
FLATQUANT: Flatness Matters for LLM Quantization

Yuxuan Sun * 1 Ruikang Liu * 2 Haoli Bai † 1 Han Bao 1 Kang Zhao 1 Yuening Li 3

Jiaxin Hu 1 Xianzhi Yu 1 Lu Hou 1 Chun Yuan 1 Xin Jiang 1 Wulong Liu 1 Jun Yao 1

Abstract
Recently, quantization has been widely used for
the compression and acceleration of large lan-
guage models (LLMs). Due to the outliers in
LLMs, it is crucial to flatten weights and activa-
tions to minimize quantization error with equally
spaced quantization points. Prior research ex-
plores various pre-quantization transformations to
suppress outliers, such as per-channel scaling and
Hadamard transformation. However, we observe
that these transformed weights and activations can
still exhibit steep and dispersed distributions. In
this paper, we propose FLATQUANT (Fast and
Learnable Affine Transformation), a new post-
training quantization approach that enhances the
flatness of weights and activations. Our approach
identifies optimal affine transformations for each
linear layer, calibrated in hours via a lightweight
objective. To reduce runtime overhead of affine
transformation, we apply Kronecker product with
two lightweight matrices, and fuse all operations
in FLATQUANT into a single kernel. Extensive
experiments demonstrate that FLATQUANT es-
tablishes a new state-of-the-art benchmark for
quantization. For example, it achieves less than
1% accuracy drop for W4A4 quantization on the
LLaMA-3-70B model, surpassing SpinQuant by
7.5%. Additionally, it provides up to 2.3x prefill
speedup and 1.7x decoding speedup compared to
the FP16 model. Code is available at: https://
github.com/ruikangliu/FlatQuant.

1. Introduction
Recent large language models (LLMs) have achieved re-
markable success across a wide range of tasks with an in-

*Equal contribution 1Huawei Noah’s Ark Lab 2Shenzhen In-
ternational Graduate School, Tsinghua University 3The Chinese
University of Hong Kong. Correspondence to: Haoli Bai <bai-
haoli@huawei.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

creasing number of parameters (Achiam et al., 2023; Jiang
et al., 2023; Yang et al., 2024; Dubey et al., 2024). However,
the growth of model size also incurs a significant increase
in computation and memory overhead. As a result, reduc-
ing the computational and memory demands of LLMs has
emerged as a critical research direction, and quantization is
one of the most effective solutions (Frantar et al., 2022; Lin
et al., 2023; Dettmers et al., 2022; Xiao et al., 2023).

Quantization decreases the memory footprint and acceler-
ates the inference, by reducing the precision of model param-
eters and activations. Quantization error is a commonly used
metric to measure the performance of quantization meth-
ods (Nagel et al., 2020; Bai et al., 2020; Li et al., 2021). One
key factor that affects the quantization error is the flatness
of weights and activations. Intuitively, when the distribution
of weights and activations is sharp and there exist multiple
outspread values, quantizing them to the same quantized
value usually incurs a large quantization error (Chmiel et al.,
2020; Li et al., 2024). Moreover, as LLMs generate outputs
layer by layer, a reduced quantization error also flattens the
error landscape propagated across Transformer layers.

Nevertheless, it is non-trivial to get a flat distribution of
weights and activations in LLMs. LLMs are known to have
extreme outliers over activations (Dettmers et al., 2022; Xiao
et al., 2023) and pivot tokens (Liu et al., 2024a; Sun et al.,
2024). To alleviate this problem, various pre-quantization
transformations are proposed to mitigate the impact of out-
liers (Xiao et al., 2023; Ashkboos et al., 2024; Liu et al.,
2024c; Ma et al., 2024). However, we revisit these transfor-
mations and find them still sub-optimal in promoting flat-
ness. For instance, per-channel scaling (Xiao et al., 2023;
Shao et al., 2023) aims to balance the outliers between
weights and activations, but it falls short of distributing out-
liers over the non-outlier channels. The recent Hadamard
transformation (Ashkboos et al., 2024; Lin et al., 2024)
attempts to solve this problem, while the individual charac-
teristics of each linear layer are not considered. Moreover,
the linear transformation introduced by these methods in-
evitably introduces extra inference overhead that affects the
overall speedup of quantization.

In this work, we introduce FLATQUANT, a new post-training
quantization approach. The name has dual significance: it

1

https://github.com/ruikangliu/FlatQuant
https://github.com/ruikangliu/FlatQuant

FLATQUANT: Flatness Matters for LLM Quantization

stands for the proposed method (Fast and Learnable Affine
Transformation) and emphasizes its goal of achieving flatter
distributions of weights and activations, which are crucial
for effective quantization. FLATQUANT aims to identify
the optimal affine transformation for each linear layer, em-
ploying a lightweight, block-wise training strategy over the
calibration data. To minimize the inference overhead associ-
ated with affine transformations, FLATQUANT harnesses the
efficiency of Kronecker product with two lightweight matri-
ces, reducing both the memory and computational demands.
Our approach is compatible with various quantization tech-
niques such as learnable clipping, and can be applied to
various quantization settings, e.g., weight-only quantiza-
tion or KV cache quantization. Additionally, as the affine
transformations in FLATQUANT are memory bound, we
further fuse them together with quantization into a single
kernel, minimizing the global memory access and kernel
lunch overhead. Lastly, extensive experiments over various
tasks (e.g., language modeling and question answering) and
LLM families (e.g., LLaMA and Qwen) are conducted to
assess FLATQUANT. Our empirical results demonstrate that
FLATQUANT establishes new state-of-the-art quantization
results w.r.t. both accuracy and inference latency.

The contributions of this work are summarized below:

• We highlight the significance of achieving flatness for
LLM quantization, demonstrating that flat distributions
of weights and activations facilitate quantization and
reduce error propagation across Transformer layers.

• We introduce FLATQUANT, a new post-training quan-
tization method with fast and learnable affine transfor-
mations optimized for each linear layer. The approach
is empirically demonstrated to enhance the flatness of
both weights and activations in LLMs.

• Extensive experiments demonstrate that FLATQUANT
sets new state-of-the-art results for quantization. To the
best of our knowledge, we are the first to achieve ≤ 1%
accuracy drop with simply round-to-nearest W4A4
quantization on the LLaMA-3-70B model.

• We also design an efficient kernel that fuses both affine
transformation and quantization, leading to 2.3x pre-
fill speedup and 1.7x decoding speedup under W4A4
quantization when compared to the FP16 baseline.

2. Motivation
2.1. Preliminaries on LLM Quantization

The inference of LLM typically has two stages: 1) the prefill
stage, which creates a key-value cache (KV Cache) layer by
layer from the input sequence; and 2) the decoding stage,
where the model autoregressively generates tokens based

on previous KV cache. Quantization is a common practice
to reduce the model size and inference latency. It converts
the full-precision weights W ∈ Rm×n or activations X ∈
Rk×n of linear layers (i.e., Y = XW⊤), and optionally
the KV cache to low-bit representations. For instance, b-bit
weight quantization can be represented as follows:

Ŵ = Qb(W) = s ·ΠΩ(b)(W/s), (1)

where s is the quantization step size, Π(·) is the projection
function and Ω(b) = {0, 1, ..., 2b − 1} is the set of b-bit
integer points. For simplicity of notation, we denote Q(·)
as the general quantization function in the rest of this paper.

