds fell
between 14 percent and 18 percent.
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Figure 1: GPT-who leverages psycholinguistically mo-
tivated representations that capture authors’ information
signatures distinctly, even when the corresponding text
is indiscernible.

Automatically detecting machine-generated 043

texts occurs in two settings- Turing Test (TT) which 044

is the binary detection of human vs. machine; and 045

Authorship Attribution (AA) which is the multi- 046

class detection of human vs. several machines (e.g., 047

GPT-3.5 vs. LLaMA vs. Falcon) (Uchendu et al., 048

2021). While the TT problem is more rigorously 049

studied, due to the wide usage of different LLMs, 050

in the future, it will be imperative to build models 051

for the AA tasks to determine which LLMs are 052

more likely to be misused. This knowledge will 053

be needed by policymakers when they inevitably 054

institute laws to guard the usage of LLMs. 055

To that end, we propose GPT-who, the first 056

psycholinguistically-aware supervised domain- 057

agnostic task-independent multi-class statistical- 058

based detector. GPT-who calculates interpretable 059

Uniform Information Density (UID) based features 060

from the statistical distribution of a piece of text 061

and automatically learns the threshold (using Lo- 062

gistic Regression) between different authors. 063

To showcase the detection capabilities of GPT- 064

who, we use 4 large LLM benchmark datasets: Tur- 065

ingBench (Uchendu et al., 2021), GPABenchmark 066

(Liu et al., 2023b), ArguGPT (Liu et al., 2023a), 067

and Deepfake Text in-the-wild (Li et al., 2023). We 068
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find that GPT-who remarkably outperforms state-069

