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ABSTRACT

Deep graph learning has gained grand popularity over the past years due to its versa-
tility and success in representing graph data across a wide range of domains. How-
ever, the pervasive issue of imbalanced graph data distributions, where certain parts
exhibit disproportionally abundant data while others remain sparse, undermines the
efficacy of conventional graph learning algorithms, leading to biased outcomes. To
address this challenge, Imbalanced Graph Learning (IGL) has garnered substantial
attention, enabling more balanced data distributions and better task performance.
Despite the proliferation of IGL algorithms, the absence of consistent experimental
protocols and fair performance comparisons pose a significant barrier to compre-
hending advancements in this field. To bridge this gap, we introduce IGL-Bench,
a foundational comprehensive benchmark for imbalanced graph learning, embark-
ing on 17 diverse graph datasets and 24 distinct IGL algorithms with uniform data
processing and splitting strategies. Specifically, IGL-Bench systematically inves-
tigates state-of-the-art IGL algorithms in terms of effectiveness, robustness, and
efficiency on node-level and graph-level tasks, with the scope of class-imbalance
and topology-imbalance. Extensive experiments demonstrate the potential benefits
of IGL algorithms on various imbalanced conditions, offering insights and opportu-
nities in the IGL field. Further, we have developed an open-sourced and unified
package to facilitate reproducible evaluation and inspire further innovative research,
available at: https://github.com/RingBDStack/IGL-Bench.

1 INTRODUCTION

Graphs are widely acknowledged as powerful for representing networks such as social networks (Fan
et al., 2019), citation networks (Sun et al., 2021; Li et al., 2023a; Sun et al., 2022a), e-commerce
networks (Li et al., 2020; Yuan et al., 2023), etc. In graphs, nodes represent individual entities,
and edges signify relationships between nodes. Graph representation learning seeks to embed the
graph (nodes, edges, or entire graphs) into a low-dimensional space while retaining their structural
semantics (Zhang et al., 2020). Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hamilton
et al., 2017; Velickovic et al., 2018) have emerged as the dominant approach for graph representation
learning owing to their exceptional ability to leverage both the graph topology and node properties.

Though GNNs achieve satisfying performance in various tasks, they are typically designed assuming
that training data is comprehensive and balanced. However, real-world graph data often feature
imbalanced distributions with some parts possessing abundant data while others are scarce (Qin
et al., 2024), which greatly compromises task performance. The non-Euclidean nature of graph data
precludes the use of traditional imbalance learning algorithms, presenting a considerable obstacle
to the deployment of GNNs in real-world scenarios, which is also a heated research topic in the
community. As graph learning enters the new era of large models, there are a number of graph
foundation models (Liu et al., 2023a) that depend on a wide range of graph data for pre-training,
enabling them to obtain base models that generalize across diverse domains and tasks. Unexpectedly,
massive imbalanced graph data inevitably introduces intrinsic biases, presenting significant challenges
for subsequent prompt-based fine-tuning for downstream applications.
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Figure 1: Overview of the established IGL-Bench. Both IGL algorithms and datasets are catego-
rized into node-level and graph-level, where the algorithms are further divided into class-imbalance,
topology-imbalance, or both. Click ▷ and link to the corresponding sections for in-depth analysis.

Imbalanced Graph Learning (IGL). To address the challenge of imbalance, a wide range of
methods have been proposed in the realms of computer vision (Huang et al., 2016) and language (Li
et al., 2019) on the broadly concerning class-imbalance learning issue (Johnson & Khoshgoftaar,
2019). Nevertheless, the non-Euclidean graph data presents distinct challenges due to its inherent
non-i.i.d. and diverse topological nature. As a result, not only do these conventional methods become
infeasible for graphs, but they also fail to address other distinctive topology-imbalance challenges
intrinsic in graph data (Zhao et al., 2021; Liu et al., 2021; Chen et al., 2021; Li et al., 2024; 2025).
To mitigate the aforementioned imbalanced issues, Imbalanced Graph Learning (IGL) has recently
attracted considerable research interest, as highlighted in Figure 1. The increasing literature each year
reflects the rising significance and profound effect of tackling IGL challenges, which are categorized
into various kinds of research problems, presenting distinct characteristics, necessitating the creation
of specialized techniques to handle the imbalance issues inherent to each scenario effectively.

Despite the emerging studies of IGL algorithms, there lacks a comprehensive and unified bench-
mark, which would significantly impede the understanding and progress of IGL for the following
aspects. ❶ Dataset preparation rule. The use of different datasets, data processing approaches,
and imbalanced data-splitting strategies in previous works makes many of the results incomparable.
❷ Experiment conduction protocol. The variability in experimental setups, including parameter
settings, initialization procedures, and convergence criteria, hinders reproducibility and comparability
across studies. ❸ Performance evaluation standard. The metric for evaluating task performance
is not consistent. Apart from effectiveness, understanding the efficiency and complexity of each
algorithm is imperative, yet often overlooked in the literature. Hence, there is an urgent necessity
within the community for the creation of a comprehensive and open-sourced benchmark for IGL.

In this work, we establish a comprehensive Imbalanced Graph Learning Benchmark (IGL-Bench),
which serves as the first open-sourced and unified benchmark for graph-specific imbalanced learning
to the best of our knowledge. Through benchmarking existing IGL algorithms for effectiveness,
robustness, and efficiency, we make the following contributions:

• First Comprehensive IGL Benchmark. IGL-Bench enables a fair and unified comparison
among 19 state-of-the-art node-level and 5 graph-level IGL algorithms by unifying the experi-
mental settings across 17 graph datasets of diverse characteristics, providing a comprehensive
understanding of the class-imbalance and topology-imbalance problems in IGL for the first time.

• Multi-faceted Evaluation and Analysis. We conduct a systematic analysis of IGL methods from
various dimensions, including effectiveness, efficiency, and complexity. Based on the results of
extensive experiments, we uncover both the potential advantages and limitations of current IGL
algorithms, providing valuable insights to guide future research endeavors.

• Open-sourced Package. To facilitate future IGL research, we develop an open-sourced bench-
mark package for public access. Users can evaluate their algorithms or datasets with less effort.
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Figure 2: The research scope of the proposed IGL-Bench. Definitions of the imbalance ratio (ρ)
corresponding to each imbalance issue are further concluded in Table 1. Click ▷ and check details.

2 PRELIMINARY AND PROBLEM FORMULATION

Notations. Let G = {V, E ,A,X} be a graph, where V is the node set with N nodes, E is the edge
set, A ∈ RN×N is the adjacency matrix, X ∈ RN×d is the node feature matrix with d-dimension.

Node-level Classification. Given the labeled node set VL and their labels YL ∈ RC , where each
node vi is associated with a label yi. Semi-supervised node classification aims to train a node
classifier fθ : v 7→ RC to predict the labels YU of the remaining nodes VU = V \ VL.

Graph-level Classification. Denote G as the graph set. Given the labeled graph set GL and their
labels YL ∈ RC , where each graph Gi is associated with a label yi. Graph classification task aims to
train a graph classifier Fθ : G 7→ RC to predict the labels YU of the unlabeled graphs GU = G\GL.

We formulate the IGL problems into two categories: class-imbalance and topology-imbalance, where
the detailed categorizing motivations and problem descriptions can be found in Appendix B.1.
Definition 1 (Class-Imbalance). There exists an imbalance in the number of labeled samples (nodes
or graphs) across different classes, leading to the long-tailed quantity distribution (Ma et al., 2023).
Definition 2 (Topology-Imbalance). Both node- and graph-level tasks encounter topology-imbalance.
For node-level tasks, an imbalance exists in the topological distribution of labeled nodes, which
is brought by two main aspects: ❶ Local. Imbalanced node degree distribution (Wu et al., 2019).
❷ Global. Imbalanced graph structures concerning the Under-reaching and Over-squashing phe-
nomenon (Sun et al., 2022b). For graph-level tasks, the imbalance is facilitated by the uneven graph
size (the number of nodes) distribution (Liu et al., 2022), which offers potentially biased structures.

3 IGL-BENCH: IMBALANCED GRAPH LEARNING BENCHMARK

In this section, we introduce the overview of the IGL-Bench with considerations of the datasets
(Section 3.1), algorithms (Section 3.2), and the research questions that guide the benchmark study
(Section 3.3). We provide additional details including further declarations in the Appendix.

3.1 BENCHMARK DATASETS

To comprehensively and effectively evaluate the performance of IGL algorithms, we have integrated
17 real-world datasets from various domains for both the node-level and graph-level tasks. We briefly
introduce each category in the following sections. More details are provided in Appendix A.1.

Node-level Classification Datasets. We utilize 9 graph datasets covering different data scales and
homophily, including three citation networks from Plantoid (Yang et al., 2016) (Cora, CiteSeer,
PubMed), two co-occurrence networks in Amazon (Shchur et al., 2018) (Computers, Photo), the
large-scale ogbn-arXiv (Hu et al., 2020), two page-page networks in Wikipedia (Rozemberczki et al.,
2021) (Chameleon, Squirrel), and an actor-only induced subgraph of the film-director-actor-writer
network Actor (Pei et al., 2019). Datasets range from strong homophily to strong heterophily.
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Table 1: Definitions of the imbalance ratio (ρ) across different imbalance types.
Imbalance Type Definition Explanation

Node-Level Class-Imbalance
Graph-Level Class-Imbalance ρ =

maxCi=1 |Ci|
minCj=1 |Cj |

The imbalance ratio is set to the ratio between the number
of samples (|C|) in the majority and the minority class.

Node-Level
Topology-Imbalance

(local and global)

ρ =

1
|Hn|

∑
d(v), v ∈ Hn

1
|Tn|

∑
d(v), v ∈ Tn

The local imbalance ratio is set to the ratio of the average
node degree (d(v)) of the head node set (Hn) to the aver-
age node degree of the tail node set (Tn).

ρ = −10 · log |RC · SC|
The global imbalance ratio is set to the negative logarithm
of the absolute value of the product of the Reaching
Coefficient (RC) and the Squashing Coefficient (SC).

Graph-Level
Topology-Imbalance ρ =

1
|Hg|

∑
|Gi|,Gi ∈ Hg

1
|Tg|

∑
|Gj |,Gj ∈ Tg

The imbalance ratio is set to the ratio of the average graph
size (number of nodes) of the head graph set (Hg) to the
average graph size of the tail graph set (Tg).

Graph-level Classification Datasets. We integrate 8 widely adopted real-world datasets. PTC-
MR (Bai et al., 2019) and FRANKENSTEIN (Orsini et al., 2015) are molecule datasets, where each
graph is a molecule with or without mutagenicity. PROTEINS (Dobson & Doig, 2003; Borgwardt
et al., 2005) and D&D (Dobson & Doig, 2003; Shervashidze et al., 2011) are protein datasets marked
as enzyme or non-enzyme. IMDB-B (Cai & Wang, 2018) and REDDIT-B (Yanardag & Vishwanathan,
2015) are social networks in movies and online discussions, respectively. The large-scale ogb-
molhiv (Hu et al., 2020) is a benchmark dataset for predicting the biological activity of molecules,
featuring various molecular structures represented as graphs along with corresponding labels. The
scientific collaboration dataset COLLAB (Leskovec et al., 2005) for multi-class classification is
derived from three publicly available collaboration datasets that represent distinct research fields.

3.2 BENCHMARK ALGORITHMS

Table A.3 conclude the overall 24 IGL algorithms integrated in IGL-Bench with their technique
categorization, complexity analysis, and links to implementations (Details in Appendix A.2).

Class-Imbalanced IGL Algorithms. Node-level class-imbalanced IGL refers to the uneven allo-
cation of labeled nodes among classes. The classifier prioritizes learning from classes abundant in
labeled instances, potentially neglecting those with fewer instances. We implement 10 representative
algorithms including DRGCN (Shi et al., 2020), DPGNN (Wang et al., 2021), ImGAGN (Qu et al.,
2021), GraphSMOTE (Zhao et al., 2021), GraphENS (Park et al., 2021), GraphMixup (Wu et al.,
2022), LTE4G (Yun et al., 2022), TAM (Song et al., 2022), TOPOAUC (Chen et al., 2022) and
GraphSHA (Li et al., 2023b). Graph-level class-imbalanced IGL manifests in practical situations
where the distribution of labeled graphs across classes is skewed, typically favoring the majority class
with more labeled graphs. We select 4 typical algorithms including G2GNN (Wang et al., 2022),
TopoImb (Zhao et al., 2022), DataDec (Zhang et al., 2023), and ImGKB (Tang & Liang, 2023).

Topology-Imbalanced IGL Algorithms. Node-level topology-imbalanced IGL occurs when the node
topology properties display an unequal distribution. An important metric is the node degree, which
can reflect the proximity richness. We incorporate DEMO-Net (Wu et al., 2019), meta-tail2vec (Liu
et al., 2020), Tail-GNN (Liu et al., 2021), Cold Brew (Zheng et al., 2021), LTE4G (Yun et al., 2022),
RawlsGCN (Kang et al., 2022), and GraphPatcher (Ju et al., 2024a). Another profound topology
imbalance is brought by the under-reaching and over-squashing problem (Sun et al., 2022b), which
critically influences the label propagation process. We take ReNode (Chen et al., 2021), TAM (Song
et al., 2022), PASTEL (Sun et al., 2022b), TOPOAUC (Chen et al., 2022), and HyperIMBA (Fu et al.,
2023) as our investigation scope. Graph-level topology-imbalanced IGL stems from the intricate
interconnections within graphs. This imbalance frequently presents as variations in graph sizes and
topology groups. We implement SOLT-GNN (Liu et al., 2022) and TopoImb (Zhao et al., 2022).

3.3 RESEARCH QUESTIONS

We systematically design the IGL-Bench to comprehensively evaluate the existing IGL algorithms
and inspire future research. In particular, we aim to investigate the following research questions.
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RQ1: How much progress has been made by the existing IGL algorithms?

Motivation and Experiment Design. Existing IGL algorithms are conducted under inconsistent
imbalance settings, making it unfair to compare the task performance. Given the fair data and experi-
ment environment by IGL-Bench, RQ1 aims to gain a deeper understanding of the strengths and
weaknesses of IGL algorithms and identify directions that offer avenues for prospective improvements.
To achieve this, we conduct node and graph classifications, where the train/val/test split satisfies the
consistent ratio of 1:1:8. We facilitate dataset imbalance with the imbalance ratio ρ follows definitions
in Tabel 1, providing a fair comparison under the same imbalance degree. To perform an unbiased
evaluation, we summarize all the metrics used in the original papers of the algorithms (Table C.1) and
report results with Accuracy (Acc.), Balanced Accuracy (bAcc.), Macro-F1 (M-F1), and AUC-ROC.
The consensus and focus for each metric are analyzed in Appendix C.2.

RQ2: How effective are the IGL algorithms generalizing to the changing imbalance ratio?

Motivation and Experiment Design. Since RQ1 has already investigated the performance of IGL
algorithms on datasets of certain fixed imbalance ratios, RQ2 further explores the robustness of IGL
algorithms as the degree of imbalance varies by quantitatively controlling the imbalance ratio of each
dataset to study the diverse capabilities of IGL algorithms. To achieve this, we quantitatively set the
imbalance ratio to exhibit a staggered distribution of imbalance levels from (relatively) balanced to
extremely imbalanced under the predefined splitting constraints.

RQ3: Does classifiers benefit from the IGL algorithms to learn clearer boundaries?

Motivation and Experiment Design. Imbalanced data can cause unexpected shifts of classifier
boundary, negatively impacting task performance. RQ3 aims to investigate whether the performance
improvement in downstream tasks results from clearer classification boundaries under the influence
of the IGL algorithms. To achieve this, we compare changes in inter-class clustering coefficients by
the Silhouette score (Rousseeuw, 1987). Additionally, we use t-SNE (Van der Maaten & Hinton,
2008) to visualize the learned embeddings, aiding in intuitively understanding boundary shifts.

RQ4: How efficient are these IGL algorithms in terms of time and space?

Motivation and Experiment Design. Existing IGL algorithms handle the imbalance issues generally
by redistributing data at either the data level or algorithm level to achieve balance, a process that
naturally incurs extra computational and spatial complexity compared to vanilla GNNs. However, the
algorithm efficiency has been largely overlooked, where RQ4 is proposed to understand the trade-off
between efficiency and task performance. To achieve this, we evaluate the algorithm efficiency by
reporting the training time and peak GPU memory consumption on consistent configurations.

4 EXPERIMENT RESULTS AND ANALYSIS

In this section, we compare IGL algorithms covering node-level and graph-level tasks, addressing
class-imbalance and topology-imbalance issues. Detailed experiment settings and additional results
on more metrics and backbones can be found in Appendix B, Appendix C, and Appendix D.

4.1 EFFECTIVENESS EVALUATIONS FOR IGL ALGORITHMS (RQ1)

4.1.1 EFFECTIVENESS OF NODE-LEVEL CLASS-IMBALANCED ALGORITHMS

Results (Table 2). ❶ All algorithms surpass GCN on at least 5 datasets, showing a smaller perfor-
mance gain on heterophilic graph datasets compared to homophilic ones. ❷ Compared to the resam-
pling algorithms (e.g., ImGAGN, GrapSMOTE, GraphENS, and GraphSHA), data-augmentation
algorithms (e.g., LTE4G and GraphMixup) achieve better performance on 6 out of 9 datasets. ❸ The
loss-engineered algorithm TOPOAUC achieves optimal or near-optimal results in 5 out of 7 datasets,
attributed to its tailored modules for handling class-imbalanced and global topology-imbalanced data.
❹ Over half of the algorithms fail on the large-scale ogbn-arXiv, while the others perform worse.

4.1.2 EFFECTIVENESS OF NODE-LEVEL LOCAL TOPOLOGY-IMBALANCED ALGORITHMS

Results (Table 3). ❶ Most algorithms outperform GCN on 7 datasets, with DEMO-Net and Graph-
Patcher surpassing GCN on all datasets. ❷ Neighbor-augmented algorithms (e.g., Tail-GNN, Cold
Brew, and GraphPatcher) achieve greater performance gains compared to model-modified algorithms
(e.g., DEMO-Net and RawlsGCN). ❸ Tail-GNN and GraphPatcher excel on high-homophily datasets,
whereas Cold Brew performs better on high-heterophily ones. ❹ Cases on ogbn-arXiv are worse.
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Table 2: Accuracy score (% ± standard deviation) of node classification on manipulated class-
imbalanced graph datasets (Low) over 10 runs. “—” denotes out of memory or time limit. The best
results are shown in bold and the runner-ups are underlined (the same for tables below).

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

GCN (bb.) [21] 76.36±0.13 52.96±0.55 60.57±0.19 75.06±0.50 69.80±6.15 59.83±0.23 26.35±0.24 17.16±0.17 24.06±0.14
DRGCN [48] 71.35±0.77 55.22±1.82 62.59±4.62 67.71±3.10 85.67±5.30 — 26.40±0.35 17.11±0.81 25.03±0.23
DPGNN [57] 72.91±3.95 56.78±2.23 81.87±2.80 68.69±8.62 81.66±9.19 — 30.58±1.48 25.35±1.48 21.66±1.68
ImGAGN [42] 73.48±3.07 55.29±3.00 72.16±1.51 74.92±1.87 83.10±3.42 — 24.38±2.86 18.75±1.80 24.54±3.38
GraphSMOTE [70] 77.21±0.27 53.55±0.95 71.25±0.27 70.54±1.52 89.07±1.12 — 27.23±0.21 16.79±0.14 25.08±0.31
GraphENS [37] 79.34±0.49 61.98±0.76 80.84±0.17 80.72±0.68 90.38±0.37 53.23±0.52 24.34±1.62 20.05±1.61 25.03±0.38
GraphMixup [60] 79.88±0.43 62.66±0.70 75.94±0.09 86.15±0.47 89.69±0.31 56.08±0.31 30.95±0.40 17.83±0.32 24.75±0.37
LTE4G [67] 80.53±0.65 64.48±1.56 83.02±0.33 79.35±1.39 87.94±1.82 — 31.91±0.34 19.37±0.41 25.43±0.26
TAM [49] 80.69±0.27 64.16±0.24 81.47±0.15 81.30±0.53 90.35±0.42 53.49±0.54 23.27±1.38 21.17±0.95 24.53±0.33
TOPOAUC [8] 83.34±0.31 69.03±1.33 — 70.85±4.55 83.72±2.23 — 33.60±1.51 21.38±1.03 25.16±0.46
GraphSHA [24] 80.03±0.46 60.51±0.61 77.94±0.36 82.71±0.40 91.55±0.32 60.30±0.13 23.73±1.97 20.05±1.61 23.59±1.01

Table 3: Accuracy score (% ± standard deviation) of node classification on manipulated local
topology-imbalanced graph datasets (Mid) over 10 runs. “—” denotes out of memory or time limit.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

GCN (bb.) [21] 80.16±1.09 66.87±0.85 83.97±0.13 71.65±2.10 89.43±0.58 52.93±0.33 52.74±0.60 28.70±0.68 21.55±1.74
DEMO-Net [59] 80.37±0.52 69.73±1.31 84.11±0.20 79.38±0.98 88.09±1.30 65.81±0.11 55.51±0.87 39.45±0.62 29.12±0.30
meta-tail2vec [30] 32.17±0.68 29.97±3.61 59.82±2.86 68.17±1.07 79.82±1.02 33.71±1.16 38.78±0.44 24.90±0.25 26.09±0.07
Tail-GNN [31] 79.05±1.15 69.97±1.03 85.78±0.41 84.09±1.01 92.21±0.09 — 53.20±0.80 30.43±1.06 28.02±0.71
Cold Brew [72] 73.84±2.10 67.42±0.97 86.51±0.04 80.19±0.24 88.13±0.24 69.97±0.07 59.16±0.40 43.04±0.24 33.01±0.19
LTE4G [67] 82.54±0.46 70.55±0.54 84.77±0.78 81.32±2.21 91.09±0.19 — 55.84±2.86 32.43±3.31 24.00±0.49
RawlsGCN [19] 80.52±0.14 72.38±0.43 86.05±0.12 78.78±1.40 90.53±1.32 40.00±0.05 44.96±0.79 29.93±0.65 28.29±0.24
GraphPatcher [17] 83.25±0.42 73.38±0.42 85.60±0.16 83.68±0.69 92.28±0.06 66.74±0.04 55.19±0.41 36.94±0.11 23.85±0.92

Table 4: Accuracy score (% ± standard deviation) of node classification on manipulated global
topology-imbalanced graph datasets (High) over 10 runs.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

GCN (bb.) [21] 79.10±1.28 68.37±1.73 83.44±0.16 75.02±2.20 86.32±1.90 51.04±0.18 33.90±0.70 23.27±0.82 22.40±0.68
ReNode [7] 79.91±1.52 69.89±0.73 82.97±0.12 77.95±1.71 87.80±0.52 50.68±0.15 32.92±0.98 23.80±0.59 22.39±0.62
TAM [49] 80.50±0.18 73.14±0.13 84.07±0.12 82.35±0.19 89.80±0.23 52.09±0.06 35.64±0.27 24.58±0.09 22.55±0.06
PASTEL [52] 80.91±0.36 72.73±0.26 — 83.24±0.85 89.10±0.41 — 47.12±2.82 33.15±0.66 27.56±1.04
TOPOAUC [8] 79.27±0.52 70.08±0.83 — 75.35±1.32 87.10±0.98 — 33.39±2.09 22.86±0.36 22.56±0.18
HyperIMBA [12] 79.81±0.78 71.78±0.40 84.75±0.30 83.43±0.65 90.65±0.14 — 38.30±2.70 29.97±1.79 25.30±2.56

4.1.3 EFFECTIVENESS OF NODE-LEVEL GLOBAL TOPOLOGY-IMBALANCED ALGORITHMS

Results (Table 4). ❶ Re-weighting IGL algorithms (e.g., ReNode, TAM, and HyperIMBA) generally
outperform vanilla GCN on highly homophilic datasets but struggle on heterophilic ones. ❷ Structure-
refined PASTEL achieves optimal or near-optimal results on most datasets, showing significant
improvements on highly heterophilic datasets due to its alleviation of both under-reaching and over-
squashing phenomena. However, the structure learning mechanism introduces a heavy quadratic
computational burden, making PASTEL challenging to adapt to large-scale graphs, e.g., ogbn-arXiv.
❸ Though algorithms with sub-quadratic complexity (ReNode and TAM) are available on ogbn-arXiv,
their performance is greatly weakened due to low-efficiency representation learning and imbalance
debias. ❹ TOPOAUC has limited ability to address the global topology-imbalance problem and even
performs worse than GCN on heterophilic datasets, which is caused by its homophily assumption.

