LANGPERT: LLM-DRIVEN CONTEXTUAL SYNTHESIS
FOR UNSEEN PERTURBATION PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting cellular responses to previously unseen genetic perturbations remains
a fundamental challenge in computational biology, with broad applications in
understanding gene function, disease mechanisms, and therapeutic development.
Despite advances in computational approaches, developing models that generalise
effectively to novel perturbations continues to be difficult. Large Language Models
(LLMs) have shown promise in biological applications by synthesizing scientific
knowledge, but their direct application to high-dimensional gene expression data
has been impractical due to numerical limitations. We propose LangPert, a novel
hybrid framework that leverages LLMs to guide a downstream k-nearest neigh-
bors (kNN) aggregator, combining biological reasoning with efficient numerical
inference. We demonstrate that LangPert achieves state-of-the-art performance on
single-gene perturbation prediction tasks across multiple datasets.

1 INTRODUCTION

Understanding cellular responses to perturbations, in particular gene knockouts, is a cornerstone in
deciphering complex biological systems. By systematically altering cellular components via genetic
perturbations, researchers can observe cellular behavior changes in genome-wide gene expression
vectors, thereby uncovering the genetic mechanisms underlying health and disease. Mapping out even
the single-gene-perturbation landscape in a particular cell line requires significant experimental effort.
This challenge scales with the number of cell types under investigation, and grows exponentially
when considering combinatorial perturbations. This motivates the development of computational
approaches that could reduce the need for exhaustive experimental testing by predicting the results of
unseen perturbations, particularly important when trying to deconvolute the multicellular functional
impact of the thousands of genetic variants associated with complex metabolic disorders like Type 2
Diabetes and Obesity.

The ability to computationally predict the results of unseen genetic perturbations would dramatically
accelerate biological discovery while reducing experimental costs. This challenge has recently
attracted significant attention, with researchers developing various approaches to leverage prior
biological knowledge. These range from transformer-based foundation models, such as scGPT (Cui
et al., 2024) and scFoundation (Hao et al., 2024), pre-trained on large-scale cell atlases to methods
that explicitly incorporate structured knowledge like gene-gene relationships and ontologies (Roohani
et al., 2023). However, despite the sophistication of these approaches, recent studies have revealed
a surprising finding: seemingly simple baselines, such as predicting the mean expression response,
often outperform more complex deep learning methods (Ahlmann-Eltze et al., 2025; Kernfeld et al.,
2024; Wong et al., 2025).

These findings motivate the exploration of alternative approaches that can better leverage biolog-
ical knowledge while maintaining the ability to handle high-dimensional gene expression data.
Particularly promising are methods that can incorporate the vast amount of unstructured biological
knowledge present in the scientific literature, which contains detailed and interrelated (if unstructured)
information about gene functions, interactions, and regulatory mechanisms that could potentially
inform and enhance current perturbation prediction methods.

Large Language Models (LLMs) have recently demonstrated remarkable success in scientific applica-
tions, particularly in assisting with data analysis, literature mining, and complex reasoning tasks (Guo
et al., 2025; Gao et al., 2024). Their ability to synthesize knowledge from vast scientific corpora and
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Figure 1: (A) The task of unseen perturbation outcome prediction illustrated. The training set
consists of pairs {(x,, y» )}, where inputs x,, are discrete perturbation labels and outputs y,, are high-
dimensional gene expression vectors. At test time, the goal is to predict outcomes y, corresponding
to unseen perturbation labels x,. (B) Our proposed LLM-based LangPert framework. Instead of
using the LLM to directly predict high-dimensional y., the LLM is tasked with finding a relevant
small subset from the training perturbation labels {(x,)} for every x, from the held out test set.
We use the LLM output to aggregate the corresponding subset of training set expression vectors,
effectively resulting in an LLM-informed contextual nearest neighbour prediction.

perform step-by-step reasoning has shown promise for various scientific domains. However, their
ability to handle high-dimensional numerical data remains limited due to tokenization constraints and
fundamental challenges in numerical computation (Gambardella et al., 2024; Johnson and Hyland-
Wood, 2024) with particular difficulties in generating precise continuous values. This limitation is
particularly acute in transcriptional response modeling, where predictions are high-dimensional and
must capture complex, noisy patterns across thousands of genes.

