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Abstract
RL-based techniques can be employed to001
search for prompts that, when fed into a002
target language model, maximize a set of user-003
specified reward functions. However, in many004
target applications, the natural reward functions005
are in tension with one another – for example,006
content preservation vs. style matching in style007
transfer tasks. Current techniques focus on008
maximizing the average of reward functions,009
which does not necessarily lead to prompts that010
achieve balance across rewards – an issue that011
has been well-studied in the multi-objective012
and robust optimization literature. In this013
paper we conduct an empirical comparison of014
several existing multi-objective optimization015
techniques, adapted to this new setting: RL-016
based discrete prompt optimization. We017
compare two methods optimizing the volume018
of the Pareto reward surface, and one method019
that chooses an update direction that benefits020
all rewards simultaneously. We evaluate021
performance on two NLP tasks: style transfer022
and machine translation, each using three023
competing reward functions. Our experiments024
demonstrate that multi-objective methods that025
directly optimize the volume of the Pareto026
reward surface perform better and achieve a027
better balance of all rewards than those that028
attempt to find monotonic update directions.029

1 Introduction030

Discrete prompt tuning involves refining a text031

prompt for a language model (LM) to maximize032

a set of user-specified objectives on the LM’s033

output (Shin et al., 2020; Schick and Schütze, 2020;034

Wen et al., 2023). Successful techniques for prompt035

tuning allow users to control and adapt powerful036

LLMs to new tasks without the trial-and-error of037

manual prompt design. While RL-based techniques038

have been shown to be effective at finding prompts039

that optimize an average of rewards (Deng et al.,040

2022), in many target applications, there is a041

tension between the natural reward functions.042

Figure 1: A modern to Shakespearean text style
transfer setting where each dot represents an output
sentence sampled from an LM conditioned on either a
prompt trained with average reward (left) or a prompt
trained using multi-objective optimziation techniques
(right). The output sample 1 only optimizes for style
match, while output sample 2 only addresses content
preservation. Sample 3, on the other hand, balances both
objectives at the same time. The shaded regions indicate
measures of volume of the Pareto reward surface.

For example, as depicted in Figure 1, many 043

style transfer tasks need to preserve content while 044

simultaneously maximizing transfer into the target 045

style – two objectives that are directly at odds with 046

one another. Thus, current techniques result in a 047

phenomenon we will refer to as objective collapse: 048

focusing on maximizing the average of reward 049

functions (also called scalarization) can lead to 050

prompts that disproportionately maximize a subset 051

of objectives at the expense of others. For instance, 052

in Figure 1, the prompt on the left side tends to 053

produce LM outputs (represented by blue dots) that 054

prioritize one objective over the other. Conversely, 055

the prompt on the right side produces samples 056

that achieve reasonable performance across all 057

objectives simultaneously. However, in both cases 058

the average reward is nearly equivalent. 059

The problem of reward balancing has been 060

well-studied in other domains—for example, the 061

multi-objective and robust optimization literature 062
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Figure 2: In all the settings, we have a parameter-efficient policy model, responsible for generating the task-specific
prompts, where all the parameters of the model except for an MLP module are frozen. Another frozen language
model is used to generate output sentences, given an input and a prompt from the policy model. All the output
sentences are then evaluated with respect to each objective, and multi-objective losses are calculated. Finally, a
gradient update on the MLP parameters is performed.