of-the-art statistical detectors and is at par with task070

and domain-specific fine-tuned LMs for authorship071

attribution. This performative gain is consistent072

across benchmark datasets, types of LLMs, writing073

tasks, and domains.074

It is even more remarkable that this performa-075

tive gain is accompanied by two essential factors:076

First, GPT-who is computationally inexpensive as077

it eliminates the need for any LLM fine-tuning.078

It utilizes a freely available off-the-shelf LM to079

compute token probabilities, followed by logistic080

regression using a small set of carefully crafted081

and theoretically motivated UID features. Second,082

GPT-who provides a means to interpret and un-083

derstand its prediction behaviors due to the rich084

feature space it learns from. UID-based features en-085

able observable distinctions in the surprisal patterns086

of texts, which help in understanding GPT-who’s087

decision-making on authorship (Figure 1).088

We also analyze the UID distributions of dif-089

ferent LLMs and human-generated texts across090

all datasets and find that humans distribute infor-091

mation more unevenly and diversely than mod-092

els. In addition, UID features are reflective of093

differences in LLM architectures or families such094

that models that share architectures have similar095

UID distributions within but not outside their cat-096

egory. We find that UID-based features are a con-097

sistent predictor of authorship. Even when there098

aren’t glaring differences between uniform and099

non-uniform text, the differences in UID distribu-100

tions are easily detectable and a powerful predic-101

tor of authorship, since they successfully capture102

patterns that go beyond the lexical, semantic, or103

syntactic properties of text. Our work indicates104

that psycholinguistically-inspired tools can hold105

their ground in the age of LLMs and a simpler106

theoretically-motivated approach can outperform107

complex and expensive uninterpretable black-box108

approaches for machine text detection.109

2 Related Work110

2.1 Uniform Information Density (UID)111

Shannon’s Information Theory states that informa-112

tion exchange is optimized when information trav-113

els across the (noisy) channel at a uniform rate114

(Shannon, 1948). For language production, this115

uniform rate of information content is the basis of116

the UID hypothesis that posits that humans prefer117

to spread information evenly, avoiding sharp and118

sudden peaks and troughs in the amount of informa- 119

tion conveyed per linguistic unit. The information 120

content or “surprisal” of a word is inversely pro- 121

portional to its probability in a given context. Less 122

predictable words have more surprisal while highly 123

predictable words convey lower information. 124

UID in human language production has been 125

studied by measuring the amount of information 126

content per linguistic unit (sentence length/number 127

of words) or by studying any sudden changes in sur- 128

prisal at the onset of a word or sentential element 129

(Xu and Reitter, 2016; Jaeger and Levy, 2007). A 130

rich body of work in psycholinguistics has led to 131

the finding that, in language production, humans try 132

to spread information content or surprisal evenly 133

and maintain UID through their lexical, syntac- 134

tic, phonological, and semantic choices (Frank and 135

Jaeger, 2008; Xu and Reitter, 2018; Jaeger, 2010; 136

Mahowald et al., 2013; Tily and Piantadosi, 2009). 137

2.2 Machine-Generated Text Detection 138

Large Language Models (LLMs) such as GPT-3.5, 139

GPT-4 (OpenAI, 2023), LLaMA (Touvron et al., 140

2023), Falcon (Penedo et al., 2023), have the capac- 141

ity to generate human-like-quality texts, which can 142

be easily construed as human-written (Sadasivan 143

et al., 2023; Chakraborty et al., 2023; Zhao et al., 144

2023). However, while such LLMs are remarkable, 145

it, therefore, makes them susceptible to malicious 146

use. These include the generation of toxic and 147

harmful content, like misinformation and terrorism 148

recruitment (Shevlane et al., 2023; Zellers et al., 149

2019; Uchendu et al., 2021). Due to such potential 150

for misuse, we must develop techniques to distin- 151

guish human-written texts from LLM-generated 152

ones to mitigate these risks. 153

To mitigate this potential for misuse of LLMs, 154

researchers have developed several types of au- 155

tomatic detectors. These techniques include su- 156

pervised (Uchendu et al., 2021; Zellers et al., 157

2019; Uchendu et al., 2020; Zhong et al., 2020; 158

Kushnareva et al., 2021; Liu et al., 2022) and un- 159

supervised approaches (Gehrmann et al., 2019; 160

Mitchell et al., 2023; Gallé et al., 2021; He et al., 161

2023; Su et al., 2023). These supervised ap- 162

proaches tend to be stylometric-, deep learning- 163

and ensemble-based models while most unsuper- 164

vised approaches are statistical-based detectors 165

(Uchendu et al., 2023; Yang et al., 2023). 166

More recently, due to the increased ubiquity of 167

LLMs, we need more interpretable, and less deep 168

learning-based models. Deep learning models have 169
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been shown to be the most susceptible to adversar-170