As recent works suggest (Xiao et al., 2023; Shao et al.,
2023; Xi et al., 2023), LLMs exhibit persistent outliers in
activations, posing significant challenges for quantization.
Various works are proposed to suppress outliers to improve
the quantized LLMs. Two commonly used methods are
per-channel scaling (Xiao et al., 2023; Lin et al., 2023; Wei
et al., 2023) and Hadamard transformation or its variants (Xi
et al., 2023; Ashkboos et al., 2024; Lin et al., 2024).

Per-channel Scaling. The input activations X of LLMs
are often rich in outliers. To mitigate their impact on quan-
tization, a popular way is to apply channel-wise scaling
over weights and activations (Xiao et al., 2023), i.e., Y =
(Xdiag(c)−1)·(diag(c)W⊤), where c ∈ Rn is the channel-
wise scaling factor. The scaling vector smooths the activa-
tions by jointly considering the magnitudes of input activa-
tions and weights, i.e. cj = max(|Xj |α)/max(|Wj |1−α).
The scaled weights diag(c)W⊤ can be merged to eliminate
the runtime computation. Additionally, Wei et al. (2023)
introduces channel-wise shifting, i.e., (X − z)diag(c)−1,
to further mitigate the impact of outliers, and Shao et al.
(2023) treats both diag(c) and z as learnable parameters.

Hadamard Transformation. Recent works find
Hadamard matrices H ∈ {+1,−1}n×n are particularly
helpful in smoothing out outliers in activations (Xi et al.,
2023; Ashkboos et al., 2024; Lin et al., 2024). In contrast
to per-channel scaling which only adjusts the diagonal
elements in the view of matrix multiplication, Hadamard
transformation rotates the channels of both activations and
weights, re-distributing the outliers among all channels to
effectively eliminate them. Thanks to the orthogonality
of Hadamard matrices (i.e., H⊤H = I), the following
equivalency holds: Y = XW⊤ = (XH)(H⊤W⊤). The
transformed weight WH can be similarly pre-processed
offline to reduce additional runtime overhead.

2.2. The Flatness for Quantization

The Flatness of Weights and Activations. Flat tensors
are intuitively easier to quantize after removing outliers,
a.k.a tensors with low kurtosis (Chmiel et al., 2020; Li et al.,

2

FLATQUANT: Flatness Matters for LLM Quantization

Original Per-channel Scaling Hadamard FlatQuant

1.8

2.0

0 1000 2000 3000 40000.0

0.2

0.4

0.6

0.8

1.0

Channels

M
ag

ni
tu

de

(a) Wo of the 10th Transformer
layer in LLaMA-3-8B.

35

0 1000 2000 3000 40000

5

10

15

Channels

M
ag

ni
tu

de
(b) Xo of the 10th Transformer

layer in LLaMA-3-8B.

10

15

0 2000 4000 6000 80000

5

Channels

M
ag

ni
tu

de

(c) Wg of the 30th Transformer
layer in LLaMA-3-70B.

35

0 2000 4000 6000 80000

5

10

15

Channels

M
ag

ni
tu

de

(d) Xg of the 30th Transformer
layer in LLaMA-3-70B.

Figure 1: Distributions of weights and inputs from LLaMA-3-8B and LLaMA-3-70B, sorted by the channel magnitudes
(i.e., the Frobenius norm) in descending order. In a Transformer layer, Wo and Xo denote the weight matrix and input of
the output projection layer in the self-attention layer, respectively. Wg and Xg denote the weight and input of the gated
linear layer of the feed-forward network, respectively. More visualizations can be found in Appendix D.

Per-channel Scaling Hadamard FlatQuant

(a) Per-channel Scaling. (b) Hadamard Transfrom. (c) FLATQUANT. (d) Stacked View.

Figure 2: The mean squared error (MSE) of quantization across Transformer layers and input sequence in LLaMA-3-8B.
Figure 2a-2c plot the MSE surface of each method, while Figure 2d overlays these surfaces by dividing each MSE with that
of FLATQUANT. More details and visualizations can be found in Appendix D.

2024). Figure 1 displays the distributions of both the origi-
nal and transformed weights and activations, sorted by the
channel magnitudes in descending order. The flat weights
and activations with horizontal envelopes are usually pre-
ferred by quantization. Compared with the original distribu-
tions, pre-quantization transformations can yield flatter acti-
vations (e.g., Figure 1b, 1d) but still with their limitations.
Per-channel scaling flattens activations at the cost of steeper
weight envelops (e.g., Figure 1a, 1c). While Hadamard
transformation produces better flatness for both activations
and weights than per-channel scaling, it still sometimes gen-
erates unsatisfactory distributions (e.g., Figure 1a, 1b). In
contrast, FLATQUANT, as will be elaborated in Section 3,
consistently flattens both weights and activations.

The Flatness of Quantization Error Landscape. The
quantization error inevitably propagates, and it is insight-
ful to show how pre-quantization transformations mitigate
this issue. We plot the two-dimensional landscape of mean
squared error (MSE) in Figure 2. First, it is observed that
massive quantization errors occur at initial tokens, a.k.a.

pivot tokens (Liu et al., 2024a), which contain massive
outliers (Sun et al., 2024). Both per-channel scaling and
Hadamard transformation are powerless to such errors (i.e.,
Figure 2a-2b). Instead, FLATQUANT shows much lower
error at these pivot tokens from Figure 2c. Second, the quan-
tization error increases layer-wisely, but is less evident along
the input sequence. According to Figure 2d, FLATQUANT
is the best in controlling the error propagation, followed by
Hadamard transformation and lastly the per-channel scaling.

3. Method
We now introduce FLATQUANT with an overview in Fig-
ure 3. The proposed method has dual significance: it em-
ploys fast and learnable affine transformations, which also
produce flat weights and activations for easy quantization.

3.1. Fast and Learnable Affine Transformation

We first introduce FLATQUANT for a standard linear layer,
and will discuss its integration with the Transformer archi-

3

FLATQUANT: Flatness Matters for LLM Quantization

Huawei Proprietary - Restricted Distribution7

Feed-forward networkSelf-attention

: Merged Weight (Quantized)

: Affine Transformation MatrixN
ot

at
io

ns

Linear Layer

La
ye

rN
or

m

So
ftm

ax

La
ye

rN
or

m

re-distribute

(a) (c)

(b)

re-distribute

KV Cache

: Pair-wisely Merged Scaling Vector

: Quantization/Dequantization

…

R
oP

E

Figure 3: The overall framework of FLATQUANT. (a): necessary notations of FLATQUANT; (b): the integration of
FLATQUANT with a conventional LLaMA layer, where merged parameters are grouped in red, online transformation and
quantization functions in blue, and merged scaling vectors in green; (c): the exemplary view of FLATQUANT applied for the
down-projection layer, where the scaling vector diag(c) over X̃ is merged to Wu in practice.

tecture in Section 3.2. A primary objective of FLATQUANT
is to find the best affine transformation for each linear layer
to quantize. Ideally, given Y = XW⊤, one can identify
the optimal invertible matrix P∗ ∈ Rn×n by

P∗ = argmin
P

∥Y −Q(XP)Q(P−1W⊤)∥2F , (2)

as studied in (Ma et al., 2024). The weights P−1W⊤ can
be pre-computed offline akin to (Ashkboos et al., 2024).
However, unlike Hadamard matrices that can be reused
for all layers, it is computationally expensive to maintain
individual P matrices for different linear layers. In the
forward pass, this approach doubles the computational cost
and memory access for matrix multiplication. Additionally,
it nearly doubles the model storage requirements.