To leverage the impressive knowledge synthesis capabilities of LLMs while overcoming their limita-
tions with high-dimensional data, we propose a novel framework for predicting cellular outcomes
to unseen genetic perturbations. Instead of directly interacting with expression data, we engineer
a system where the LLM guides a downstream k-nearest neighbors (kNN) aggregator, combin-
ing contextual biological insights with efficient numerical computation, as illustrated in Figure 1.
We demonstrate that this hybrid LLM-kNN framework achieves state-of-the-art performance on
single-gene perturbation prediction tasks.

2 BACKGROUND

2.1 EXISTING METHODS FOR PERTURBATION DATA

VAE-based methods Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al.,
2014) have been widely employed as a (conditional) generative model for single-cell perturbation
data. Various adaptations, including the Compositional Perturbational Autoencoder (Lotfollahi et al.,
2023), sVAE+ (Lopez et al., 2023) and SAMS-VAE (Bereket and Karaletsos, 2023), all capture
perturbation effects in the latent space. However, such VAE-based approaches fundamentally lack
a mechanism to generalize to unseen single-gene perturbations, as they are inherently limited to
modeling only the perturbations observed during training. This is because these methods effectively
represent perturbations as distinct categorical conditions—while they learn representations of all
training-set perturbations, the respective representations for test-set perturbations are absent. The



one-hot or categorical encoding of perturbations does not provide a natural way to infer relationships
between observed and unseen conditions, preventing these models from extrapolating beyond the
training set.

GEARS Roohani et al. (2023) proposed a graph neural-network based model called GEARS for
perturbation response modelling. Unlike VAE-based approaches, GEARS explicitly incorporates
structured biological prior knowledge, allowing it to generalize to perturbations involving genes
that have not been experimentally tested in the prediction task of interest. Specifically, GEARS
incorporates information about gene-gene relationships in two ways, using a gene co-expression
graph as well as a gene ontology (GO) knowledge graph.

Single-cell foundation models The success of transformer-based foundation models has spurred
their adaptation to single-cell biology. Models such as GeneFormer (Theodoris et al., 2023), scGPT
(Cui et al., 2024), and scFoundation (Hao et al., 2024) are pre-trained on large-scale single-cell
atlases to learn gene expression patterns. While these models have shown promise in various single-
cell analysis tasks, careful evaluations have questioned their fundamental capabilities compared
to simpler approaches (Boiarsky et al., 2024; Kedzierska et al., 2023). Particularly in the context
of perturbation prediction, where models are fine-tuned to predict responses to unseen genetic
interventions, these sophisticated approaches often fail to outperform simple baselines such as mean
prediction (Ahlmann-Eltze et al., 2025; Kernfeld et al., 2024).

LLM-informed gene embeddings LLMs have been widely applied across scientific domains,
including biology (Lee et al., 2020). In the context of gene-level biological knowledge, recent
methods such as GenePT (Chen and Zou, 2024) have taken a novel approach: instead of training
foundation models on gene expression data, they leverage LLMs’ understanding of scientific literature
to generate gene embeddings. These embeddings, derived from NCBI text descriptions of genes,
have shown promising results in observational single-cell analysis tasks. Building on this idea,
Mirtens et al. (2024) extended the approach to interventional settings, developing a GP+LLM model
that combines a Gaussian Process with literature-derived embeddings as well as protein language
model embeddings to predict perturbation outcomes, demonstrating that LLMs can effectively encode
biologically relevant prior knowledge.

2.2 LEVERAGING LLMS FOR BIOLOGICAL KNOWLEDGE

Large Language Models have emerged as powerful tools for synthesizing biological knowledge
from scientific literature, offering new approaches to understanding gene functions and relationships.
While methods like GP+LLM (Mértens et al., 2024) have shown promise by leveraging LLM-derived
embeddings in predictive models, these embeddings are inherently static, as they are extracted from a
fixed body of literature (e.g., NCBI abstracts in (Chen and Zou, 2024)) as condensed into an LLM at
a specific training data corpus cutoff-date. This limits their adaptability when reasoning about unseen
perturbations, where context-dependent interactions may play a crucial role.