ial perturbations than others (Pu et al., 2022). To171

that end, we propose the first supervised statistical-172

based technique, that calculates UID-based features173

of a given text and uses a classical machine learning174

model to automatically decide thresholds.175

3 Our Proposal: GPT-who176

We propose a psycholinguistically-motivated177

statistical-based machine-generated text detector178

GPT-who that uses a GPT-based language model179

to predict who the author of an article is. GPT-180

who works by exploiting a densely information-181

rich feature space motivated by the UID principle.182

UID-based representations are sensitive to intri-183

cate “fluctuations” as well as “smoothness” in the184

text. Specifically, operationalizations of UID are185

aimed at capturing the evenness or smoothness of186

the distribution of surprisal per linguistic unit (to-187

kens, words), as stated by the UID principle. For188

example, in Figure 2, we show sequences of to-189

kens that correspond to the highest and lowest UID190

score spans within an article. Here, the differences191

between the two segments of texts might not be192

obvious at the linguistic level to a reader, but when193

mapped to their surprisal distributions, the two seg-194

ments have noticeably distinct surprisal spreads as195

can be seen by the peaks and troughs i.e. variance196

of token surprisals along the y-axis about the mean197

(dotted line). Most approximations of this notion198

of “smoothness” of information spread and UID,199

thus, formulate it as the variance of surprisal or as200

a measure of the difference of surprisals between201

consecutive linguistic units (Jain et al., 2018; Meis-202

ter et al., 2020; Wei et al., 2021; Venkatraman et al.,203

2023).204

In measuring the distribution of surprisal of to-205

kens, UID-based features can capture and amplify206

subtle information distribution patterns that consti-207

tute distinct information profiles of authors. Using208

just an off-the-shelf language model to calculate209

UID-based features, GPT-who learns to predict au-210

thorship by means of a simple classifier using UID211

representations. In addition, as these features can212

be directly mapped to their linguistic token equiva-213

lents, GPT-who offers a more interpretable repre-214

sentation of its detection behavior, unlike current215

black-box statistical detectors, as illustrated in Fig-216

ure 2. The use of a psycholinguistically motivated217

representation also enables us to better interpret218

the resulting representation space. It can capture219

"Every coin has two sides "and it
is also the case to the problem whether children should

be taught to compete or to cooperate
 ………. It is better to have 

a child who is competitive and cooperative at the same time,
rather than having him compete and cooperate at different times in his life.

Figure 2: An example of UID span feature extraction
that selects the most uniform and non-uniform segments
from the token surprisal sequence. As can be seen in this
example, two texts that read well can have very different
underlying information density distributions in a given
context. UID features capture these hidden statistical
distinctions that are not apparent in their textual form.

surprisal distributions indicative of and commonly 220

occurring in human-written or machine-generated 221

text. GPT-who is one of the first text detectors 222

that focus on informing a simple classifier with 223

theoretically motivated and intuitive features, as it 224

only requires a fixed-length UID-based representa- 225

tion of length 44 and learns to predict authorship 226

based on just these features, without the need for 227

the full text or any LM fine-tuning in the process 228

(See GPT-who’s complete pipeline in Figure 3). 229

3.1 UID-based features 230

We use the 3 most widely used measures of UID 231

scores as defined in previous works (Jain et al., 232

2018; Meister et al., 2020; Wei et al., 2021; Venka- 233

traman et al., 2023) as follows: We first obtain the 234

conditional probability p of each token (yt) in an 235

article using a pre-trained LM (GPT2-XL). The 236

surprisal (u) of a token yt is, 237

u(yt) = − log(p(y|y < t)), (1) 238

for t ≥ 1 where y0 =< BOS >, and t = time step. 239

The lower the probability of a token, the higher 240

its surprisal and vice-versa. Thus, surprisal indi- 241

cates how unexpected a token is in a given context. 242

1. Mean Surprisal (µ) of an article (y) defined 243
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Figure 3: GPT-who uses token probabilities of articles to extract UID-based features. A classifier then learns to
map UID features to different authors, and identify the author of a new unseen article.

as follow:244

µ(y) =
1

|y|
∑
t

(u(yt)) (2)245

2. UID (V ariance) score or global UID score246

of an article (y) is calculated as the normalized247

variance of the surprisal:248

UID(y) =
1

|y|
∑
t

(u(yt)− µ)2 (3)249

From this formulation, a perfectly uniform250

article would have the same surprisal at every251

token and hence 0 UID (variance) score.252

3. UID (Difference) score or local UID score253

of an article (y) is calculated as the average254

of the difference in surprisals of every two255

consecutive tokens µ(yt−1) and µ(yt) :256

UID(y) =
1

|y| − 1

|y|∑
t=2

|µ (yt)− µ (yt−1)|

(4)

257

4. UID (Difference2) score is defined as the258

average of the squared difference in surprisals259

of every two consecutive tokens µ(yt−1) and260

µ(yt) :261

UID(y) =
1

|y| − 1

|y|∑
n=2

(µ (yt)− µ (yt−1))
2

(5)