Kronecker Product. The key of FLATQUANT is to use
Kronecker product of two lightweight matrices as an ef-
ficient substitution of the large affine transformation ma-
trix P ∈ Rn×n. Specifically, we propose to construct two
lightweight matrices, i.e. P = P1 ⊗ P2, where P1 ∈
Rn1×n1 ,P2 ∈ Rn2×n2 are invertible matrices in smaller
sizes, and n = n1n2. Recall the vectorization trick of the
Kronecker product, i.e., vec(V)(P1⊗P2) = vec(P⊤

1 VP2)
for some V ∈ Rn1×n2 , the matrix multiplication in Equa-
tion 2 can be re-written as

Q(XP)Q(P−1W⊤) = (3)

Q(P⊤
1 ×1 X̃×2 P2)×Q(P−1

1 ×1 W̃ ×2 (P
−1
2)⊤)⊤,

where X̃ ∈ Rk×n1×n2 and W̃ ∈ Rm×n1×n2 are reshaped
from X and W accordingly, and ×i denotes the reduction
over the i-th axis. Note that both weights and activations are
converted back to matrix before multiplication. This design
can save the memory up to n/2 times, given that n2

n2
1+n2

2
≤

n2

2n1n2
= n

2 , with the equality holds when n1 = n2 =
√
n.

Moreover, the computation saving is
√
n/2 times with the

same optimal condition. In practice, we select n∗
1, n

∗
2 =

argmin(n1+n2), s.t. n1n2 = n and n1 ≤ n2. For instance,
the optimal configuration is (n∗

1, n
∗
2) = (64, 128) for n =

8192. We find such a strategy gives the best speedup without
compromising performance, as shown in Figure 5. The
affine transformations are therein pretty light-weight, e.g.,
they only take 2.61% of the overall computational FLOPs
and 3.41MB extra memory for LLaMA-2-7B. More details
of inference overhead are in Appendix B.2.

Per-channel Scaling. To enhance the ability to balance
outliers between the weights and activations, FLATQUANT
explicitly introduces a learnable scaling vector diag(c) ∈
Rn prior to the pre-quantization transformation, as illus-
trated in Figure 3 (c). Following (Xiao et al., 2023), the
scaling vector can be merged pair-wisely to the preceding
layer normalization or linear layers, thereby incurring no
additional inference overhead.

Learnable Clipping Thresholds. To further reduce the
potential outlier after the above transformation, we com-
bine learnable clipping thresholds αw, αa ∈ (0, 1) after
sigmoid functions on both weight and activation for each
linear layer, together with the KV cache. While previous
studies (Jacob et al., 2018; Frantar et al., 2022; Ashkboos
et al., 2024) demonstrate that grid search is valid to find
reasonable clipping thresholds, we observe that learning
the clipping thresholds yields better results. These parame-
ters are layer-specific and can be jointly optimized with the
linear transformation matrices P and scaling vector diag(c).

The Training Objective. We follow post-training quan-
tization and sequentially minimize the mean squared er-
ror (MSE) by quantization over a small amount of calibra-

4

FLATQUANT: Flatness Matters for LLM Quantization

tion data (e.g., 128 randomly sampled sentences) for each
Transformer block. The training objective for the l-th Trans-
former block is

min
Θ

∥∥Fl

(
X
)
− F̂l

(
X; Θ

)∥∥2
F
, (4)

where Fl(·) and F̂l(·) denote the original and the quantized
Transformer block, Θ = {P, c, αa, αw} is abbreviated for
all learnable parameters within the block. The transforma-
tion matrices within a Transformer block will be explained
in Section 3.2. To compute the matrix inversion in Equa-
tion 3 efficiently and accurately, we adopt the singular value
decomposition together with automatic mixed precision.
See Appendix B.1 for details. We also tried with train-
ing multiple Transformer blocks together but found similar
performance at higher training costs. Finally, the training
progress with Equation 4 leads to flat weights and activa-
tions, as will be shown in Section 4.4.

3.2. Integration with the Transformer Architecture
We now illustrate the integration of FLATQUANT with a
Transformer block based on an LLaMA-like architecture.
Following the conventional practices, we employ low-bit
matrix multiplications for all linear layers, while keeping
layer normalization layers, pre-quantization transformations,
RoPE embeddings, and attention scores in FP16.

Self-Attention. The self-attention module is equipped
with four transformations {Pa, Po, Ph, Pv}. Specifically,
Pa is applied to flatten the input activation for the query,
key, and value projections, while Po smooths the input ac-
tivation for the output projection. Ph and Pv are used to
transform the key and value cache head by head, respec-
tively. Note that we only decompose Pa and Po, but leave
Ph and Pv in their original shape. This is because per-head
quantization already facilitates cheap transformations, given
that the head size is significantly smaller than the full hid-
den size. Moreover, we further fuse Po with Pv to reduce
overhead, as inspired by QuaRot (Ashkboos et al., 2024).
Our empirical results show this fusion does not result in
additional loss of accuracy.

Feed-forward Network. The feed-forward net-
work (FFN) employs two transformation matrices, i.e.,
Pug and Pd. Pug is applied to flatten the input of the
feed-forward network after layer normalization, while
Pd flattens the input for the down projection layer. Both
transformations are decomposed to minimize the inference
overhead. Additionally, the per-channel scaling of Pd is
merged into the weight of up projection layer, ensuring no
additional computational overhead.

Layer Normalization. Recall that QuaRot (Ashkboos
et al., 2024) and SpinQuant (Liu et al., 2024c) modify the
LayerNorm to RMSNorm and merge orthogonal transforma-
tions into preceding layers for efficiency. Nonetheless, the

residual connection of the “pre-norm” architecture would
constrain all Transformer blocks to share the same transfor-
mation after RMSNorm. Instead, FLATQUANT preserves
the LayerNorm, and allows the use of fast and learnable
affine transformations in Section 3.1 after LayerNorm for
different layers, thereby enhancing the expressiveness.

3.3. Efficient Kernel Design

We design an efficient kernel for FLATQUANT that inte-
grates both affine transformations and quantization into a
single operation. This design is motivated by two key fac-
tors. First, P⊤

1 ×1 X̃ ×2 P2 exhibits low computational
intensity with Kronecker product of two lightweight ma-
trices, making both prefilling and decoding predominantly
memory-bound. Second, the quantization is also known to
be memory-bound.