proposes several approaches that offer advantages063

over scalarization. However, these techniques064

have never been applied to the RL-based discrete065

prompt optimization setting that is most relevant in066

NLP. Thus, in this paper we conduct an empirical067

comparison of several existing techniques for068

multi-objective optimization that we adapt to069

discrete prompt optimization, where we aim to070

evaluate their effectiveness in achieving a more071

useful balance of rewards in downstream prompt-072

driven NLP tasks. The first two approaches we073

compare maximize the volume of the Pareto reward074

surface, while the third method chooses a gradient075

update direction that is beneficial for all rewards076

simultaneously.077

More specifically, the first method in our078

study computes the hypervolume indicator079

(HVI) (Knowles et al., 2004) for a set of samples080

drawn from a given prompt, and treats this081

measure as the final reward in RL. Intuitively, HVI082

measures the area under the Pareto frontier of the083

outputs sampled from the current prompt (shown084

by the shaded regions in Figure 1). Samples that085

achieve a better balance of reward elevate the086

Pareto frontier and increase HVI. However, this087

method has a potential drawback: if an outlier088

sample (e.g., represented by the red dot labeled089

with a four in Figure 1) achieves high values across090

all rewards, the HVI can be disproportionately091

high (represented by the outer rectangular region092

in Figure 1, which dominates the shaded areas).093

This dominant outlier effect may diminish the094

stability of HVI optimization in an RL setting, as it095

becomes very sensitive to outliers.096

Therefore, we also investigate using a simpler097

method for maximizing the volume in the second098

approach, called the expected product of rewards.099

Here, we approximate the expected volume by 100

simply computing the average product of rewards 101

(tentatively depicted by the dark rectangular region 102

in Figure 1). 103

The third approach takes a different strategy 104

based on steepest gradient descent (Fliege and 105

Svaiter, 2000). We approximate the gradient 106

of the expectation of each individual reward 107

separately and then search for an update direction 108

to make monotonic progress in every reward 109

simultaneously. 110

In this paper, we specifically focus on optimizing 111

discrete prompts, as they offer the advantages 112

of interpretability and reusability in contrast to 113

continuous or “soft” prompts. We acknowledge 114

that the issue of balancing multiple conflicting 115

objectives is a well-established area of research 116

within the multi-objective and robust optimization 117

literature. However, adapting these techniques 118

to the domain of discrete prompt optimization 119

for language models comes with challenges 120

due to having sources of discontinuity and 121

discreteness. First, the text tokens for the prompt 122

are discrete, and second, since marginalizing over 123

all possible output samples is intractable, we need 124

to approximate the expected gradient of the loss 125

with respect to the sampled sentences. 126

We train a small, parameter-efficient policy 127

network in order to generate task-specific prompts 128

that can later be used alongside an input sentence to 129

be fed into any other language model, as depicted 130

in Figure 2. We specifically put an emphasis on 131

optimizing prompts to achieve a balance across 132

multiple reward functions. 133

To understand the effectiveness of these 134

approaches in the discrete prompt optimization 135

setting, we conduct experiments on two text 136
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Algorithm 1: Volume-based policy update for one input sentence.

1: Input: Input sentence x, policy πθ, reward models r1...m, external frozen LM
2: {z1...k} ∼ πθ(x) ▷ Sample k prompts from the policy
3: for i = 1. . . k do:
4: {y1...k̂} ∼ pLM (y|x, zi) ▷ Sample k̂ output sentences from a desired LM
5: end for
6: for i = 1 . . . k · k̂ do:
7: calculate r1...m(yi, x) ▷ Calculate r1...m for each output sentence y and input x
8: end for
9: Calculate rprod (or rhvi) ▷ Calculate expected product of rewards (or hypervolume)

10: Calculate L using rprod (or rhvi) ▷ Use efficient SQL loss (Guo et al., 2022)
11: θ = θ − η∇θL (θ) ▷ Gradient descent on policy parameters

Figure 3: In this algorithm, k prompts are sampled from the policy model and used alongside an input sentence to
generate k̂ output samples from an external frozen LM. The desired objective values for each of the sentences are
calculated and combined into a single reward value by computing their expected product of rewards or hypervolume
indicator, based on the desired approach. Then, the loss is computed based on this reward and used for a gradient
update on the policy LM’s parameters.