4.1.4 EFFECTIVENESS OF GRAPH-LEVEL CLASS-IMBALANCED ALGORITHMS

Results (Table 5). ❶ DataDec achieves optimal or near-optimal results on all datasets. It identifies an
informative subset for model training via dynamic sparse graph contrastive learning, which leverages
abundant of unlabeled information to enhance the performance. ❷ G2GNN generally outperforms
GIN on binary classification datasets but fails to surpass GIN on multi-classification datasets. ❸
TopoImb and ImGKB show considerable instability across different datasets in class-imbalanced
settings. Despite meticulous hyperparameter tuning detailed in Appendix C to ensure thorough and
impartial evaluations, TopoImb cannot be consistently trained to outperform the backbones due to its
sensitivity to dataset-specific characteristics. ❹ Half algorithms fail on the large-scale ogbg-molhiv.
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Table 5: Accuracy score (% ± standard deviation) of graph classification on manipulated class-
imbalanced graph datasets (Low) over 10 runs.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
GIN (bb.) [63] 47.83±2.95 63.38±1.93 55.38±3.57 51.05±5.07 62.31±3.99 61.10±4.86 60.75±3.79 65.01±1.33

G2GNN [58] 51.88±6.23 61.13±1.05 63.61±5.03 56.29±7.30 63.87±4.64 69.58±3.59 65.00±3.81 62.05±3.06
TopoImb [71] 44.86±3.52 49.49±7.14 52.12±10.51 49.97±7.24 59.95±5.19 59.67±7.30 — 65.88±0.75
DataDec [68] 55.72±2.88 67.99±0.75 66.58±1.35 63.51±1.62 67.92±3.37 78.39±5.01 — 71.48±1.03
ImGKB [54] 50.11±5.95 40.83±0.02 66.60±2.64 65.85±3.70 47.74±0.29 67.50±2.70 48.57±2.14 51.21±0.10

Table 6: Accuracy score (% ± standard deviation) of graph classification on manipulated topology-
imbalanced graph datasets (Mid) over 10 runs.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
GIN (bb.) [63] 51.38±6.78 54.82±2.26 62.14±2.43 61.46±2.43 65.08±5.78 68.32±1.77 57.67±3.12 65.84±3.12
SOLT-GNN [32] 53.04±3.91 68.71±1.60 71.95±2.36 63.33±1.86 69.38±1.23 73.51±1.14 — 69.69±2.45
TopoImb [71] 51.59±4.30 54.52±0.87 64.03±4.43 65.99±1.25 68.10±0.87 71.54±0.75 — 68.68±1.34

4.1.5 EFFECTIVENESS OF GRAPH-LEVEL TOPOLOGY-IMBALANCED ALGORITHMS

Results (Table 6). ❶ SOLT-GNN surpasses GIN in 5 datasets by transferring head graphs’ knowledge
to augment tail graphs, showcasing the effectiveness of knowledge transfer mechanisms in improving
imbalanced classification. ❷ Though TopoImb is proposed primarily to address uneven sub-structure
distribution, results also demonstrate its ability to alleviate topology-imbalance problems across
several datasets. ❸ Despite recent advancements, a significant performance gap persists between
current graph-level IGL algorithms and their node-level counterparts. This observation underscores
the need for continued research into more effective strategies to bridge this disparity.

Key Insights for RQ1: Node-level class-imbalance and topology-imbalance often coexist, posing
unique challenges that can be simultaneous and orthogonal. For node-level classification, the
homophily or heterophily property of the dataset (i.e., the neighbor’s label distribution) significantly
impacts the learning on class-imbalanced and topology-imbalanced graphs. Currently, there is a
lack of effective algorithms that address both types of imbalance in large-scale graphs without
relying on homophily assumptions, underscoring the need for more robust and adaptable solutions.

4.2 ROBUSTNESS TO DIFFERENT IMBALANCE RATIOS (RQ2)

In this section, we quantitatively set the imbalance ratios of each dataset defined in Table 1 to further
investigate the robustness of IGL algorithms as the degree of imbalance varies.

4.2.1 ROBUSTNESS OF NODE-LEVEL CLASS-IMBALANCED ALGORITHMS

Settings. We manipulate datasets following settings in Appendix B.2 to exhibit a staggered imbalance
ratio from ρ = 1 to 100 (denoted as Balanced to High). We compare the algorithms’ performance
changes along with their relative decrease. The single bar chart reflects the algorithm’s effectiveness,
a set of bar charts further illustrates the robustness, and the line chart depicts the algorithm’s ability
to control the performance degradation in an imbalanced data distribution (the flatter, the better).

Results (Figure 3). ❶ As the imbalance ratio increases, all node-level IGL algorithms encounter
greater challenges, resulting in a gradual decline in performance. ❷ Among the class-imbalanced
IGL algorithms, those based on resampling demonstrate better robustness compared to algorithms
based on re-weighting and data augmentation. ❸ For extreme class imbalance (High, ρ = 100), class-
imbalance-specific IGL algorithms generally exhibit higher robustness and performance compared to
GCN and global topology imbalance methods. Additionally, algorithms designed for both class- and
topology-imbalance (e.g., TAM and TOPOAUC) further enhance performance.

4.2.2 ROBUSTNESS OF NODE-LEVEL LOCAL TOPOLOGY-IMBALANCED ALGORITHMS

Settings. We manipulate datasets for the node classification following settings in Appendix B.3 with
the local topology-imbalance ratios from Low to High. For each dataset, we randomly select training
nodes to facilitate different imbalance ratios while ensuring an equal number of nodes per class.

Results (Figure 4(a)). ❶ IGL algorithms demonstrate greater robustness in various imbalanced cases,
showing more stable performance compared to GCN by maintaining consistent performance levels.
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Figure 3: Robustness analysis of node-level algorithms under different class-imbalance levels on
Cora (homophilic). Results are Accuracy and its relative decrease compared to the balanced split.

(a) Node-level local topology-imbalance. (b) Node-level global topology-imbalance.

2

(c) Graph-level class-imbalance. (d) Graph-level topology-imbalance.

Figure 4: Robustness analysis of the node-level and graph-level algorithms under different imbalance
levels. Results are reported with the algorithm performance (Accuracy) with the standard deviation.

❷ Different algorithms display varying levels of robustness when facing different types of datasets.
For example, neighbor-augmented algorithms are robust to extreme local topology-imbalance and
they consistently boost performance in the homophilic dataset (e.g., Computers) by a significant
margin. Their advantages are even more prominent under higher topology-imbalance. However, they
are relatively sensitive to different levels of imbalance in the heterophilic datasets (e.g., Actor).

4.2.3 ROBUSTNESS OF NODE-LEVEL GLOBAL TOPOLOGY-IMBALANCED ALGORITHMS

Settings. We manipulate datasets for the node classification following settings in Appendix B.4
with different levels of the global topology-imbalance ratios from Low to High, concerning multiple
degrees of the under-reaching and over-squashing phenomena to evaluate algorithm robustness.

Results (Figure 4(b)). ❶ All algorithms perform worse in highly imbalanced scenarios due to the
difficulty in balancing the uneven topological distributions of training nodes. ❷ Topology-imbalanced
IGL algorithms generally exhibit robustness across different imbalanced scenarios and tend to enhance
performance on both homophilic and heterophilic datasets by utilizing structure learning to alleviate
topological imbalance (e.g., PASTEL and HyperIMBA). ❸ Class-imbalanced GraphSHA synthesizes
nodes and connections with different labels, which promotes the global propagation of supervised
signals and aids in addressing topological imbalance.
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4.2.4 ROBUSTNESS OF GRAPH-LEVEL CLASS-IMBALANCED ALGORITHMS

Settings. Previous research emphasizes the impact of class-imbalance issues on the binary graph
classification task. We manipulate datasets for both the binary and multi-class graph classification task
following settings in Appendix B.5 with varying levels of class-imbalance to explore the robustness
of IGL algorithms from Balanced (ρ = 1) to extremely imbalanced scenarios (High, ρ = 100).

Results (Figure 4(c)). ❶ IGL algorithms display varying degrees of robustness on different types of
datasets. For example, with an increased imbalance ratio, the performance of IGL gradually decreases
on binary classification datasets such as D&D. ❷ On the contrary, in the multi-class dataset COLLAB,
IGL algorithms demonstrate strong robustness across varying levels of imbalance. This indicates
that these algorithms can maintain their performance on imbalanced data, effectively handling the
complexity and diversity of multiple classes. ❸ Among these IGL algorithms, DataDec stands out for
its remarkable stability in different imbalanced scenarios. It consistently shows great performance
gains across various datasets, highlighting its effectiveness and reliability.

4.2.5 ROBUSTNESS OF GRAPH-LEVEL TOPOLOGY-IMBALANCED ALGORITHMS

Settings. We manipulate datasets for the graph classification following settings in Appendix B.6 with
different levels of the topology-imbalance ratios from Low to High, concerning multiple degrees of
the graph size distribution to evaluate algorithm robustness.

Results (Figure 4(d)). ❶ SOLT-GNN demonstrated remarkable robustness across a spectrum of
datasets and topology-imbalance scenarios, indicating its efficacy in handling varying levels of
topology-imbalance. ❷ Contrarily, TopoImb did not consistently surpass GIN and exhibited notable
variability in performance across different topology-imbalance degrees, suggesting that TopoImb
may not be as reliable in maintaining performance stability for topology-imbalance changes. ❸ The
results underscore the importance of algorithm choice in graph classification tasks, particularly in
scenarios involving topology-imbalance, where robustness becomes a critical factor.

Key Insights for RQ2: As the imbalance degree increases, the performance tends to degrade,
especially under extreme conditions. Algorithms tailored to handle either issue demonstrate better
robustness in respective contexts. Notably, class-imbalance and topology-imbalance do not seem
to be entirely orthogonal issues. Future research should further investigate the impact of topology
and class imbalance on each other in imbalanced graph learning by analyzing their intrinsic causes.

4.3 VISUALIZATIONS OF THE CLASSIFIER BOUNDARY (RQ3)

Results (Figure 5). Visualizations via t-SNE on Cora and COLLAB illustrate the classifier boundaries,
with samples colored by predicted class labels. Quantitatively, the Silhouette score, which ranges
from −1 to 1 (higher values indicate better clustering), provides a clearer view of the clustering
of sample embeddings. Results indicate that IGL algorithms effectively reduce class overlap and
intuitively shift decision boundaries toward the minority class, enhancing the use of the minor class
subspace. This is reflected in higher Silhouette scores for models like G2GNN and DataDec under
graph-level class imbalance compared to GCN, particularly in challenging conditions.

Key Insights for RQ3: Future research should focus more on exploring dynamic methods to adjust
boundary sensitivity in response to imbalanced data, which could further enhance classification
performance. Additionally, incorporating attention mechanisms or adversarial training techniques
to improve boundary clarity under more extreme imbalanced conditions can offer stronger defenses
against adversarial attacks and boost generalization to diverse biased graph data.

4.4 EFFICIENCY AND SCALABILITY ANALYSIS (RQ4)

Results (Figure 6). As we can observe, IGL algorithms generally have higher time or space com-
plexity compared to backbones. Some algorithms (e.g., GraphMixup, LTE4G and DataDec) can
achieve relatively good performance improvement with less complexity increase. Besides, although
some algorithms (e.g., TOPOAUC, GraphPatcher and PASTEL) achieve remarkable effectiveness
improvement, they largely increase the complexity of time and space. Additionally, the efficiency
problem of IGL is specially pronounced on the large-scale dataset (ogbn-arXiv), as shown in Tables
2, 3, and 4, nearly half of IGL algorithms run out of memory. IGL algorithms struggle to achieve a
satisfactory balance between performance and efficiency. Additional results are in Appendix D.
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Figure 5: Visualization of node- and graph-level IGL algorithms in varying imbalanced scenarios.

TOPOAUC

LTE4GTAM
GraphENS

GraphMixup

GraphSMOTE
GCN

ImGAGN

DPGNN DRGCN

TOPOAUC
TAM

GraphENS

LTE4G

GraphMixup

GraphSMOTE
GCN

ImGAGN
DPGNN

DRGCN

RawlsGCN
DEMO-Net

Tail-GNN

GCN

Cold Brew

GraphPatcher

GraphPatcher

RawlsGCN

GCN

Cold Brew

Tail-GNN

DEMO-Net

TOPOAUC

TAM

HyperIMBA

ReNode

GCN

PASTEL

TOPOAUC

TAM

ReNode

HyperIMBA

GCN

PASTEL

DataDec
G2GNN

ImGKB

GIN

TopoImb

G2GNNImGKBDataDec

GIN

TopoImb

SOLT-GNN

GIN

TopoImb

TopoImb

GIN

SOLT-GNN

GraphSHA

GraphSHA
LTE4G

LTE4G

(Class-Imbalance) (Local Topology-Imbalance) (Global Topology-Imbalance) (Class-Imbalance) (Topology-Imbalance)

Figure 6: Time and space analysis of node- and graph-level IGL algorithms on Cora and Proteins.

Key Insights for RQ4: Graph learning for ultra-large-scale data is a prominent research frontier
in the community. The new paradigm of graph foundation models poses substantial challenges
in memory-time-efficiently addressing imbalanced graph data and achieving high-quality rep-
resentation learning. Investigating graph representation frameworks built on models like graph
transformers, and state space models, etc., presents a promising avenue for future development.

5 CONCLUSION AND FUTURE DIRECTIONS
This paper introduces the first comprehensive imbalanced graph learning benchmark, IGL-Bench,
by integrating 24 methods across 17 graph datasets. We conduct extensive experiments to reveal the
performance of IGL algorithms in terms of effectiveness, robustness and efficiency on node-level
and graph-level tasks. We design and implement a package IGL-Bench (https://github.
com/RingBDStack/IGL-Bench) that incorporates all the aforementioned protocols, baseline
algorithms, processed datasets, and scripts to reproduce the results in this paper. Drawing upon our
empirical analysis and insights, we point out some promising future directions for IGL community:

❶ Unified Algorithm. Class-imbalance and topology-imbalance simultaneously and widely exist in
multi-domain graphs. Future research should revisit the optimization conflicts between two imbalance
issues and develop a unified “one for both” IGL algorithm rooted in core nature of the problem.

❷ Robustness and Generalization. The practicality of IGL algorithms in real-world applications
is essential. Future research should emphasize enhancing the robustness of IGL algorithms in
extreme imbalance scenarios and improving their generalization to handle unseen testing domains or
unprecedented distribution shifts, ensuring reliable performance in diverse real-world settings.

❸ Efficiency and Scalability. Empirical evidence suggests that current IGL algorithms struggle, or
are infeasible to operate efficiently on large-scale graphs. As the size of graphs continues to grow
exponentially, a key area of future research is the reduction of memory and computational complexity
in IGL algorithms to ensure their efficient scalability and performance on large-scale graphs.
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A DATASETS AND ALGORITHMS

A.1 BENCHMARK DATASETS

We adopt 17 benchmark datasets since ❶ they are extensively utilized for training and assessing
IGL algorithms; ❷ they encompass a broad range of graph properties, spanning from small-scale
to large-scale, from homophilic to heterophilic, and from node-level to graph-level; ❸ they cover
diverse domains including citation networks, social networks, website networks, biochemicals, and
co-occurrence networks. All the datasets integrated into our IGL-Bench are either published or
publicly accessible. Table A.1 and Table A.2 provide the detailed statistics of the benchmark datasets,
and their detailed descriptions are as follows.

• Cora (Yang et al., 2016) is a citation network dataset containing scientific publications classified
into one of seven research areas. Each publication is represented by a feature vector indicating
the presence or absence of words. The task is to predict the one-hot category label of a given
publication. The dataset is licensed under Creative Commons 4.0.

• CiteSeer (Yang et al., 2016) is a citation network dataset, consisting of scientific publications,
each labeled with one of six classes in the ont-hot vector form. It is commonly used for tasks
such as document classification and citation prediction. The dataset is licensed under Creative
Commons 4.0.

• PubMed (Yang et al., 2016) is a dataset of the biomedical literature, commonly used for tasks like
document classification, information retrieval, and citation analysis. Each document is associated
with a one-hot MeSH (Medical Subject Headings) topic label, which is used for document
classification. The dataset is licensed under Creative Commons 4.0.

• Computers (Shchur et al., 2018) and Photo (Shchur et al., 2018) are Amazon products co-
occurrence networks. Nodes represent goods and edges represent that two goods are frequently
bought together. The task is to map goods to their respective product category. The datasets are
licensed with MIT License.

• ogbn-arXiv (Hu et al., 2020) is a benchmark citation network derived from the arXiv website,
consisting of a large number of nodes and edges, covering a wide range of research fields. Each
node represents a paper, which is described by the word embeddings extracted from the title and
abstract. Each directed edge indicates the citations between papers. It is used for tasks such as
node classification and link prediction in academic citation networks. The dataset is licensed
under ODC-BY.

• Chameleon (Rozemberczki et al., 2021) and Squirrel (Rozemberczki et al., 2021) are the
Wikipedia page-page networks. Nodes represent web pages and edges represent hyperlinks
between them. Node features represent several informative nouns on the Wikipedia pages. The
task is to predict the average daily traffic of the web page. The datasets are licensed with GPL-3.0
License.

• Actor (Pei et al., 2019) is the actor-only induced subgraph of the film-director-actor-writer
network. Each node corresponds to an actor, and the edge denotes co-occurrence on the same
Wikipedia page. Node features represent keywords on the Wikipedia pages. The task is to classify
nodes into five categories from the actor’s Wikipedia. The dataset is made public with a license
unspecified.

• PTC-MR (Bai et al., 2019) is a dataset of chemical compounds labeled with their mutagenic
activity on bacteria. It has 344 molecules with a binary label indicating the carcinogenicity of
compounds in rodents. It is used for tasks such as chemical compound classification and toxicity
prediction. The dataset is made public with a license unspecified.

• FRANKENSTEIN (Orsini et al., 2015) is a set of molecular graphs with node features containing
continuous values. A label denotes whether a molecule is a mutagen or non-mutagen. The dataset
is made public with a license unspecified. The dataset is licensed under Creative Commons 1.0.

• PROTEINS (Borgwardt et al., 2005) is a set of macromolecules derived from Dobson and Doig,
where nodes are structure elements. Edges denote nodes in an amino acid sequence or a close
3D space. The task is to predict whether a protein is an enzyme. The dataset is licensed under
Creative Commons 4.0.
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Table A.1: Statistics of benchmark datasets for node classification.
Dataset #Nodes #Edges #Classes #Features Avg. #Degree #Homophily1

Cora [65] 2,708 5,278 7 1,433 3.90 0.81
CiteSeer [65] 3,327 4,614 6 3,703 2.77 0.74
PubMed [65] 19,717 44,325 3 500 4.50 0.80
Computers [46] 13,752 245,861 10 767 35.76 0.78
Photo [46] 7,487 119,081 8 745 31.13 0.82
ogbn-arXiv [14] 169,343 1,157,799 40 767 13.67 0.65

Chameleon [44] 2,277 36,101 5 2,325 27.60 0.23
Squirrel [44] 5,201 217,073 5 2,089 76.33 0.22
Actor [39] 7,600 26,659 5 932 7.02 0.22

Table A.2: Statistics of benchmark datasets for graph classification.

Dataset #Graphs Avg.
#Nodes

Avg.
#Edges #Classes #Features Avg.

#Degree #Ghead
2

PTC-MR [1] 344 14.29 14.69 2 18 2.06 67
FRANKENSTEIN [36] 4,337 16.90 17.88 2 780 2.12 757
PROTEINS [2] 1,113 39.06 72.82 2 3 3.73 218
D&D [47] 1,178 284.32 715.66 2 89 5.03 234
IMDB-B [5] 1,000 19.77 96.53 2 65 9.77 194
REDDIT-B [64] 2,000 429.63 497.75 2 566 2.32 400
ogbg-molhiv [14] 41,127 25.51 27.50 2 9 4.29 8,225

COLLAB [22] 5000 74.49 2457.78 3 369 65.99 991

• D&D (Shervashidze et al., 2011) contains graphs of protein structures. A node represents an
amino acid and edges are constructed if the distance of two nodes is less than 6Å. The label
denotes whether a protein is an enzyme or a non-enzyme. The dataset is made public with a
license unspecified.

• IMDB-B (Cai & Wang, 2018) is a movie collaboration dataset where actor/actress and genre
information of different movies are collected. For each graph, nodes represent actors/actresses
and there is an edge between them if they appear in the same movie. The dataset is licensed under
Creative Commons 4.0.

• REDDIT-B (Yanardag & Vishwanathan, 2015) is a balanced dataset where each graph corre-
sponds to an online discussion thread where nodes correspond to users, and there is an edge
between two nodes if at least one of them responds to another’s comment. The dataset is licensed
under Creative Commons 4.0.

• ogbg-molhiv (Hu et al., 2020) is a natural imbalanced molecular dataset, consisting of a large
number of graphs. Each graph represents a molecule, where nodes are atoms, and edges are
chemical bonds. Node features contain atomic number and chirality, as well as other additional
atom features. The dataset is made public with an MIT License.

• COLLAB (Leskovec et al., 2005) is the scientific collaboration dataset, deriving from three
public collaboration datasets. The networks of researchers were generated from each field, and
each was labeled as the researcher field. The task is to determine to which field the collaboration
network of a researcher belongs. The dataset is licensed under Creative Commons 4.0.

A.2 BENCHMARK ALGORITHMS

In our developed IGL-Bench, we integrate 24 state-of-the-art IGL algorithms, including 10 node-
level class-imbalanced IGL algorithms: DRGCN (Shi et al., 2020), DPGNN (Wang et al., 2021),

1We report node homophily ratio that normalizes the edge homophily across neighborhoods (Pei et al., 2019).
2For each dataset, we divide graphs into head and tail with a predefined ratio based on the Pareto princi-

ple Sanders (1987) (also known as 20/80 rule) to employ the 20% largest graphs as head graphs, and the rest
80% as tail graphs.

17



Published as a conference paper at ICLR 2025

Table A.3: Summary of representative Imbalanced Graph Representation Learning (IGL) algorithms
integrated in IGL-Bench concerning the imbalance types, downstream tasks, method levels, and
computational complexity. We also provide public access to the official algorithm implementations.

Type Algorithm Task
Data-Level Algorithm-Level Computational

Complexity3 Code
IG AG PL MR Loss RG

Node-Level
Class-Imbalance

DRGCN [48] NC ✓ ✓ O(|V|+ |E|) link
DPGNN [57] NC ✓ ✓ ✓ O(|V|+ |E|) link
ImGAGN [42] NC ✓ O(|V|+ |E|) link
GraphSMOTE [70] NC ✓ O(|V|2) +O(|E|) link
GraphENS [37] NC ✓ O(|V|+ |E|) link
GraphMixup [60] NC ✓ O(|V|2) +O(|E|) link
LTE4G [67] NC ✓ ✓ O(|V|2) +O(|E|) link
TAM [49] NC ✓ O(|V|C + |E|) link
TOPOAUC [8] NC ✓ ✓ O(|V|+ |E|) link
GraphSHA [24] NC ✓ O(|V|+ |E|) link

Node-Level
Topology-Imbalance

local

DEMO-Net [59] NC ✓ O(|V|+ |E|) link
meta-tail2vec [30] NC ✓ ✓ O(|V|+ |E|) link
Tail-GNN [31] NC ✓ ✓ O(|V|+ |E|) link
Cold Brew [72] NC ✓ ✓ O(|V|+ |E|) link
LTE4G [67] NC ✓ ✓ O(|V|2) +O(|E|) link
RawlsGCN [19] NC ✓ O(|V|+ |E|) link
GraphPatcher [17] NC ✓ ✓ O(|V|+ |E|) link

global

ReNode [7] NC ✓ O(|V|+ |E|) link
TAM [49] NC ✓ O(|V|C + |E|) link
PASTEL [52] NC ✓ ✓ ✓ O(|V2|) +O(|E|) link
TOPOAUC [8] NC ✓ ✓ O(|V|+ |E|) link
HyperIMBA [12] NC ✓ ✓ O(|V|+ |E|) link

Graph-Level
Class-Imbalance

G2GNN [58] GC ✓ ✓ ✓ O(
(|G|

2

)
max |VGi |3) link

TopoImb [71] NC, GC ✓ O(
∑

(|VGi |+ |EGi |)) link
DataDec [68] NC, GC ✓ O(

∑
(|VGi |+ |EGi |)) link

ImGKB [54] GC ✓ ✓ O(
∑

(|VGi |+ |EGi |)) link

Graph-Level
Topology-Imbalance

SOLT-GNN [32] GC ✓ ✓ O(
∑

(|VGi |+ |EGi |)) link
TopoImb [71] NC, GC ✓ O(

∑
(|VGi |+ |EGi |)) link

ImGAGN (Qu et al., 2021), GraphSMOTE (Zhao et al., 2021), GraphENS (Park et al., 2021),
GraphMixup (Wu et al., 2022), LTE4G (Yun et al., 2022), TAM (Song et al., 2022), TOPOAUC (Chen
et al., 2022) and GraphSHA (Li et al., 2023b); 12 node-level topology-imbalanced IGL algorithms:
DEMO-Net (Wu et al., 2019), meta-tail2vec (Liu et al., 2020), Tail-GNN (Liu et al., 2021), Cold
Brew (Zheng et al., 2021), LTE4G (Yun et al., 2022), RawlsGCN (Kang et al., 2022), GraphPatcher (Ju
et al., 2024a), ReNode (Chen et al., 2021), TAM (Song et al., 2022), PASTEL (Sun et al., 2022b),
TOPOAUC (Chen et al., 2022), and HyperIMBA (Fu et al., 2023); 4 graph-level class-imbalanced
IGL algorithms: G2GNN (Wang et al., 2022), TopoImb (Zhao et al., 2022), DataDec (Zhang et al.,
2023), and ImGKB (Tang & Liang, 2023); 2 graph-level topology-imbalanced IGL algorithms:
SOLT-GNN (Liu et al., 2022) and TopoImb (Zhao et al., 2022).