To address these issues, we fuse Q(P⊤
1 ×1 X̃ ×2 P2)

into a single kernel using OpenAI Triton (Tillet et al.,
2019). Specifically, we load the entire P1 ∈ Rn1×n1 and
P2 ∈ Rn2×n2 into SRAM. Each thread block slices a tiling
block X̄ ∈ Rn1×n2 from X̃, performs the matrix multiplica-
tion P1X̄P2, and quantizes the results on the fly. Through-
out this process, all intermediate results are stored in SRAM
before finally being written back to the global memory. This
design thereby eliminates redundant memory accesses of
intermediate results and reduces the kernel launch overhead.
Finally, given the output above, we follow QuaRot (Ashk-
boos et al., 2024) to adopt the CUTLASS kernel for INT4
matrix multiplication, and FlashInfer (Ye, 2023) for KV
cache quantization. Further details of the kernel design are
provided in the Appendix B.3.

4. Experiments
4.1. Settings

Evaluation and Baselines. We primarily evaluate
FLATQUANT on the series of LLaMA-2 (Touvron et al.,
2023) and LLaMA-3 (Dubey et al., 2024) models, and re-
sults on Qwen and DeepSeek families can be found in Ap-
pendix C.1. Following previous works (Shao et al., 2023;
Ashkboos et al., 2024), we report the perplexity (PPL) of
language generation tasks on the WikiText2 (Merity et al.,
2016) and C4 (Raffel et al., 2020) datasets. For com-
monsense reasoning tasks, we use six zero-shot evalua-
tion tasks, including ARC-Challenge, ARC-Easy (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), LAM-
BADA (Paperno et al., 2016), PIQA (Bisk et al., 2020),
and WinoGrande (Sakaguchi et al., 2021). We compare
FLATQUANT against popular INT4 post-training quantiza-
tion methods, including SmoothQuant (Xiao et al., 2023),
OmniQuant (Shao et al., 2023), AffineQuant (Ma et al.,
2024), QUIK-4B (Ashkboos et al., 2023), and two recent

5

FLATQUANT: Flatness Matters for LLM Quantization

Method W Quantizer WikiText-2 C4

2-7B 2-13B 2-70B 3-8B 3-70B 2-7B 2-13B 2-70B 3-8B 3-70B

FP16 - 5.47 4.88 3.32 6.14 2.86 7.26 6.73 5.71 9.45 7.17

SmoothQuant RTN 83.12 35.88 26.01 210.19 9.60 77.27 43.19 34.61 187.93 16.90
OmniQuant RTN 14.74 12.28 - - - 21.40 16.24 - - -
AffineQuant RTN 12.69 11.45 - - - 15.76 13.97 - - -
QuaRot RTN 8.56 6.10 4.14 10.60 55.44 11.86 8.67 6.42 17.19 79.48
SpinQuant RTN 6.14 5.44 3.82 7.96 7.58 9.19 8.11 6.26 13.45 15.39
FLATQUANT RTN 5.79 5.12 3.55 6.98 3.78 7.79 7.09 5.91 11.13 7.86

QUIK-4B GPTQ 8.87 7.78 6.91 - - - - - - -
QuaRot GPTQ 6.10 5.40 3.79 8.16 6.60 8.32 7.54 6.12 13.38 12.87
SpinQuant GPTQ 5.96 5.24 3.70 7.39 6.21 8.28 7.48 6.07 12.19 12.82
FLATQUANT GPTQ 5.78 5.11 3.54 6.90 3.77 7.86 7.11 5.92 11.21 7.93

Table 1: WikiText-2 and C4 perplexity of 4-bit weight & acitvation quantized LLaMA models.

state-of-the-art methods QuaRot (Ashkboos et al., 2024)
and SpinQuant (Liu et al., 2024c).

Implementation Details. We implement FLATQUANT
based on Huggingface (Wolf, 2019) and PyTorch (Paszke
et al., 2019). We adopt the AdamW optimizer with an
initial learning rate of 5e-3 and employ a cosine annealing
learning rate decay schedule. The learning rate for clipping
thresholds is 5e-2. FLATQUANT is trained for 15 epochs on
a calibration set comprising 128 sentences from WikiText-2,
each sampled with 2048 tokens. The batch size is set to
4. The default calibration procedure costs approximately
26GB of GPU memory and about 0.9 hours for LLaMA-3-
8B on a single GPU. FLATQUANT is robust to initialization,
and we employ random affine transformation matrices as
the starting point. Further details about implementation and
calibration time are provided in Appendix B.1.

Quantization. We adopt per-channel and per-token sym-
metric quantization for weights and activations, respectively.
For fair comparisons with QuaRot and SpinQuant, we em-
ploy both round-to-nearest (RTN) and GPTQ as the weight
quantizer, where GPTQ uses the same calibration data for
both closed-form weight updates and training. Nonetheless,
our empirical results suggest that FLATQUANT with RTN
is sufficient to be competitive. FLATQUANT can be also
used for KV cache quantization, where group-wise asym-
metric quantization with the size of 128 is applied. This
matches the head dimension of LLaMA, as suggested in pre-
vious studies (Zhao et al., 2024; Ashkboos et al., 2024), to
leverage the memory-bound characteristics of self-attention.

4.2. Main Results
Results on Language Generation Tasks. Table 1
presents the PPL results for FLATQUANT with and with-
out the GPTQ weight quantizer on the WikiText-2 and C4
datasets. As can be seen, FLATQUANT with RTN weight

quantizer consistently outperforms previous SOTA quantiza-
tion methods across all major benchmarks. For the LLaMA-
2-70B model, FLATQUANT achieves a PPL score just 0.23
higher than the FP16 baseline, underscoring the effective-
ness of our approach. For LLaMA-3-8B, FLATQUANT re-
duces the PPL from 7.39 (SpinQuant) to 6.98, narrowing the
gap with the FP16 baseline to 0.84. Notably, FLATQUANT
with RTN exhibits performance comparable to those with
GPTQ but takes significantly less calibration time. This
is particularly helpful in reducing the time consumption to
deploy FLATQUANT in practice. These results highlight
the efficacy of our proposed learnable transformations in
enhancing flatness and mitigating the impact of outliers in
both weights and activations, thereby establishing a new
SOTA in low-bit LLM quantization.

Results on Zero-shot QA Tasks. We extend our evalu-
ation to six zero-shot commonsense QA tasks, as shown
in Table 2. For a fair comparison, we reproduce QuaRot 1

and SpinQuant 2 with their official implementations and
released checkpoints, evaluating all methods with the same
version of lm-eval-harness framework (Gao et al., 2021). As
can be seen, FLATQUANT significantly narrows the perfor-
mance gap between quantized models and the FP16 base-
line. Specifically, while the LLaMA-3 models are shown
to be challenging for quantization (Huang et al., 2024),
FLATQUANT perform well with an accuracy loss of 2.00%
for LLaMA-3-8B and 0.94% for LLaMA-3-70B. Notably,
while QuaRot with RTN largely lags behind QuaRot with
GPTQ by an average accuracy gap over 4%, FLATQUANT
with RTN can already obtain comparable results to GPTQ.