Recently, Wu et al. (2024) introduced PerturbQA, a benchmark that represents perturbation data as
“(perturbation, gene, outcome)” triplets where outcome is a binary variable. They consider two types
of outcomes: whether a particular gene is differentially expressed, and for differentially expressed
genes, whether they are up- or down-regulated. This classification setup makes the data more
amenable for use with LLMs. In contrast, our work aims to predict high-dimensional gene expression
vectors directly, an approach that presents different technical challenges for LLM implementation.

This direct application of LLMs to high-dimensional perturbation modeling is constrained by to-
kenization limits and numerical precision issues. These challenges motivate our hybrid approach,
which integrates LLM-driven biological reasoning with computational models designed for handling
high-dimensional data — a paradigm we explore in LangPert.

3 LANGPERT: A HYBRID LLM-KNN FRAMEWORK

We propose LangPert, a framework that leverages LLMs’ ability to reason about biological mech-
anisms while ameliorating their limitations in handling high-dimensional data. Instead of using



LLMs to generate static embeddings or to directly predict expression values, LangPert employs
an LLM to identify biologically relevant training examples that can inform predictions for unseen
perturbations. These LLM-selected examples then guide a downstream aggregation function (here
we employ a k-nearest neighbors (kNN) scheme) that performs the actual numerical computations in
the high-dimensional expression space.

Problem formulation As illustrated in Figure 1, the task of unseen perturbation response prediction
presents a challenging supervised learning challenge, where given pairs {(x,,¥yn)}, inputs x,
are discrete perturbation labels and outputs y,, € R are high-dimensional numeric readouts
corresponding to those labels. The goal is to predict responses y . for test inputs x, which are distinct
from those in the training set. This makes the task fundamentally different from standard supervised
learning, as it requires extrapolation to entirely new perturbations, which would fall outside of the
one-hot representational space of the training data perturbation categories.

Naive application of LLMs One approach to utilise LLMs for this problem is via in-context
learning (ICL), where (x,,,y,) pairs are given to the LLM as part of the input prompt, alongside
with new inputs x,.. However, this approach is problematic due to the high dimensionality of gene
expression vectors. Therefore, we propose a strategy to remedy this challenge inherent in a naive /
brute force application of LLMs in this doamin.

LangPert adaptation for high-dimensional outcomes Specifically, we propose to only show
the model training inputs {x,,} alongside with a test input x.. As these inputs correspond to
perturbation labels — for genetic perturbations these would be gene names — LLMs have demonstrated
strong capabilities in reasoning about biological relationships and identifying functionally related
genes through their training on scientific literature (Hu et al., 2025). We leverage these established
capabilities, using the LLM’s comprehensive knowledge of biological systems and its proven few-shot
learning abilities (Brown et al., 2020) to identify genes from the training set that are functionally
relevant for the prediction target x,. This biological reasoning can be further enhanced through
relevant context included in the prompt by a human user.

Contextual aggregation Given the LLM output of a subset of gene perturbation labels relevant to
the input prompt, the final output of an unseen perturbation prediction pipeline can be made via an
aggregation / reduction of the gene expression vectors of those relevant genes. That is, given a relevant
subset G where {(x,,,y»)} forn € G, we propose to make the prediction ‘?ﬂ > neg Yn for the unseen

output. This can be interpreted as a k nearest neigbour predictor, where the relevant neighbours
are identified by the LLM and then averaged. In principle, different aggregation techniques can be
adapted here, for examaple weighting the inputs, using nonparametric (e.g. median) reductions, or
even passing the subset data {(X,, y,)} to a small tabular prediction framework. In this work, we
found it sufficient to use simple averaging to achienve SOTA results, but future work investigating
more principled aggregation/reduction strategies may yield even stronger predictions.