We conclude the aforementioned representative IGL algorithms in Tabel A.3 in terms of the down-
stream task, method level, and computational complexity. The Task column indicates the specific
downstream tasks the algorithm can handle, where “NC” stands for node classification, and “GC”
stands for graph classification. The Data-Level column implies the algorithm handles the imbalance
issue from the training data perspective, where “IG” stands for generating samples by interpolating,
“AG” stands for generating samples by adversarial training, and “PL” stands for generating pseudo
labels for a large number of unlabeled nodes. The Algorithm-Level column suggests an algorithm-
level contribution to solve the imbalance learning problems, where “MR” denotes refining GNN
models for improving the representation learning process, “Loss” represents designing or engineering
loss function for sample reweighting, etc., and “RG” stands for utilizing extra regularizers for the
imbalance recalibrating. We further introduce all the IGL algorithms as follows.

3For brevity, only the main bottlenecks of the algorithm’s computational complexity are analyzed here, while
the remaining negligible parts are uniformly ignored. The meanings of notations follow definitions in Section 2.
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• DRGCN (Shi et al., 2020) is proposed to address the node-level class-imbalance issue. It employs
a GNN-centric strategy, incorporating a conditioned generative adversarial network (GAN)
to create synthetic nodes to balance redistribution. Additionally, it utilizes a KL-divergence
constraint to harmonize the representation distribution of unlabeled nodes with that of labeled
ones. The code is made available with a license unspecified.

• DPGNN (Wang et al., 2021) is proposed to address the node-level class-imbalance issue. It
employs a class prototype-driven training approach to balance training loss across classes and
transfer knowledge from head classes to tail classes, with the help of distance metric learning
to accurately capture the relative positions of nodes concerning class prototypes, as well as
smoothing representations of adjacent nodes while separating interclass prototypes. The code is
made available with a license unspecified.

• ImGAGN (Qu et al., 2021) is proposed to address the node-level class-imbalance issue. It applies
the generative adversarial network (GAN) to generate synthetic nodes, which simulates both
the minority class nodes’ attribute distribution and network topological structure distribution by
generating a set of synthetic minority nodes such that the number of nodes in different classes
can be balanced. The code is made available with a license unspecified.

• GraphSMOTE (Zhao et al., 2021) is proposed to address the node-level class-imbalance issue.
It evolves around the generation of synthetic nodes to balance classes by a technique inspired
by SMOTE (Chawla et al., 2002), which is the first data interpolation method on graphs by
generating a synthetic minority node through interpolation between two real minority nodes in the
embedding space. It pre-trains an edge predictor using a graph reconstruction objective on real
nodes and existing edges to determine the connectivity between the synthetic node and existing
nodes. The code is made available with a license unspecified.

• GraphENS (Park et al., 2021) is proposed to address the node-level class-imbalance issue. It
creates a synthetic minority node by blending a real minority node with a randomly chosen
target node. Notably, GraphENS (Park et al., 2021) prioritizes the neighbors of minority nodes,
recognizing their significant informational value. To address this bias, it incorporates neighbor
sampling and saliency-based node mixing techniques. The code is made available with an MIT
License.

• GraphMixup (Wu et al., 2022) is proposed to address the node-level class-imbalance issue.
GraphMixup (Wu et al., 2022) executes reinforcement mixup within the semantic space instead
of the input or embedding space, thereby averting the creation of out-of-domain minority samples.
It integrates two supplementary self-supervised learning objectives: local-path prediction and
global-path prediction, aiming to encompass both local and global insights within the graph
structure. The code is made available with an MIT License.

• LTE4G (Yun et al., 2022) is proposed to address the node-level class-imbalance issue. It takes
into account the imbalance in both node classes and degrees. LTE4G (Yun et al., 2022) divides
nodes into balanced subsets and assigns them to specialized Graph Neural Networks (GNNs)
based on their similarity to each class prototype vector. The class with the highest similarity
score is assigned to each node subset. Subsequently, LTE4G (Yun et al., 2022) utilizes knowledge
distillation to train class-specific student models, thereby improving classification performance.
The code is made available with a license unspecified.

• TAM (Song et al., 2022) is proposed to address the node-level class-imbalance issue and topology-
imbalance issue simultaneously. TAM (Song et al., 2022) resolves the class-imbalance issue
by integrating graph topology information into its loss function designs and addressing the de-
creased homogeneity among minority nodes. Particularly, TAM (Song et al., 2022) introduces
connectivity- and distribution-aware margins to guide the model, highlighting class-wise connec-
tivity and neighbor-label distribution in an innovative manner. The code is made available with
an MIT License.

• TOPOAUC (Chen et al., 2022) is proposed to address the node-level class-imbalance and
topology-imbalance issue simultaneously. It develops a multi-class AUC optimization work to
deal with the class imbalance problem. With respect to topology imbalance, TOPOAUC (Chen
et al., 2022) proposes a Topology-Aware Importance Learning mechanism (TAIL), which consid-
ers the topology of pairwise nodes and different contributions of topology information to pairwise
node neighbors. The code is made available with a license unspecified.
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• GraphSHA (Li et al., 2023b) is proposed to address the node-level class-imbalance issue. It aims
to expand the decision boundaries of minority classes by generating more challenging synthetic
samples from these classes. Additionally, GraphSHA (Li et al., 2023b) introduces a module
named SemiMixup, which is designed to transfer the enlarged boundary information into the
interior of the minority classes while preventing the leakage of information from the minority
classes to their neighboring majority classes. This helps to enhance the separability of minority
classes without compromising their integrity. The code is made available with an MIT License.

• DEMO-Net (Wu et al., 2019) is proposed to address the node-level topology-imbalance issue. In-
spired by the Weisfeiler-Lehman graph isomorphism test, DEMO-Net (Wu et al., 2019) explicitly
captures integrated graph topology and node attributes. It introduces multi-task graph convolution,
where each task focuses on learning node representations for nodes with specific degree values,
thereby preserving the degree-specific graph structure. Furthermore, DEMO-Net (Wu et al.,
2019) devises a new graph-level pooling/readout scheme to learn graph representations, ensuring
they reside in a degree-specific Hilbert kernel space. The code is made available with a license
unspecified.

• meta-tail2vec (Liu et al., 2020) is proposed to address the node-level local topology-imbalance
issue. It frames the objective of learning from imbalanced data, particularly focusing on learning
embeddings for tail nodes, as a few-shot regression task, considering the limited connections
associated with each tail node. Moreover, meta-tail2vec (Liu et al., 2020) recognizes that each
node exists within its unique local context and therefore adapts the regression model individually
for each tail node, personalizing the learning process. The code is made available with an MIT
License.

• Tail-GNN (Liu et al., 2021) is proposed to address the node-level local topology-imbalance issue.
While GNNs are capable of learning effective node representations, they often handle all nodes
in a generic manner and do not specifically cater to the numerous tail nodes. Tail-GNN (Liu
et al., 2021) leverages the innovative concept of transferable neighborhood translation to capture
the diverse relationships between a node and its neighboring nodes. In essence, Tail-GNN (Liu
et al., 2021) develops a node-specific adaptation technique that tailors the global translation to the
individual needs of each node. The code is made available with a license unspecified.

• Cold Brew (Zheng et al., 2021) is proposed to address the node-level local topology-imbalance
issue, with a particular focus on the most extreme cases in graphs where a node lacks any
neighboring connections, known as the Strict Cold Start (SCS) problem (Qian et al., 2020). Cold
Brew (Zheng et al., 2021) employs a teacher-student distillation framework to address the SCS
issue and the challenge posed by noisy neighbors in the context of GNNs. Additionally, Cold
Brew (Zheng et al., 2021) introduces the concept of feature contribution ratio, a metric that
quantifies the performance of inductive GNNs in resolving the SCS problem. The code is made
available with an Apache-2.0 License.

• RawlsGCN (Kang et al., 2022) is proposed to address the node-level local topology-imbalance
issue. It approaches the issue of degree-related performance disparities through the lens of
the Rawlsian difference principle, a concept derived from the theory of distributive justice.
RawlsGCN (Kang et al., 2022) is designed to equalize the performance between nodes with low
and high degrees while also optimizing for task-specific objectives, ensuring a fairer allocation of
predictive utility across the graph. The code is made available with an MIT License.

• GraphPatcher (Ju et al., 2024a) is proposed to address the node-level local topology-imbalance
issue. It suggests a test-time augmentation framework designed to improve the test-time gener-
alization ability of any GNNs for low-degree nodes. In detail, GraphPatcher (Ju et al., 2024a)
successively creates virtual nodes to repair the artificially generated low-degree nodes through
corruptions, with the goal of incrementally reconstructing the target GNN’s predictions across a
series of progressively corrupted nodes. The code is made available with a license unspecified.

• ReNode (Chen et al., 2021) is proposed to address the node-level global topology-imbalance issue.
ReNode (Chen et al., 2021) adjusts the weights of labeled nodes according to their proximity to
class boundaries, thereby enhancing performance, especially for nodes near boundaries and those
distant from them. Additionally, a metric is devised to measure this imbalance, utilizing influence
conflict detection. ReNode (Chen et al., 2021) effectively addresses both class-imbalance and
topology-imbalance challenges concurrently. The code is made available with an MIT License.

• PASTEL (Sun et al., 2022b) is proposed to address the node-level global topology-imbalance
issue. PASTEL (Sun et al., 2022b) addresses topology imbalance by optimizing the paths of
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information propagation. Its goal is to mitigate the under-reaching and over-squashing effects by
improving intra-class connectivity and employing a position encoding mechanism. Additionally,
PASTEL (Sun et al., 2022b) utilizes a class-wise conflict measure for edge weights to aid in node
class separation. The code is made available with an MIT License.

• HyperIMBA (Fu et al., 2023) is proposed to address the node-level global topology-imbalance
issue. HyperIMBA (Fu et al., 2023) employs hyperbolic geometric embedding to assess the
hierarchy of labeled nodes. It then modifies label information propagation and adjusts the
objective margin according to the node’s hierarchy, effectively tackling issues arising from
hierarchy imbalance. The code is made available with a license unspecified.

• G2GNN (Wang et al., 2022) is proposed to address the graph-level class-imbalance issue. It
employs additional supervision at both global and local levels: globally, through neighboring
graphs, and locally, via stochastic augmentations. G2GNN (Wang et al., 2022) constructs a
Graph of Graphs (GoG) by utilizing kernel similarity and implements GoG propagation for
information aggregation. Furthermore, it utilizes topological augmentation with self-consistency
regularization at the local level. These combined strategies improve model generalizability and
consequently enhance classification performance. The code is made available with a license
unspecified.

• TopoImb (Zhao et al., 2022) is proposed to address the graph-level class-imbalance and topology-
imbalance issues. Graph-level topology imbalance often stems from uneven motif distribu-
tion (e.g., functional groups), resulting in a lack of training instances for minority groups.
TopoImb (Zhao et al., 2022) tackles this challenge by dynamically updating the identification
of topology groups and assigning importance weights to under-represented instances during
training. This approach enhances the learning efficacy of minority topology groups and mitigates
overfitting to majority groups. The code is made available with a license unspecified.

• DataDec (Zhang et al., 2023) is proposed to address both the node-level and graph-level class-
imbalance issues. DataDec (Zhang et al., 2023) develops a unified data-model dynamic sparsity
framework to address challenges brought by training upon massive class-imbalanced graph data.
The key idea of DataDec (Zhang et al., 2023) is to identify the informative subset dynamically
during the training process by adopting sparse graph contrastive learning. The code is made
available with a license unspecified.

• ImGKB (Tang & Liang, 2023) is proposed to address the graph-level class-imbalance issue.
It combines the restricted random walk kernel with the global graph information bottleneck
(GIB) (Wu et al., 2020) to enhance the performance of imbalanced graph classification tasks. To
prevent the dominant class graphs from introducing redundant information into the kernel outputs,
ImGKB (Tang & Liang, 2023) frames the entire kernel learning process as a Markovian decision
process. It then utilizes the global GIB (Wu et al., 2020) approach to optimize the learning,
ensuring that the kernel effectively captures the relevant information for each class. The code is
made available with a license unspecified.

• SOLT-GNN (Liu et al., 2022) is proposed to address both the graph-level topology-imbalance
issues. Graphs with larger sizes (number of nodes) tend to possess more complex topological
structures. To counter performance biases caused by the intricate topological structures, SOLT-
GNN (Liu et al., 2022) enhances the performance of smaller graphs. It identifies co-occurrence
patterns in larger graphs (or “head” graphs) and transfers this knowledge to augment smaller
graphs, improving their performance. The code is made available with a license unspecified.

B DETAILS OF THE DATASET SETTINGS

B.1 IMBALANCE RATIO DEFINITION

We provide additional explanations on the details of the imbalance ratio defined in Tabel 1.

• Node/Graph-Level Class-Imbalance. Given a set of labeled training node/graph classes VL =⋃
1≤i≤C Ci, the imbalance ratio is defined to be the ratio between the number of nodes/graphs in

the majority class and the number of nodes/graphs in the minority class, i.e.,

ρ =
maxCi=1 |Ci|
minCj=1 |Cj |

. (B.1)
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Table B.1: Definitions of the imbalance ratio (ρ) across different imbalance types.
Imbalance Type Definition Explanation

Node-Level Class-Imbalance
Graph-Level Class-Imbalance ρ =

maxCi=1 |Ci|
minCj=1 |Cj |

The imbalance ratio is set to the ratio between the number
of samples (|C|) in the majority and the minority class.

Node-Level
Topology-Imbalance

(local and global)

ρ =

1
|Hn|

∑
d(v), v ∈ Hn

1
|Tn|

∑
d(v), v ∈ Tn

The local imbalance ratio is set to the ratio of the average
node degree (d(v)) of the head node set (Hn) to the aver-
age node degree of the tail node set (Tn).

ρ = −10 · log |RC · SC|
The global imbalance ratio is set to the negative logarithm
of the absolute value of the product of the Reaching
Coefficient (RC) and the Squashing Coefficient (SC).

Graph-Level
Topology-Imbalance ρ =

1
|Hg|

∑
|Gi|,Gi ∈ Hg

1
|Tg|

∑
|Gj |,Gj ∈ Tg

The imbalance ratio is set to the ratio of the average graph
size (number of nodes) of the head graph set (Hg) to the
average graph size of the tail graph set (Tg).

Node-level class-imbalance occurs when there is an uneven spread of labeled nodes among
different classes. This can lead the model to prioritize learning from classes abundant in labeled
instances, potentially neglecting those with fewer examples. Graph-level is similar to node-level
class-imbalance. This issue frequently arises in practical contexts, such as imbalanced chemical
compound classification, where the distributions of labeled graphs are skewed. Typically, this
bias favors the majority class, which comprises more labeled graphs.

• Node-Level Topology-Imbalance.
− Local Imbalance. Given a set of labeled nodes VL = {v1, · · · , vN} with the splits desig-

nating the top 20% of nodes by degree as high-degree head node set Hn and the rest 80%
as low-degree tail node set Tn following the Pareto principle (also known as the 20/80 rule)
(Sanders, 1987). The local node-level topology-imbalance is set to the ratio of the average
node degree of the head training node set to the average node degree of the tail training node
set, i.e.,

ρ =

1
|Hn|

∑
d(v), v ∈ Hn

1
|Tn|

∑
d(v), v ∈ Tn

, (B.2)

where d(·) denotes node degree and we require d(v) ≥ 1. Node degrees frequently exhibit a
long-tail distribution. Head nodes, which have high degrees, benefit from richer structural
information, resulting in superior performance in downstream tasks such as node classifica-
tion. In contrast, tail nodes with low degrees possess limited topological information, which
hampers their performance (Liu et al., 2020; 2021).

− Global Imbalance. The global imbalance is facilitated by two aspects: Under-Reaching
and Over-Squashing (Sun et al., 2022b). Under-Reaching refers to the phenomenon that
the influence from labeled nodes decays with the topology distance, resulting in the nodes
being far away from labeled nodes lacking supervision information. Over-Squashing refers
to the phenomenon of the supervision information of valuable labeled nodes being squashed
when passing across the narrow path together with other useless information. The global
node-level topology-imbalance ratio is set to the 10x negative logarithm of the absolute value
of the product of the Reaching Coefficient (RC) and the Squashing Coefficient (SC) (Sun
et al., 2022b), i.e.,

ρ = −10 · log |RC · SC|. (B.3)

◦ Reaching Coefficient (RC) is the mean length of the shortest path from unlabeled to
the labeled nodes of their corresponding classes, i.e.,

RC =
1

|VU |
∑

vi∈VU

1

|Vyi
L |

∑
vj∈Vyi

L

(
1− log |Psp(vi, vj)|

logDG

)
, (B.4)

where Vyi
L denotes the nodes in VL whose label is yi,Psp(vi, vj) denotes the shortest path

between vi and vj , and |Psp(vi, vj)| denotes its length, and DG is the graph diameter.
◦ Squashing Coefficient (SC) is the mean Ricci curvature (Ollivier, 2009) of edges on

the shortest path from unlabeled to the labeled nodes of their corresponding classes, i.e.,
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Table B.2: Number of nodes for each class in node-level datasets under different ρ.
Dataset # Node for Each Class

Cora [65] ρ = 20 5, 9, 15, 24, 40, 80, 100
ρ = 100 2, 3, 6, 14, 17, 31, 200

CiteSeer [65] ρ = 20 7, 13, 25, 46, 99, 140
ρ = 100 2, 5, 12, 31, 80, 200

PubMed [65] ρ = 20 77, 354, 1540
ρ = 100 17, 254, 1700

Computers [46] ρ = 20 20, 28, 39, 55, 76, 107, 150, 208, 297, 400
ρ = 100 5, 9, 15, 25, 43, 71, 119, 199, 394, 500

Photo [46] ρ = 20 13, 21, 32, 49, 75, 116, 194, 260
ρ = 100 3, 7, 13, 26, 51, 98, 262, 300

ogbn-arXiv [14]
ρ = 20 47, 51, 56, 60, 65, 70, 76, 83, 89, 97, 105, 113, 123, 133, 144, 156, 168, 182, 197, 213, 231,

250, 271, 293, 317, 343, 371, 401, 434, 470, 509, 550, 596, 645, 697, 755, 817, 919, 940

ρ = 100 13, 15, 17, 19, 22, 25, 28, 32, 36, 41, 46, 52, 59, 66, 75, 85, 96, 108, 122, 138, 156, 176, 199,
225, 254, 286, 323, 365, 412, 465, 525, 593, 669, 756, 853, 963, 1154, 1268, 1300

Chameleon [44] ρ = 20 6, 12, 27, 60, 120
ρ = 100 1, 5, 25, 94, 100

Squirrel [44] ρ = 20 14, 29, 62, 135, 280
ρ = 100 3, 11, 35, 171, 300

Actor [39] ρ = 20 20, 43, 91, 206, 400
ρ = 100 5, 16, 52, 187, 500

SC =
1

|VU |
∑

vi∈VU

1

|Nyi(vi)|
∑

vj∈Nyi (vi)

∑
ekt∈Psp(vi,vj)

Ric(vk, vt)

|Psp(vi, vj)|
, (B.5)

where Nyi(vi) denotes the labeled nodes of class yi that can reach the node vi, Ric(·, ·)
denotes the Ricci curvature, and |Psp(vi, vj)| denotes the length of shortest path between
node pair vi and vj .

• Graph-Level Topology-Imbalance. Given a set of labeled graphs GL = {G1, · · · ,GN} with
the splits designating the top 20% of graphs by graph size (the number of nodes) as large-size
head graph setHg and the rest 80% as small-size tail graph set Tg following the Pareto principle
(20/80 rule) (Sanders, 1987). The imbalance ratio is set to the ratio of the average graph size of
the head graph set to the average graph size of the tail graph set, i.e.,

ρ =

1
|Hg|

∑
|Gi|,Gi ∈ Hg

1
|Tg|

∑
|Gj |,Gj ∈ Tg

. (B.6)

The complex connections within graphs can result in topology imbalances across different graphs.
This imbalance frequently appears as variations in graph sizes. Generally, graphs with larger sizes
tend to be more expressive and thus produce better performance compared to smaller counterparts.
This dynamic can introduce bias in applications like molecular or protein prediction.

B.2 MANIPULATED CLASS-IMBALANCED DATASETS FOR NODE CLASSIFICATION

Dataset Settings. We perform the node classification task semi-supervised on 9 manipulated class-
imbalanced datasets, where the train/val/test split satisfies the ratio of 1:1:8. Specifically, to construct
the long-tailed distribution of the number of training nodes concerning varying imbalance ratio ρ
defined in Equation B.1, we assume that the number of nodes in each class in the training set grows
exponentially, i.e., |Ci+1| = µ|Ci|, where i is the class index, |Ci| is the number of i-th indexed
class training samples and µ ∈ (0,1) is the coefficient. Therefore, given the total number of nodes
in the training set and ρ, the number of nodes used for training in each class can be calculated
deterministically. All nodes other than those used for training and validation are assigned to the
test set. To provide a thorough evaluation, we consider three typical situations in IGL-Bench,
i.e., the class-balanced setting (ρ = 1 and each class has an equal number of training nodes), the
class-imbalanced setting (ρ = 20), and the extreme class-imbalanced setting (ρ = 100).
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Figure B.1: Visualizations of the distribution of the number of nodes in the training sets for 9
benchmark datasets with different imbalance ratios. Note that, we calculate the imbalance ratio for
the ogbn-arXiv (Hu et al., 2020) by the ratio between the number of nodes/graphs in the majority
class and the number of nodes/graphs in the sub-minority class due to insufficient training nodes in
some classes.

Dataset Preview. We present a visualization of the distribution of the number of nodes in the training
sets for each dataset in Table B.2 and Figure B.1. It clearly reveals that the distribution follows a
long-tail pattern. Notably, as the parameter ρ increases, the number of nodes decreases more sharply,
accentuating the long-tail effect. The higher the value of ρ, the more pronounced decline in node
numbers, resulting in an even longer and more extended “tail”. This trend indicates a significant
imbalance, where a few classes are highly prevalent while the majority are sparsely represented.
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Table B.3: Statistics of the manipulated local topology-imbalanced datasets (training) for node
classification. The number of nodes for each class is equal (class-balanced), and the imbalance ratio
ρ is the ratio between the average degree of the head nodes and the average degree of the tail nodes.

Dataset Level
#Nodes

per Class
#Head Nodes

per Class
#Tail Nodes

per Class
Avg. #Degree
(Head Nodes)

Avg. #Degree
(Tail Nodes)

Imbalance
Ratio ρ

Cora [65]
Low

39
4 35 5.64 2.84 1.98

Mid 8 31 8.96 2.74 3.27
High 12 27 13.53 2.00 6.74

CiteSeer [65]
Low

55
6 49 4.47 1.83 2.44

Mid 12 43 6.78 1.62 4.18
High 18 37 9.61 1.17 8.21

PubMed [65]
Low

657
66 591 8.58 2.08 4.12

Mid 132 525 15.04 1.83 8.23
High 198 459 22.93 1.51 15.23

Computers [46]
Low

138
14 124 58.21 21.85 2.66

Mid 28 110 99.77 20.23 4.93
High 42 96 133.14 12.98 10.26

Photo [46]
Low

96
10 86 48.96 19.56 2.50

Mid 20 76 84.03 17.50 4.80
High 30 66 116.33 13.13 8.85

ogbn-arXiv [14]
Low

423
42 381 21.56 8.22 2.62

Mid 84 339 40.75 5.10 7.99
High 126 297 56.08 3.80 14.74

Chameleon [44]
Low

46
5 41 51.28 12.12 4.23

Mid 10 36 108.28 12.20 8.88
High 15 31 159.44 9.29 17.16

Squirrel [44]
Low

104
11 93 162.02 22.35 7.24

Mid 22 82 328.33 21.71 15.13
High 33 71 496.67 14.75 33.67

Actor [39]
Low

152
15 137 15.24 4.66 3.27

Mid 30 122 26.77 4.11 6.52
High 45 107 37.93 3.02 12.56

B.3 MANIPULATED LOCAL TOPOLOGY-IMBALANCED DATASETS FOR NODE CLASSIFICATION

Dataset Settings. We conduct the semi-supervised node classification task on 9 manipulated locally
topology-imbalanced datasets. The datasets are split into training, validation, and test sets with a ratio
of 1:1:8. Local topology-imbalance is characterized by a long-tailed distribution in terms of node
degree. Following the Pareto principle (the 20/80 rule) (Sanders, 1987), we designate the top 20%
of nodes by degree as high-degree (head) nodes, and the remaining 80% as low-degree (tail) nodes.
High-degree nodes benefit from more abundant structural information with superior performance
in downstream tasks, while low-degree nodes suffer from limited topological information, which
hinders their performance. To evaluate local topology-imbalance, we randomly select training and
validation nodes according to the pre-defined splitting ratio (10%/10%) while ensuring an equal
number of nodes per class for fairness. The remaining nodes are used for testing. To thoroughly
assess the performance of the IGL algorithms, we create training sets with different imbalance ratios,
as defined in Equation B.2. These ratios depend on the proportion of nodes selected from the head
and tail sets. We repeat the node selection process multiple times, calculate the resulting imbalance
ratios, and choose three groups of splits exhibiting significant variations in the imbalance ratio. These
groups are categorized as Low, Mid, and High, based on their respective levels of local topology
imbalance.

Dataset Preview. We conclude the statistics of the manipulated local topology-imbalanced datasets
(training) for node classification in Table B.3. To guarantee a fair evaluation, we ensure the number of
nodes for each class is equal (class-balanced). We also observe that the imbalance ratio corresponding
to Low, Mid, and High roughly doubles, which can better simulate the various degrees of the
imbalanced distribution of node degree.
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Table B.4: Statistics of the manipulated global topology-imbalanced datasets (training) for node
classification. The number of nodes for each class is equal (class-balanced), and the imbalance ratio
ρ is the 10x negative logarithm of the absolute value of the product of RC and SC.