262

From this formulation, both local measures of263

UID capture any sudden bursts of unevenness264

in how information is dispersed in consecutive265

tokens of the articles.266

Maximum and minimum UID spans In addi- 267

tion to previously used approximations of UID, we 268

also craft a new set of features using the most and 269

least uniform segments of an article. Our intuition 270

for this feature is to focus on the extremities of 271

the UID distribution in an article, as the most and 272

least uniform spans would be the most expressive 273

and distinct sequences from a UID perspective. All 274

other spans or segments in an article necessarily 275

lie in between these two extremities. Thus taking 276

account of these two spans would ensure coverage 277

of the whole range of surprisal fluctuations within 278

an article. Thus, for each article, we calculate UID 279

(variance) scores for all spans of consecutive tokens 280

of a fixed length using a sliding window approach. 281

We tuned this window size and found that a window 282

size of 20 tokens per span sufficiently represented 283

an article’s UID range. We also experimented with 284

randomly drawn and re-ordered spans and found 285

that random features did not contribute to task per- 286

formance (see Table 1 for ablation study results). 287

We use the surprisal values corresponding to the 288

highest and lowest UID scoring span as additional 289

features and obtain fixed length UID features of 290

length 44 for each article. 291

4 Empirical Validation 292

We use Meister et al. (2021)’s implementation 293

of UID-based scores1 and use the publicly avail- 294

able off-the-shelf pre-trained GPT2-XL language 295

model2 to obtain conditional probabilities. For all 296

our experiments, we calculate the UID features 297

for the publically released train and test splits of 298

1https://github.com/rycolab/revisiting-uid/
tree/main

2https://huggingface.co/gpt2-xl
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Random No Spans
Min + Max UID spans

Span Length (N) UID spans N=4 N=10 N=15 N=20 N=30

GPT-1 0.75 0.76 0.99 0.99 0.98 1.00 0.99
GPT-2_small 0.62 0.64 0.75 0.82 0.88 0.88 0.85
GPT-2_medium 0.63 0.63 0.73 0.80 0.88 0.87 0.84
GPT-2_large 0.65 0.62 0.73 0.79 0.88 0.88 0.83
GPT-2_xl 0.65 0.61 0.72 0.80 0.88 0.89 0.85
GPT-2_PyTorch 0.55 0.64 0.83 0.84 0.87 0.85 0.86
GPT-3 0.63 0.69 0.71 0.73 0.77 0.84 0.74
GROVER_base 0.63 0.65 0.76 0.77 0.79 0.81 0.78
GROVER_large 0.59 0.60 0.71 0.71 0.73 0.75 0.72
GROVER_mega 0.55 0.56 0.67 0.67 0.68 0.72 0.67
CTRL 0.79 0.83 0.99 0.98 0.98 0.99 0.98
XLM 0.62 0.69 0.96 0.96 0.96 0.99 0.96
XLNET_base 0.62 0.71 0.95 0.97 0.98 0.98 0.99
XLNET_large 0.49 0.70 0.99 0.99 0.99 1.00 0.99
FAIR_wmt19 0.54 0.57 0.74 0.75 0.78 0.74 0.76
Fair_wmt20 0.62 0.63 0.72 0.75 0.88 1.00 0.89
TRANSFO_XL 0.70 0.70 0.79 0.80 0.83 0.79 0.84
PPLM_distil 0.57 0.62 0.92 0.91 0.93 0.95 0.93
PPLM_gpt2 0.54 0.58 0.88 0.88 0.90 0.89 0.88

TuringBench (Avg F1) 0.62 0.65 0.82 0.84 0.87 0.88 0.86

InTheWild (Avg F1) 0.72 0.75 0.79 0.83 0.86 0.88 0.87

Table 1: Max. & Min. UID spans ablation study: Setting a span length of N=20 tokens maximized performance
across large-scale datasets (N>30 leads to subsequently lower and eventually consistent performance). It can be seen
that our min/max features tremendously impact performance against randomly sampled or no span features at all.