In summary, we have proposed a hybrid LLM-KNN framework, where predictions take the following

form
1

Y« =
En Wn,

where the LLM sees the test perturbation label x., all training labels {x,, } and potentially additional
information presented in the prompt. The number of chosen training perturbations, i.e. the number of
nearest neighbours &k := ) w,, can either be specified in the prompt or remain unspecified, giving
the LLM flexibility to choose.

anyn, where w,, = LLM(x.,, {x,},context) € {0,1}

4 RESULTS

4.1 EXPERIMENTAL SETUP

Datasets For evaluation, we consider data from large-scale Perturb-seq screens across two cell
lines: the leukemia cell line (K562) and the retinal pigment epithelial (RPE1) cell line from (Replogle
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Figure 2: Performance comparison across models (scGPT, GEARS, non-control mean baseline,
GP+LLM, and LangPert) evaluated using mean absolute error (MAE, lower is better) and Pearson
correlation between predicted and observed differences from control cells (higher is better). Shaded
regions indicate +1.96 standard errors across data splits. Model performance is shown as a function
of training set size, varying from 50 to 850 perturbations.

et al., 2022). We use the version of the data curated by Roohani et al. (2023)", with a total of 1092
perturbations in the K562 cell line and a total of 1543 perturbations in the RPEI cell line.

Experimental details and metrics In all our evaluations, we assess performance in a 5-fold cross-
validation setting, so in the end, all metrics are calculated on the entire set of 1092 perturbations in
K562 cell line, and 1543 perturbations in RPE1. Predictions on every held-out cross-validation fold
are made independently to avoid any data leakage. In experiments where we consider a gradually
increasing number of training perturbations (e.g. along x-axis in Figure 2), for every cross-validation
split we repeatedly downsample the training set.

Following practices from literature, we quantify perturbation prediction performance relative to
control cells, i.e. using Pearson correlation, mean absolute error (MAE), and mean squared error
(MSE) on the differences A,, := y;, — Yeonwol- FOllowing Roohani et al. (2023), we calculate both
metrics across the top 20 differentially expressed genes relative to control cells, resulting in gene sets
that are specific for every perturbation.

Baselines As discussed in the Background section 2.1, we consider existing methods which have a
capability to generalise to unseen single-gene perturbations. Specifically, we consider the graph neural
network approach GEARS, fine-tuning a single-cell foundation model scGPT, and two versions of the
GP+LLM model (one using NCBI text embeddings as input, the other combining text embeddings
and protein sequence embeddings). We also consider a non-control mean baseline that has been
shown to be surprisingly effective (Kernfeld et al., 2024; Mirtens et al., 2024).

Choice of LLM A crucial component of LangPert is its LLM engine, meaning the choice of LLM
can significantly impact its behavior and performance. For all comparisons in Section 4.2, we use
Claude 3.5 Sonnet. Later, in Section 4.4, we examine how performance varies across different LLMs,
ranging from small open-weight LLMs with 8 billion parameters to frontier models.

4.2 PERFORMANCE COMPARISON

Results on K562 cell line Figure 2 shows the performance metrics (MAE and correlation) on
the K562 cell line dataset across a varying number of training perturbations. The ordering of
existing baselines is aligned with what has been reported in literature: the fine-tuned scGPT is the
lowest performing model, followed by GEARS. GEARS outperforms the non-control mean baseline
according to the MAE metric, but slightly underperforms in correlation. The GP+LLM models
outperform both scGPT and GEARS.

!Available in https://github.com/snap-stanford/GEARS
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Table 1: Results on K562 cell line dataset: Performance comparison of different models at different

training data sizes. Values shown as mean =+ standard error.

100 training perturbations

850 training perturbatons

Model MAE | MSE | Correlation 1 MAE | MSE | Correlation 1
scGPT 0.388 £ 0.016 0.234 +0.014 0.430+0.021 | 0.324 £0.008 0.195 £+ 0.012 0.488 £+ 0.016
GEARS 0.316 +0.004 0.164 +0.004 0.633 +0.005 | 0.292 £ 0.002 0.147 £ 0.003  0.655 £ 0.007
Non-ctrl mean 0.329 +0.006 0.175 +0.008 0.665 + 0.006 | 0.332 +£0.006 0.176 £ 0.007 0.671 £ 0.007
GP+LLM (text) 0.312 £ 0.006 0.162 +0.008 0.672 + 0.006 | 0.268 £ 0.004 0.132 £ 0.006 0.718 & 0.012
GP+LLM (text+seq) | 0.306 £ 0.006 0.158 £0.008 0.683 £ 0.006 | 0.265 + 0.004 0.130 + 0.005 0.728 + 0.012
LangPert 0.259 +0.006 0.132 + 0.005 0.689 + 0.004 | 0.224 + 0.005 0.108 + 0.005 0.731 £ 0.011

Table 2: Results on RPE1 cell line dataset: Performance comparison of different models at different

training data sizes. Values shown as mean =+ standard error.