generation tasks: text style transfer and machine137

translation using three competing reward functions138

for each task. Our findings indicate that volume-139

based methods are most effective in this setting,140

achieving substantial gains in balancing the141

competing rewards, compared to the baseline142

methods. While RL-based steepest descent also143

improves balance, it does not perform as robustly144

as the volume-based methods.145

2 Problem Statement146

Given m multiple objectives and their147

corresponding reward functions {r1, r2, . . . rm},148

we perform discrete prompt optimization for149

controlled text generation. We refer to a set of n150

discrete prompts as Z = {z1, z2, . . . zn}, the input151

text as x, and the text generated by the LM as152

y. The unsupervised task requires texts as inputs153

whereas supervised tasks also take the targets as154

additional inputs. We aim to generate a prompt155

that is added to the beginning of the input and156

causes the LM to generate output text compliant157

with the objectives.158

2.1 Optimization problem159

We formulate discrete prompt optimization as160

an RL problem, where we train a multi-layer161

perceptron (MLP) module over a frozen language162

model as our policy network. A frozen LM head is163

used after the MLP module to generate the prompts.164

At each step, given a text input x, we sample k165

prompts {z1, z2, . . . zk} from the policy πθ, where166

θ represents the policy parameters. Subsequently, 167

we utilize another frozen language model pLM to 168

generate k̂ output sentences for each pair of input 169

x and prompt zi. 170

Then, we assess the quality of these outputs 171

using the reward function ri corresponding to 172

each objective1. Finally, the optimization problem 173

centers on maximizing these rewards as follows: 174

max
θ

k·k̂∑
i=1

Ez∼πθ

Ey∼pLM (y|x,z)

 m∑
j=1

rj (y, x)


(1) 175

3 Methodology 176

In this section, we describe the adapted 177

optimization methods for generating discrete 178

prompts that, when fed into an LM along with 179

the input text, produce outputs that maximize a set 180

of competing reward functions. We compare two 181

optimization methods that maximize the volume 182

coverage of rewards and one method that finds 183

the gradient update direction which optimizes all 184

rewards simultaneously. 185

3.1 RL-based Volume Improvement 186

In this section, we investigate two approaches that 187

aim to improve the volume coverage of rewards. 188

1For simplicity, we assume the reward value is solely
dependent on the generated text y and the input text x. It
can be easily expanded to include prompt z or the reference
text, if necessary.
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Algorithm 2: MGDA-based policy update for one input sentence.

1: Input: Input sentence x, policy πθ, reward models r1...m, external frozen LM
2: {z1...k} ∼ πθ(x) ▷ Sample k prompts from the policy
3: for i = 1. . . k do:
4: {y1...k̂} ∼ pLM (y|x, zi) ▷ Sample k̂ output sentences from a desired LM
5: end for
6: for i = 1 . . . k · k̂ do:
7: calculate r1...m(yi, x) ▷ Calculate r1...m for each output sentence y and input x
8: end for
9: for i = 1. . .m do:

10: Calculate Lm using rm ▷ Use efficient SQL loss (Guo et al., 2022)
11: end for
12: λ1, . . . , λm = FrankWolfeSolver(∇θLi (θ)) ▷ Find the direction using [7]
13: θ = θ − η

∑m
i=1 λi∇θLi (θ) ▷ Gradient descent on policy parameters

Figure 4: In this algorithm, k prompts are sampled from the policy model and used alongside an input sentence to
generate k̂ output samples from an external frozen LM. The desired objective values for each of the sentences are
calculated and used to generate the corresponding losses. Then, a direction to improve all the losses at the same
time is found, and a gradient update on the policy model’s parameters is performed.

3.1.1 Hyper-volume indicator189

The hypervolume indicator (Zitzler and Thiele,190

1998; Knowles et al., 2004) is defined for a point191

set S ⊂ Rd and a reference point pref ∈ Rd.192

The hypervolume indicator H quantifies the region193

dominated by S and bounded by pref . S denotes194

the set of points/solutions that we are examining.195

Mathematically, hyper-volume indicator is defined196

as:197

H( S)=Λ
({

q ∈ Rd | ∃p ∈ S : q≤p and pref ≤ q
})