Imbalance
Level Split Dataset Cora

[65]
CiteSeer

[65]
PubMed

[65]
Computers

[46]
Photo

[46]
Chameleon

[44]
Squirrel

[44]
Actor

[39]

Low

y

Mid

y

High

1
RC 0.60 0.84 0.62 0.73 0.54 0.49 0.46 0.56
SC -0.62 -0.41 -0.81 -0.87 -0.63 -0.66 -0.53 -0.71
ρ 4.23 4.62 3.02 1.99 4.70 4.87 6.13 4.01

2
RC 0.60 0.84 0.61 0.72 0.54 0.49 0.45 0.56
SC -0.62 -0.41 -0.81 -0.87 -0.63 -0.67 -0.53 -0.71
ρ 4.26 4.66 3.03 1.99 4.71 4.87 6.22 4.03

3
RC 0.60 0.84 0.61 0.72 0.54 0.48 0.45 0.56
SC -0.62 -0.41 -0.81 -0.87 -0.63 -0.67 -0.53 -0.71
ρ 4.26 4.69 3.03 2.00 4.72 4.93 6.23 4.02

4
RC 0.60 0.83 0.61 0.72 0.54 0.48 0.45 0.56
SC -0.62 -0.41 -0.81 -0.87 -0.63 -0.67 -0.54 -0.70
ρ 4.31 4.75 3.04 2.01 4.73 4.96 6.21 4.08

5
RC 0.59 0.83 0.61 0.72 0.54 0.46 0.43 0.55
SC -0.62 -0.40 -0.81 -0.87 -0.63 -0.67 -0.53 -0.71
ρ 4.35 4.77 3.04 2.02 4.73 5.11 6.41 4.10

6
RC 0.59 0.81 0.61 0.72 0.54 0.46 0.43 0.55
SC -0.62 -0.41 -0.81 -0.87 -0.63 -0.67 -0.54 -0.70
ρ 4.35 4.80 3.05 2.03 4.74 5.11 6.36 4.16

7
RC 0.59 0.81 0.61 0.72 0.54 0.45 0.41 0.54
SC -0.62 -0.40 -0.81 -0.87 -0.62 -0.67 -0.53 -0.70
ρ 4.35 4.87 3.08 2.04 4.75 5.20 6.56 4.16

8
RC 0.58 0.80 0.60 0.72 0.54 0.44 0.41 0.54
SC -0.63 -0.40 -0.81 -0.87 -0.62 -0.67 -0.54 -0.70
ρ 4.38 4.94 3.11 2.04 4.76 5.32 6.63 4.19

9
RC 0.58 0.80 0.60 0.72 0.54 0.42 0.40 0.54
SC -0.63 -0.40 -0.81 -0.87 -0.62 -0.67 -0.53 -0.70
ρ 4.39 4.96 3.12 2.05 4.77 5.47 6.73 4.20

10
RC 0.58 0.80 0.59 0.72 0.53 0.41 0.41 0.54
SC -0.62 -0.39 -0.81 -0.87 -0.62 -0.68 -0.52 -0.69
ρ 4.43 5.05 3.16 2.06 4.77 5.51 6.79 4.24

B.4 MANIPULATED GLOBAL TOPOLOGY-IMBALANCED DATASETS FOR NODE
CLASSIFICATION

Dataset Settings. We conduct the semi-supervised node classification task on 8 manipulated globally
topology-imbalanced datasets. We select 10% nodes for training and 10% nodes for validation. For a
fair comparison, we assign the same number of nodes for each class to guarantee the class-balance
when evaluating the global topology-imbalance issue. The remaining nodes are used for testing.
The global topology-imbalance issue is facilitated by both the under-reaching and over-squashing
phenomenon, which are quantified with the metrics of the Reaching Coefficient (RC) and the
Squashing Coefficient (SC). Considering that RC and SC reflect two aspects of the causes of global
topology-imbalance simultaneously, and both variables change monotonically, the negative logarithm
of their product is used to define the imbalance ratio according to Equation B.3 (since RC is positive
and SC is negative, the purpose of 10x and taking the negative logarithm is to amplify the observable
variation of the imbalance ratio). Note that, larger RC means better reachability and larger SC
means lower squashing. Consequently, the lower the degree of global topology-imbalance ratio. We
randomly generate 100 groups of training splits and calculate the imbalance ratio for each. We select
10 groups with the minimum, maximum, and uniformly varying imbalance ratios within the range to
simulate the change in the degree of global topology imbalance from High to Low.

Dataset Preview. We conclude the statistics of the manipulated local topology-imbalanced datasets
(training) for node classification in Table B.4. To guarantee a fair evaluation, we ensure the number
of nodes for each class is equal (class-balanced). It can be observed that as the imbalance degree
increases from low to high, the imbalance ratio also increases from small to large.
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Table B.5: Statistics of the manipulated class-imbalanced datasets for graph classification. The
imbalance ratio for the graph-level class-imbalance problem is set to the ratio between the number of
graphs in the majority and the number of graphs in the minority class. The number of graphs for each
class is equal in the validation set for fair evaluation.

Dataset Task Level
#Graphs (val.)

per Class
#Graphs

(Majority Class)
#Graphs

(Minority Class)
Imbalance

Ratio ρ

PTC-MR [1] Binary
Balanced

17
17 17 1.0 (5:5)

Low 23 11 2.3 (7:3)
High 30 4 9.0 (9:1)

FRANKENSTEIN [1] Binary
Balanced

216
216 216 1.0 (5:5)

Low 302 130 2.3 (7:3)
High 388 44 9.0 (9:1)

PROTEINS [2] Binary
Balanced

55
55 55 1.0 (5:5)

Low 77 33 2.3 (7:3)
High 99 11 9.0 (9:1)

D&D [47] Binary
Balanced

58
58 58 1.0 (5:5)

Low 80 36 2.3 (7:3)
High 104 12 9.0 (9:1)

IMDB-B [5] Binary
Balanced

50
50 50 1.0 (5:5)

Low 70 30 2.3 (7:3)
High 90 10 9.0 (9:1)

REDDIT-B [64] Binary
Balanced

100
100 100 1.0 (5:5)

Low 140 60 2.3 (7:3)
High 180 20 9.0 (9:1)

ogbg-molhiv [14] Binary — 400 38,884 643 60.4

COLLAB [22] Multi-
Class

Balanced
167

167 167 1
Low 380 19 20
High 400 4 100

B.5 MANIPULATED CLASS-IMBALANCED DATASETS FOR GRAPH CLASSIFICATION

Dataset Settings. We conduct the graph classification task on the 7 manipulated class-imbalanced
graph datasets, which are split into training, validation, and test sets with a ratio of 1:1:8. We also
evaluate IGL algorithms on the naturally imbalanced ogbg-molhiv dataset, consisting of a large
number of graphs. Our manipulations involve three different types of processing methods. For ❶
balanced datasets with binary classification, we randomly sample 10%/10% graphs for training and
validation, and the rest are for testing to ensure the sufficiency of the minority class instances in both
training and validation set given the skewed imitative data distribution. According to Equation B.1,
the imbalance ratio for the graph-level class-imbalance problem is set to the ratio between the number
of graphs in the majority and the number of graphs in the minority class. To construct graph datasets
with different imbalance ratios, we select the class with a larger number of graphs as the majority
class, and the remaining class as the minority class. We then create training datasets with different
imbalance ratios by adjusting the training sample ratios to 9:1 (ρ = 9.0), 7:3 (ρ = 2.3), and 5:5
(ρ = 1.0, class-balanced), while ensuring that the number of training samples constitutes 10% of
the total. In the validation set, an equal number of samples are allocated for each class for fairness.
All remaining samples are then assigned to the test set. For ❷ imbalanced dataset with binary
classification, to make validation/test sets balanced, we sample the same number of graphs from each
class for validation/test sets. Then, the remaining graphs are assigned to the training set. For ❸ multi-
class classification, situations are similar to manipulations defined in Section B.2. We hypothesize
that the number of graphs in each class within the training dataset multiplies exponentially. Given
the total number of graphs in the training dataset and ρ, the number of graphs allocated for training
in each class can be determined with certainty. Any graphs not allocated for training or validation
are assigned to the test set. For a thorough performance evaluation, we consider three scenarios
within IGL-Bench: a class-balanced scenario (ρ = 1), a class-imbalanced scenario (ρ = 20), and
an extreme class-imbalanced scenario (ρ = 100).

Dataset Preview. We conclude the statistics of the manipulated class-imbalanced datasets for graph
classification in Table B.5. It can be observed that the constructed datasets can not only evaluate
the ideal class-balanced (ρ = 1) scenario but also comprehensively assess the performance of IGL
algorithms under the general class-imbalanced and extremely class-imbalanced conditions.
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Table B.6: Statistics of the manipulated topology-imbalanced datasets (training) for graph classifica-
tion. The number of nodes for each class is equal (class-balanced), and the imbalance ratio ρ is the
ratio between the average size of the head graphs and the average size of the tail graphs.

Dataset Level
#Graphs
per Class

#Head Graphs
per Class

#Tail Graphs
per Class

Avg. #Size
(Head Graphs)

Avg. #Size
(Tail Graphs)

Imbalance
Ratio ρ

PTC-MR [1]
Low

17 2 15
29.50 18.40 1.60

Mid 34.25 11.80 2.90
High 56.00 11.37 4.93

FRANKENSTEIN [1]
Low

217 22 195
33.09 21.19 1.56

Mid 32.43 13.78 2.35
High 77.55 13.78 5.63

PROTEINS [2]
Low

56 6 50
93.50 45.81 2.04

Mid 90.25 22.26 4.05
High 276.00 22.76 12.13

D&D [47]
Low

59 6 53
548.00 350.58 1.56

Mid 524.83 207.70 2.53
High 1765.00 198.11 8.91

IMDB-B [5]
Low

50 5 45
37.50 22.92 1.64

Mid 34.30 16.29 2.11
High 70.30 15.81 4.45

REDDIT-B [64]
Low

100 10 90
1180.75 423.23 2.79

Mid 1097.75 223.04 4.92
High 2442.70 222.73 10.97

ogbg-molhiv [14]
Low

200 20 180
37.69 23.12 1.63

Mid 41.87 15.86 2.64
High 89.30 15.64 5.71

COLLAB [22]
Low

167 17 150
141.41 80.14 1.76

Mid 147.22 50.04 2.94
High 309.41 50.77 6.09

B.6 MANIPULATED TOPOLOGY-IMBALANCED DATASETS FOR GRAPH CLASSIFICATION

Dataset Settings. We conduct the graph classification task on the 7 manipulated topology-imbalanced
graph datasets. For 6 class-balanced datasets, we divide them into training, validation, and test sets
with a ratio of 1:1:8. To ensure fairness, we maintain an equal number of graphs per class within
each set, achieving a class-balanced scenario. For the naturally imbalanced ogbg-molhiv dataset,
considering that one category contains a small number of graphs, we randomly sample a specified
number of graphs from each category for training and validation, reserving the remainder for testing.
Equation B.6 defines the imbalance ratio to be the ratio of the average graph size in the head graph
set to the average graph size in the tail graph set. Specifically, the head graph set consists of the
top 20% of graphs in terms of size (measured by the number of nodes each graph contains), while
the remaining 80% comprise the tail graph set (Sanders, 1987). Typically, larger graphs are more
expressive due to their complex structures and richer information content. This expressiveness
often translates to improved performance in graph classification tasks compared to smaller graphs.
However, this advantage can also introduce biases in applications such as molecular or protein
prediction, where larger graphs might inherently contain more predictive features, overshadowing
the smaller graphs. We create training datasets with varying degrees of imbalance. The degree of
imbalance is manipulated by altering the proportion of graphs selected from the head and tail sets.
We select graphs multiple times, each time computing the resulting imbalance ratios. From these
computations, we identify three distinct sets of splits that exhibit significant variations in imbalance
levels. These sets are categorized and labeled as Low, Mid, and High to reflect their respective levels
of local topology imbalance. By systematically varying the imbalance levels, we aim to simulate
diverse real-world scenarios. This approach allows us to rigorously test the robustness and adaptability
of IGL algorithms under different degrees of topology imbalance. Ultimately, this comprehensive
evaluation provides a deeper understanding of the performance of IGL algorithms across datasets
with varying characteristics, highlighting their strengths and potential areas for improvement.

Dataset Preview. We conclude the statistics of the manipulated class-imbalanced datasets for graph
classification in Table B.5. To guarantee a fair evaluation, we ensure the number of graphs for each
class is equal (class-balanced). We also observe that the imbalance ratio corresponds to Low, Mid, and
High roughly doubles, which can better simulate the various degrees of the imbalanced distribution
of graph sizes.
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Table C.1: Different evaluation metrics for each algorithm in original papers.
Algorithm Accuracy Balanced Accuracy Macro-F1 AUC-ROC Others
DRGCN [48] ✓ ✓

DPGNN [57] ✓ Weighted-F1, Micro-F1

ImGAGN [42] ✓ Precision, Recall

GraphSMOTE [70] ✓ ✓ ✓

GraphENS [37] ✓ ✓ ✓

GraphMixup [60] ✓ ✓ ✓

LTE4G [67] ✓ ✓ G-Means

TAM [49] ✓ ✓

TOPOAUC [8] ✓ ✓ Weighted-F1

GraphSHA [24] ✓ ✓ ✓

DEMO-NET [59] ✓

meta-tail2vc [30] ✓ Micro-F1

Tail-GNN [31] ✓ Micro-F1

Cold Brew [72] ✓

RawlsGCN [19] ✓ Bias

GraphPatcher [17] ✓

ReNode [7] ✓ Weighted-F1

PASTEL [52] ✓ Weighted-F1

HyperIMBA [12] Weighted-F1, Micro-F1

G2GNN [58] ✓ Micro-F1

Topolmb [71] ✓ ✓

DataDec [68] ✓ Micro-F1

ImGKB [54] ✓ ✓ Recall

SOLT-GNN [32] ✓

C DETAILS OF THE EXPERIMENTAL SETTINGS

C.1 GENERAL EXPERIMENTAL CONFIGURATIONS

The number of training epochs for optimizing all IGL algorithms is set to 1000. We adopt the early
stopping strategy, i.e., stop training if the performance on the validation set does not improve for
50 epochs. All parameters are randomly initiated. We adopt Adam (Kingma & Ba, 2015) with an
appropriate learning rate and weight decay for the best performance on the validation split. We
randomly run all the experiments 10 times, and report the average results with standard deviations.

C.2 EVALUATION METRICS

To perform an unbiased evaluation, we summarize all the metrics used in the original papers of
the algorithms in Table C.1. We can conclude that, Accuracy (Acc.), Balanced Accuracy (bAcc.),
Macro-F1, and AUC-ROC are four commonly used metrics for evaluating imbalanced graph learning
performance. Though metrics like Weighted-F1 and Micro-F1 are also popular for evaluation, their
difference lies in considering the imbalance between classes. However, this aligns similarly with the
difference between Accuracy and Balanced Accuracy, so we have not taken metrics like Weighted-F1
and Micro-F1 into the evaluation. However, as we have saved the weights for each algorithm under
all experiment settings, it is easy to include more metrics in our benchmark in a short updating time
for all algorithms under various experiment settings.

We briefly introduce and analyze the evaluation metrics employed to assess the performance of IGL
algorithms including Accuracy (Acc.), Balanced Accuracy (bAcc.), Macro-F1, and AUC-ROC.
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Accuracy (Kipf & Welling, 2016). It reflects the ratio of correctly predicted instances to the total
number of instances. It is formally defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (C.1)

where TP denotes true positives, TN denotes true negatives, FP denotes false positives, and FN
denotes false negatives. ❶ Advantages: Accuracy is simple and ease of interpretation. Further, it
provides an immediate, overall performance measure of the algorithm. ❷ Disadvantages: In the
imbalanced datasets, Accuracy can be misleading as it tends to favor the majority class, and fails to
account for the distribution of classes, underrepresenting the performance of minority classes.

Balanced Accuracy (Brodersen et al., 2010). Balanced Accuracy adjusts the conventional Accuracy
to account for class imbalance. It is the average of recall obtained in each class. For multi-class
classification, it is defined as:

Balanced Accuracy =
1

N

N∑
i=1

TPi

TPi + FNi
, (C.2)

where N is the number of classes. ❶ Advantages: Accuracy accounts for class imbalance, providing
a more equitable evaluation, and it reflects performance across all classes more accurately than
standard accuracy. ❷ Disadvantages: May be sensitive to noise and outliers, particularly in minority
classes. In addition, it is potentially less intuitive to interpret compared to simple accuracy.

Macro-F1 (Xia et al., 2014). The Macro-F1 score is the harmonic mean of precision and recall,
calculated independently for each class and then averaged. It is expressed as:

Macro-F1 =
1

N

N∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

, (C.3)

where Precisioni = TPi

TPi+FPi
and Recalli = TPi

TPi+FNi
. ❶ Advantages: Macro-F1 emphasizes both

precision and recall, ensuring consideration of both false positives and false negatives. Moreover, it
provides a balanced view of the classification performance across all classes. ❷ Disadvantages: It
can be disproportionately affected by very small classes and does not account for the prevalence of
different classes.

AUC-ROC (Bradley, 1997). AUC-ROC (Area Under the Receiver Operating Characteristic Curve)
measures the area under the ROC curve, which plots the true positive rate (recall) against the false
positive rate (fall-out) at various threshold settings. For binary classification, it is defined as:

AUC-ROC =

∫ 1

0

ROC(t) dt. (C.4)

For multi-class problems, an average of the AUC-ROC scores for each class against the rest can be
employed. ❶ Advantages: AUC-ROC evaluates the algorithm’s performance across all possible
classification thresholds. ❷ Disadvantages: It is computationally intensive, particularly for large
datasets. Further, it does not provide a clear threshold for decision-making, focusing instead on
overall ranking performance.

Analysis. When evaluating node-level and graph-level tasks under class-imbalance and topology-
imbalance conditions, selecting the appropriate evaluation metric is crucial. ❶ Accuracy is often
unsuitable for imbalanced scenarios due to its tendency to favor the majority class, potentially
providing a false sense of model performance when minority classes are present. ❷ Balanced
Accuracy and Macro-F1 are more appropriate for imbalanced datasets as they offer a more equitable
assessment of performance across classes. Macro-F1, in particular, is informative in tasks where both
precision and recall are critical. ❸ AUC-ROC is advantageous in ranking-based scenarios and for
evaluating models across different thresholds. Its robustness to class imbalance is beneficial, though
its interpretation can be less straightforward in multi-class problems.

In summary, while no single metric is universally optimal, a combination of these metrics can provide
a comprehensive evaluation of imbalanced graph learning algorithms. Accuracy offers a general
overview, while Balanced Accuracy and Macro-F1 provide insights into class-specific performance.
AUC-ROC, on the other hand, offers a threshold-independent evaluation, particularly useful in highly
imbalanced scenarios.
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Table C.2: Hyperparameter search space for node-level class-imbalanced IGL algorithms.
Algorithm Hyperparameter Search Space

General Settings

dropout 0.2, 0.3, 0.4, 0.5, 0.6
weight decay 0, 5e–6, 5e–5, 5e–4, 5e–3
number of max training epochs 500, 1000, 2000
learning rate 0.005, 0.0075, 0.01, 0.015

GCN [21] number of layers 1, 2, 3
hidden size 32, 64, 128

DRGCN [48] α for loss trade-off 0.5, 0.6, 0.7, 0.8, 0.9

DPGNN [57]
λ1 for Lsslp 1, 10
λ2 for Lssls 1, 10
threshold η for the hard pseudo label 0, 1, 2, 3, 4, 5, 6

ImGAGN [42] λ1 for minority nodes ratio 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
λ2 for discriminator training steps 20, 30, 40, 50, 60

GraphSMOTE [70] λ for Ledge 1e–6, 2e–6, 4e–6

GraphENS [37]
number of warming up epochs 1, 5
k for feature masking 1, 5, 10
τ for temperature 1, 2

LTE4G [67] α for the focal loss 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
γ for curve shape controlling 0, 1, 2

TAM [49]

ϕ for the class–wise temperature 0.8, 1.2
α for the ACM term of node v 0.25, 0.5, 1.5, 2.5
β for the ADM term of node v 0.125, 0.25, 0.5
the base model GraphENS [37], ReNode [7]

GraphSHA [24] sampled β-distribution β(1,100), β(1,10)

C.3 HYPERPARAMETER

We meticulously optimize hyperparameters to guarantee a rigorous and unbiased assessment of the
integrated IGL methods. In cases where the original paper or source code for a specific algorithm
lacks guidance on hyperparameter selection, we perform the hyperparameter tuning through Bayesian
search on the Weights & Biases (wandb) platform4. The hyperparameter search space for all IGL
algorithms is detailed in Table C.2 (for node-level class-imbalanced IGL algorithms), Table C.3 (for
node-level topology-imbalanced IGL algorithms), and Table C.4 (for graph-level class-imbalanced
and topology-imbalanced IGL algorithms). For interpretations of these hyperparameters, please
consult the respective papers. More detailed and comprehensive hyperparameter configurations for
all algorithms are accessible within our publicly released GitHub package.

4https://wandb.ai/
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Table C.3: Hyperparameter search space for node-level topology-imbalanced IGL algorithms.
Algorithm Hyperparameter Search Space

General Settings

dropout 0.2, 0.3, 0.4, 0.5, 0.6
weight decay 0, 5e–6, 5e–5, 5e–4, 5e–3
number of max training epochs 500, 1000, 2000
learning rate 0.005, 0.0075, 0.01, 0.015,

GCN [21] number of layers 1, 2, 3
hidden size 32, 64, 128

Tail-GNN [31] µ for Lm 0.01, 0.001
η for Ld 0.1, 1.0

Cold Brew [72] α for mixing coefficient 0.01, 0.1, 0.5, 0.9, 0.99
number of propagations 10, 20, 50, 100, 200

LTE4G [67] α for the focal loss 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
γ for curve shape controlling 0, 1, 2

RawlsGCN [19] α for probability scalar 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

GraphPatcher [17]

batch size 4, 8, 16, 64
number of accumulation steps 16, 32, 64
number of patching steps 3, 4, 5
augmentation length 0.1, 0.2, 0.3

ReNode [7]
PageRank teleport probability 0.05, 0.1, 0.15, 0.2
lower bound of reweighting 0.25, 0.5, 0.75
upper bound of reweighting 1.25, 1.5, 1.75

TAM [49]
ϕ for the class–wise temperature 0.8, 1.2
α for the ACM term of node v 0.25, 0.5, 1.5, 2.5
β for the ADM term of node v 0.125, 0.25, 0.5

PASTEL [52] λ1 for structure mixing 0.7, 0.8, 0.9
λ2 for structure mixing 0.7, 0.8, 0.9

Table C.4: Hyperparameter search space for both the graph-level class-imbalanced and topology-
imbalanced IGL algorithms.