Due to limited space, we leave more experimental results in
Appendix C, such as exploration to other quantization set-

1https://github.com/spcl/QuaRot
2https://github.com/facebookresearch/

SpinQuant

6

https://github.com/spcl/QuaRot
https://github.com/facebookresearch/SpinQuant
https://github.com/facebookresearch/SpinQuant

FLATQUANT: Flatness Matters for LLM Quantization

Model Method W Quantizer ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

2-7B

FP16 - 46.16 74.54 75.98 73.92 79.05 69.06 69.79

QuaRot RTN 36.60 61.41 65.07 48.06 72.20 63.06 57.73
SpinQuant RTN 39.42 65.32 71.45 66.16 75.30 63.46 63.52
FLATQUANT RTN 43.26 72.05 73.64 72.04 77.26 69.53 67.96

QuaRot GPTQ 42.32 68.35 72.53 65.40 76.33 65.11 65.01
SpinQuant GPTQ 41.72 69.28 72.90 71.28 76.17 66.06 66.23
FLATQUANT GPTQ 43.00 71.21 73.31 72.06 77.53 67.72 67.47

2-13B

FP16 - 49.15 77.44 79.39 76.73 80.47 72.14 72.55

QuaRot RTN 42.83 69.95 73.54 65.62 77.69 67.88 66.25
SpinQuant RTN 43.69 72.43 75.52 72.42 78.40 68.90 68.56
FLATQUANT RTN 48.04 76.64 77.59 76.60 79.38 70.24 71.42

QuaRot GPTQ 45.48 73.27 76.03 69.01 79.05 70.64 68.91
SpinQuant GPTQ 49.15 77.19 76.86 73.86 78.67 69.85 70.93
FLATQUANT GPTQ 48.38 76.94 77.88 76.40 79.65 70.56 71.64

2-70B

FP16 - 57.17 81.02 83.81 79.60 82.70 77.98 77.05

QuaRot RTN 52.22 76.60 79.96 74.61 81.12 76.32 73.47
SpinQuant RTN 55.03 79.17 81.76 78.87 81.45 74.27 75.09
FLATQUANT RTN 56.14 80.30 83.01 79.60 82.75 77.90 76.62

QuaRot GPTQ 55.46 79.76 81.58 79.35 81.83 76.09 75.68
SpinQuant GPTQ 55.38 79.04 82.57 78.75 82.37 78.22 76.06
FLATQUANT GPTQ 56.40 80.09 82.91 80.01 82.92 76.87 76.53

3-8B

FP16 - 53.50 77.57 79.12 75.51 80.74 72.93 73.23

QuaRot RTN 38.65 66.54 68.82 57.20 71.82 65.04 61.34
SpinQuant RTN 45.73 71.38 74.07 67.67 76.66 66.38 66.98
FLATQUANT RTN 50.00 75.80 76.80 72.91 79.16 72.69 71.23

QuaRot GPTQ 45.73 70.83 72.97 62.70 75.35 67.17 65.79
SpinQuant GPTQ 47.27 74.20 74.55 70.29 77.37 68.51 68.70
FLATQUANT GPTQ 50.51 75.88 76.49 73.20 79.00 72.93 71.33

3-70B

FP16 - 64.25 85.94 84.93 79.37 84.44 80.74 79.95

QuaRot RTN 22.18 34.30 32.15 13.35 57.67 52.49 35.36
SpinQuant RTN 44.03 69.07 74.57 63.34 76.99 65.98 65.66
FLATQUANT RTN 62.12 84.97 83.95 78.73 84.28 80.03 79.01

QuaRot GPTQ 49.49 74.37 77.22 71.69 78.89 71.03 70.45
SpinQuant GPTQ 51.96 77.40 77.29 71.90 79.33 72.06 71.66
FLATQUANT GPTQ 61.95 84.47 83.87 77.99 83.95 79.24 78.58

Table 2: Zero-shot QA task results of 4-bit weight & activation quantized LLaMA models.

tings in Appendix C.3, results on more LLM architectures in
Appendix C.1, and MT-bench evaluations in Appendix C.2.

4.3. Inference Latency

All experiments of inference latency below are conducted
on the RTX3090 GPU. More details of the overall com-
putational FLOPs, kernel profiling, and speedup gains are
available in Appendix C.8.

End-to-end Speedup. Figure 4 shows the prefill and de-
coding speedup of FLATQUANT across different batch sizes,
with 2048 and 256 tokens for prefill and decoding, respec-
tively. It can be found that even without kernel fusion,

FLATQUANT acheives comparable speed-up with QuaRot,
thanks to the Kronecker product of two lightweight matri-
ces. With kernel fusion, FLATQUANT can achieve up to
2.30x speedup for prefill and 1.76x speedup for decoding
under the batch size of 64, which is apparently faster than
QuaRot (Ashkboos et al., 2024). Although there is still a
minor gap compared to the vanilla INT4 quantization, it sig-
nificantly enhances accuracy and facilitates the deployment
of INT4 LLMs in real-world applications.

Kronecker Product: Sizes and Perplexities. In Figure 5,
we examine the impact of different decomposed matrix
sizes in Equation 3 on model performance and speedup.

7

FLATQUANT: Flatness Matters for LLM Quantization

INT4 QuaRot FlatQuant w/o Kernel Fusion FlatQuant w/ Kernel Fusion

1 16 32 64
Batch Size

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

2.17x
2.32x 2.35x 2.37x

1.97x
2.08x 2.09x 2.11x

1.94x
2.10x 2.11x 2.11x2.12x

2.27x 2.28x 2.30x

(a) Prefill Speedup.

1 16 32 64
Batch Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.81x

1.18x

1.50x

1.83x

0.70x

1.01x

1.38x

1.75x

0.64x

1.05x

1.38x

1.76x

0.71x

1.05x

1.43x

1.76x

(b) Decoding Speedup.

Figure 4: Prefill and decoding speedup of LLaMA-2-7B model across different batch sizes. We decode 256 tokens after the
prefill on a sequence length of 2048.

Figure 5: Prefill speedup and WikiText2 PPL results of
different decomposed matrix sizes on LLaMA-2-7B model.
We decompose the hidden dimension 4096 into n1 × n2

and range n1 from 1 to 2048, where n1 = 1 amounts to
maintaining a full-size transformation matrix. More details
can be found in Appendix C.6.

Figure 6: Prefill speedup of LLaMA-2-7B on a sequence
length of 2048 under a batch size of 64 after applying differ-
ent online transformations. We incorporate different online
transformations sequentially to gauge their impact on the
final speedup. Each point on the x-axis indicates adding a
new online transformation.

As shown, the varying sizes of matrices for the Kronecker
product significantly affect speedup. However, they have
limited impact on the perplexity of generated text. The
speedup peaks when P1 and P2 are of equal size (i.e.,
n1 = n2 =

√
n = 64), as predicted by our theoretical analy-

sis in Section 3.1. When n2 exceeds 64, the speedup quickly
decreases due to irregular memory access patterns for acti-
vations. These results further demonstrate FLATQUANT’s
effectiveness in minimizing inference overhead while main-
taining quantization accuracy with the Kronecker product.