198

where Λ(·) shows the Lebesgue measure for the199

sub-space. In other words, it measures the size200

of the hypervolume covered by a set of solutions201

in the objective space. This hypervolume is202

always measured with respect to a reference point,203

which we consider to be a zero vector in all our204

experiments.205

In our setting, each point in S is a sampled206

sentence. For example, in the style-transfer task, if207

we have 2 objective values of style-match: 0.6 and208

content-match: 0.3 for a sentence, this point can be209

denoted as (0.6, 0.3), and the reference point would210

be set to (0, 0). We consider the hypervolume211

indicator of the reward functions as the ultimate212

reward signal for training the policy network in the213

first approach.214

3.1.2 Expected product of rewards 215

In this method, we consider the expected product of 216

objective functions as the reward signal for training 217

the policy network. We obtain k̂ samples as output 218

per prompt and for each sentence, we compute 219

all m reward values, and calculate the product 220

of rewards. We utilize the expected product of 221

rewards across all k̂ samples as the final reward 222

signal for policy updates. 223

The main advantage of this reward compared to 224

the HVI reward is that the effect of the outliers will 225

be more controlled by using the expected value of 226

objectives within a sampled set of sentences. 227

The pseudo-code for the volume-based 228

approaches is provided in Figure 3, where at 229

each update step, we sample prompts from the 230

policy model and generate output sentences from 231

a desired language model. We then calculate 232

the reward values for each of the objectives 233

separately and use them to compute the dominated 234

hypervolume or the expected product of rewards 235

and use it to calculate the loss. Then, we update 236

the policy model using gradient descent. 237

3.2 Multiple Gradient Descent Algorithm 238

with RL 239

We describe the multiple gradient descent 240

algorithm (MGDA), which finds the gradient 241

update direction that maximizes all the rewards. 242

This method follows the approach of steepest 243

descent for multi-criteria optimization (Fliege and 244
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Svaiter, 2000), where the goal is to find a direction245

dt that improves all the objectives by the amount246

of αt, at each step t. Here, Li and θ represent the247

expected loss corresponding to objective i, and the248

parameters of the policy model, respectively.249

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
∥d∥2,

s.t. ∇Li (θt)
T d ≤ α, i = 1, . . . ,m.