Algorithm Hyperparameter Search Space

General Settings

dropout 0.2, 0.3, 0.4, 0.5, 0.6
weight decay 0, 5e–6, 5e–5, 5e–4, 5e–3
number of max training epochs 500, 1000, 2000
learning rate 0.001,0.005,0.01,0.0125,0.05

GCN [21], GIN [63] number of layers 2, 3, 4
hidden size 32, 64, 128

G2GNN [58]
k for the number of neighboring graphs 1, 2, 3
drop edge ratio 5e–5,1e–4,5e–4,1e–3,5e–5
mask node ratio 5e–5,1e–4,5e–4,1e–3,5e–5

TopoImb [71] α for LRE 0.2, 0.3, 0.4, 0.5, 0.6

ImGKB [54] β for compression coefficient 0.3, 0.4, 0.5, 0.6
k for the number of neighboring graphs 2, 4, 6, 8, 10

SOLT-GNN [32]
α for loss trade-off 0.1, 0.15, 0.3
µ1 for Lnode

rel 0, 0.5, 1, 1.5, 2
µ2 for Lsubg

rel 0, 0.5, 1, 1.5, 2
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C.4 COMPUTATION RESOUCES

We conduct the experiments with the following resources and configurations:

• Operating System: Ubuntu 20.04 LTS.
• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.
• GPU: NVIDIA Tesla A100 SMX4 with 40GB of Memory.
• Software: CUDA 10.1, Python 3.8.12, PyTorch (Paszke et al., 2019) 1.9.1, PyTorch Geomet-

ric (Fey & Lenssen, 2019) 2.0.1.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS FOR ALGORITHM EFFECTIVENESS (RQ1)

D.1.1 EFFECTIVENESS OF NODE-LEVEL CLASS-IMBALANCED ALGORITHMS

Table D.1: Accuracy score (% ± standard deviation) of node classification on manipulated class-
imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of memory
or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

ρ = 1 (Balanced)

GCN (bb.) [21] 80.41±0.78 66.39±0.86 82.88±0.15 79.29±0.66 88.30±0.56 45.92±0.48 26.76±1.89 21.46±0.87 23.07±0.38

DRGCN [48] 77.78±1.22 66.99±1.70 81.37±2.96 63.71±26.04 85.67±0.93 — 33.81±1.64 24.90±0.48 24.19±1.55

DPGNN [57] 74.20±2.47 62.07±3.03 80.96±3.09 66.15±11.96 87.58±2.77 — 32.06±2.41 25.00±1.32 22.49±2.80

ImGAGN [42] 80.58±0.65 66.27±0.60 82.78±0.11 76.67±1.15 86.62±0.37 — 29.19±2.26 21.61±0.84 22.55±0.94

GraphSMOTE [70] 78.92±0.48 65.50±0.42 81.85±0.19 79.46±0.60 86.89±0.66 — 25.05±2.01 21.32±0.22 25.96±0.31

GraphENS [37] 80.41±0.78 66.42±0.86 82.87±0.15 78.71±0.98 88.63±1.44 46.68±0.68 26.76±1.89 21.46±0.87 23.07±0.38

GraphMixup [60] 79.30±0.64 69.95±1.09 83.85±0.11 82.16±1.18 90.56±0.35 43.88±1.02 35.05±0.34 24.59±0.32 24.29±1.16

LTE4G [67] 80.48±1.12 67.77±2.25 84.27±0.30 74.23±4.72 88.48±3.83 — 35.71±0.53 24.62±0.47 24.88±1.11

TAM [49] 81.33±0.62 66.26±0.52 74.56±0.78 78.76±0.78 88.49±1.57 46.66±0.57 28.56±1.24 21.51±0.94 23.54±0.50

TOPOAUC [8] 83.69±0.32 73.41±0.46 — 69.79±3.93 82.85±2.33 — 37.14±0.95 25.24±0.46 26.25±1.22

GraphSHA [24] 80.41±0.78 66.40±0.85 82.87±0.14 78.88±0.88 88.61±4.99 47.32±0.39 26.76±1.89 21.46±0.87 23.07±0.38

ρ = 20 (Low)

GCN (bb.) [21] 76.36±0.13 52.96±0.55 60.57±0.19 75.06±0.50 69.80±6.15 59.83±0.23 26.35±0.24 17.16±0.17 24.06±0.14

DRGCN [48] 71.35±0.77 55.22±1.82 62.59±4.62 67.71±3.10 85.67±5.30 — 26.40±0.35 17.11±0.81 25.03±0.23

DPGNN [57] 72.91±3.95 56.78±2.23 81.87±2.80 68.69±8.62 81.66±9.19 — 30.58±1.48 25.35±1.48 21.66±1.68

ImGAGN [42] 73.48±3.07 55.29±3.00 72.16±1.51 74.92±1.87 83.10±3.42 — 24.38±2.86 18.75±1.80 24.54±3.38

GraphSMOTE [70] 77.21±0.27 53.55±0.95 71.25±0.27 76.04±1.52 89.07±1.12 — 27.23±0.21 16.79±0.14 25.08±0.31

GraphENS [37] 79.34±0.49 61.98±0.76 80.84±0.17 80.72±0.68 90.38±0.37 53.23±0.52 24.34±1.62 20.05±1.61 25.03±0.38

GraphMixup [60] 79.88±0.43 62.66±0.70 75.94±0.09 86.15±0.47 89.69±0.31 56.08±0.31 30.95±0.40 17.83±0.32 24.75±0.37

LTE4G [67] 80.53±0.65 64.48±1.56 83.02±0.33 79.35±1.39 87.94±1.82 — 31.91±0.34 19.37±0.41 25.43±0.26

TAM [49] 80.69±0.27 64.16±0.24 81.47±0.15 81.30±0.53 90.35±0.42 53.49±0.54 23.27±1.38 21.17±0.95 24.53±0.33

TOPOAUC [8] 83.34±0.31 69.03±1.33 — 70.85±4.55 83.72±2.23 — 33.60±1.51 21.38±1.03 25.16±0.46

GraphSHA [24] 80.03±0.46 60.51±0.61 77.94±0.36 82.71±0.40 91.55±0.32 60.30±0.13 23.73±1.97 20.05±1.61 23.59±1.01

ρ = 100 (High)

GCN (bb.) [21] 62.20±3.57 42.48±0.24 47.31±0.72 58.04±0.98 46.54±0.33 60.35±0.24 25.68±0.12 15.17±0.10 21.70±0.22

DRGCN [48] 61.99±2.46 45.69±2.79 49.80±4.33 66.02±1.48 73.58±5.44 — 25.79±0.44 15.32±0.43 23.03±0.59

DPGNN [57] 67.98±3.35 51.10±3.06 76.29±3.38 70.04±8.56 87.70±0.34 — 28.82±1.83 23.91±1.90 22.37±0.74

ImGAGN [42] 66.16±3.54 53.60±3.32 64.03±0.62 66.89±4.29 74.92±5.89 — 23.72±2.85 17.30±3.16 24.10±1.26

GraphSMOTE [70] 69.81±0.46 45.72±0.80 69.12±0.22 56.55±1.29 44.97±0.22 — 25.60±0.12 15.41±0.10 21.76±0.21

GraphENS [37] 77.68±0.58 62.85±0.72 76.69±0.31 80.99±0.76 90.31±0.33 54.13±0.49 26.26±2.42 20.65±2.30 20.67±2.47

GraphMixup [60] 70.01±0.50 49.63±0.28 63.47±0.08 79.34±0.42 73.02±4.01 57.40±0.35 26.41±0.08 15.75±0.16 23.39±0.37

LTE4G [67] 73.70±0.99 57.14±1.28 70.58±15.32 79.59±0.94 89.53±0.74 — 27.88±0.60 16.18±0.34 24.76±0.42

TAM [49] 79.36±0.56 64.30±0.46 80.53±0.18 85.77±0.41 90.28±0.32 54.25±0.70 23.47±1.73 23.48±1.24 21.92±0.18

TOPOAUC [8] 76.97±0.99 67.31±2.02 — — 82.74±3.10 — 30.66±0.48 17.67±1.29 25.35±1.04

GraphSHA [24] 78.66±0.46 57.63±0.82 70.68±2.42 80.79±0.65 91.27±0.25 60.17±0.17 24.14±1.30 20.78±2.19 20.82±2.65
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Table D.2: Balanced Accuracy score (% ± standard deviation) of node classification on manipulated
class-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of
memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

ρ = 1 (Balanced)

GCN (bb.) [21] 79.98±0.63 62.62±0.60 83.13±0.06 87.20±0.26 89.70±0.26 45.93±0.56 28.04±1.60 21.47±0.87 22.65±0.33

DRGCN [48] 77.20±0.78 63.05±0.82 82.22±2.10 73.23±23.82 88.22±0.71 — 34.36±1.20 24.89±0.48 23.33±0.34

DPGNN [57] 75.79±2.44 58.96±3.21 81.42±3.08 74.75±10.80 88.15±2.56 — 33.07±1.92 24.99±1.32 22.13±1.79

ImGAGN [42] 80.20±0.41 62.55±0.38 83.11±0.08 84.20±0.36 88.80±0.27 — 29.65±1.78 21.61±0.84 22.57±0.60

GraphSMOTE [70] 78.04±0.44 62.16±0.41 82.11±0.14 80.07±0.54 88.89±0.26 — 26.83±2.01 21.34±0.22 22.04±0.32

GraphENS [37] 79.98±0.63 62.65±0.60 83.12±0.08 86.26±0.51 89.85±0.64 45.98±0.49 28.04±1.60 21.47±0.87 22.65±0.33

GraphMixup [60] 82.41±0.24 67.48±1.01 84.72±0.07 88.96±0.35 91.90±0.24 43.97±0.49 35.60±0.33 24.59±0.32 23.50±0.52

LTE4G [67] 81.97±1.02 65.10±2.07 85.21±0.13 83.59±2.06 88.83±3.48 — 35.13±0.53 24.61±0.47 24.88±0.73

TAM [49] 80.98±0.33 62.99±0.26 77.26±0.62 86.06±0.52 89.77±0.74 46.05±0.77 28.82±0.76 21.51±0.94 22.93±0.45

TOPOAUC [8] 84.86±0.18 69.90±0.42 — 77.23±1.73 85.24±1.32 — 37.92±0.68 25.23±0.46 25.68±0.41

GraphSHA [24] 79.98±0.63 62.63±0.59 83.13±0.07 86.11±0.44 89.81±0.63 46.40±0.83 28.04±1.60 21.47±0.87 22.65±0.33

ρ = 20 (Low)

GCN (bb.) [21] 69.17±0.26 47.61±0.48 52.40±0.15 40.86±0.77 49.87±7.16 37.36±0.31 26.75±0.22 20.83±0.17 20.62±0.10

DRGCN [48] 63.04±0.99 49.86±1.68 56.40±3.91 43.92±2.58 74.82±9.35 — 26.79±0.35 19.98±0.45 22.10±0.21

DPGNN [57] 67.64±3.32 51.34±2.01 81.94±2.85 76.17±9.32 82.20±9.18 — 30.72±1.49 26.52±1.59 21.47±0.80

ImGAGN [42] 67.78±3.46 50.40±3.03 67.34±1.14 73.92±0.82 78.14±2.13 — 24.50±2.71 20.14±0.74 23.83±1.73

GraphSMOTE [70] 70.54±0.42 48.27±0.91 70.54±0.21 51.46±4.33 80.21±1.46 — 27.54±0.20 20.63±0.13 21.73±0.31

GraphENS [37] 78.54±0.55 58.76±0.95 79.47±0.27 86.03±0.25 90.26±0.24 41.83±0.79 24.80±1.64 21.03±1.00 25.64±0.49

GraphMixup [60] 72.63±0.69 56.76±0.68 72.40±0.10 82.91±0.65 81.21±0.48 39.67±0.36 31.21±0.36 20.81±0.25 21.68±0.36

LTE4G [67] 75.42±1.26 58.52±1.35 81.68±0.22 72.29±3.90 87.99±1.34 — 32.00±0.34 22.37±0.34 23.11±0.33

TAM [49] 80.29±0.37 60.88±0.26 81.20±0.18 86.19±0.24 90.19±0.21 41.94±0.53 23.82±1.46 21.11±0.49 25.84±0.30

TOPOAUC [8] 79.98±0.33 63.69±0.93 — 77.02±2.60 85.79±1.62 — 33.87±1.28 23.17±0.80 24.24±0.24

GraphSHA [24] 77.11±0.40 56.98±0.74 75.18±0.39 77.04±0.64 88.83±0.28 35.92±0.48 24.17±2.16 21.03±1.00 22.54±0.82

ρ = 100 (High)

GCN (bb.) [21] 47.96±5.26 38.66±0.20 43.02±0.55 22.83±2.07 25.06±0.36 30.20±0.41 27.02±0.12 20.62±0.09 20.22±0.12

DRGCN [48] 49.11±3.52 41.40±2.34 44.87±3.23 35.80±1.98 54.85±6.26 — 27.11±0.44 20.57±0.38 21.03±0.36

DPGNN [57] 58.09±3.37 46.01±2.71 74.95±3.08 76.51±7.76 85.55±1.77 — 29.74±2.13 25.88±1.23 21.18±0.92

ImGAGN [42] 57.01±4.30 48.70±3.16 55.56±0.44 60.84±6.59 69.88±3.24 — 24.76±2.93 19.81±0.63 22.21±1.01

GraphSMOTE [70] 58.91±0.55 41.60±0.74 64.02±0.20 21.05±0.88 23.91±0.12 — 26.91±0.13 20.67±0.14 20.27±0.12

GraphENS [37] 73.61±0.32 58.08±0.59 73.62±0.43 85.72±0.42 90.19±0.31 40.42±0.59 27.12±2.61 22.03±1.49 20.99±1.43

GraphMixup [60] 56.43±0.59 44.63±0.22 57.86±0.13 49.37±0.63 54.60±4.88 34.44±0.19 27.93±0.09 20.50±0.15 21.25±0.27

LTE4G [67] 62.22±1.22 51.16±1.21 67.89±10.50 72.49±2.92 83.28±1.91 — 29.69±0.51 21.08±0.29 22.79±0.51

TAM [49] 75.11±0.39 59.10±0.43 78.98±0.27 85.77±0.41 90.20±0.24 40.61±0.55 23.96±1.94 22.74±0.84 21.97±0.15

TOPOAUC [8] 71.10±1.30 61.13±2.02 — — 85.13±2.23 — 32.10±0.42 21.22±0.46 24.05±0.61

GraphSHA [24] 73.05±0.35 53.92±0.69 65.28±0.56 72.59±1.36 87.06±0.58 28.12±0.32 24.80±1.36 22.05±1.49 20.84±1.34
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Table D.3: Macro-F1 score (% ± standard deviation) of node classification on manipulated class-
imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of memory
or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

ρ = 1 (Balanced)

GCN (bb.) [21] 78.26±0.91 61.83±0.78 82.03±0.16 68.40±0.49 85.03±0.47 27.50±0.17 23.99±1.98 18.80±1.62 21.91±0.36

DRGCN [48] 75.46±0.97 62.65±1.09 80.46±3.08 55.55±22.56 83.23±0.69 — 32.85±2.01 23.41±0.95 22.30±0.63

DPGNN [57] 72.73±2.46 58.77±2.86 80.49±2.78 55.27±10.24 83.37±2.87 — 30.06±3.08 21.67±1.65 17.38±2.51

ImGAGN [42] 78.60±0.61 61.70±0.54 81.96±0.12 66.70±1.20 83.79±0.37 — 26.45±2.53 18.76±1.74 21.55±0.86

GraphSMOTE [70] 77.03±0.42 61.20±0.44 80.93±0.18 65.39±0.90 83.76±0.53 — 22.93±1.31 14.71±1.38 21.13±0.71

GraphENS [37] 78.26±0.91 61.86±0.77 82.03±0.16 68.39±0.89 85.64±1.22 27.92±0.16 23.99±1.98 18.80±1.62 21.91±0.35

GraphMixup [60] 77.54±0.73 66.34±0.98 82.92±0.10 70.81±0.92 86.84±0.40 26.14±0.38 33.76±0.38 23.78±0.26 22.25±0.97

LTE4G [67] 78.45±1.10 64.35±2.04 83.19±0.32 62.28±3.47 84.09±4.41 — 34.00±0.67 23.45±0.31 22.75±1.17

TAM [49] 79.34±0.61 61.95±0.33 74.23±0.77 68.53±0.72 85.48±1.39 27.93±0.22 25.40±1.86 18.43±2.12 22.10±0.54

TOPOAUC [8] 81.95±0.36 69.28±0.45 — 57.76±1.85 79.31±2.25 — 35.85±0.79 23.70±0.44 24.43±0.69

GraphSHA [24] 78.26±0.91 61.84±0.77 82.02±0.15 68.61±0.67 85.62±1.21 28.20±0.16 23.99±1.98 18.80±1.62 21.91±0.36

ρ = 20 (Low)

GCN (bb.) [21] 71.15±0.30 43.71±0.54 45.71±0.16 39.11±0.43 48.99±8.51 33.94±0.26 16.67±0.52 9.83±0.49 12.18±0.67

DRGCN [48] 64.43±1.52 47.50±1.46 53.83±4.78 41.55±2.42 74.51±8.46 — 17.22±0.44 11.01±0.88 16.43±0.57

DPGNN [57] 68.70±3.61 50.06±2.10 81.54±2.42 66.97±8.96 79.53±8.70 — 26.03±1.83 21.53±2.14 18.48±1.50

ImGAGN [42] 68.69±3.93 48.40±3.58 67.80±1.41 72.51±1.28 75.49±1.64 — 16.94±2.14 13.91±2.77 21.04±3.16

GraphSMOTE [70] 72.71±0.31 45.21±0.95 68.93±0.21 49.30±4.76 79.64±0.98 — 18.72±0.26 8.36±0.36 16.26±0.84

GraphENS [37] 77.16±0.50 57.80±0.96 79.71±0.24 77.89±0.69 88.20±0.28 30.16±0.37 19.58±0.99 16.73±1.73 23.30±0.38

GraphMixup [60] 74.03±0.62 55.31±0.69 73.63±0.11 81.54±0.58 80.83±0.63 32.38±0.17 25.57±0.76 13.17±0.79 18.35±0.54

LTE4G [67] 76.46±1.17 57.35±1.49 82.12±0.27 69.02±3.78 85.23±1.34 — 25.96±0.35 15.13±0.80 21.27±0.48

TAM [49] 78.83±0.32 60.12±0.31 80.75±0.15 78.10±0.65 88.16±0.30 30.30±0.29 19.99±1.21 17.29±0.94 24.01±0.54

TOPOAUC [8] 80.61±0.30 62.95±1.21 — 67.15±5.38 81.69±2.38 — 29.06±2.35 18.77±1.36 23.61±0.24

GraphSHA [24] 77.66±0.46 55.76±0.85 76.17±0.37 75.43±0.47 89.04±0.27 32.09±0.23 19.64±1.26 16.73±1.73 20.36±0.97

ρ = 100 (High)

GCN (bb.) [21] 43.97±7.75 30.77±0.21 34.08±0.77 20.44±1.45 16.99±0.64 31.11±0.50 14.79±0.11 8.27±0.17 9.01±0.66

DRGCN [48] 47.47±4.00 34.83±2.80 36.44±4.29 33.60±1.15 52.58±6.68 — 15.02±0.26 8.83±1.09 12.38±1.05

DPGNN [57] 58.66±3.44 41.53±3.59 75.47±3.04 68.30±8.53 84.82±1.94 — 23.96±2.16 18.85±2.36 19.62±1.15

ImGAGN [42] 55.03±5.32 43.92±4.61 50.74±1.93 57.30±5.51 67.27±4.58 — 14.12±2.75 10.62±4.19 18.84±2.87

GraphSMOTE [70] 58.93±0.54 35.40±0.93 63.27±0.19 17.90±1.20 16.34±0.04 — 15.13±0.16 9.31±0.29 9.05±0.76

GraphENS [37] 72.09±0.22 56.58±0.60 74.36±0.40 78.75±0.59 88.53±0.25 30.89±0.38 20.80±0.64 17.96±1.89 18.47±2.45

GraphMixup [60] 55.91±0.61 38.36±0.24 55.24±0.21 46.92±0.61 53.54±5.72 33.18±0.16 20.02±0.11 10.07±0.17 14.46±0.78

LTE4G [67] 62.11±1.29 45.67±1.91 66.79±15.94 70.80±2.70 83.24±2.67 — 21.02±1.06 10.61±0.51 17.88±0.67

TAM [49] 75.07±0.57 57.67±0.46 79.34±0.21 78.97±0.29 88.44±0.23 30.91±0.45 20.37±1.49 20.28±1.48 21.33±0.31

TOPOAUC [8] 70.01±0.95 58.92±2.94 — — 80.80±3.23 — 24.41±1.51 13.62±2.00 22.40±0.40

GraphSHA [24] 73.38±0.25 51.99±0.68 64.66±1.02 72.46±1.10 88.36±0.43 27.92±0.33 19.96±1.82 17.87±1.99 18.05±2.33
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Table D.4: AUC-ROC score (% ± standard deviation) of node classification on manipulated class-
imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of memory
or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

ρ = 1 (Balanced)

GCN (bb.) [21] 96.08±0.47 89.74±0.11 94.55±0.04 97.61±0.04 98.73±0.04 93.39±0.10 63.48±0.66 51.32±0.95 53.22±0.58

DRGCN [48] 95.01±0.30 89.32±0.22 94.73±0.41 93.43±11.13 98.49±0.12 — 64.93±0.49 55.40±0.32 54.28±0.45

DPGNN [57] 93.84±0.91 86.15±1.58 92.59±2.58 95.06±2.35 97.85±0.63 — 63.30±1.93 55.05±1.31 52.51±2.20

ImGAGN [42] 96.49±0.17 89.97±0.13 94.52±0.03 97.12±0.13 98.53±0.08 — 64.90±0.86 51.28±0.53 53.66±1.05

GraphSMOTE [70] 95.88±0.35 89.48±0.13 93.94±0.06 97.18±0.09 98.64±0.04 — 60.33±3.34 51.21±0.33 53.70±0.36

GraphENS [37] 96.08±0.47 89.74±0.11 94.55±0.04 97.67±0.07 98.76±0.11 93.33±0.07 63.48±0.66 51.32±0.95 53.22±0.58

GraphMixup [60] 96.42±0.25 89.83±0.94 95.16±0.04 97.96±0.13 98.79±0.03 92.64±0.09 63.16±0.65 54.01±0.31 53.82±0.76

LTE4G [67] 96.54±0.39 89.00±0.67 95.61±0.05 95.88±3.08 98.17±0.56 — 65.42±0.49 55.22±0.40 57.75±0.64

TAM [49] 96.85±0.04 89.77±0.08 92.62±0.12 97.69±0.06 98.71±0.16 93.34±0.06 60.11±1.56 51.67±0.78 51.84±0.46

TOPOAUC [8] 97.56±0.04 91.89±0.23 — 91.26±2.37 94.11±1.46 — 67.70±0.88 55.43±0.09 57.17±0.53

GraphSHA [24] 96.08±0.47 89.74±0.11 94.54±0.04 97.69±0.06 98.76±0.11 93.50±0.08 63.48±0.66 51.32±0.95 53.22±0.58

ρ = 20 (Low)

GCN (bb.) [21] 95.04±0.08 86.57±0.19 92.23±0.09 94.41±0.53 94.35±0.96 93.54±0.09 57.70±0.42 51.70±0.08 52.05±0.36

DRGCN [48] 92.68±0.30 84.92±0.63 92.04±0.35 93.84±0.50 98.22±0.49 — 56.19±0.66 49.42±0.68 55.20±0.28

DPGNN [57] 92.41±1.08 81.04±1.44 93.24±1.77 95.03±1.93 96.30±2.20 — 60.45±2.11 55.66±1.56 51.20±0.71

ImGAGN [42] 92.89±0.45 83.52±0.51 90.53±1.69 94.55±1.38 95.25±1.19 — 53.11±2.76 49.98±0.74 54.92±1.99

GraphSMOTE [70] 95.14±0.16 86.59±0.27 91.77±0.09 96.51±0.41 98.28±0.31 — 56.92±0.23 51.71±0.06 53.79±0.27

GraphENS [37] 96.32±0.13 87.46±0.43 93.26±0.11 97.70±0.09 98.71±0.05 93.04±0.08 58.54±2.61 52.33±0.77 56.10±0.13

GraphMixup [60] 96.23±0.13 85.86±0.30 93.81±0.05 98.24±0.05 98.27±0.09 92.75±0.09 61.05±0.37 53.78±0.39 52.70±0.12

LTE4G [67] 95.67±0.33 86.14±0.99 94.90±0.29 96.85±0.25 98.69±0.25 — 63.31±0.60 53.83±0.29 54.36±0.44

TAM [49] 96.74±0.07 88.41±0.19 93.71±0.07 97.69±0.10 98.71±0.04 93.07±0.07 58.71±1.96 51.17±1.18 55.72±0.17

TOPOAUC [8] 97.09±0.16 88.62±0.59 — 91.04±1.72 93.96±1.62 — 65.86±0.82 53.47±0.49 54.78±0.25

GraphSHA [24] 96.27±0.05 87.36±0.22 93.14±0.10 97.78±0.06 98.74±0.06 93.39±0.11 58.19±2.52 52.33±0.77 52.48±1.05

ρ = 100 (High)

GCN (bb.) [21] 91.55±0.80 80.26±0.32 79.13±1.41 87.24±1.56 76.98±1.42 92.87±0.12 57.86±0.65 51.16±0.06 50.79±0.79

DRGCN [48] 89.80±0.54 79.58±1.24 84.19±2.66 92.09±0.75 96.50±0.63 — 55.79±1.06 49.24±0.39 54.87±0.25

DPGNN [57] 87.41±2.09 78.59±1.51 90.02±2.99 95.34±1.58 97.09±0.57 — 59.14±2.36 54.25±1.11 50.35±0.72

ImGAGN [42] 88.38±1.39 81.37±0.69 87.52±1.15 92.75±1.38 94.82±0.72 — 52.73±2.84 49.44±0.71 53.60±1.51

GraphSMOTE [70] 93.29±0.14 82.56±0.37 78.88±1.27 89.52±1.39 84.03±1.44 — 56.82±0.53 51.49±0.11 52.51±2.31

GraphENS [37] 95.55±0.13 85.91±0.32 91.38±0.14 97.74±0.06 98.65±0.03 92.83±0.09 58.15±1.92 52.87±0.55 50.91±1.27

GraphMixup [60] 92.31±0.22 82.50±0.12 90.58±0.09 97.06±0.17 93.85±0.69 92.03±0.09 58.73±0.27 53.24±0.08 52.46±0.14

LTE4G [67] 92.82±0.56 83.87±1.13 90.77±2.91 97.19±0.19 97.26±0.46 — 59.10±0.89 52.60±0.18 53.96±0.67

TAM [49] 96.24±0.04 87.22±0.25 93.14±0.05 97.75±0.05 98.65±0.03 92.84±0.10 56.81±2.37 52.99±0.46 52.42±0.14

TOPOAUC [8] 90.42±1.64 86.50±0.50 — — 93.14±0.96 — 61.71±0.80 52.17±0.28 53.31±0.34

GraphSHA [24] 95.73±0.11 85.10±0.16 90.09±3.59 97.51±0.14 98.62±0.06 92.18±0.13 56.00±2.91 52.87±0.55 50.72±0.98
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D.1.2 EFFECTIVENESS OF NODE-LEVEL LOCAL TOPOLOGY-IMBALANCED ALGORITHMS