50 training perturbations

100 training perturbations

Model MAE | MSE | Correlation 1 MAE | MSE | Correlation 1
scGPT 0.452 £0.008 0.346 £0.016 0.627 £ 0.009 | 0.451 £0.009 0.354 £0.006 0.642 + 0.003
GEARS 0471 £0.013 0.343 £0.019 0.670 £ 0.007 | 0.435+0.022 0.307 +0.026 0.706 &+ 0.005
Non-ctr] mean 0.427 £0.010 0.303 £0.015 0.737 £ 0.006 | 0.430 £ 0.006 0.305+0.013 0.738 & 0.005
GP+LLM (text) 0.414 £0.011 0289 £0.014 0.721 £0.002 | 0.408 £ 0.005 0.282 £ 0.009 0.725 £ 0.002
GP+LLM (text+seq) | 0.417 £0.013 0.294 £0.016 0.717 £ 0.004 | 0.403 £0.005 0.277 £0.009 0.723 £ 0.004
LangPert 0.368 + 0.008 0.249 £ 0.012 0.726 £ 0.005 | 0.361 + 0.008 0.239 £+ 0.013  0.737 + 0.008
250 training perturbations 1170 training perturbations

MAE | MSE | Correlation 1 MAE | MSE | Correlation 1
scGPT 0.436 £0.024 0.329 £0.030 0.641 £ 0.009 | 0.449 £0.038 0.349 £0.040 0.603 £ 0.040
GEARS 0.430 £0.011 0291 £0.015 0.720 £ 0.007 | 0.405 £0.015 0.266 £0.015 0.710 £+ 0.011
Non-ctr] mean 0.432£0.005 0.306 £0.011 0.741 £ 0.004 | 0.434 £0.005 0.308 £0.011 0.743 £ 0.005
GP+LLM (text) 0.400 £0.004 0271 £0.010 0.735 £ 0.003 | 0.371 £0.004 0.238 £0.009 0.759 £ 0.005
GP+LLM (text+seq) | 0.397 £0.003 0.269 £ 0.009 0.732 £ 0.003 | 0.364 £ 0.004 0.233 £0.009 0.760 £ 0.005
LangPert 0.344 £ 0.005 0.218 £ 0.010 0.753 £ 0.009 | 0.318 + 0.004 0.192 £ 0.006 0.772 + 0.005

Our proposed LangPert significantly outperforms all existing models according to the MAE and MSE
metrics (see Table 1 for numerical values), and also achieves a slightly higher correlation value. For
example, in the scenario with 850 training perturbations, LangPert achieves MAE of 0.224(4-0.005)
which is a substantial improvement over the second best GP+LLM’s 0.265(+0.004).

Results on RPEL1 cell line We conducted a similar experiment on the RPE1 cell line, with results
summarized in Table 2. The ranking of methods remains consistent with previous benchmarks, with
LangPert achieving the best results in MAE and MSE metrics. For the correlation metric, at the
smallest sample size (50 training perturbations), the non-control mean achieves the highest correlation
(0.737 £ 0.006), slightly surpassing LangPert (0.726 £ 0.005). However, as the sample size increases,
LangPert outperforms all baselines. At the largest sample size (1170 perturbations), LangPert achieves
an MAE of 0.318 £0.004 (compared to the second-best LLM+GP at 0.364 &=0.004) and a correlation
of 0.772 4+ 0.005 (vs. LLM+GP’s 0.760 £ 0.005).

Overall, LangPert sets a new state-of-the-art performance on both the K562 and RPE1 benchmarks.