(2)250

The update rule for the parameters θ at time t251

with the step size η is defined as:252

θt+1 = θt − ηdt (3)253

This approach has been used in continuous254

multi-objective settings (Sener and Koltun, 2019;255

Lin et al., 2019). However, in our setting, since256

we optimize for discrete prompts, we compute257

stochastic gradient approximations. We calculate258

all m rewards for each (prompt z, input x,259

generated text y) triplet and optimize them.260

The pseudo-code for this approach is provided261

in Figure 4, where at each update step, we262

start by sampling prompts from the policy model263

and use them to generate output sentences from264

another language model. We then calculate265

the reward values for each of the objectives266

separately and compute their corresponding losses.267

Then, a direction for improving all the losses268

simultaneously is calculated and used for the policy269

update. More details are available in Appendix270

§A.1.271

4 Experiments272

We now describe the empirical comparison of the273

RL-adapted multi-objective optimization methods274

that we introduced in the previous section. Our275

primary aim is to evaluate these techniques for276

discrete prompt optimization for downstream277

generative NLP tasks. Based on the availability278

of benchmarks and evaluation metrics, we focus on279

style transfer and machine translation tasks.280

4.1 Tasks & Datasets281

In this section, we describe the tasks, datasets,282

and their corresponding competing objectives. We283

evaluate on two tasks: unsupervised text style284

transfer and supervised machine translation.285

We consider hypothetical tasks such as286

conveying positive sentiment as a competing287

objective in addition to accurate style transfer or288

machine translation. The selection of these specific 289

objectives and tasks is motivated by the availability 290

of standard evaluation datasets and well-established 291

metrics within the NLP community. For style 292

transfer, we focus on a specific sub-task that is 293

well-supported by available ground-truth parallel 294

style transfer data. Specifically, we aim to transfer 295

modern English into a Shakespearean style. This 296

particular style transfer task has long been a 297

mainstay benchmark for the text style transfer NLP 298

community (He et al., 2020; Deng et al., 2022). 299

Unsupervised Text Style Transfer. We 300

experiment on the style transfer task (Xu et al., 301

2012; Jin et al., 2022), converting standard 302

English into Shakespearean style. We consider 303

three competing objectives: maintaining the 304

original content of the input text, infusing it 305

with Shakespearean style, and ensuring the 306

resulting text conveys a positive sentiment. We 307

test on the Shakespeare dataset (Xu et al., 2012; 308

Jhamtani et al., 2017), and the objective function 309

corresponding to content preservation is BertScore 310

(Zhang et al., 2020), for sentiment is a sentiment 311

RoBERTa-base classifier2, and for style is a 312

DistilBERT-base-uncased model fine-tuned on 313

Shakespearean data3. 314

Supervised Machine Translation. We 315

experiment on German to English translation 316

task, using the iwslt2017 data (Cettolo et al., 317

2017). The objectives and the reward functions 318

are: (1) semantic similarity between the generated 319

translation and a reference text computed using 320

BertScore, (2) BLEU score (Papineni et al., 321

2002) between generated text and reference, and 322

(3) conveying a positive sentiment quantified 323

by the same RoBERTA-base classifier used in 324

style-transfer task. 325

Evaluation Metrics We evaluate each task using 326

its corresponding objective functions, with the goal 327

of optimizing all rewards in a balanced manner. To 328

quantify this balance, we assess performance by 329

calculating both the mean and the expected product 330

of the individual objectives for each task. 331

4.2 Training Details 332

Following (Deng et al., 2022), we consider a multi- 333

layer perception module on top of a small frozen 334

distilGPT-2 model (Sanh et al., 2019), alongside a 335

2cardiffnlp/twitter-roberta-base-sentiment-latest
3notaphoenix/shakespeare_classifier_model
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Method Obj 1 Obj 2 Obj 3 Product Average

Text Style Transfer (Obj1: Content - Obj2: Style - Obj3: Sentiment)

Average 19.56 79.25 38.28 30.91 45.69
Product 34.58 57.78 35.11 36.04 42.49

HVI 25.39 67.91 38.76 32.44 44.02
MGDA 22.37 66.51 38.11 31.16 42.33

Machine Translation (Obj1: Content - Obj2: BLEU - Obj3: Sentiment)

Average 32.07 32.00 46.36 65.48 36.81
Product 32.95 31.70 46.47 65.98 37.04

HVI 31.18 30.51 48.69 63.21 36.79
MGDA 31.46 31.85 46.03 62.87 36.45

Table 1: Reward values corresponding to each objective at a checkpoint where each method achieved the highest
average of the product of rewards across samples. Even though the method utilizing the average of rewards achieved
the highest average value for style transfer, we can observe an imbalance across various objective values. The
product method, on the other hand, got the highest expected product value, reflecting a more balanced improvement.
All the reported values are average objective values computed from 128 output samples.