Overhead of Each Online Transformation. We now
investigate the impact of the five online transformations
(i.e., {Pa,Po,Ph,Pug,Pd}) in FLATQUANT on the over-
all speedup, as shown in Figure 6. Even with five per-layer
transformations, FLATQUANT results in a minimal 0.07x
end-to-end slowdown, significantly outperforming QuaRot’s
0.26x with just three Hadamard transformations. Specif-
ically, FLATQUANT’s Pd causes a 0.04x slowdown due
to large FFN intermediate sizes, compared with QuaRot’s

0.17x. Meanwhile, Po results in a 0.01x slowdown, versus
QuaRot’s 0.1x. The rest transformations (i.e., Pa and Pug)
have an insignificant impact of less than 0.01x. Finally, it
can be found that even without kernel fusion, the additional
transformations in FLATQUANT is still on par with QuaRot,
thanks to the Kronecker product of two lightweight matrices.

4.4. Discussions

LT PS LCT WikiText-2 C4 Avg

1266.60 936.41 30.99
✓ 8.50 13.51 66.82
✓ ✓ 7.95 12.74 67.08
✓ ✓ 7.11 11.47 70.72
✓ ✓ ✓ 6.98 11.13 71.23

Table 3: Ablation study of FLATQUANT’s main components
on LLaMA-3-8B.

8

FLATQUANT: Flatness Matters for LLM Quantization

MSE Flatness

0 5 10
Epochs

40

60

80

100

Fl
at

ne
ss

0.004

0.005

0.006

0.007

0.008

0.009

M
SE

(a) 7th Transformer block.

0 5 10
Epochs

20

25

30

35

40

45

50

Fl
at

ne
ss

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

M
SE

(b) 15th Transformer block.

0 5 10
Epochs

60

80

100

120

140

Fl
at

ne
ss

0.015

0.020

0.025

0.030

0.035

M
SE

(c) 23th Transformer block.

0 5 10
Epochs

1000

2000

3000

Fl
at

ne
ss

0.3

0.4

0.5

0.6

0.7

M
SE

(d) 31th Transformer block.

Figure 7: Flatness and mean squared quantization error (MSE) of different Transformer blocks in LLaMA-3-8B during
FLATQUANT’s training process. The metric of flatness is calculated as the sum of Euclidean distances ∥d− d

′∥2 for all
weights and activations within a Transformer block.

Ablation Study. We conduct ablation studies for
FLATQUANT focusing on its main components: 1) learn-
able transformation (LT); 2) per-channel scaling (PS); and
3) learnable clipping thresholds (LCT). Starting from RTN
as a baseline, we evaluate the impact of each component on
perplexity and the average accuracy on zero-shot QA tasks
based on LLaMA-3-8B. As shown in Table 3, enabling LT
significantly enhances the accuracy of the quantized model,
reducing PPL from 1266.60 to 8.50 on WikiText-2. This
shows LT is capable of adaptively flattening the distribution
of weights and activations. Additionally, incorporating PS
and LCT further improves PPL by 0.55 and 0.84, respec-
tively, demonstrating the necessity of each component to
enhance the performance. Due to space limitation, we leave
the more comprehensive ablation in Appendix C.4.

FLATQUANT Leads to Flatness. To further analyze how
FLATQUANT promotes flatness, we quantitatively evaluate
the flatness of weights and activations by analyzing their
channel-wise magnitude distributions. Specifically, each
distribution is represented as a one-dimensional vector d,
as illustrated in Figure 1. We measure flatness with the
mean squared error (MSE) between the observed distribu-
tion d and an idealized perfectly flat distribution d′. The
flat distribution d′ is defined such that all channels pos-
sess equal magnitudes and the same ℓ2 norm as d, i.e.,
d′ = ∥d∥2√

N
· 1N , where N is the number of channels and

1N is an N -dimensional vector with all entries equal to one.
The Euclidean distance ∥d−d

′∥2 thus serves as our flatness
metric, where smaller values indicate distributions closer to
uniformity across all channels. In Figure 7, we visualize the
evolution of flatness and the training objective (Equation 4)
across different Transformer blocks of LLaMA-3-8B dur-
ing training. With the decreasing training loss, the channel
distributions become increasingly flat. This indicates that
FLATQUANT learns better transformations to obtain a flatter
distribution which ultimately contributes to smaller quanti-
zation error, i.e., flatness matters for LLM quantization.

Due to space constraints, we provide additional experiments
and discussions in Appendix C.5, including the impact of
calibration data, the effect of learnable clipping and mixed-
precision schemes. We also analyze inference memory con-
sumption in Appendix C.7. Additional visualizations of
flatness and quantization error landscapes are provided in
Appendix D.1 and D.2, respectively.

5. Conclusions
In this study, we revisit the importance of flat weights
and activations for effective quantization, and find exist-
ing solutions still produce steep outspread values after the
pre-quantization transformation. Therefore, we introduce
FLATQUANT, a novel post-training quantization method
with the purpose of identifying fast and learnable transforma-
tions for each linear layer, to promote the flatness of weights
and activations. Extensive experiments demonstrate the su-
periority of FLATQUANT, e.g., with less than 1% accuracy
drop for W4A4 quantization on the LLaMA-3-70B. Our
efficient kernel fusion integrates the affine transformation
and quantization, bringing up to 2.3x and 1.7x speedup over
FP16 inference at the prefill and decoding stages, respec-
tively. We hope this work advances the practical application
of low-bit quantization for LLMs.

Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning by improving the efficiency of LLMs
through enhanced quantization techniques. These improve-
ments have the potential to lower operational costs and en-
ergy consumption, enabling broader access to AI, fostering
more equitable use of advanced technologies. However, it
is important to recognize that quantization does not address
inherent societal biases in training data. Careful consider-
ation and responsible deployment of quantized models are
necessary to mitigate ethical risks and ensure their fair use.

9

FLATQUANT: Flatness Matters for LLM Quantization

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ashkboos, S., Markov, I., Frantar, E., Zhong, T., Wang, X.,
Ren, J., Hoefler, T., and Alistarh, D. Towards end-to-
end 4-bit inference on generative large language models.
arXiv preprint arXiv:2310.09259, 2023.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Jaggi,
M., Alistarh, D., Hoefler, T., and Hensman, J. Quarot:
Outlier-free 4-bit inference in rotated llms. arXiv preprint
arXiv:2404.00456, 2024.

Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang, X., Liu,
Q., Lyu, M., and King, I. Binarybert: Pushing the limit
of bert quantization. arXiv preprint arXiv:2012.15701,
2020.

Bai, H., Hou, L., Shang, L., Jiang, X., King, I., and Lyu,
M. R. Towards efficient post-training quantization of pre-
trained language models. Advances in neural information
processing systems, 35:1405–1418, 2022.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reason-
ing about physical commonsense in natural language.
In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 7432–7439, 2020.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. M. Quip: 2-bit
quantization of large language models with guarantees.
Advances in Neural Information Processing Systems, 36,
2024.

Chen, X., Bai, H., Yuan, T., Liu, R., Zhao, K., Yu, X.,
Hou, L., Guan, T., He, Y., and Yuan, C. A simple linear
patch revives layer-pruned large language models. arXiv
preprint arXiv:2505.24680, 2025.