Table D.5: Accuracy score (% ± standard deviation) of node classification on manipulated local
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 80.16±0.97 66.99±1.78 83.97±0.14 70.39±1.68 87.28±2.77 55.45±0.06 50.42±1.22 30.87±0.60 24.23±1.74
DEMO-Net [59] 81.40±0.43 68.42±0.72 82.70±0.51 79.07±0.53 88.06±1.81 65.31±0.15 56.18±0.62 38.86±0.78 29.34±0.59
meta-tail2vec [30] 38.11±1.36 24.77±2.39 59.93±1.95 71.13±0.41 77.16±0.33 33.61±0.25 41.45±0.46 24.47±0.18 25.98±0.07
Tail-GNN [31] 80.16±0.64 70.37±0.57 84.56±0.30 86.40±0.92 92.79±0.19 — 51.87±0.79 31.89±0.93 28.67±0.47
Cold Brew [72] 75.37±1.07 65.16±0.59 86.11±0.05 79.61±0.40 85.94±0.23 68.50±0.07 58.78±0.19 39.57±0.19 32.93±0.45
LTE4G [67] 82.10±0.56 69.17±0.96 84.64±0.30 81.24±2.79 92.47±0.21 — 58.61±0.98 25.74±2.58 24.53±1.12
RawlsGCN [19] 79.95±0.29 72.20±0.39 85.97±0.12 78.74±2.01 87.89±0.10 41.70±0.23 44.91±1.15 29.68±0.83 28.54±0.12
GraphPatcher [17] 84.00±0.62 72.34±0.32 85.58±0.13 87.60±0.23 93.20±0.32 66.35±0.09 55.77±1.04 35.16±0.22 27.15±0.80

Imbalance Ratio: Mid
GCN (bb.) [21] 80.16±1.09 66.87±0.85 83.97±0.13 71.65±2.10 89.43±0.58 52.93±0.33 52.74±0.60 28.70±0.68 21.55±1.74
DEMO-Net [59] 80.37±0.52 69.73±1.31 84.11±0.20 79.38±0.98 88.09±1.30 65.81±0.11 55.51±0.87 39.45±0.62 29.12±0.30
meta-tail2vec [30] 32.17±0.68 29.97±3.61 59.82±2.86 68.17±1.07 79.82±1.02 33.71±1.16 38.78±0.44 24.90±0.25 26.09±0.07
Tail-GNN [31] 79.05±1.15 69.97±1.03 85.78±0.41 84.09±1.01 92.21±0.09 — 53.20±0.80 30.43±1.06 28.02±0.71
Cold Brew [72] 73.84±2.10 67.42±0.97 86.51±0.04 80.19±0.24 88.13±0.24 69.97±0.07 59.16±0.40 43.04±0.24 33.01±0.19
LTE4G [67] 82.54±0.46 70.55±0.54 84.77±0.78 81.32±2.21 91.09±0.19 — 55.84±2.86 32.43±3.31 24.00±0.49
RawlsGCN [19] 80.52±0.14 72.38±0.43 86.05±0.12 78.78±1.40 90.53±1.32 40.00±0.05 44.96±0.79 29.93±0.65 28.29±0.24
GraphPatcher [17] 83.25±0.42 73.38±0.42 85.60±0.16 83.68±0.69 92.28±0.06 66.74±0.04 55.19±0.41 36.94±0.11 23.85±0.92

Imbalance Ratio: High
GCN (bb.) [21] 78.70±1.05 65.07±0.81 83.87±0.32 68.15±4.13 89.42±1.24 50.72±0.30 53.33±1.09 29.56±2.72 23.86±0.90
DEMO-Net [59] 78.23±1.32 67.11±0.44 83.51±0.29 78.34±0.88 88.08±0.30 65.76±0.18 54.08±1.41 36.98±1.27 28.96±0.30
meta-tail2vec [30] 38.16±1.42 21.62±1.70 58.39±2.25 71.03±2.20 66.37±2.96 35.31±0.21 37.94±0.52 25.18±0.30 25.98±0.03
Tail-GNN [31] 81.20±0.55 69.69±0.55 84.95±0.37 86.39±0.82 92.55±0.40 — 53.00±0.89 31.08±0.91 28.36±1.16
Cold Brew [72] 75.44±2.31 66.12±0.71 86.44±0.02 78.59±0.10 86.83±0.27 70.32±0.08 59.47±0.14 40.16±0.16 33.44±0.22
LTE4G [67] 81.93±1.43 67.09±0.73 84.30±0.49 83.33±1.59 92.12±0.32 — 56.39±2.69 30.16±4.09 23.83±0.85
RawlsGCN [19] 81.66±0.17 69.88±0.74 85.72±0.07 79.27±0.41 87.99±1.16 39.14±0.16 42.22±0.37 28.54±0.79 29.30±0.17
GraphPatcher [17] 80.77±0.23 73.13±0.48 85.74±0.14 85.47±0.16 93.57±0.13 67.38±0.06 56.74±0.25 37.12±0.18 25.48±0.49

Table D.6: Balanced Accuracy score (% ± standard deviation) of node classification on manipulated
local topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes
out of memory or time limit. Best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 81.19±0.89 63.72±2.11 84.31±0.14 77.82±1.32 86.91±2.30 22.36±0.15 50.82±0.89 30.86±0.60 23.02±1.14
DEMO-Net [59] 82.53±0.35 65.58±0.71 83.84±0.08 84.87±0.25 90.06±0.82 41.57±1.20 56.18±0.45 38.85±0.78 26.59±0.61
meta-tail2vec [30] 27.64±1.24 19.99±1.80 53.78±1.75 55.68±4.36 80.39±0.35 7.46±0.43 40.58±0.42 24.46±0.16 20.12±0.15
Tail-GNN [31] 82.10±0.28 66.78±0.30 85.42±0.41 90.80±0.53 93.57±0.77 — 51.96±0.99 31.89±0.93 28.28±0.30
Cold Brew [72] 77.41±0.62 62.25±1.02 86.11±0.05 85.58±0.35 88.67±0.18 47.29±0.12 58.05±0.20 39.56±0.19 29.01±1.40
LTE4G [67] 82.68±0.43 67.45±0.40 85.15±0.25 87.35±2.33 92.86±0.44 — 58.15±0.91 25.73±2.58 24.31±0.62
RawlsGCN [19] 81.80±0.21 68.80±0.27 86.76±0.13 84.67±0.64 90.59±0.31 13.32±0.08 45.15±0.83 29.69±0.83 28.13±0.12
GraphPatcher [17] 84.66±0.47 68.56±0.16 85.68±0.19 90.73±0.18 93.61±0.26 43.97±0.09 55.28±1.02 35.15±0.22 22.46±0.46

Imbalance Ratio: Mid
GCN (bb.) [21] 81.54±0.39 63.00±0.81 84.46±0.13 78.91±2.60 89.02±0.58 18.12±0.38 51.74±0.65 28.69±0.68 21.25±0.33
DEMO-Net [59] 81.75±0.26 65.52±1.00 84.99±0.08 86.24±0.63 89.43±0.90 42.88±0.66 55.37±1.14 39.45±0.62 26.70±0.17
meta-tail2vec [30] 32.56±0.98 25.17±1.60 56.16±1.92 55.60±4.13 81.26±1.78 7.46±0.68 39.92±0.52 24.91±0.25 20.08±0.07
Tail-GNN [31] 81.47±0.27 66.05±0.65 86.64±0.30 90.06±0.28 93.08±0.19 — 53.40±0.71 30.44±1.05 26.26±0.73
Cold Brew [72] 76.00±1.85 62.88±1.10 86.41±0.26 85.62±0.07 89.20±1.85 47.73±0.13 58.71±0.46 43.04±0.25 30.65±0.19
LTE4G [67] 82.79±0.32 65.79±0.52 85.07±0.67 87.16±1.99 92.38±0.17 — 55.04±2.99 32.43±3.32 24.14±0.56
RawlsGCN [19] 82.11±0.18 67.74±0.26 86.89±0.16 84.76±1.49 91.50±0.20 11.62±0.13 44.42±1.19 29.93±0.65 27.29±0.20
GraphPatcher [17] 83.94±0.20 69.17±0.22 85.72±0.08 90.95±0.21 93.21±0.06 38.49±0.41 54.39±0.41 36.93±0.11 23.10±0.54

Imbalance Ratio: High
GCN (bb.) [21] 81.68±0.84 62.76±0.69 84.70±0.07 78.15±3.40 90.19±0.35 15.93±0.27 52.93±1.49 29.54±2.72 22.83±0.57
DEMO-Net [59] 82.14±0.32 64.16±0.76 84.70±0.09 87.19±0.50 90.51±0.10 42.00±1.23 54.11±1.30 36.37±1.66 27.16±0.28
meta-tail2vec [30] 25.23±4.75 17.49±1.12 52.61±2.40 67.44±2.57 72.79±8.67 7.82±0.12 36.66±0.63 25.20±0.30 20.03±0.03
Tail-GNN [31] 83.79±0.49 67.15±0.12 86.07±0.12 90.72±0.50 94.62±0.22 — 53.12±0.69 31.09±0.91 27.36±0.70
Cold Brew [72] 78.25±1.72 63.45±1.10 86.43±0.09 85.73±0.10 90.14±0.65 48.43±0.16 59.66±0.17 40.16±0.16 30.68±0.18
LTE4G [67] 84.15±1.36 64.63±0.65 85.12±0.38 89.78±0.59 94.24±0.28 — 56.25±3.03 30.15±4.10 24.03±0.53
RawlsGCN [19] 83.19±0.24 67.51±0.41 86.60±0.10 86.25±0.13 91.82±0.24 10.65±0.07 42.87±0.81 28.54±0.79 28.14±0.20
GraphPatcher [17] 83.91±0.11 68.89±0.09 85.78±0.18 91.23±0.05 93.57±0.13 40.59±0.39 56.78±0.25 37.11±0.18 23.98±0.22
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Table D.7: Macro-F1 score (% ± standard deviation) of node classification on manipulated local
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 77.96±1.22 63.07±1.72 82.88±0.12 58.70±2.09 82.92±2.33 21.64±0.37 50.63±1.22 29.19±1.40 19.05±2.75
DEMO-Net [59] 79.01±0.52 64.74±0.77 81.93±0.52 65.66±1.07 84.73±1.70 43.08±1.01 55.67±0.53 38.58±0.69 26.45±0.72
meta-tail2vec [30] 23.87±1.96 11.60±2.38 53.82±1.49 50.14±3.23 71.66±0.31 6.68±0.82 40.11±0.47 22.06±1.32 9.48±1.49
Tail-GNN [31] 77.91±0.37 66.32±0.45 84.05±0.30 75.59±0.45 89.56±0.35 — 51.09±0.80 29.90±0.46 26.95±0.65
Cold Brew [72] 73.42±0.83 61.70±0.77 85.41±0.04 65.71±0.27 81.89±0.28 48.39±0.13 58.50±0.23 38.90±0.47 26.89±1.99
LTE4G [67] 79.49±0.55 66.21±0.66 83.64±0.33 69.51±3.48 89.78±0.28 — 58.48±0.89 24.48±3.27 23.15±0.67
RawlsGCN [19] 77.88±0.28 68.20±0.29 85.43±0.12 67.01±2.37 85.49±0.34 14.56±0.05 43.80±1.19 29.24±0.50 26.80±0.10
GraphPatcher [17] 81.64±0.78 68.28±0.22 84.65±0.18 78.27±0.69 90.48±0.46 44.74±0.04 55.67±0.98 35.11±0.30 19.03±0.95

Imbalance Ratio: Mid
GCN (bb.) [21] 78.43±0.94 62.70±0.77 82.81±0.10 60.43±2.57 84.99±0.76 17.40±0.42 52.11±0.66 27.48±1.74 19.37±1.28
DEMO-Net [59] 78.11±0.54 65.23±1.02 83.44±0.20 67.75±0.73 84.14±1.52 44.63±0.59 55.17±0.98 38.93±0.60 26.48±0.39
meta-tail2vec [30] 30.58±1.61 19.16±3.28 54.86±0.66 49.59±1.24 76.33±0.82 6.62±0.98 38.29±0.62 24.30±0.24 8.70±0.42
Tail-GNN [31] 77.40±1.05 65.77±0.81 85.23±0.41 73.31±1.40 88.73±0.13 — 52.53±0.74 27.98±0.79 25.68±0.61
Cold Brew [72] 71.85±2.17 62.70±1.00 85.69±0.07 66.03±0.20 84.26±0.16 49.82±0.18 58.91±0.46 42.07±0.40 30.71±0.20
LTE4G [67] 80.29±0.45 65.76±0.47 83.66±0.88 68.65±3.35 87.57±0.13 — 55.32±2.93 32.20±3.71 22.78±0.50
RawlsGCN [19] 78.30±0.26 67.50±0.18 85.49±0.14 66.62±2.07 87.77±1.45 12.56±0.20 44.44±1.11 29.48±0.49 26.32±0.21
GraphPatcher [17] 80.92±0.42 68.95±0.25 84.65±0.18 74.74±0.73 88.89±0.11 40.76±0.32 54.72±0.35 37.06±0.11 22.28±0.58

Imbalance Ratio: High
GCN (bb.) [21] 77.03±1.19 61.89±0.66 82.72±0.32 58.78±4.61 85.73±0.84 14.52±0.27 52.56±1.25 27.43±2.85 20.48±2.59
DEMO-Net [59] 76.85±1.11 63.38±0.68 82.87±0.32 65.92±0.62 84.70±0.23 43.74±1.02 53.73±1.15 35.94±1.44 27.24±0.28
meta-tail2vec [30] 21.82±5.45 7.56±2.36 52.03±3.18 54.07±2.19 65.22±7.60 6.71±0.18 34.06±1.22 23.00±0.60 8.30±0.06
Tail-GNN [31] 79.66±0.57 66.29±0.33 84.31±0.35 75.04±1.16 89.67±0.39 — 52.67±0.68 28.08±1.18 25.85±0.75
Cold Brew [72] 73.71±2.07 62.71±0.76 85.72±0.02 65.83±0.13 83.37±0.18 50.43±0.24 59.18±0.23 39.43±0.41 30.32±0.28
LTE4G [67] 80.57±1.66 63.70±0.66 83.11±0.54 73.38±1.69 89.18±0.52 — 55.92±2.90 28.30±5.09 22.95±0.61
RawlsGCN [19] 80.19±0.20 66.41±0.56 85.11±0.08 69.00±0.95 85.79±1.10 11.24±0.09 41.86±0.35 27.86±0.60 27.41±0.16
GraphPatcher [17] 79.35±0.18 68.69±0.20 84.74±0.16 77.10±0.43 90.94±0.18 42.93±0.29 56.05±0.29 37.34±0.19 23.10±0.41

Table D.8: AUC-ROC score (% ± standard deviation) of node classification on manipulated local
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 96.34±0.51 87.80±1.39 94.89±0.06 95.61±0.21 97.82±0.80 87.84±0.06 78.76±0.27 62.68±0.27 53.43±1.42
DEMO-Net [59] 96.27±0.13 88.66±0.30 94.22±0.07 96.52±0.10 98.04±0.29 92.89±0.32 80.31±0.74 68.00±0.69 58.96±0.35
meta-tail2vec [30] 62.83±1.22 53.44±2.06 71.50±3.86 89.26±0.64 94.95±0.16 62.42±2.26 69.63±0.28 53.44±0.62 50.50±0.35
Tail-GNN [31] 96.55±0.06 89.11±0.56 94.28±0.69 97.92±0.11 98.70±0.13 — 76.76±0.44 63.91±1.16 59.72±0.56
Cold Brew [72] 93.87±0.50 87.38±0.98 95.67±0.03 97.88±0.05 98.71±0.02 95.13±0.10 78.37±0.48 66.72±0.10 65.12±1.03
LTE4G [67] 96.14±0.37 88.78±1.05 94.52±0.45 92.94±2.66 98.83±0.05 — 78.00±1.53 58.28±2.12 56.17±0.86
RawlsGCN [19] 96.84±0.07 91.06±0.45 96.34±0.03 97.47±0.09 98.99±0.02 79.78±0.12 71.94±0.09 58.89±0.13 59.34±0.16
GraphPatcher [17] 97.10±0.04 90.75±0.15 94.98±0.03 97.88±0.05 98.54±0.05 90.90±0.03 79.09±0.10 66.65±0.30 53.80±0.56

Imbalance Ratio: Mid
GCN (bb.) [21] 95.88±0.29 87.55±0.33 95.07±0.06 95.70±0.77 98.05±0.11 86.55±0.29 78.60±0.38 62.45±0.74 51.23±0.46
DEMO-Net [59] 95.59±0.08 88.31±0.26 94.78±0.05 97.14±0.18 97.75±0.13 93.29±0.35 80.31±0.91 67.96±0.32 59.54±0.45
meta-tail2vec [30] 65.88±0.99 59.39±0.47 73.30±1.00 90.45±0.24 94.66±0.64 64.91±1.30 68.34±0.42 53.85±0.04 49.40±0.20
Tail-GNN [31] 96.19±0.22 89.73±0.39 95.17±0.55 97.98±0.19 98.39±0.27 — 76.40±0.64 62.60±1.37 58.11±0.61
Cold Brew [72] 93.14±0.87 88.06±1.14 96.06±0.05 98.03±0.02 98.40±0.33 95.66±0.06 77.61±0.13 68.96±0.16 65.47±0.17
LTE4G [67] 95.16±0.59 89.69±0.44 94.41±0.96 93.05±2.75 97.74±0.33 — 77.80±1.83 61.90±1.44 55.08±0.68
RawlsGCN [19] 96.65±0.07 91.53±0.43 96.29±0.04 97.53±0.07 98.97±0.02 79.84±0.22 71.42±0.15 59.10±0.08 59.19±0.14
GraphPatcher [17] 96.66±0.08 91.74±0.09 94.63±0.02 98.05±0.07 98.14±0.02 92.04±0.11 78.36±0.26 66.40±0.12 54.64±0.62

Imbalance Ratio: High
GCN (bb.) [21] 96.12±0.31 87.93±0.88 94.96±0.08 95.42±0.99 87.28±2.77 85.44±0.40 78.63±0.38 63.00±1.36 53.72±0.70
DEMO-Net [59] 95.40±0.19 87.64±0.09 94.31±0.08 97.10±0.25 98.34±0.15 93.45±0.78 79.19±0.89 66.28±1.10 58.89±0.28
meta-tail2vec [30] 61.19±1.02 49.89±1.49 69.63±3.44 92.90±0.31 91.77±2.16 62.67±1.41 68.62±0.77 55.24±0.23 50.04±0.34
Tail-GNN [31] 96.80±0.05 89.96±0.42 95.10±0.15 97.93±0.10 98.60±0.13 — 76.81±0.31 64.39±0.42 59.60±1.06
Cold Brew [72] 94.04±0.64 88.26±0.37 95.90±0.03 97.82±0.05 98.87±0.10 95.86±0.06 78.97±0.34 67.72±0.11 65.52±0.16
LTE4G [67] 96.17±0.35 86.40±2.05 94.46±0.31 95.97±1.48 98.72±0.06 — 77.34±1.75 60.35±2.63 54.98±0.84
RawlsGCN [19] 96.87±0.03 90.42±0.13 96.16±0.03 97.51±0.04 99.21±0.02 79.47±0.15 71.04±0.11 58.32±0.12 59.38±0.13
GraphPatcher [17] 96.15±0.05 91.55±0.48 94.90±0.02 97.59±0.05 98.75±0.02 92.53±0.05 78.67±0.15 65.82±0.40 56.03±0.19
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D.1.3 EFFECTIVENESS OF NODE-LEVEL GLOBAL TOPOLOGY-IMBALANCED ALGORITHMS

Table D.9: Accuracy score (% ± standard deviation) of node classification on manipulated global
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 81.09±0.76 70.39±1.11 84.44±0.20 76.23±2.16 88.16±1.86 53.09±0.17 37.80±0.59 25.15±0.57 24.34±0.78
ReNode [7] 81.94±0.48 71.93±0.88 83.86±0.13 79.42±1.70 89.91±0.51 52.75±0.14 37.67±0.49 25.36±0.49 24.65±0.28
TAM [49] 81.48±0.30 74.06±0.12 84.26±0.08 84.17±0.18 91.93±0.22 54.16±0.05 38.78±0.17 25.64±0.12 24.77±0.33
PASTEL [52] 82.49±0.34 74.38±0.31 — 85.08±0.84 91.22±0.40 — 54.05±1.13 34.01±0.57 29.50±0.39
TOPOAUC [8] 81.38±0.80 72.31±0.75 — 77.23±1.31 89.04±0.96 — 37.68±0.81 23.52±0.78 25.88±0.97
HyperIMBA [12] 80.67±0.64 73.46±0.70 85.19±0.26 85.22±0.64 92.75±0.13 — 43.48±1.30 32.69±0.66 27.09±3.15

Imbalance Ratio: High
GCN (bb.) [21] 79.10±1.28 68.37±1.73 83.44±0.16 75.02±2.20 86.32±1.90 51.04±0.18 33.90±0.70 23.27±0.82 22.40±0.68
ReNode [7] 79.91±1.52 69.89±0.73 82.97±0.12 77.95±1.71 87.80±0.52 50.68±0.15 32.92±0.98 23.80±0.59 22.39±0.62
TAM [49] 80.50±0.18 73.14±0.13 84.07±0.12 82.35±0.19 89.80±0.23 52.09±0.06 35.64±0.27 24.58±0.09 22.55±0.06
PASTEL [52] 80.91±0.36 72.73±0.26 — 83.24±0.85 89.10±0.41 — 47.12±2.82 33.15±0.66 27.56±1.04
TOPOAUC [8] 79.27±0.52 70.08±0.83 — 75.35±1.32 87.10±0.98 — 33.39±2.09 22.86±0.36 22.56±0.18
HyperIMBA [12] 79.81±0.78 71.78±0.40 84.75±0.30 83.43±0.65 90.65±0.14 — 38.30±2.70 29.97±1.79 25.30±2.56

Table D.10: Balanced Accuracy score (% ± standard deviation) of node classification on manipulated
global topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—”
denotes out of memory or time limit. Best results shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 82.78±0.52 67.45±0.81 85.17±0.15 85.09±1.63 89.28±1.00 36.76±0.20 38.28±0.50 25.14±0.57 23.78±0.63
ReNode [7] 82.89±0.82 68.52±1.14 84.52±0.11 86.93±0.83 90.03±0.51 36.79±0.18 38.02±0.50 25.36±0.49 24.04±0.39
TAM [49] 82.49±0.11 70.97±0.13 84.71±0.06 89.91±0.08 91.81±0.13 39.96±0.05 39.16±0.14 25.63±0.12 24.25±0.19
PASTEL [52] 83.46±0.32 71.17±0.28 — 90.41±0.38 93.56±0.11 — 54.27±1.18 34.02±0.57 26.89±0.43
TOPOAUC [8] 83.15±0.26 68.07±0.21 — 76.90±4.12 87.93±3.60 — 38.16±0.65 23.51±0.78 23.96±0.33
HyperIMBA [12] 82.32±0.41 70.75±0.56 86.45±0.11 91.54±0.30 92.36±0.16 — 43.39±1.43 32.68±0.66 28.45±3.43

Imbalance Ratio: High
GCN (bb.) [21] 81.99±0.51 64.66±0.91 84.22±0.13 83.42±1.65 87.36±1.02 34.78±0.21 34.75±0.67 23.27±0.82 22.52±0.42
ReNode [7] 82.28±0.71 66.04±0.52 83.85±0.09 85.43±0.84 88.10±0.52 34.75±0.19 33.87±0.77 23.80±0.59 22.68±0.37
TAM [49] 82.87±0.13 69.81±0.118 84.59±0.08 87.88±0.09 89.70±0.14 37.92±0.06 36.18±0.35 24.58±0.09 23.15±0.12
PASTEL [52] 83.36±0.20 69.71±0.23 — 88.92±0.39 91.40±0.12 — 47.41±2.27 33.15±0.66 25.55±0.57
TOPOAUC [8] 82.28±0.35 65.82±1.20 — 74.75±4.13 86.00±3.65 — 34.45±1.56 22.85±0.36 23.27±0.26
HyperIMBA [12] 82.54±0.76 68.97±0.38 85.64±0.12 89.74±0.31 90.25±0.17 — 38.00±3.16 29.96±1.79 26.77±2.45

Table D.11: Macro-F1 score (% ± standard deviation) of node classification on manipulated global
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 79.45±0.73 66.81±1.04 83.54±0.19 64.78±2.90 84.82±1.48 33.94±0.21 36.69±0.65 24.85±0.65 23.13±0.55
ReNode [7] 80.26±0.38 68.21±0.81 82.98±0.12 68.61±1.47 86.14±0.66 33.88±0.17 36.60±0.50 24.75±0.61 23.33±0.28
TAM [49] 79.01±0.24 70.30±0.13 83.22±0.08 75.36±0.22 88.34±0.22 36.75±0.05 36.45±0.19 23.59±0.27 23.44±0.20
PASTEL [52] 80.79±0.33 70.62±0.32 — 73.94±1.06 88.17±0.41 — 53.30±1.30 33.54±0.69 26.34±0.23
TOPOAUC [8] 79.75±0.63 68.01±1.03 — 60.13±3.52 84.39±4.10 — 36.76±1.01 21.50±1.71 22.76±0.70
HyperIMBA [12] 78.85±0.66 69.96±0.53 84.16±0.26 73.55±0.72 89.45±0.21 — 42.83±1.43 30.26±1.87 26.41±3.17