4.3 LANGPERT’S CONTEXT-DEPENDENT REASONING

To understand the source of LangPert’s performance gains, we analysed the model’s reasoning traces
to examine how it selects relevant genes for each perturbation. A key challenge in kNN-based
approaches is determining which similarity criterion to use: genes can be related through shared
pathways, protein complexes, subcellular localization, or functional processes. Our analysis revealed
that rather than applying a single similarity metric uniformly, LangPert adaptively identifies the most
relevant organising principle for each gene based on its specific biological context. The model selects
different organising principles based on each gene’s functional role:

¢ MTOR — Signaling pathway hierarchy: selects RPTOR (direct complex partner),
EIF4E/EIFAG1 (downstream effectors), PPP2R1A (feedback regulator)

e EIF3E — Protein complex membership: selects other eIF3 subunits (EIF3A, EIF3B,
EIF31, EIF3F) within the translation initiation complex



¢ PSMD11 — Functional machinery: selects other proteasome subunits (PSMD1, PSMC4,
PSMC6, PSMD3, PSMA3) required for protein degradation

This context-dependent reasoning allows LangPert to capture synergistic interactions within biological
systems by adaptively choosing the right biological lens for each gene—pathway hierarchies for
regulators, protein complexes for structural components, or functional machinery for metabolic genes.
This contrasts with static database methods like GEARS, which apply Gene Ontology uniformly
across genes, rather than selecting the most relevant similarity framework for each perturbation.

4.4 COMPARATIVE PERFORMANCE OF LLM VARIANTS

The LLM component in the LangPert framework has two main elements: the choice of the LLM itself
and the prompting strategy. In this section, we evaluate how different LLM variants in the LangPert
framework affect its performance.

We compare a range of models, from small open LLMs such as Llama 3.1 8b (Grattafiori et al.,
2024) and TxGemma-9b (a Gemma variant pre-trained by its creators for therapeutic applications)
(Wang et al., 2025), to a medium-sized Llama 3.3 70b model and the larger DeepSeek R1 model
(DeepSeek-Al et al., 2025). We also evaluate frontier models Claude Sonnet 3.5 and OpenAl ol.

The LLM comparison is illustrated in Figure 3, where the blue shaded area represents the performance
coverage across the LLM variants. Here we show two metrics, correlation and MAE, with the non-
control mean baseline dividing the plot into four quadrants. Methods that outperform the mean
in both metrics appear in the green area. Existing non-LLM baselines are shown in red (scGPT,
GEARS, GP+LLM). While all methods outperform the mean baseline in MAE, not all of them do in
correlation.

Among LLM variants, the smaller TxGemma-9b and Llama 8b models show the lowest performance
(achieving MAE values of 0.315 and 0.284, respectively), yet still outperform scGPT. Next in the
performance hierarchy, LangPert using either DeepSeek-R1 or Llama 3.3 70b models (with MAE
values of 0.254 and 0.247, respectively) outperforms GEARS. Finally, the frontier models Claude
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Figure 3: Performance comparison of various versions of LangPert across different LLM backends
(blue shaded area) to existing methods (in red), according to two metrics, correlation (z-axis) and
MAE (y-axis) on the full K562 cell line dataset. The non-control mean baseline divides the area
into four quadrants: Ideally, strong performance lies in the green shaded area (i.e. a smaller MAE
and higher correlation). Among all LLMs, the small open models (Llama 8b and TxGemma-9b) are
the least performant, and frontier models (Claude Sonnet 3.5 and OpenAl ol) are best performing.
For reference, we have added an Oracle kNN method (in orange, for £ = 5 and k£ = 10) to indicate
an approximate upper bound on the performance of a KNN-based approach which has access to the
ground truth.



Claude Sonnet 3.5 output for query gene SMG5:

Reasoning: SMG5 is a critical component of the nonsense-mediated
mRNA decay (NMD) pathway, which degrades mRNAs containing premature
termination codons. In analyzing potential functional similarities, I
focused on several key aspects:

1. Core NMD machinery components and regulators that would disrupt
similar RNA surveillance mechanisms

2. Genes involved in mRNA quality control and processing that
functionally overlap with NMD

3. Translation termination factors and related proteins, as SMG5
interacts with release factors

4. Proteins involved in mRNA degradation pathways

In K562 cells specifically: (1) The NMD pathway is particularly
important due to high transcriptional activity in these cancer

cells, (2) Many aberrant transcripts need surveillance due to genomic
instability, (3) Translation regulation is critical for K562 survival.
Key predicted similar phenotypes would come from disrupting: (1)

Core NMD factors, (2) General mRNA decay machinery, (3) Translation
termination components, (4) Related quality control pathways.