frozen LM head as the policy network. The policy336

network is trained for 12,000 steps. The number337

of training samples used for text style transfer and338

machine translation are 100 and 200, respectively.339

At each step, we sample eight prompts for a given340

input from the policy network, each comprising five341

tokens. Subsequently, we feed each prompt along342

with its corresponding input text into a separate343

LM to generate 128 output samples. We use GPT-344

2 (Radford et al., 2019) for text style transfer and345

flan-T5-small (Chung et al., 2022) for machine346

translation tasks.347

Our choice of models was informed by an348

assessment of their respective strengths and349

capabilities in specific tasks. For instance, we350

observed that the flan-T5-small model exhibited351

superior performance in machine translation tasks352

compared to the GPT-2 model (Haddow et al.,353

2022); we followed past work in using the354

base models that tended to have a reasonable355

starting performance on the respective tasks.356

For instance, T5 has been repeatedly shown to357

be effective at translation tasks, while GPT-2358

fails to produce translations reliably. Further,359

we wanted to demonstrate that multi-objective360

optimization approaches could generalize across361

both the encoder-decoder and decoder-only362

language models.363

Furthermore, we employ “Efficient soft Q-364

learning” to learn the policy network’s parameters365

based on the reward using gradient descent.366

Efficient soft Q-learning was introduced by (Guo367

et al., 2022), addressing the inefficiency due to 368

the large sequence space by combining the best of 369

on-/off-policy updates. 370

We repeat each experiment with three distinct 371

random seeds and report the average results. Using 372

NVIDIA RTX A6000, each experiment takes about 373

20-24 hours. 374

4.3 Compared Methods 375

We compare two volume maximization approaches 376

such as Hyper-volume indicator (HVI) and 377

Expected product of rewards (Product). We also 378

analyze the Multiple Gradient Descent Algorithm 379

(MGDA) that finds the optimal gradient update 380

direction to maximize all rewards simultaneously. 381

As a baseline, we use RLPrompt (Deng et al., 382

2022) for three objectives by optimizing the 383

average of all rewards (Average) and comparing 384

with the above-mentioned approaches. 385

5 Results 386

We report individual objective values as well 387

as their expected product and average in 388

Table 1. When evaluating based on the 389

expected product, the product method demonstrates 390

superior performance compared to the other 391

approaches. Additionally, we observe a more 392

balanced improvement across all rewards with 393

volume-based methods such as HVI and product, 394

in contrast to Average and MGDA. For example, 395

in style transfer task, the “average” method 396

improves style disproportionately higher than other 397
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Sentiment vs Content Style vs Sentiment Style vs Content

Figure 5: Text Style Transfer. From left to right, positive sentiment vs. content match, Shakespearean style vs.
positive sentiment, and Shakespearean style vs. content match for different settings of average reward, hyper volume
indicator reward, expected product reward, and multiple gradient descent algorithm are shown.

Sentiment vs Content BLEU vs Content BLEU vs Sentiment

Figure 6: Pairwise reward values for Machine Translation Task from German to English, in different settings of
average reward, hyper volume indicator reward, expected product reward, and multiple gradient descent algorithm.

objectives despite achieving the best performance398

based on the Average metric.399

Among the compared methods, we believe that400

expected product of reward best captures the401

balanced performance across the rewards, as it402

mitigates the problems of objective collapse and403

dominant outlier effect, described in prior sections.404

5.1 Pairwise Reward Analysis405

We plot the pairwise objective values achieved by406

each of the optimization methods on the validation407

set for text-style transfer and machine translation408

tasks in Figure 5 and 6 respectively. Each data409

point on the scatter plot represents the average410

objective value computed from 128 output samples,411

where each output sample is generated from a412

prompt sampled from the policy network and413

an input sentence from the validation dataset.414

Figure 5 illustrates how relying on the average of415

reward values can result in sacrifice of individual416

objectives in favor of overall improvement. We417

observe instances where sentiment and style scores418

are notably low, despite a high content score.419

This phenomenon arises due to the emphasis420

placed solely on the average of rewards, without421

consideration for individual objectives. MGDA422

performs slightly better than the average reward423

when balancing the individual objectives. However,424

the HVI and the product of rewards improve all the 425

objectives simultaneously, with greater success. 426

Similarly, in the case of the machine translation 427

task in Figure 6, we observe objective collapse 428

for the average reward setting, while the other 429

three approaches demonstrate a better balance 430

among objectives while enhancing the joint 431

reward. Notably, the HVI approach and the 432

expected product of rewards are more successful in 433

simultaneously optimizing all the objectives. 434

6 Qualitative Analysis 435

In this section, we present a few examples from 436

the style transfer task in Table 2. We provide an 437

example for each method, the generated prompt 438

using it, the input, and the resulting output 439

produced by the frozen model. The examples 440

in Table 2, are some of the successful examples 441

chosen based on their high objective scores. In 442

these examples, content is preserved reasonably 443

well, while some of the words are changed in order 444

to be more aligned with the Shakespearean style. 445

The scores corresponding to the positive sentiment 446

scores should be interpreted carefully, as achieving 447

a more positive sentiment might change the 448

semantic meaning of the sentence to some extent, 449

specifically where the original input has an opposite 450
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Method Prompt Input Output Obj 1 Obj 2 Obj 3

Text Style Transfer (Obj1: Content - Obj2: Style - Obj3: Sentiment)

HVI thou WhereasYe
WhereasOY

Be brave like
the lion and
proud.

Be thou like the
lion and proud.

77.4 98.14 80.06

MGDA Whereas ye
untoWhereasð

Don’t think I’m
in love with
him just
because I’m
asking about
him.

Thou shalt not
think that I’m
in love with
him just
because I’m
asking about
him.

81.5 89.81 51.96

Product whereinWhereasWhereas
whereinYe

He has to pay
the price for his
foolish actions.