all datasets. We train a logistic regression model3299

using these features on the train splits and report300

performance on the test splits. We replicate all the301

original evaluation settings and metrics for each of302

the datasets (except one setting from the ArguGPT303

(Liu et al., 2023a) dataset that required access to304

unreleased human evaluation data). We do this305

to be able to directly compare the performance of306

GPT-who with current state-of-the-art detection307

methods reported so far.308

4.1 Datasets309

To test the applicability of GPT-who across text310

detection tasks, we run all experiments across 4311

large-scale and very recent datasets that span over312

15 domains and 35 recent LMs.313

TuringBench Benchmark (Uchendu et al., 2021)314

dataset is the largest multi-class authorship attribu-315

tion dataset that contains over 168k news articles316

generated by 19 neural text generators using 10K317

prompts from CNN and the Washington Post.318

3https://scikit-learn.org/stable/

GPABenchmark (Liu et al., 2023b) or GPT 319

Corpus for Academia is a multi-domain (Com- 320

puter Science (CS), Humanities and Social Sci- 321

ences (HSS) and Physics (PHX)) academic articles 322

dataset aimed at helping detection of LLM use or 323

misuse in academic writing. It contains 150k hu- 324

man and 450k ChatGPT-generated articles for 3 325

task settings (completion, writing, and polishing). 326

ArguGPT (Liu et al., 2023a) is a prompt- 327

balanced dataset of argumentative essays contain- 328

ing over 4k human-written essays and 4k articles 329

generated by 7 recent LLMs (including many vari- 330

ants of ChatGPT) using prompts from English 331

datasets such as TOEFL11 (Blanchard et al., 2013) 332

and WECCL (Wen et al., 2005) datasets. 333

“InTheWild” Deepfake Text Detection in the 334

Wild (Li et al., 2023) dataset is, to our knowl- 335

edge, the largest text detection dataset consist- 336

ing of over 447k human-written and machine- 337

generated texts from 10 tasks such as story gen- 338

eration, news article writing, and academic writing. 339

They use 27 recent LLMs such as GPT-3.5, FLAN- 340
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Figure 4: Distribution of UID Scores of 20 authors from the TuringBench dataset grouped (dotted line) by
architecture type. LMs that share architectures tend to distribute UID scores similarly.

T5, and LLaMA. We refer to this dataset as the341

“InTheWild” dataset going forward for brevity.342

4.2 Baselines & Detectors343

We compare our proposed method against the344

following: DetectGPT 4 (Mitchell et al., 2023),345

GLTR5 (Gehrmann et al., 2019), an open-source346

implementation6 of GPTZero (Tian and Cui, 2023),347

ZeroGPT (zer, 2023), OpenAI’s detector (Solaiman348

et al., 2019), Li et al. (2023)’s LongFormer-based349

detector7 tuned for the InTheWild benchmark (we350

refer to this method as “ITW”), a stylometric de-351

tector8 (Abbasi and Chen, 2008) and fine-tuned352

BERT9 (Kenton and Toutanova, 2019). We are un-353

able to report results for exhaustively all methods354

across all datasets due to inherent inapplicability355

in certain task settings. For example, most SOTA356

text detectors cannot be applied to the ArguGPT357

dataset as it only contains text written by multiple358

machines, while most text detectors are designed to359

differentiate between human-written and machine-360

generated texts. Beyond such limitations, we have361

utilized all applicable methods for 4 benchmark362

datasets.363

4.3 UID Signatures of Authors364

Given that humans tend to optimize UID, we study365

if different models spread surprisal in ways that are366

distinguishable from each other and human-written367

4https://github.com/eric-mitchell/detect-gpt
5https://github.com/HendrikStrobelt/

detecting-fake-text
6https://github.com/BurhanUlTayyab/GPTZero
7https://github.com/yafuly/DeepfakeTextDetect
8https://github.com/shaoormunir/writeprints
9https://huggingface.co/docs/transformers/