Inferred kNN gene set: [UPF2, UPF1l, DIS3, EXOSC10, RBM8A, RNPS1]

OpenAI ol output for query gene SMG5:

Reasoning: SMG5 encodes a core component of the nonsense-mediated mRNA
decay (NMD) pathway, where it helps recruit phosphatase activity to
UPF1l, leading to the degradation of aberrant transcripts. In K562
cells (a leukemic line with high transcription/translation activity),
knocking out other critical NMD factors or key Exon Junction Complex
(EJC) components should yield phenotypes most similar to SMG5 loss,
because these are all essential for detecting and degrading faulty
mRNAs. First among these is UPF1l, the central NMD helicase that
physically interacts with SMG5. UPF2 is another core NMD scaffold
protein downstream of UPFL1. RBM8A (Y14) and MAGOH are core EJC members
required for coupling exon junction marking to transcript decay. RNPS1
also associates with EJC/NMD surveillance. Finally, DDX6, while more
broadly involved in mRNA decapping and turnover, is still closely tied
to mRNA quality-control outcomes and thus expected to share certain
knockout effects with SMG5 in K562.

Inferred kNN gene set: [UPF1, UPF2, RBM8A, MAGOH, RNPS1l, DDX6]

Figure 4: Comparison of LLM-based inference for identifying genes with similar perturbation
outcomes to SMGS5 in K562 cells. Both Claude and OpenAl ol identified key nonsense-mediated
mRNA decay (NMD) pathway components and associated factors.
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Figure 5: Overlap in inferred gene sets between the two frontier models: Claude Sonnet 3.5 and
OpenAl ol.



Sonnet 3.5 and OpenAl ol outperform all other approaches. Interestingly, both frontier models
achieve near-identical performance on this task.

A natural question is whether future improvements in LLM capabilities could lead to further per-
formance gains in our framework. To establish an approximate upper bound on what LLM-kNN
approaches can achieve, we implemented an Oracle KNN model that has access to the ground truth
(unseen) perturbation outcome. We added the performance of this Oracle model with k¥ = 5 and
k = 10 to Figure 3 as a reference point (“Oracle kKNN” in orange).

Given the near-identical performance of the two frontier models, we investigated whether their
inferred kNN gene sets were also identical. Figure 5 shows the overlap distribution between the two
models, revealing considerable variation in gene set selection despite resulting in similarly predictive
outcomes. This suggests that different models identify distinct but equally relevant gene relationships,
potentially corresponding to alternative biological hypotheses with similar predictive power.

In Figure 4, we illustrate this phenomenon with outputs for a selected query perturbation, SMGS,
comparing the two frontier models. Both Claude Sonnet 3.5 and OpenAl ol successfully identified
key nonsense-mediated mRNA decay (NMD) pathway components and associated factors. Consistent
with our overlap analysis, they inferred partially overlapping but not identical gene sets. These
observations suggest promising directions for future work, including exploring ensembling strategies
or methods to integrate insights from multiple LLMs to enhance both interpretability and robustness.

5 DISCUSSION

We introduce LangPert, a novel hybrid framework that leverages Large Language Models to guide
k-nearest neighbour predictions for unseen genetic perturbations. LangPert achieves state-of-the-art
performance across multiple datasets and metrics, particularly as measured by mean absolute error
of predictions across the entire spectrum of low-to-high data regimes. Our analysis reveals that
this performance stems from LangPert’s ability to adaptively select different biological similarity
frameworks based on each gene’s functional context.

LangPert’s key innovation lies in its ability to harness LLMs’ biological reasoning capabilities
without being constrained by their numerical limitations. By using LLMs to identify relevant training
examples and employing kNN for aggregation, our approach effectively bridges the gap between
knowledge-driven and data-driven methodologies. This hybrid strategy outperforms existing methods
such as GEARS, scGPT, and GP+LLM.