Imbalance Ratio: High
GCN (bb.) [21] 78.12±1.02 64.20±1.32 82.55±0.15 63.54±2.95 82.92±1.50 31.85±0.22 32.39±1.15 22.36±1.62 21.66±0.48
ReNode [7] 78.80±1.23 65.50±0.69 82.08±0.11 66.12±1.48 84.20±0.67 31.90±0.18 30.82±1.71 22.77±1.09 21.69±0.51
TAM [49] 79.34±0.23 69.13±0.11 83.17±0.11 73.25±0.23 86.25±0.23 34.68±0.06 33.95±0.38 22.52±0.17 22.10±0.06
PASTEL [52] 79.37±0.33 68.99±0.25 — 72.45±1.07 86.25±0.42 — 46.59±3.16 31.95±1.06 25.11±0.67
TOPOAUC [8] 78.24±0.42 65.48±1.05 — 58.54±3.54 82.50±4.15 — 29.95±3.52 21.06±1.40 22.15±0.18
HyperIMBA [12] 78.44±0.99 68.24±0.30 83.83±0.33 71.87±0.73 87.40±0.22 — 37.25±2.98 28.82±2.72 24.45±2.46
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Table D.12: AUC-ROC score (% ± standard deviation) of node classification on manipulated global
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm Cora
0.81

CiteSeer
0.74

PubMed
0.80

Computers
0.78

Photo
0.82

ogbn-arXiv
0.65

Chameleon
0.23

Squirrel
0.22

Actor
0.22

Imbalance Ratio: Low
GCN (bb.) [21] 94.82±0.72 88.43±1.03 94.16±0.15 94.98±1.18 93.61±1.67 88.49±0.14 66.27±0.87 54.98±0.49 54.74±0.22
ReNode [7] 95.16±0.67 88.41±0.99 94.06±0.40 94.91±1.26 93.97±1.60 88.42±0.16 66.08±0.30 55.21±0.47 54.83±0.20
TAM [49] 96.75±0.04 91.87±0.07 94.86±0.01 98.17±0.01 99.01±0.01 92.30±0.02 65.00±0.37 55.10±0.10 55.44±0.24
PASTEL [52] 97.05±0.07 92.90±0.13 — 98.45±0.03 99.28±0.03 — 80.43±0.46 63.47±0.47 59.43±0.30
TOPOAUC [8] 97.07±0.20 90.67±0.67 — 92.28±2.62 98.54±0.14 — 65.74±0.47 52.72±0.34 55.21±0.60
HyperIMBA [12] 96.19±0.19 91.50±0.51 95.31±0.11 98.39±0.06 98.71±0.09 — 68.48±2.94 60.29±1.42 59.92±3.31

Imbalance Ratio: High
GCN (bb.) [21] 94.97±0.67 87.95±1.04 93.02±0.17 93.05±1.22 91.45±1.70 86.43±0.15 62.31±1.16 53.67±0.33 53.17±0.29
ReNode [7] 95.00±0.78 87.86±1.00 93.23±0.21 93.75±1.27 92.15±1.62 86.42±0.17 61.68±1.15 54.15±0.49 53.02±0.18
TAM [49] 96.78±0.13 92.04±0.12 94.88±0.02 96.23±0.02 97.20±0.02 90.25±0.03 62.91±0.62 54.27±0.06 53.49±0.06
PASTEL [52] 97.31±0.04 92.65±0.10 — 96.75±0.04 97.10±0.04 — 76.49±0.97 63.78±0.40 57.70±0.37
TOPOAUC [8] 96.54±0.22 89.88±0.25 — 90.89±2.63 96.40±0.15 — 60.37±1.82 52.77±0.21 53.96±0.21
HyperIMBA [12] 96.57±0.30 92.23±0.32 94.95±0.13 96.85±0.07 96.55±0.10 — 64.57±1.44 58.83±2.05 57.20±2.58
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D.1.4 EFFECTIVENESS OF GRAPH-LEVEL CLASS-IMBALANCED ALGORITHMS

Table D.13: Accuracy score (% ± standard deviation) of graph classification on manipulated class-
imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of memory
or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
ρ = 1 (Balanced)

GIN (bb.) [63] 50.43±2.69 64.27±2.47 65.34±2.72 64.04±3.79 66.05±2.57 76.66±4.80 — 65.31±3.25

G2GNN [58] 53.70±3.87 63.63±1.16 65.50±2.69 66.07±2.27 61.91±3.77 72.34±2.76 — 53.82±2.26
TopoImb [71] 50.91±2.18 61.45±3.74 55.04±5.13 66.57±3.81 66.28±1.85 73.99±1.18 — 65.92±1.36
DataDec [68] 54.05±4.85 66.90±3.36 65.24±4.06 64.46±1.88 64.09±5.75 79.29±8.18 — 72.24±0.19
ImGKB [54] 53.48±3.50 52.54±6.05 69.85±1.95 65.45±2.88 50.16±0.34 50.24±0.29 — 39.34±10.88

ρ = 20 (Low)
GIN (bb.) [63] 47.83±2.95 63.38±1.93 55.38±3.57 51.05±5.07 62.31±3.99 61.10±4.86 60.75±3.79 65.01±1.33

G2GNN [58] 51.88±6.23 61.13±1.05 63.61±5.03 56.29±7.30 63.87±4.64 69.58±3.59 65.00±3.81 62.05±3.06
TopoImb [71] 44.86±3.52 49.49±7.14 52.12±10.51 49.97±7.24 59.95±5.19 59.67±7.30 — 65.88±0.75
DataDec [68] 55.72±2.88 67.99±0.75 66.58±1.35 63.51±1.62 67.92±3.37 78.39±5.01 — 71.48±1.03
ImGKB [54] 50.11±5.95 40.83±0.02 66.60±2.64 65.85±3.70 47.74±0.29 48.57±2.14 67.50±2.70 51.21±0.10

ρ = 100 (High)
GIN (bb.) [63] 39.42±1.87 56.02±1.43 42.50±2.05 41.54±6.57 53.57±3.21 55.56±7.85 — 62.00±3.08

G2GNN [58] 46.52±9.94 55.41±3.91 52.97±13.44 55.38±15.60 59.44±6.49 63.22±4.67 — 62.61±1.14
TopoImb [71] 39.42±1.24 46.45±6.77 39.23±4.28 39.12±1.62 47.75±3.73 51.58±4.69 — 64.19±1.77
DataDec [68] 58.69±3.10 67.82±1.88 61.99±7.15 65.77±2.71 66.30±6.70 77.72±5.12 — 71.50±1.15
ImGKB [54] 44.24±5.65 38.34±0.01 61.46±10.25 59.99±7.57 47.08±3.72 51.25±5.10 — 50.20±0.06

Table D.14: Balanced Accuracy score (% ± standard deviation) of graph classification on manipu-
lated class-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes
out of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
ρ = 1 (Balanced)

GIN (bb.) [63] 51.40±1.64 64.33±2.20 64.90±1.51 63.37±3.26 66.05±2.57 76.66±4.80 — 72.99±1.83

G2GNN [58] 53.42±3.72 63.55±1.22 64.39±2.21 63.79±2.13 61.91±3.77 72.34±2.76 — 64.17±0.51
TopoImb [71] 53.99±2.19 60.81±2.83 59.71±2.03 67.19±2.46 66.28±1.85 73.99±1.18 — 51.93±2.88
DataDec [68] 53.70±4.25 65.06±5.28 62.39±2.38 62.96±1.21 64.22±5.73 79.80±7.38 — 62.31±1.96
ImGKB [54] 53.34±3.61 49.98±0.06 68.09±2.49 62.33±4.38 49.99±0.47 50.24±0.29 — 33.38±0.10

ρ = 20 (Low)
GIN (bb.) [63] 51.36±2.25 61.90±2.13 60.39±2.22 57.33±3.16 63.54±3.46 62.89±4.61 60.75±3.79 47.03±1.45

G2GNN [58] 52.75±2.14 63.31±1.14 66.18±3.06 61.09±4.11 64.28±5.02 70.26±3.41 65.00±3.81 60.76±2.04
TopoImb [71] 50.44±3.75 56.57±5.30 59.88±6.33 58.33±4.40 61.14±4.56 61.34±6.80 — 48.95±1.64
DataDec [68] 53.42±2.33 66.10±1.22 61.54±2.33 61.27±1.04 67.95±2.77 78.68±4.93 — 68.71±1.11
ImGKB [54] 51.61±3.12 50.01±0.02 64.72±5.37 63.39±1.76 50.23±0.28 50.07±0.15 67.50±2.70 33.33±0.00

ρ = 100 (High)
GIN (bb.) [63] 47.89±2.12 54.66±1.53 53.30±1.63 52.47±4.58 57.46±2.77 59.54±7.11 — 44.67±2.98

G2GNN [58] 50.76±1.78 60.38±1.91 51.32±6.16 53.17±2.90 61.85±5.36 65.97±4.07 — 54.91±2.09
TopoImb [71] 49.99±0.93 55.82±4.93 53.96±2.78 52.05±1.31 52.82±3.06 55.87±4.09 — 47.98±1.65
DataDec [68] 55.22±3.81 65.24±2.16 60.22±3.13 61.60±2.60 66.30±4.93 77.77±5.49 — 68.99±2.04
ImGKB [54] 51.38±3.53 50.00±0.01 64.48±5.90 59.14±4.10 50.07±0.35 50.28±0.23 — 33.33±0.00
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Table D.15: Macro-F1 score (% ± standard deviation) of graph classification on manipulated class-
imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of memory
or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
ρ = 1 (Balanced)

GIN (bb.) [63] 48.85±3.33 63.86±2.39 63.98±2.09 59.87±7.24 65.24±3.21 76.20±5.00 — 60.83±3.61

G2GNN [58] 52.88±3.70 63.28±1.13 63.89±2.39 63.31±2.42 60.99±3.50 71.74±3.14 — 46.71±2.55
TopoImb [71] 48.33±3.70 58.58±5.21 53.13±5.72 65.72±3.45 65.85±2.29 73.41±0.01 — 51.32±4.63
DataDec [68] 52.98±4.65 63.64±9.26 62.20±3.28 62.83±1.20 62.42±8.07 79.02±8.63 — 63.82±1.02
ImGKB [54] 50.36±5.89 34.59±2.65 67.98±2.43 61.06±7.96 35.27±4.74 33.97±0.42 — 18.66±3.43

ρ = 20 (Low)
GIN (bb.) [63] 46.63±2.95 61.27±2.51 55.20±3.70 49.89±6.19 59.66±5.94 56.10±6.75 53.49±6.55 37.64±1.08

G2GNN [58] 47.64±7.63 61.11±1.06 62.89±4.70 55.34±8.20 61.37±8.64 69.03±3.78 62.39±6.37 55.48±2.78
TopoImb [71] 40.26±2.06 43.64±11.61 49.66±12.86 47.37±9.53 56.78±8.24 54.07±11.22 — 47.31±0.03
DataDec [68] 52.31±3.50 66.22±1.25 61.66±2.33 61.12±1.22 67.42±3.69 77.96±5.66 — 68.49±0.60
ImGKB [54] 44.62±8.86 29.05±0.08 62.49±8.12 62.91±2.34 32.70±0.62 65.87±3.81 65.87±3.81 22.58±0.03

ρ = 100 (High)
GIN (bb.) [63] 35.14±4.01 46.81±3.33 41.20±2.65 38.83±8.36 47.51±5.47 48.74±11.66 — 36.37±0.93

G2GNN [58] 37.35±7.10 54.73±4.33 44.16±10.15 42.22±11.10 56.79±9.27 61.15±6.30 — 50.73±4.21
TopoImb [71] 32.16±3.27 40.55±10.82 34.48±6.61 34.24±2.40 36.64±6.35 41.81±9.90 — 45.32±0.02
DataDec [68] 54.76±4.61 64.94±2.97 58.47±4.92 61.67±2.67 64.82±8.14 77.39±5.38 — 68.87±1.57
ImGKB [54] 41.35±7.92 27.73±0.04 59.75±11.28 57.16±5.54 32.23±1.61 34.31±2.68 — 22.28±0.02

Table D.16: AUC-ROC score (% ± standard deviation) of graph classification on manipulated
class-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of
memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
ρ = 1 (Balanced)

GIN (bb.) [63] 52.26±2.95 69.20±2.35 67.91±2.87 66.54±5.28 73.99±2.41 87.61±4.35 — 86.80±1.38

G2GNN [58] 54.55±5.56 68.03±1.39 67.09±3.07 70.05±2.41 64.87±4.48 80.22±4.01 — 79.90±0.80
TopoImb [71] 56.93±4.29 69.09±1.17 69.33±4.09 72.86±1.46 74.83±1.01 81.49±3.03 — 85.12±0.39
DataDec [68] 54.57±6.02 72.65±3.55 68.80±4.16 68.18±1.32 72.25±5.65 81.26±13.78 — 87.29±0.32
ImGKB [54] 54.09±5.28 54.78±2.66 73.47±2.00 66.54±2.08 50.60±1.23 74.36±5.01 — 50.29±0.86

ρ = 20 (Low)
GIN (bb.) [63] 51.28±4.16 68.74±2.22 59.21±3.70 54.13±6.72 74.38±2.48 84.08±4.85 76.76±2.18 86.05±1.11

G2GNN [58] 51.90±3.85 68.70±1.13 69.59±3.54 64.49±5.43 69.02±3.60 77.97±4.62 72.07±2.27 78.15±2.04
TopoImb [71] 50.82±3.94 67.96±2.26 66.77±5.44 67.76±4.85 72.61±2.10 83.30±3.79 — 86.31±1.42
DataDec [68] 53.49±1.94 73.98±0.59 69.32±1.81 67.05±1.47 75.40±3.23 81.00±8.17 — 85.68±2.32
ImGKB [54] 52.89±4.84 53.59±1.12 72.57±1.37 68.08±2.00 51.06±1.08 76.25±3.29 75.76±2.13 50.42±0.97

ρ = 100 (High)
GIN (bb.) [63] 47.04±3.22 64.26±4.79 59.00±2.60 47.06±5.01 65.96±9.53 80.58±3.45 — 81.04±3.44

G2GNN [58] 49.32±4.07 66.60±1.48 52.10±7.10 60.76±4.90 65.79±7.00 72.55±5.64 — 75.67±1.51
TopoImb [71] 48.09±3.94 69.48±1.14 65.62±3.19 61.49±5.30 69.12±7.15 80.08±5.47 — 82.28±2.86
DataDec [68] 57.66±5.55 73.51±1.01 64.35±6.86 69.11±3.67 74.89±4.11 82.59±6.05 — 87.03±1.21
ImGKB [54] 52.80±5.19 54.03±2.17 71.98±2.36 63.79±4.04 51.04±1.57 71.65±6.48 — 50.05±0.63
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Table D.17: Accuracy score (% ± standard deviation) of graph classification on manipulated class-
imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of memory
or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
ρ = 1 (Balanced)

GCN (bb.) [21] 48.62±7.12 52.67±6.11 65.44±2.73 63.97±4.09 59.76±1.78 66.65±1.06 61.23±3.38

G2GNN [58] 44.35±4.32 52.10±4.27 68.82±2.83 61.47±7.70 58.35±3.47 67.02±2.55 49.49±3.18
TopoImb [71] 50.61±6.39 48.03±5.90 57.41±5.95 56.13±4.61 49.52±1.01 58.62±6.52 58.63±1.93
DataDec [68] 54.23±4.16 63.46±4.36 67.25±5.25 63.10±2.62 58.20±4.05 69.08±4.49 69.03±1.89
ImGKB [54] 52.83±5.45 53.97±5.28 64.57±9.42 64.93±4.44 50.15±0.39 50.29±0.19 40.44±11.33

ρ = 20 (Low)
GCN (bb.) [21] 43.84±7.03 48.59±9.57 54.01±2.86 58.32±1.51 49.06±2.17 61.85±3.89 53.81±1.88

G2GNN [58] 47.86±9.03 57.28±1.85 69.42±1.80 65.65±5.41 53.11±3.97 66.02±2.08 54.57±3.30
TopoImb [71] 45.90±6.41 40.71±0.33 38.27±5.28 44.63±4.82 49.75±4.81 54.35±3.13 57.72±1.71
DataDec [68] 55.86±2.49 63.28±3.54 64.23±7.74 64.66±2.04 57.06±5.97 66.45±5.38 71.26±0.91
ImGKB [54] 49.49±5.12 40.82±0.02 68.44±2.58 67.44±3.50 47.65±0.23 48.58±2.15 51.21±0.10

ρ = 100 (High)
GCN (bb.) [21] 40.58±7.61 43.03±9.39 37.34±3.35 42.48±2.61 45.09±0.18 54.39±5.16 50.47±0.38

G2GNN [58] 41.78±7.61 49.50±11.24 61.27±6.39 44.59±4.72 56.40±1.71 65.08±3.08 58.02±3.29
TopoImb [71] 40.17±2.21 38.50±0.35 33.21±0.05 36.50±1.44 46.18±3.06 52.21±3.56 61.40±2.44
DataDec [68] 55.41±3.37 63.82±6.75 66.08±7.51 65.07±2.40 58.58±5.07 65.56±8.61 70.48±0.49
ImGKB [54] 45.98±8.71 38.34±0.02 65.09±2.81 58.21±10.60 46.06±2.74 51.23±5.09 50.20±0.06

Table D.18: Balanced Accuracy score (% ± standard deviation) of graph classification on manipu-
lated class-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes
out of memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
ρ = 1 (Balanced)

GCN (bb.) [21] 50.07±0.23 50.00±0.02 64.60±2.26 62.63±2.06 59.76±1.78 66.65±1.06 69.44±2.08

G2GNN [58] 50.02±0.06 51.82±1.81 67.39±1.76 60.38±5.83 58.35±3.47 67.02±2.55 61.96±0.90
TopoImb [71] 53.71±2.88 51.13±1.64 61.24±5.25 60.56±2.30 49.71±0.34 58.68±6.48 44.78±3.02
DataDec [68] 54.36±3.61 62.09±3.25 63.92±4.14 61.41±2.42 58.11±3.96 69.08±4.38 62.12±4.15
ImGKB [54] 53.03±3.56 49.98±0.06 65.28±5.36 62.84±2.56 50.15±0.39 50.29±0.19 33.35±0.01

ρ = 20 (Low)
GCN (bb.) [21] 49.69±0.68 50.73±2.05 59.49±1.56 60.53±1.43 51.35±1.88 63.51±3.57 37.97±2.15

G2GNN [58] 49.73±0.87 53.76±2.16 68.31±1.72 65.61±2.52 53.84±3.33 66.54±2.09 61.19±1.44
TopoImb [71] 51.60±3.14 49.98±0.02 51.14±2.23 54.87±2.95 48.94±4.07 56.51±2.84 46.73±0.87
DataDec [68] 54.50±1.74 59.94±3.73 61.80±4.57 62.01±1.75 56.87±5.73 67.02±5.12 67.53±2.03
ImGKB [54] 51.70±2.33 49.99±0.02 67.46±1.22 63.70±3.66 50.14±0.22 50.08±0.16 33.34±0.01

ρ = 100 (High)
GCN (bb.) [21] 50.36±1.14 50.30±0.61 51.78±1.94 53.22±2.13 50.08±0.16 58.47±4.64 33.99±0.32

G2GNN [58] 49.94±1.47 50.31±0.97 65.24±4.47 54.99±3.11 58.87±1.18 65.09±3.02 53.69±3.41
TopoImb [71] 50.78±0.68 49.99±0.02 50.01±0.03 49.47±1.20 51.02±2.25 56.40±2.67 46.42±3.04
DataDec [68] 53.28±2.65 58.87±3.26 63.07±5.35 60.83±2.61 58.11±4.26 66.61±6.89 67.66±1.56
ImGKB [54] 50.19±3.07 49.99±0.02 64.52±4.98 60.22±4.56 50.06±0.31 50.26±0.22 33.33±0.01
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Table D.19: Macro-F1 score (% ± standard deviation) of graph classification on manipulated class-
imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of memory
or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
ρ = 1 (Balanced)

GCN (bb.) [21] 32.82±3.29 34.45±2.70 64.08±2.43 62.02±2.84 59.32±2.48 67.58±1.06 56.55±4.31

G2GNN [58] 31.29±2.68 45.92±8.09 67.11±2.26 56.99±10.85 56.41±7.64 65.63±3.26 41.15±4.18
TopoImb [71] 45.01±8.36 37.18±7.96 56.62±6.11 55.05±4.87 33.04±0.43 50.17±12.11 40.73±3.28
DataDec [68] 53.24±3.23 61.26±4.55 64.05±4.48 61.35±2.55 54.26±7.60 67.37±6.20 62.14±3.48
ImGKB [54] 48.53±8.31 35.15±2.37 62.33±11.90 62.34±3.64 33.84±0.60 33.97±0.41 18.99±3.59

ρ = 20 (Low)
GCN (bb.) [21] 31.49±5.35 34.14±7.63 53.81±2.94 58.06±1.46 36.70±6.23 57.56±6.17 42.17±5.55

G2GNN [58] 33.06±4.46 51.94±5.20 67.58±1.71 64.18±4.21 45.81±10.04 65.51±2.39 47.61±4.89
TopoImb [71] 39.66±9.73 28.90±0.15 30.36±7.82 40.50±7.73 37.79±5.88 45.50±5.89 41.59±1.32
DataDec [68] 54.16±1.97 57.35±6.49 60.87±6.00 61.94±1.91 50.18±11.79 64.62±6.82 67.94±1.44
ImGKB [54] 45.80±7.16 29.04±0.10 66.63±1.90 63.41±4.10 32.52±0.48 32.82±1.24 22.58±0.03

ρ = 100 (High)
GCN (bb.) [21] 29.74±6.39 31.00±6.60 32.66±5.33 40.59±3.18 31.21±0.36 47.46±8.81 35.27±2.66

G2GNN [58] 32.13±7.08 34.53±7.98 60.58±5.98 42.79±6.25 54.41±2.63 64.77±3.25 45.03±5.63
TopoImb [71] 32.03±3.31 27.74±0.17 24.89±0.07 31.98±1.84 33.79±6.25 44.46±6.18 42.64±3.76
DataDec [68] 52.48±3.00 56.32±7.38 62.23±5.92 60.89±2.60 53.87±8.76 62.46±11.54 67.68±0.43
ImGKB [54] 39.08±8.03 27.76±0.09 61.19±7.33 55.46±11.43 31.73±0.22 34.27±2.64 22.28±0.02

Table D.20: AUC-ROC score (% ± standard deviation) of graph classification on manipulated
class-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out of
memory or time limit. The best results are shown in bold and the runner-ups are underlined.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
ρ = 1 (Balanced)

GCN (bb.) [21] 49.33±7.50 47.99±6.53 67.82±1.87 67.24±2.12 63.97±2.24 75.18±0.08 82.29±1.74

G2GNN [58] 45.43±5.01 53.96±1.98 70.27±2.46 68.38±3.80 61.49±6.19 74.01±3.96 76.39±1.05
TopoImb [71] 56.98±4.51 57.57±1.02 69.62±6.65 70.29±1.96 48.80±10.38 77.48±1.84 74.54±1.33
DataDec [68] 55.99±4.78 69.51±3.35 69.52±7.69 66.85±3.20 62.53±3.42 66.49±9.00 77.38±4.14
ImGKB [54] 53.61±5.87 54.93±1.84 72.75±1.17 67.82±1.50 51.83±1.56 72.98±5.95 49.92±0.89

ρ = 20 (Low)
GCN (bb.) [21] 45.84±4.13 61.32±4.03 67.36±1.94 65.26±2.20 62.50±1.26 75.19±1.08 81.28±1.49

G2GNN [58] 48.93±5.12 54.45±3.61 71.85±1.86 71.03±1.85 57.06±4.74 73.96±2.66 76.39±1.05
TopoImb [71] 55.07±4.49 57.41±1.16 72.43±5.51 72.19±3.37 50.00±10.14 77.58±0.54 77.08±0.50
DataDec [68] 56.27±2.77 68.73±2.50 67.18±7.60 68.13±2.14 64.08±3.48 65.24±11.34 87.01±0.67
ImGKB [54] 52.91±3.96 54.52±2.20 71.14±3.19 68.34±2.86 51.08±0.71 76.70±3.52 50.16±0.94

ρ = 100 (High)
GCN (bb.) [21] 44.65±4.74 46.38±5.76 65.59±1.10 64.67±1.98 56.60±8.91 76.80±2.42 77.77±2.43

G2GNN [58] 46.82±4.30 49.91±1.64 68.51±3.63 67.30±2.70 62.46±2.16 72.42±3.79 70.81±3.61
TopoImb [71] 53.31±5.12 56.71±0.63 70.74±4.14 57.78±6.66 52.42±10.28 77.07±0.24 75.96±0.51
DataDec [68] 55.65±3.63 68.13±2.76 69.26±8.47 67.68±2.86 63.17±4.96 64.92±15.31 87.21±0.35
ImGKB [54] 51.01±4.09 53.74±0.93 70.71±1.27 65.42±3.01 51.05±1.00 71.01±5.58 50.01±0.58
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D.1.5 EFFECTIVENESS OF GRAPH-LEVEL TOPOLOGY-IMBALANCED ALGORITHMS

Table D.21: Accuracy score (% ± standard deviation) of graph classification on manipulated
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
Imbalance Ratio: Low

GIN (bb.) [63] 52.17±4.36 54.96±1.00 63.58±1.76 65.01±0.69 66.38±4.27 67.41±2.32 59.35±2.58 64.34±3.55
SOLT-GNN [32] 47.54±4.33 59.98±1.11 65.56±4.83 63.78±1.06 64.20±5.46 49.57±6.78 — 61.79±2.09
TopoImb [71] 49.71±1.98 53.13±0.45 61.19±4.61 65.16±1.76 66.00±2.41 69.47±3.70 — 62.71±2.42