Chmiel, B., Banner, R., Shomron, G., Nahshan, Y., Bron-
stein, A., Weiser, U., et al. Robust quantization: One
model to rule them all. Advances in neural information
processing systems, 33:5308–5317, 2020.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transform-
ers at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Duanmu, H., Yuan, Z., Li, X., Duan, J., Zhang, X., and
Lin, D. Skvq: Sliding-window key and value cache
quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Optq:
Accurate quantization for generative pre-trained trans-
formers. In The Eleventh International Conference on
Learning Representations, 2022.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff,
N., et al. A framework for few-shot language model
evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Huang, W., Ma, X., Qin, H., Zheng, X., Lv, C., Chen, H.,
Luo, J., Qi, X., Liu, X., and Magno, M. How good are
low-bit quantized llama3 models? an empirical study.
arXiv preprint arXiv:2404.14047, 2024.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2704–2713, 2018.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kim, S., Hooper, C. R. C., Gholami, A., Dong, Z.,
Li, X., Shen, S., Mahoney, M. W., and Keutzer,
K. Squeezellm: Dense-and-sparse quantization. In
International Conference on Machine Learning, pp.
23901–23923. PMLR, 2024.

Li, S., Ning, X., Wang, L., Liu, T., Shi, X., Yan, S., Dai, G.,
Yang, H., and Wang, Y. Evaluating quantized large lan-
guage models. arXiv preprint arXiv:2402.18158, 2024.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. Brecq: Pushing the limit of
post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

10

FLATQUANT: Flatness Matters for LLM Quantization

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. Awq:
Activation-aware weight quantization for llm compres-
sion and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C.,
and Han, S. Qserve: W4a8kv4 quantization and sys-
tem co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024.

Liu, R., Bai, H., Lin, H., Li, Y., Gao, H., Xu, Z., Hou, L.,
Yao, J., and Yuan, C. Intactkv: Improving large language
model quantization by keeping pivot tokens intact. arXiv
preprint arXiv:2403.01241, 2024a.

Liu, R., Sun, Y., Zhang, M., Bai, H., Yu, X., Yu, T., Yuan, C.,
and Hou, L. Quantization hurts reasoning? an empirical
study on quantized reasoning models. arXiv preprint
arXiv:2504.04823, 2025.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Liu, Z., Zhao, C., Fedorov, I., Soran, B., Choudhary, D., Kr-
ishnamoorthi, R., Chandra, V., Tian, Y., and Blankevoort,
T. Spinquant–llm quantization with learned rotations.
arXiv preprint arXiv:2405.16406, 2024c.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Ma, Y., Li, H., Zheng, X., Ling, F., Xiao, X., Wang, R., Wen,
S., Chao, F., and Ji, R. Affinequant: Affine transformation
quantization for large language models. arXiv preprint
arXiv:2403.12544, 2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations, 2016.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In International Conference
on Machine Learning, pp. 7197–7206. PMLR, 2020.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N.-
Q., Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G.,
and Fernández, R. The lambada dataset: Word predic-
tion requiring a broad discourse context. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, pp. 1525–1534, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. Omniquant:
Omnidirectionally calibrated quantization for large lan-
guage models. arXiv preprint arXiv:2308.13137, 2023.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-bert: Hessian based
ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 8815–8821, 2020.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Sun, M., Chen, X., Kolter, J. Z., and Liu, Z. Massive
activations in large language models. arXiv preprint
arXiv:2402.17762, 2024.

Tillet, P., Kung, H.-T., and Cox, D. Triton: an inter-
mediate language and compiler for tiled neural net-
work computations. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learning
and Programming Languages, pp. 10–19, 2019.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa,
C. Quip#: Even better llm quantization with hadamard
incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Wei, X., Zhang, Y., Zhang, X., Gong, R., Zhang, S., Zhang,
Q., Yu, F., and Liu, X. Outlier suppression: Pushing the
limit of low-bit transformer language models. Advances
in Neural Information Processing Systems, 35:17402–
17414, 2022.

11

FLATQUANT: Flatness Matters for LLM Quantization

Wei, X., Zhang, Y., Li, Y., Zhang, X., Gong, R., Guo, J., and
Liu, X. Outlier suppression+: Accurate quantization of
large language models by equivalent and effective shift-
ing and scaling. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Wolf, T. Huggingface’s transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Xi, H., Li, C., Chen, J., and Zhu, J. Training transform-
ers with 4-bit integers. Advances in Neural Information
Processing Systems, 36:49146–49168, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., et al. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024.

Ye, Z. Flashinfer: Kernel library for llm serving. 2023.
URL https://github.com/flashinfer-ai/
flashinfer.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 4791–
4800, 2019.

Zhang, Y., Bai, H., Lin, H., Zhao, J., Hou, L., and Cannis-
traci, C. V. Plug-and-play: An efficient post-training prun-
ing method for large language models. In The Twelfth
International Conference on Learning Representations,
2024.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-bit quantization for efficient and accurate llm
serving. Proceedings of Machine Learning and Systems,
6:196–209, 2024.

12

https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer

FLATQUANT: Flatness Matters for LLM Quantization

A. Related Work
Quantization for Large Language Models. Quantization is a crucial technique for reducing memory footprint and
accelerating inference by employing fewer bits for storage and computation. Unlike pruning (Ma et al., 2023; Sun et al.,
2023; Zhang et al., 2024; Chen et al., 2025), quantization does not alter the network architecture and is usually more
competitive in performance under the same compression ratio. Different from the previous pretrained language models (Shen
et al., 2020; Bai et al., 2020; 2022), LLMs are shown to exhibit outliers in activation and massive outliers in pivot tokens (Wei
et al., 2022; Dettmers et al., 2022; Liu et al., 2024a; Sun et al., 2024), which can severely degrade quantization accuracy,
especially on on complex reasoning tasks (Liu et al., 2025). To eliminate the negative impact of outliers, pre-quantization
transformations have been widely adopted in weight-activation quantization (Xiao et al., 2023; Wei et al., 2023; Shao et al.,
2023; Ma et al., 2024; Ashkboos et al., 2024; Liu et al., 2024c) as well as in fully quantized training (Xi et al., 2023).
Additionally, several weight-only quantization methods (Lin et al., 2023; Chee et al., 2024; Tseng et al., 2024) incorporate
pre-quantization transformations. Searched or learnable clipping thresholds for weights or activations (Lin et al., 2023;
Duanmu et al., 2024; Ashkboos et al., 2024; Liu et al., 2024c; Shao et al., 2023) are also explored to eliminate outliers.

Per-channel Scaling Transformation. SmoothQuant (Xiao et al., 2023) employs per-channel scaling to shift the challenge
of quantization from activations to weights in weight-activation quantization. Building on this, Wei et al. (2023) additionally
introduces channel-wise shifting, while OmniQuant (Shao et al., 2023) utilizes a differentiable approach to learn optimal
scaling and shifting parameters. However, the scaling-based methods can negatively impact weight quantization and struggle
in low-bit settings, such as W4A4 quantization.

Hadamard and Orthogonal Transformation. Recent research (Xi et al., 2023; Tseng et al., 2024; Ashkboos et al., 2024)
has shown that the Hadamard transformation is effective in eliminating outliers and lowering the quantization error by
redistributing outliers across all channels through matrix multiplication. QuaRot (Ashkboos et al., 2024) is the first to apply
Hadamard transformation in the LLM W4A4 PTQ setting, while SpinQuant (Liu et al., 2024c) exploits learnable orthogonal
matrices with model-level loss to further alleviate outliers.

