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Abstract

A correct measurement of the Blood Pressure (BP) is crucial in monitoring the health
status of a patient and in diagnosis of cardiac vascular diseases. In this proof of concept,
we develop and test a new Geometric Deep Learning (GDL) approach to infer BP data from
other biological parameters: the photoplethysmogram and the electrocardiogram (ECG).
Our findings suggest that such a GDL approach shows great promise compared with many
state of the art models that are used in the field.

1. Introduction

Human cardiovascular system is a complex dynamical system, with multiple feedbacks, that
we can monitor via key parameters like blood pressure (BP), heart rate (HR), cardiac cycle
evolution etc. New challenges for AI systems to interpret and predict the time evolution of
such parameters call for new approaches (Zhang et al. (2013) and refs. therein).
In particular, systolic BP is crucial in diagnosis
of cardiac vascular diseases (CVD) Amini et al.
(2021); Lim et al. (2013), however traditional
cuff-based BP measurement devices cannot give
a continuous BP signal, which is key for diag-
nosis and correct predictions, and are not com-
fortable to use for long periods of time. Re-
cently, new light portable devices, like the pho-
toplethysmogram (PPG), enable to obtain some
of the above mentioned parameters, but not the
BP, which, however can be inferred by them with standard techniques together with more
machine learning oriented algorithms (P. Su et al. (2018), Chen et al. (2000), and refs.
therein).
We plan to approach the question of inferring, using a graph neural network, the value of
the BP, given the input signal of a PPG wearable device. Our paper represents a proof
of concept contribution, we plan to furtherly improve our performances and results with a
future study involving more data and variability in patient collection samples.
This is a summary of our contribution:
• This paper presents a novel Geometric Deep Learning approach to the question of

determining the BP from PPG and ECG signals that is tested on real data;
• To the best of our knowledge, this is the first time that GDL methods, in particular

Graph Neural Networks (Kipf and Welling (2017); Velickovic et al. (2018); Hamilton
et al. (2017); Bronstein et al. (2021)), are employed for the solution of this question.
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2. Dataset, Data Representation and Preparation

Our paper is a “proof of concept”, hence our dataset consists of a sample taken from one
healthy male patient only, monitored by professional health care workers. The dataset
includes three time series: ECG, PPG and BP. The first two were obtained by a PPG
device and the third one was obtained from a Finapres medical device. The PPG, ECG
and BP of the subject were recorded at sampling frequency of 512 Hz (the BP was collected
with a different frequency and then interpolated to have a measurement at 512 Hz) for 26
minutes of activity comprising both rest and non rest status. Corrupted data has been
manually removed to ensure the quality of the signal (about 30% of the data has been
dropped). Finally a convolution-based smoother has been applied to remove some noise.
To train and test our algorithm, we created a train/valid/test split with ratios 0.7/0.1/0.2.
As customary when dealing with time series, this split was performed without shuffle. The
final model to be put into production should predict, for a given 5s long series of data, the
average Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) of the patient,
to be updated every second with the new average predicted from the last 5s series of data.
As a consequence, as a final step, our train/valid/test sets have been split accordingly.
Finally, we have kept only one data point every 4 (so that we can think at our signal as if
it was recorded at a frequency of 128 Hz) to ease the computational burden.

3. The model

We write the (cleaned and prepared) time series signals as:
Xt = (x1, . . . , xT ), Yt = (y1, . . . , yT ), Zt = (z1, . . . , yT ) Pt = (p1, . . . , pT )

where T is the total number of time steps in our database, and the data is being given with
a frequency of f Hz. The first two series X, Y are obtained via PPG, Z is the ECG signal
and the third one is the SBP (or the DBP) data (see Sec. 2).
X, Y , Z give rise to a 3 × T dataset that we split in a sequence {Si}Ni=1 of 3-dimensional
time series having length of 5 seconds and with a step of one second (see Sec. 2). Ac-
cordingly, we can see each Si as a matrix of size 3 × I, where I = 5 · f , whose elements
will be denoted as si,j,k for j = 0, 1, 2 and k = 0, ..., I − 1 (i.e. si,0,k are obtained from the
series Xt, etc.). Each Si is then transformed into a graph Gi, having set of nodes {pi,j,k}
in bijection with {si,j,k} and whose construction can be summarised by the following picture.

pi,2,k

pi,1,k

pi,0,0 pi,0,k
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To each node pi,j,k is given the feature si,j,k (more features can be added) and for any fixed
k we create an edge pi,a,k → pi,b,k+h where h = 0, 1, d, 2d, 3d, ...,min(b I−kd cd, f), a, b = 0, 1, 2
and a 6= b if h = 0 for a given, customizable, integer divisor d of f . Note that in the previous
diagram only adjacent connections and all the edges of the node pi,0,0 are depicted and d = 4.
We then obtain a series of topologically identical graphs Gi. We obtain a sequence {Li}Ni=1

of 1-dimensional labels from Pt by taking the mean of the SBP signal over the time windows
relative to each Si. Each graph is then fed to a Graph Neural Network (GNN) that is given
by the concatenation of an encoder and a decoder. As possible decoders, we tested an
average pooling layer and a flatten+linear layer. The encoder consists of a concatenation
of graph convolutions that is described in the following diagram where BN denotes a Batch
Normalisation, AF denotes an Activation Function and n is the number of layers:

x (n− 1)

Gi Conv BN AF Conv Decoder L̂i

In our validation, we tested as convolutional layers the GCN, Sage and GAT convolutions
(Kipf and Welling (2017), Hamilton et al. (2017), Velickovic et al. (2018)) and, when we
used GAT, we did not use a BN layer. We call the resulting architectures TGCN, TSAGE
and TGAT. Compared with other models traditionally used to model time series data
(e.g. Recurrent Neural Networks, see Goodfellow et al. (2016)), the structure of our model
has many similarities with recent Temporal Convolutional Networks (TCNs, see Bai et al.
(2018)).

4. Experimental Results and Discussion

Model MAE ± std (SBP) MAE ± std (DBP)

TGCN 15.71 ± 10.95 6.66 ± 2.22

TSAGE 18.7 ± 9.5 3.47 ± 1.8

TGAT 6.34 ± 3.71 1.87 ± 1.49

DL benchmark (different dataset) 12.51 ± 12.61 8.3 ± 9.84

XGBoost (our dataset) 6.62 ± 4.11 1.98 ± 1.54

We summarise in this table some results we obtained running our model on our dataset.
As a metric, we report the Mean Absolute Error (MAE) and the Standard Deviation (std)
in mmHg. We then choose d = 8, we use a flatten+linear decoder, we set the number of
layers to be equal to d and we add the time series of the derivatives of the given signals as
features. As it can be expected, the TGAT architecture is the one displaying best results
among our models.
The scores displayed are obtained on our test set by averaging the results of 10 different
trainings of the chosen model on our train set.
As a benchmark, we record for reference the best result obtained in Schrumpf et al. (2021)
which tests popular Deep Learning models on raw PPG data for BP prediction (with both a
dataset and a problem different from ours) and we test the popular XGBoost on our dataset
(which is a reasonable benchmark, see Che et al. (2019)). We include the results obtained
from our models on the Diastolic Blood Pressure (DBP) as well.
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