He hath to pay
the price for his
folly;

81.1 98.36 47.07

Table 2: Given the prompt learned from the policy model alongside the input to GPT2, the Shakespearian form of
the sentence is generated as the output. The objective values corresponding to the output, as well as the method
used for training the policy model, are reported.

sentiment. For instance, in another example451

sentence, “crimes” was replaced with “good deeds”452

to make the sentiment more positive, at the expense453

of getting a lower score on the competing objective454

of content preservation. Overall, the models seem455

to achieve a balanced performance when handling456

these conflicting situations.457

Moreover, we can observe some similarities458

and common words in high-performing prompts,459

demonstrating the effectiveness of certain tokens460

for a specific task. However, we can see that despite461

these similarities, the differences in the prompts462

from various methods can substantially affect the463

final evaluation results, which were shown in Table464

1.465

7 Related Work466

Prompt Tuning. A line of research has emerged467

with a focus on improving the discrete (Jiang et al.,468

2020; Prasad et al., 2023; Mishra et al., 2022)469

and soft prompts (Li and Liang, 2021; Qin and470

Eisner, 2021; Vu et al., 2022; Liu et al., 2023) for471

improved downstream performance. Few recent472

works generate discrete prompts by utilizing the473

models gradients (Shin et al., 2020; Wen et al.,474

2023), employing evolution algorithms (Guo et al.,475

2023), and reinforcement learning (Zhang et al.,476

2023; Deng et al., 2022; Jung and Kim, 2023; Wang477

et al., 2023). Our work shares a similar direction,478

but we focus on multiple competing objectives 479

instead of one. 480

Multi-objective Reinforcement Learning. 481

Multi-objective reinforcement learning is typically 482

studied in decision-making (Van Moffaert et al., 483

2013; Van Moffaert and Nowé, 2014; Yang et al., 484

2019; Xu et al., 2020; Hayes et al., 2022). Jang 485

et al. (2023) fine-tunes LMs for multiple objectives 486

by training one policy model per objective and 487

merging them. (Lin et al., 2019; Sener and Koltun, 488

2019) perform multi-objective RL in a multi-task 489

learning setup. Instead, we propose optimizing the 490

prompts for one model with multiple objectives. 491

8 Conclusion 492

We empirically investigate the use of optimization 493

techniques alongside reinforcement learning to 494

address discrete prompt optimization in a multi- 495

objective context. Our experiments show that 496

multi-objective methods, which directly optimize 497

the volume, outperform those seeking monotonic 498

update directions, achieving a better balance across 499

all rewards. 500

9 Limitations 501

The methods discussed in this paper take many 502

GPU hours to converge, making it computationally 503

expensive to run. Moreover, our optimization 504

methods perform well on smaller LMs like GPT2, 505

8



we have not experimented with larger models506

because of the substantial computational cost.507

10 Ethical Considerations508

This paper introduces three approaches for discrete509

prompt optimization. As such, prompt-tuning510

should not introduce biases not already observed511

in the model and generate any harmful text as512

prompts, and we do not anticipate any significant513

ethical concerns.514

9
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A Appendix715

A.1 Multiple Gradient Descent Algorithm716

(Fliege and Svaiter, 2000) proposes a steepest717

descent algorithm for multi-criteria optimization,718

where the update rule for the parameters θ at time719

t with the step size η is defined as:720

θt+1 = θt − ηdt (4)721

where the search direction dt is calculated as722

follows, with Li(θj) being the expected loss723

corresponding to objective oi:724

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
∥d∥2,

s.t. ∇Li (θt)
T d ≤ α, i = 1, . . . ,m.

(5)725

A valid direction dt improves the values for all726

the objectives, simultaneously. Moreover, (Fliege727

and Svaiter, 2000) shows that the solution obtained728

by the aforementioned approach leads to a Pareto729

critical point.730

Based on the KKT conditions, we have731

dt = −

(
m∑
i=1

λi∇Li (θt)

)
,

m∑
i=1

λi = 1 (6)732

and we can write equation-5 in its dual form:733

max
λi

− 1

2

∥∥∥∥∥
m∑
i=1

λi∇Li (θt)

∥∥∥∥∥
2

s.t.
m∑
i=1

λi = 1, λi ≥ 0, ,∀i = 1, . . . ,m.

(7)734
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