training

text and if we can observe unique UID signatures 368

of different LM families. To this end, we plot the 369

UID score distributions of different text generators 370

across (see Figures 4, 5a, and 5b). We observe that, 371

generally, the UID scores of human-written text 372

have a higher mean and larger standard deviation 373

than most machine-written text across writing task 374

types, domains, and datasets. This implies that 375

human-written text tends to be more non-uniform 376

and diverse in comparison to machine-generated 377

text. Hence, machines seem to be spreading in- 378

formation more evenly or smoothly than humans 379

who are more likely to have fluctuations in their 380

surprisal distributions. Going a step further, if we 381

compare models to other models, we see that mod- 382

els that belong to the same LM family by architec- 383

ture tend to follow similar UID distribution. For 384

example, in Figure 4, the dotted lines separate LMs 385

by their architecture type and it can be seen, for 386

example, that all GPT-2 based models have similar 387

UID distributions, all Grover-based models have 388

similarities, but these groups are distinct from each 389

other. This indicates that UID-based features can 390

capture differences in text generated by not only 391

humans and models but also one step further to cap- 392

ture differences between individual and multiple 393

models and LM families. To our knowledge, this 394

is the first large-scale UID-based analysis of recent 395

machine and human-generated text across writing 396

tasks and domains. 397

4.4 Machine Text Detection Performance 398

Overall, GPT-who outperforms other statistical- 399

based detectors and is at par with transformers- 400

based fine-tuned methods for 2 out of 4 bench- 401

marks. For GPABenchmark (Table 2), across all 402
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Task Type Domain GPTZero ZeroGPT OpenAI Detector DetectGPT BERT ITW GPT-who

CS 0.30 0.67 0.81 0.58 0.99 0.98 0.99
PHX 0.25 0.68 0.70 0.54 0.99 0.98 0.98Task 1
HSS 0.72 0.92 0.63 0.57 0.99 0.96 0.98

CS 0.17 0.25 0.64 0.16 0.99 0.81 0.84
PHX 0.06 0.10 0.24 0.17 0.96 0.76 0.90Task 2
HSS 0.44 0.62 0.27 0.20 0.97 0.29 0.80

CS 0.02 0.03 0.06 0.03 0.97 0.38 0.63
PHX 0.02 0.03 0.04 0.05 0.97 0.31 0.75Task 3
HSS 0.20 0.25 0.06 0.06 0.99 0.08 0.62

Average F1 0.24 0.40 0.38 0.26 0.98 0.62 0.83

Table 2: Test Set Performance (F1 Scores) of different machine text detectors on the GPA Benchmark. Best
performance are in bold, and second best underlined.

Human v. GROVER GTLR GPTZero DetectGPT RoBERTa BERT ITW Stylometry GPT-who

GPT-1 0.58 0.47 0.47 0.51 0.98 0.95 0.92 0.99 1.00
GPT-2_small 0.57 0.51 0.51 0.51 0.71 0.75 0.47 0.75 0.88
GPT-2_medium 0.56 0.49 0.50 0.52 0.75 0.65 0.47 0.72 0.87
GPT-2_large 0.55 0.46 0.49 0.51 0.79 0.73 0.46 0.72 0.88
GPT-2_xl 0.55 0.45 0.51 0.51 0.78 0.79 0.45 0.73 0.89
GPT-2_PyTorch 0.57 0.72 0.50 0.52 0.84 0.99 0.47 0.83 0.85
GPT-3 0.57 0.35 0.47 0.52 0.52 0.79 0.48 0.72 0.84
GROVER_base 0.58 0.39 0.52 0.51 0.99 0.98 0.49 0.76 0.81
GROVER_large 0.54 0.41 0.47 0.52 0.99 0.98 0.52 0.71 0.75
GROVER_mega 0.51 0.42 0.42 0.51 0.94 0.97 0.53 0.68 0.72
CTRL 0.49 0.88 0.67 0.67 1.00 1.00 0.91 0.99 0.99
XLM 0.50 0.89 0.67 0.67 0.58 1.00 0.92 0.96 0.99
XLNET_base 0.58 0.75 0.51 0.67 0.79 0.99 0.84 0.95 0.98
XLNET_large 0.58 0.88 0.67 0.52 1.00 1.00 0.93 1.00 1.00
FAIR_wmt19 0.56 0.56 0.56 0.51 0.84 0.93 0.49 0.74 0.74
Fair_wmt20 0.58 0.49 0.50 0.51 0.45 0.47 0.47 0.73 1.00
TRANSFO_XL 0.58 0.35 0.49 0.52 0.96 0.97 0.81 0.79 0.79
PPLM_distil 0.59 0.64 0.52 0.67 0.90 0.88 0.51 0.92 0.95
PPLM_gpt2 0.58 0.68 0.51 0.51 0.90 0.89 0.49 0.88 0.89

Average F1 0.56 0.57 0.52 0.55 0.88 0.61 0.88 0.82 0.88

Table 3: Test Set Performance (F1 score) for TuringBench dataset. Overall, GPT-who outperforms both statistical
and supervised detectors, and is at part with BERT.