The superior performance of LangPert has significant implications for perturbation biology. Improved
predictive models could dramatically reduce the need for exhaustive experimental testing, accelerating
biological discovery and potentially informing more efficient experimental design strategies. Fur-
thermore, LangPert’s flexible framework allows for the incorporation of different LLMs, prompting
strategies, and aggregation methods, suggesting ample room for further optimization and adaptation
to various biological contexts.

Despite its promising results, LangPert is not without limitations. Its performance depends on the
quality and up-to-date nature of the LLM’s knowledge, and potential biases in LLM training data
could influence predictions. Future work should explore more sophisticated aggregation methods
beyond averaging, incorporate uncertainty quantification, and extend the approach to multi-gene
perturbations or other types of biological interventions. Additionally, investigating the impact of
different LLMs as well as prompting strategies could further enhance the model’s capabilities.

The success of LangPert in integrating LL.Ms with traditional machine learning techniques for
high-dimensional biological data suggests potential applications beyond perturbation biology. This
approach could be adapted to other scientific domains characterized by high-dimensional outcomes
and rich contextual knowledge, such as multi-objective molecular property prediction.

In conclusion, LangPert represents a significant advance in our ability to predict cellular responses to
unseen genetic perturbations. By effectively combining the strengths of LLMs and traditional machine
learning approaches, it opens new avenues for accelerating biological discovery and deepening our
understanding of complex cellular systems. As we continue to refine and expand this approach,
we anticipate its impact to grow, potentially transforming how we approach predictive modeling in
biology and beyond.
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SUPPLEMENTARY MATERIAL

A  PROMPTS

The prompts below aim to identify approximately 5-10 genes from a provided list that closely resemble
the specified gene based on shared involvement in specific biological pathways, co-regulation, or
protein-protein interactions in the context of a given cell line (K562 or RPE1).

Prompt for K562 cell line

Instruction: Analyze the gene {gene} and identify 5-10 most similar
genes from the provided list. Rank them by similarity (most similar
first).

Consider similarity based on:

+ Shared biological pathways and functions

+ Protein-protein interactions and complex formation

+ Co-regulation patterns and co-expression relationships

+ Similar effects when knocked out (predicted knockout outcomes)
Context: Analysis should focus on the K562 cell line (chronic myeloid
leukemia model). Consider cancer-relevant pathways including ribosome
biogenesis, transcriptional regulation, mitochondrial function, stress
responses, and known genetic dependencies specific to K562 survival.
Available genes: {list_of_genes}

Format your response as JSON with two parts:

1. T"reasoning": Explain your analysis, discussing potential
connections between {gene} and relevant genes. Include both general
biological knowledge and cell-specific considerations where relevant.
2. "kNN": List the most similar genes in order of similarity (5-10
genes)

Example response format:

{ "reasoning": "Gene X 1is involved in pathway Y which

directly interacts with gene Z...", "kNN": ["MostSimilarGene",
"SecondMostSimilar", "ThirdMostSimilar"] }

Note: Prioritize confidence over hitting exactly 5-10 genes. Provide
ONLY ONE JSON response.

Prompt for RPEl cell line

Instruction: Analyze the gene {gene} and identify 5-10 most similar
genes from the provided list. Rank them by similarity (most similar
first) .

Consider similarity based on:

+ Shared biological pathways and functions

+ Protein-protein interactions and complex formation

+ Co-regulation patterns and co-expression relationships

+ Similar effects when knocked out (predicted knockout outcomes)
Context: Analysis should focus on the RPE1l cell line (near-diploid,
non-transformed human retinal pigment epithelial cells). Consider
pathways relevant to RPEl biology including epithelial polarity, cilia
signaling, cell cycle control, DNA repair, oxidative stress response,
and retinal metabolism.

Available genes: {list_of_genes}

Format your response as JSON with two parts: 1. T'"reasoning": Explain
your analysis, discussing potential connections between {gene} and
relevant genes. Include both general biological knowledge and
RPEl-specific considerations where relevant. 2. "kNN": List the most
similar genes in order of similarity (5-10 genes)

Example response format: { "reasoning": "Gene X 1is involved in pathway
Y which directly interacts with gene Z...", "kNN": ["MostSimilarGene",
"SecondMostSimilar", "ThirdMostSimilar"] }

Note: Prioritize confidence over hitting exactly 5-10 genes. Provide

ONLY ONE JSON response.
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