Imbalance Ratio: Mid
GIN (bb.) [63] 51.38±6.78 54.82±2.26 62.14±2.43 61.46±2.43 65.08±5.78 68.32±1.77 57.67±3.12 65.84±3.12
SOLT-GNN [32] 53.04±3.91 68.71±1.60 71.95±2.36 63.33±1.86 69.38±1.23 73.51±1.14 — 69.69±2.45
TopoImb [71] 51.59±4.30 54.52±0.87 64.03±4.43 65.99±1.25 68.10±0.87 71.54±0.75 — 68.68±1.34

Imbalance Ratio: High
GIN (bb.) [63] 48.41±7.07 53.99±7.96 58.00±4.19 60.68±6.89 62.60±3.82 67.41±2.23 56.69±2.87 67.05±2.46
SOLT-GNN [32] 51.74±5.25 67.88±2.37 72.04±2.18 64.97±3.24 65.03±4.12 60.24±2.11 — 67.12±3.28
TopoImb [71] 51.96±1.16 56.32±0.61 54.89±13.58 64.16±2.96 66.75±0.91 69.14±4.83 — 67.52±0.77

Table D.22: Balanced Accuracy score (% ± standard deviation) of graph classification on ma-
nipulated topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—”
denotes out of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
Imbalance Ratio: Low

GIN (bb.) [63] 51.08±2.07 55.22±1.39 59.76±1.78 63.46±0.92 66.38±4.27 67.41±2.32 58.63±2.23 64.73±5.42
SOLT-GNN [32] 45.47±2.10 63.58±0.82 66.60±3.25 62.58±0.61 64.20±5.46 49.57±6.78 — 70.23±1.56
TopoImb [71] 50.07±2.77 54.44±0.41 63.87±1.68 67.24±1.53 66.00±2.41 69.47±3.70 — 71.56±1.68

Imbalance Ratio: Mid
GIN (bb.) [63] 49.83±1.30 54.43±2.04 56.84±2.54 62.22±0.98 65.08±5.78 68.32±1.77 56.85±3.10 74.40±1.72
SOLT-GNN [32] 50.06±0.75 69.36±0.87 70.88±1.67 59.61±3.40 69.38±1.23 73.51±1.14 — 75.86±1.12
TopoImb [71] 50.88±2.36 54.60±1.03 59.45±4.27 65.25±2.43 68.10±0.87 71.54±0.75 — 76.54±0.54

Imbalance Ratio: High
GIN (bb.) [63] 50.20±0.69 53.65±3.89 55.82±1.76 61.43±2.36 62.60±3.82 67.41±2.23 56.22±2.37 74.99±0.95
SOLT-GNN [32] 48.02±1.77 67.98±2.19 71.07±2.22 60.75±6.03 65.03±4.12 60.24±2.11 — 73.58±2.12
TopoImb [71] 52.07±0.96 56.84±0.41 55.47±5.17 66.48±1.89 66.75±0.91 69.14±4.83 — 76.10±0.32

Table D.23: Macro-F1 score (% ± standard deviation) of graph classification on manipulated
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
Imbalance Ratio: Low

GIN (bb.) [63] 48.26±3.11 54.63±0.98 59.67±1.87 63.39±0.84 65.67±5.40 66.14±1.90 58.13±4.10 58.45±1.80
SOLT-GNN [32] 43.63±1.91 58.54±1.50 64.60±4.66 62.34±0.66 63.66±5.94 49.17±6.76 — 59.76±1.81
TopoImb [71] 48.87±2.90 53.07±0.49 59.94±4.32 64.97±1.65 65.71±2.62 69.15±3.83 — 60.91±2.15

Imbalance Ratio: Mid
GIN (bb.) [63] 38.58±5.97 50.50±5.43 56.46±2.90 60.89±1.84 63.28±9.06 67.20±2.32 55.05±3.86 63.79±2.55
SOLT-GNN [32] 43.20±5.36 68.52±1.49 70.58±2.03 58.67±4.91 68.73±1.97 73.24±1.40 — 66.96±1.86
TopoImb [71] 49.17±0.95 54.25±0.91 59.03±4.35 64.65±1.76 67.98±0.95 71.52±0.75 — 66.58±1.09

Imbalance Ratio: High
GIN (bb.) [63] 34.56±6.32 43.71±10.57 53.48±2.03 57.98±5.51 59.75±6.69 66.20±2.77 54.38±4.67 64.92±2.18
SOLT-GNN [32] 40.70±3.27 67.54±2.28 70.70±2.20 58.50±10.48 64.53±4.68 54.80±3.23 — 64.68±2.81
TopoImb [71] 51.65±1.07 56.18±0.53 44.79±14.19 63.97±2.78 66.67±0.91 68.41±5.34 — 65.65±0.63
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Table D.24: AUC-ROC score (% ± standard deviation) of graph classification on manipulated
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B ogbg-molhiv COLLAB
Imbalance Ratio: Low

GIN (bb.) [63] 51.36±2.71 57.38±1.46 60.17±2.84 66.09±0.71 71.34±4.89 78.51±9.44 63.71±3.82 77.46±2.90
SOLT-GNN [32] 45.70±3.17 72.90±0.24 70.79±7.53 68.55±0.93 71.29±6.08 48.18±7.14 — 82.66±1.17
TopoImb [71] 49.33±1.90 55.80±0.30 71.26±3.18 73.92±3.23 72.37±2.68 65.86±4.55 — 82.06±1.77

Imbalance Ratio: Mid
GIN (bb.) [63] 48.84±2.20 54.01±8.26 53.62±7.67 67.45±0.86 68.30±6.16 78.44±2.37 61.33±4.06 86.00±1.23
SOLT-GNN [32] 50.40±2.91 75.83±0.29 76.11±2.55 68.57±2.72 76.53±1.52 76.14±4.50 — 87.51±0.66
TopoImb [71] 52.09±1.56 55.67±1.09 63.96±8.30 72.48±2.37 73.33±2.00 74.96±1.51 — 88.27±0.10

Imbalance Ratio: High
GIN (bb.) [63] 49.85±1.83 56.40±9.37 52.96±7.75 70.66±0.82 69.92±3.25 75.86±5.42 58.96±4.75 85.97±0.28
SOLT-GNN [32] 47.82±3.75 73.62±1.58 76.43±2.46 73.57±5.28 70.85±5.29 43.84±5.55 — 85.61±1.65
TopoImb [71] 52.26±1.24 58.29±0.54 61.66±10.19 73.84±1.92 72.55±1.25 69.04±9.48 — 87.96±0.71

Table D.25: Accuracy score (% ± standard deviation) of graph classification on manipulated
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
Imbalance Ratio: Low

GCN (bb.) [21] 51.59±7.07 50.53±0.87 65.33±1.85 64.82±0.75 69.15±1.44 53.44±1.78 64.29±1.42
SOLT-GNN [32] 51.45±3.13 59.25±0.91 65.24±4.77 65.69±2.36 68.23±2.48 37.58±3.04 63.82±2.64
TopoImb [71] 46.74±1.57 54.36±0.48 59.73±5.13 56.18±2.10 68.20±0.70 56.94±3.23 60.47±0.91

Imbalance Ratio: Mid
GCN (bb.) [21] 50.00±5.87 50.10±2.55 64.32±2.81 63.99±2.16 67.95±2.82 67.96±0.89 67.64±2.04
SOLT-GNN [32] 56.23±0.84 66.42±1.37 68.91±1.89 62.78±1.33 70.25±1.15 61.95±5.55 66.94±3.67
TopoImb [71] 54.13±4.62 55.38±0.90 49.72±13.46 64.73±7.09 68.75±0.76 69.12±0.52 66.48±1.03

Imbalance Ratio: High
GCN (bb.) [21] 49.93±5.90 51.12±1.01 58.02±5.02 60.98±6.71 64.88±2.02 66.38±0.46 68.99±1.36
SOLT-GNN [32] 54.78±6.03 68.26±0.28 67.38±2.89 63.21±3.40 69.80±2.07 67.05±2.54 65.57±5.59
TopoImb [71] 51.81±1.26 55.20±0.59 54.31±13.19 69.66±1.92 66.60±0.91 69.09±1.00 67.74±0.63

Table D.26: Balanced Accuracy score (% ± standard deviation) of graph classification on ma-
nipulated topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—”
denotes out of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
Imbalance Ratio: Low

GCN (bb.) [21] 50.47±0.75 52.46±0.50 61.92±2.38 63.13±0.43 69.15±1.44 53.44±1.78 70.14±1.68
SOLT-GNN [32] 48.24±1.20 63.10±0.74 61.76±3.57 63.81±1.86 68.23±2.48 37.58±3.04 69.49±0.19
TopoImb [71] 50.43±0.87 55.53±0.61 62.18±2.05 57.64±0.94 68.20±0.70 56.94±3.23 69.51±0.91

Imbalance Ratio: Mid
GCN (bb.) [21] 49.74±2.52 50.83±0.66 61.89±1.10 58.27±4.65 67.95±2.82 67.96±0.89 76.18±0.89
SOLT-GNN [32] 51.13±0.79 66.62±1.36 67.58±2.10 59.12±2.47 70.25±1.15 61.95±5.55 74.88±1.59
TopoImb [71] 54.34±3.22 54.62±1.00 54.47±6.12 64.63±3.42 68.75±0.76 69.12±0.52 74.87±0.87

Imbalance Ratio: High
GCN (bb.) [21] 49.96±0.54 52.43±1.04 52.66±2.17 57.58±4.32 64.88±2.02 66.38±0.46 66.80±1.08
SOLT-GNN [32] 51.11±1.15 68.06±0.41 66.34±2.08 60.94±1.68 69.80±2.07 67.05±2.54 74.16±2.63
TopoImb [71] 52.12±0.78 55.50±1.13 55.34±5.76 66.63±4.54 66.60±0.91 69.09±1.00 75.02±0.79
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Table D.27: Macro-F1 score (% ± standard deviation) of graph classification on manipulated
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
Imbalance Ratio: Low

GCN (bb.) [21] 36.72±5.58 50.16±1.26 62.08±2.40 63.09±0.46 69.02±1.52 49.68±8.19 61.44±1.38
SOLT-GNN [32] 45.00±3.14 57.49±1.18 61.41±4.07 63.82±2.01 67.88±2.35 35.00±2.77 61.07±1.80
TopoImb [71] 44.72±2.61 54.31±0.49 58.67±6.03 55.77±1.91 67.78±1.00 56.09±3.68 58.79±1.01

Imbalance Ratio: Mid
GCN (bb.) [21] 40.94±5.67 48.11±3.33 61.59±1.64 54.22±8.96 67.80±2.84 67.18±1.39 65.45±1.75
SOLT-GNN [32] 45.63±4.84 66.16±1.30 67.16±2.03 58.14±3.23 70.05±1.19 57.57±8.59 64.70±3.08
TopoImb [71] 51.99±3.88 54.34±0.88 40.81±15.22 62.10±6.59 68.64±0.77 69.10±0.49 64.49±0.93

Imbalance Ratio: High
GCN (bb.) [21] 39.32±7.82 50.84±1.33 51.29±1.10 52.46±8.79 63.65±3.15 65.91±0.31 66.80±1.08
SOLT-GNN [32] 39.57±6.16 67.89±0.33 65.88±2.46 60.32±2.31 69.54±2.16 65.40±3.77 63.70±4.83
TopoImb [71] 51.43±0.98 54.99±0.81 44.51±14.79 65.66±5.28 66.54±0.89 68.76±1.17 65.56±0.52

Table D.28: AUC-ROC score (% ± standard deviation) of graph classification on manipulated
topology-imbalanced graph datasets with changing imbalance levels over 10 runs. “—” denotes out
of memory or time limit. The best results are shown in bold.

Algorithm PTC-MR FRANKENSTEIN PROTEINS D&D IMDB-B REDDIT-B COLLAB
Imbalance Ratio: Low

GCN (bb.) [21] 50.81±2.98 53.52±0.69 62.80±5.19 64.25±0.94 74.69±1.04 50.48±13.45 81.81±0.88
SOLT-GNN [32] 46.36±0.64 73.17±0.36 59.26±6.01 65.61±1.44 74.16±1.36 32.50±5.56 80.89±1.27
TopoImb [71] 52.94±0.50 56.71±0.57 67.71±4.70 60.66±1.62 74.55±1.80 63.78±2.65 82.67±0.42

Imbalance Ratio: Mid
GCN (bb.) [21] 50.03±4.80 51.66±0.64 62.02±1.93 61.45±4.93 74.23±3.12 74.51±2.91 87.46±0.79
SOLT-GNN [32] 52.54±0.92 72.48±1.32 71.33±2.35 59.75±4.06 78.21±2.21 66.93±6.74 86.46±0.45
TopoImb [71] 57.29±2.45 56.98±1.58 65.74±3.16 74.47±2.44 74.30±0.66 77.25±0.41 86.74±0.85

Imbalance Ratio: High
GCN (bb.) [21] 51.12±1.94 52.85±2.56 47.22±5.45 65.50±6.38 68.31±3.07 73.41±0.82 87.56±0.44
SOLT-GNN [32] 49.47±4.36 73.27±0.46 69.84±3.01 64.79±0.57 78.04±1.14 72.92±1.77 86.77±1.65
TopoImb [71] 53.65±2.72 57.66±0.95 63.26±12.24 74.37±3.19 71.84±1.07 75.52±1.17 88.42±0.13
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D.2 ADDITIONAL RESULTS FOR ALGORITHM ROBUSTNESS (RQ2)

D.2.1 ROBUSTNESS OF NODE-LEVEL CLASS-IMBALANCED ALGORITHMS
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Figure D.1: Robustness analysis of the node-level algorithms under different class-imbalance degrees
on Cora (homophilic). Results are reported with the algorithm performance (Accuracy) and its
relative decrease (%) compared to the class-balanced data split (the green bar).
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Figure D.2: Robustness analysis of the node-level algorithms under different class-imbalance degrees
on CiteSeer (homophilic). Results are reported with the algorithm performance (Accuracy) and its
relative decrease (%) compared to the class-balanced data split (the green bar).
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Figure D.3: Robustness analysis of the node-level algorithms under different class-imbalance degrees
on Chameleon (heterophilic). Results are reported with the algorithm performance (Accuracy) and
its relative decrease (%) compared to the class-balanced data split (the green bar).
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Figure D.4: Robustness analysis of the node-level algorithms under different class-imbalance degrees
on Squirrel (heterophilic). Results are reported with the algorithm performance (Accuracy) and its
relative decrease (%) compared to the class-balanced data split (the green bar).
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D.2.2 ROBUSTNESS OF NODE-LEVEL LOCAL TOPOLOGY-IMBALANCED ALGORITHMS

Figure D.5: Robustness analysis of the node-level algorithms under different local topology-
imbalance degrees (Low, Mid, and High). Results are reported with the algorithm performance
(Accuracy) with the standard deviation error area.

D.2.3 ROBUSTNESS OF NODE-LEVEL GLOBAL TOPOLOGY-IMBALANCED ALGORITHMS

Figure D.6: Robustness analysis of the node-level algorithms under different global topology-
imbalance degrees (Low, Mid, and High). Results are reported with the algorithm performance
(Accuracy) with the standard deviation error area.
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D.2.4 ROBUSTNESS OF GRAPH-LEVEL CLASS-IMBALANCED ALGORITHMS

2

Figure D.7: Robustness analysis of the graph-level algorithms under different class-imbalance
degrees (Low, Mid, and High). Results are reported with the algorithm performance (Accuracy) with
the standard deviation error area.

D.2.5 ROBUSTNESS OF GRAPH-LEVEL TOPOLOGY-IMBALANCED ALGORITHMS

Figure D.8: Robustness analysis of the graph-level algorithms under different topology-imbalance
degrees (Low, Mid, and High). Results are reported with the algorithm performance (Accuracy) with
the standard deviation error area.
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D.3 ADDITIONAL RESULTS FOR VISUALIZATIONS (RQ3)

D.3.1 VISUALIZATIONS OF NODE-LEVEL CLASS-IMBALANCED ALGORITHMS
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Figure D.9: Visualizations of the embedding for node-level class-imbalanced algorithms.

D.3.2 VISUALIZATIONS OF NODE-LEVEL LOCAL TOPOLOGY-IMBALANCED ALGORITHMS
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Figure D.10: Visualizations of the embedding for node-level local topology-imbalanced algorithms.
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D.3.3 VISUALIZATIONS OF NODE-LEVEL GLOBAL TOPOLOGY-IMBALANCED ALGORITHMS
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Figure D.11: Visualizations of the embedding for node-level global topology-imbalanced algorithms.

D.3.4 VISUALIZATIONS OF GRAPH-LEVEL CLASS-IMBALANCED ALGORITHMS
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Figure D.12: Visualizations of the embedding for graph-level class-imbalanced algorithms.

D.3.5 VISUALIZATIONS OF GRAPH-LEVEL TOPOLOGY-IMBALANCED ALGORITHMS
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Figure D.13: Visualizations of the embedding for global-level topology-imbalanced algorithms.
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D.4 ADDITIONAL RESULTS FOR EFFICIENCY ANALYSIS (RQ4)

D.4.1 EFFICIENCY ANALYSIS OF NODE-LEVEL CLASS-IMBALANCED ALGORITHMS
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Figure D.14: Time and space analysis of node-level class-imbalanced IGL algorithms on Actor.
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Figure D.15: Time and space analysis of node-level class-imbalanced IGL algorithms on ogbn-arXiv.

D.4.2 EFFICIENCY ANALYSIS OF NODE-LEVEL LOCAL TOPOLOGY-IMBALANCED
ALGORITHMS
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Figure D.16: Time and space analysis of node-level local topology-imbalanced IGL algorithms on
Actor.
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Figure D.17: Time and space analysis of node-level local topology-imbalanced IGL algorithms on
ogbn-arXiv.
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D.4.3 EFFICIENCY ANALYSIS OF NODE-LEVEL GLOBAL TOPOLOGY-IMBALANCED
ALGORITHMS
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Figure D.18: Time and space analysis of node-level global topology-imbalanced IGL algorithms on
Actor.
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Figure D.19: Time and space analysis of node-level global topology-imbalanced IGL algorithms on
ogbn-arXiv.

D.4.4 EFFICIENCY ANALYSIS OF GRAPH-LEVEL CLASS-IMBALANCED ALGORITHMS
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Figure D.20: Time and space analysis of graph-level class-imbalanced IGL algorithms on COLLAB.

D.4.5 EFFICIENCY ANALYSIS OF GRAPH-LEVEL TOPOLOGY-IMBALANCED ALGORITHMS
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Figure D.21: Time and space analysis of graph-level topology-imbalanced IGL algorithms on
COLLAB.
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Figure E.1: The package structure of IGL-Bench, which mainly consists of four modules.

E PACKAGE AND REPRODUCIBILITY

Imbalanced Graph Learning mark

GL-Bench

Figure E.2: The IGL-Bench package.

Package. We established and released a comprehensive
Imbalanced Graph Learning Benchmark (IGL-Bench)
package, which serves as the first open-sourced5 bench-
mark for graph-specific imbalanced learning to the best
of our knowledge. IGL-Bench encompasses 24 state-of-
the-art IGL algorithms and 17 diverse graph datasets cov-
ering node-level and graph-level tasks, addressing class-
and topology-imbalance issues, while also adopting con-
sistent data processing and splitting approaches for fair
comparisons over multiple metrics with different focus.

As shown in Figure E.1, the IGL-Bench package is mainly composed of four modules. ❶ The
Imbalance Manipulator module performs different types of imbalance manipulations for the imbalance
ratio on the built-in 17 node-level datasets, graph-level datasets, or user-defined datasets according to
user configurations. ❷ The IGL Algorithms module has 24 state-of-the-art algorithms built-in and
also supports calling user-defined IGL algorithms. ❸ The GNN Backbones module supports a variety
of mainstream GNNs and also allows for user-defined GNNs. ❹ The Package Utils module offers a
variety of utility tools, enhancing the usability and benchmarking efficiency of the package.

Documentation and Uses. We have made a concerted effort to provide users with comprehensive
documentation to ensure the seamless use of the package. Additionally, we have included necessary
comments to enhance code readability. We supply the required configuration files to reproduce the
experimental results, which also serve as examples of how to use the package effectively.

License. Our package (codes and datasets) is licensed under the MIT License. This license permits
users to freely use, copy, modify, merge, publish, distribute, sublicense, and sell copies of the
software, provided that the original copyright notice and permission notice are included in all copies
or substantial portions of the software. The MIT License is widely accepted for its simplicity and
permissive terms, ensuring ease of use and contribution to the codes and datasets. We bear all
responsibility in case of violation of rights, etc, and confirmation of the data license.

Code Maintenance. We are committed to continuously updating our code and actively addressing
users’ issues and feedback. Additionally, we warmly welcome community contributions to enhance
our library and benchmark algorithms. Nonetheless, we will enforce strict version control measures
to ensure reproducibility throughout the maintenance process.

5https://github.com/RingBDStack/IGL-Bench.
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F FURTHER DISCUSSIONS

F.1 RELATED WORKS

Benchmarking is widely used in reviews and standardized evaluations of a particular field, providing
unique insights (Sun et al., 2024). To the best of our knowledge, there exists no established benchmark
specifically dedicated to evaluating imbalanced learning on graphs. Our IGL-Bench represents the
foundational effort in this domain, encompassing both node-level and graph-level challenges related
to class- and topology-imbalance. This section compares and contextualizes our contributions within
the broader landscape of imbalanced graph learning. We position our work in relation to notable
surveys in the field.

Liu et al. (2023b) comprehensively reviews the landscape of imbalanced learning on graphs, outlining
key terminologies and taxonomies related to problem types and solution strategies. It establishes a
foundational understanding crucial for addressing skewed data distributions in graph-based tasks.

Focused on the challenges of GNNs in practical applications, Ju et al. (2024b) addresses imbalance in
data distribution and the robustness against noise, privacy concerns, and out-of-distribution scenarios.
It highlights solutions that enhance the reliability of GNNs in real-world settings.

Ma et al. (2023) specifically explores class-imbalanced learning on graphs, emphasizing the integra-
tion of graph representation learning with imbalanced learning techniques. It provides a taxonomy of
existing works and outlines future directions in the evolving field of graph class-imbalanced learning.

In contrast to these surveys, our IGL-Bench offers a practical benchmarking package tailored
explicitly for imbalanced graph learning. By systematically evaluating the performance of algorithms
across various imbalance types, IGL-Bench provides a standardized package for assessing the
efficacy and robustness of existing and future methods in this emerging field. While existing surveys
establish the theoretical underpinnings and methodological approaches in imbalanced learning on
graphs, IGL-Bench offers a concrete tool for empirical validation and comparison. This practical
focus enables researchers and practitioners to not only understand the theoretical aspects but also to
apply and benchmark algorithms effectively across diverse real-world graph datasets.

In summary, our work fills a critical gap by introducing IGL-Bench as the first benchmarking
suite tailored for imbalanced graph learning, thereby advancing the state-of-the-art in the field and
fostering deeper insights into the challenges and opportunities of imbalanced graph data analysis.

F.2 LIMITATIONS

IGL-Bench has some limitations that we aim to address in future work.

❶ We hope to include a broader range of datasets to evaluate algorithms in different scenarios. Our
current datasets are predominantly homogeneous graphs, which do not fully capture the diversity and
complexity of real-world networks. Many IGL methods struggle with complex graph types, such as
heterogeneous graphs with multiple types of nodes and edges. Including such datasets would provide
a more robust evaluation of these algorithms and highlight their strengths and weaknesses.

❷ We hope to implement more IGL algorithms for various tasks, such as few-shot classification,
dynamic graph learning, and anomaly detection, etc. Our current benchmark is limited to a specific
set of tasks, which might not reflect the full potential and versatility of IGL methods. By expanding
the range of tasks, we can gain a deeper understanding of the progress in the field and provide insights
into how different algorithms perform across diverse applications.

❸ Due to resource constraints and the availability of implementations, we could not include some of
the latest state-of-the-art IGL algorithms in our benchmark. This might impact the comprehensiveness
of our evaluation, as some promising methods are not represented. We aim to address this by
continuously updating our package and incorporating these algorithms as they become available.

❹ Our current evaluation framework primarily focuses on the performance metrics of the algorithms.
However, practical aspects such as scalability, computational efficiency, and memory usage are also
crucial for real-world applications. We plan to include these factors in future evaluations to provide a
more holistic view of each algorithm’s practicality and efficiency.
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We will continuously update our repository to keep track of the latest advances in the field. We are
also open to any suggestions and contributions that will improve the usability and effectiveness of
our benchmark, ensuring it remains a valuable resource for the IGL research community.

F.3 DATASET PRIVACY AND ETHICS

We ensured all datasets were sourced from publicly available repositories with explicit research
permissions. For user-generated or social platform data, we rely on terms including research consent.
We anonymized Personally Identifiable Information (PII) and screened for offensive content, though
complete risk elimination remains challenging. Users are urged to use datasets responsibly and be
mindful of ethical implications.

In terms of negative social impact, we believe our work does not pose a potentially significant negative
societal impact to the best of our knowledge. Our research is primarily focused on benchmarking
graph learning algorithms in the context of imbalanced data. However, we remain mindful of ethical
considerations and will continue to monitor any broader implications as our work progresses.
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