Detection Setting Testbed Type GPTZero GLTR DetectGPT BERT ITW GPT-who

In-distribution

Domain-specific Model-specific 0.65 0.94 0.92 0.98 0.97 0.93
Cross-domains Model-specific 0.63 0.84 0.6 0.98 0.97 0.88
Domain-specific Cross-models 0.57 0.8 0.57 0.49 0.87 0.86
Cross-domains Cross-models 0.57 0.74 0.57 0.49 0.78 0.86

Out-of-distribution
Unseen Models 0.58 0.65 0.6 0.84 0.79 0.74
Unseen Domains 0.57 0.72 0.57 0.68 0.8 0.77

Average F1 0.60 0.78 0.64 0.74 0.86 0.84

Table 4: Test Set Performance (F1 score) for InTheWild dataset. ITW refers to the LongFormer-based detector
trained by Li et al. (2023) specifically for this benchmark.
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Author Experts* Stylometry BERT GPT-who

text-babbage-001 0.47 0.45 0.84 0.85
text-curie-001 0.47 0.45 0.83 0.84
text-davinci-003 0.66 0.59 0.95 0.77
gpt-3.5-turbo 0.63 0.69 0.96 0.84
gpt2-xl 0.37 0.49 0.95 0.91

Average F1 0.52 0.53 0.91 0.84

Table 5: Test Set Performance (F1 score) for ArguGPT
dataset.* denotes results reported in Liu et al. (2023a).

task types and domains, GPT-who outperforms403

GPTZero, ZeroGPT, DetectGPT and, OpenAI’s404

detector by over 40%. The machine-generated405

texts for this task are from 7 very recent and highly406

sophisticated LLMs (including GPT3.5, GPT3 vari-407

ants), making the detection of machine-generated408

text a much more challenging task on which GPT-409

who outperforms other detectors exceedingly.410

For TuringBench (Table 3), GPT-who signifi-411

cantly outperforms GLTR by 0.32 F1 points, and412

at par with BERT fine-tuned for the task. The413

InTheWild dataset contains 6 testbeds with vary-414

ing levels of detection difficulties, such as out-415

of-domain, out-of-distribution, and unseen-task416

test sets. We used all 6 testbeds to analyze the417

performance of GPT-who in detecting machine-418

generated texts across increasing levels of ‘wild-419

ness’ and find that overall, GPT-who outperforms420

all other methods except the one specifically tuned421

to the task (ITW) across all testbeds. More impor-422

tantly, GPT-who performs tremendously even for423

the most challenging or ‘wildest’ testbed settings424

of unseen model and unseen domain distributions425

(see Table 4). For the ArguGPT dataset (Table 5),426

we find that GPT-who outperforms human experts427

and stylometry in predicting authorship by 0.31 F1428

points, but is outperformed by fine-tuned BERT.429

Although unable to perform as well as BERT, GPT-430

who is one of the only statistical-based detectors431

that can handle distinctions between machine-only432

texts. We were unable to evaluate other detectors433

as their human-generated texts were not publicly434

released, and they only work in human v/s machine435

settings.436

5 Discussion437

We turn to the UID principle, which states that438

humans prefer to spread information evenly in lan-439

guage, to automatically extract features that mea-440

sure the spread and flow of information content441

or surprisal in texts. Our UID-based features are 442

formulated to capture how surprisal is distributed 443

in an article as they measure the local and global 444

variance, mean, and most uniform and non-uniform 445

segments of a text. This rich and succinct represen- 446

tation space drives the predictive capability of our 447

proposed detector and the interpretability of its rep- 448

resentations. Analysis of this feature space reveals 449

that human-written text tends to be more non- 450

uniform in comparison to machine-generated 451

text. Hence, machines seem to be spreading in- 452

formation more evenly or smoothly than humans 453

who are more likely to have fluctuations in their 454

surprisal distributions. We also find that UID-based 455

features can capture differences between text gen- 456

erated by not only humans and models but also 457

capture differences between multiple models and 458

LM families. Our main contribution is a novel 459

psycholinguistically-aware domain-agnostic multi- 460

class statistical-based machine-generated text de- 461

tector, GPT-who, that: 462

• Outperforms statistical approaches across 4 463

large-scale benchmark datasets that include 464

texts from over 35 LLMs across more than 10 465

domains. 466

• Generalizes better to out-of-distribution 467

datasets than SOTA detectors. 468

• Computationally more efficient than other su- 469

pervised detectors as it does not require the 470

fine-tuning or training of any LLMs. 471

• Intuitively interpretable due to its psy- 472

cholinguistically motivated UID-based feature 473

space. 474

While our detector may not significantly outper- 475

form fine-tuned transformers-based models, it is 476

essential to highlight its independence from fine- 477

tuning, offering nearly comparable performance 478

at significantly lower computational costs and re- 479

mains one of the only statistical-based detectors 480

that can operate in multi-author settings beyond 481

the Turing Test. These findings indicate that ap- 482

proaches rooted in psycholinguistic theories that 483

delineate indicators of “human-like” language use 484

hold enormous and untapped potential in tackling 485

the fast catapulting and ever-changing LLM land- 486

scape. This work has implications for cognitively 487

plausible and explainable solutions to complex 488

challenges arising from ever-growing automated 489

text generators. 490
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Limitations491

In our pursuit of a comprehensive examination of492

texts produced by recent large language models, we493

encountered limitations arising from resource con-494

straints and the availability of publicly accessible495

datasets. These factors constrained our ability to en-496

compass a more diverse array of models and tasks,497

including summarization and question-answering.498

Furthermore, our study did not delve into whether499

UID-based methods extend their utility beyond de-500

tecting machine-generated text to identify potential501

issues such as misinformation and plagiarism. We502

acknowledge these constraints as part of our on-503

going commitment to refining and expanding our504

efforts in future research endeavors.505

Ethical Statement506

It is important to note that there are inherent limi-507

tations of AI-based tools and automated machine508

text detectors such as in this work. Acknowledg-509

ing the fallibility of these detectors, particularly510

in generating false positives, we note that there is511

still a crucial need for human oversight and discre-512

tion in the usage of such detectors in real-world513

settings. For example, ethical concerns surround-514

ing over-vigilance in scrutinizing student-written515

text are an important consideration for striking a516

balance between the convenience of automated de-517

tection and the preservation of academic integrity.518

By advocating for responsible development and im-519

plementation, we hope to contribute to a landscape520

where ethical considerations guide the integration521

of automatic text detection systems in educational522

settings, safeguarding against undue reliance and523

promoting fairness, equity, and respect for individ-524

ual expression.525
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A Appendix750

A.1 UID Score distributions of authors751

We see that for most cases, humans have a higher752

UID (variance) score than machines, as can be seen753

by the higher means of their scores in the box plots.754

This holds when comparing human-written texts755

with multiple machine-generated texts over shared756

tasks (Figure 5a), and also when comparing their757

differences between tasks (Figure 5b).

(a) Pairwise comparisons of human and different machine-generated texts for shared tasks: Distribution of UID
Scores of 8 authors (7 models + human) from the InTheWild dataset. (m) indicates machine and (h) indicates human
written texts. This is followed by the model name along the x-axis labels to indicate the different authors.

(b) Pairwise comparisons of human and different machine-generated texts for different tasks: Distribution of UID
Scores of humans v.s. machines per task type. (m) indicates machine and (h) indicates human written texts. This is
followed by the writing task type along the x-axis labels to indicate the different tasks.

758
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