Affine Transformation. Considering that per-channel scaling corresponds to the diagonal elements of the affine trans-
formation matrix, AffineQuant (Ma et al., 2024) proposes learning the equivalent affine transformation. However, their
approach focuses on learning full-size diagonally dominant matrices and employs a gradual mask optimization method,
which may hinder the full potential of affine transformation in reducing quantization loss. Moreover, due to the formidable
overhead associated with full-size matrix multiplication, AffineQuant can only apply affine transformation to a small fraction
of linear layers. In contrast, we employ fast and learnable affine transformations without these limitations, leading to
substantial accuracy improvements and practical speedup.

Pre-quantization Transformations in Other Quantization Tasks. Inspired by SmoothQuant, AWQ (Lin et al., 2023)
introduces activation-aware per-channel scaling to reduce quantization errors in weight-only quantization. QUIP (Chee
et al., 2024) and its extension, QUIP# (Tseng et al., 2024), leverage random rotation matrices or Hadamard transformations
to enhance incoherence in weight-only quantization. In fully quantized training task, (Xi et al., 2023) propose to utilize a
block-diagonal transformation consisting of Hadamard matrices to reduce the quantization error.

B. Implementation Details
B.1. Matrix Inversion and Training Cost

A critical aspect to implement FLATQUANT is the computation of the inverse affine transformation matrix P−1. As discussed
below, we use singular value decomposition (SVD) and automatic mixed precision to train FLATQUANT, enjoying both
training stability and efficiency.

Direct Inversion and FP32 Training. One straightforward approach is to use the inverse function provided by PyTorch.
However, we find that the precision of this inverse function at FP16 is insufficient. Specifically, PP−1 does not closely
approximate I. The off-diagonal elements are on the order of 1 × 10−3, which negatively impacts FLATQUANT’s
performance during the early stages of training. Therefore, a simple solution is to conduct training in FP32 without
Automatic Mixed Precision (AMP) to maintain precision. However, this inevitably increases training time and more GPU
memory consumption.

13

FLATQUANT: Flatness Matters for LLM Quantization

SVD and AMP Training. To further reduce resource requirements during calibration, we propose to employ singular
value decomposition for the affine transformation. For any real matrix P, we can decompose it as P = UΣV⊤, where U
and V are orthogonal matrices, and Σ is a diagonal matrix. This formulation allows us to easily compute P−1 = VΣ−1U⊤,
offering a more computationally efficient method for obtaining the inverse. Notably, this approach reduces the off-diagonal
elements of PP−1 to the order of 1× 10−6 at FP16 precision, enabling us to utilize AMP during calibration. With AMP,
we can achieve a 50% reduction in training time and memory usage while maintaining nearly lossless accuracy in most
cases. For the orthogonal matrices U and V, we employ the Cayley parameterization provided by PyTorch 3.

Comparison of the Two Training Recipes. We compare the two training recipes in Table 4. As shown, FP32 training
requires more than twice the time of AMP training and necessitates 1.28x more GPU memory under the same setting, while
the performance remains relatively close. Thus, our default choice is the SVD approach combined with AMP training.
However, we observe that in certain models or extremely low-bit scenarios, numerical errors may occur within the AMP
framework. In such cases, full-precision training becomes necessary.

Training Recipe WikiText-2 PPL C4 PPL QA Acc Memory Time

FP32 Inverse 6.95 11.04 71.35 35384MiB 2.2 hours

SVD 9.96 11.07 71.24 35360MiB 2.2 hours

AMP Inverse 7.00 11.17 70.57 27624MiB 0.9 hours

SVD 6.98 11.13 71.23 27554MiB 0.9 hours

Table 4: Comparison of different training recipes for FLATQUANT on the LLaMA-3-8B.

Calibration Time. We further present the calibration time required by FLATQUANT for the LLaMA family in Table 5.
Compared to SpinQuant (Liu et al., 2024c) and QAT methods, FLATQUANT requires significantly fewer computational
resources and less training time, while delivering superior performance. For weight-only quantization, only transformations
related to the linear weights are introduced, resulting in a shorter calibration time compared to weight-activation quantization.
Moreover, as discussed in Section 4.2, FLATQUANT does not need to be combined with GPTQ to achieve optimal
performance, further reducing the calibration overhead.

LLaMA 2-7B 2-13B 2-70B 3-8B 3-70B

weight-activation 1.15 hours 1.55 hours 6.15 hours 0.90 hours 5.94 hours
weight-only 0.67 hours 1.01 hours 5.00 hours 0.70 hours 4.89 hours

Table 5: Calibration time for LLaMA models. The reported times correspond to training on 128 segments of 2048 tokens
over 15 epochs with a batch size of 4, using a single GPU.

B.2. Overhead Analysis of Affine Transformations

Total FLOPs of Online Transformations. (1) Self-Attention. The self-attention module has three online transformations,
i.e., {Pa,Po,Ph}. Suppose the hidden dimension hd and intermediate dimension hi of LLM can be perfectly decomposed
into

√
hd ×

√
hd and

√
hi ×

√
hi, respectively, then the total FLOPs of {Pa,Po,Ph} is 4bshd

√
hd + 2bshda+ 4bsh2

d/a,
where b is the batch size, s is the sequence length, and a is the number of attention heads. (2) Feed-forward Network. The feed-
forward module has two online transformations, i.e., {Pug,Pd}. The total FLOPs of {Pug,Pd} is 4bshd

√
hd + 4bshi

√
hi.

In summary, the total FLOPs of the online transformations in a Transformer block amounts to 8bshd

√
hd + 2bshda +

4bsh2
d/a+ 4bshi

√
hi. In LLaMA-2-7B (i.e., hd = 4096, hi = 11008 and a = 32), the FLOPs of online transformations

only account for about 2.61% of those of the FP16 model when s reaches 2048.

3https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.
html

14

https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html

FLATQUANT: Flatness Matters for LLM Quantization

Huawei Proprietary - Restricted Distribution1

: Tensors on HBM : Tensors on SRAM : Kernels executed on SRAM : For-loop slicing within a thread block
: Kernels executed on SRAM

Quantize

SRAM

CUTLASS INT4 Kernel

SRAM

CUTLASS INT4 Kernel

Gather and Quantize

HBM

: For-loop slicing within a thread

HBM

SRAM

Quantize

CUTLASS INT4 Kernel

SRAM

HBM

: Tensors on HBM : Tensors on SRAM

(a) Default Design.

: Kernels executed on SRAM

Quantize

SRAM

CUTLASS INT4 Kernel

SRAM

CUTLASS INT4 Kernel

Gather and Quantize

HBM

: For-loop slicing within a thread

HBM

SRAM

Quantize

CUTLASS INT4 Kernel

SRAM

HBM

: Tensors on HBM : Tensors on SRAM

(b) Corner Case 1.

: Kernels executed on SRAM

Quantize

SRAM

CUTLASS INT4 Kernel

SRAM

CUTLASS INT4 Kernel

Gather and Quantize

HBM

: For-loop slicing within a thread

HBM

SRAM

Quantize

CUTLASS INT4 Kernel

SRAM

HBM

: Tensors on HBM : Tensors on SRAM

(c) Corner Case 2.

Figure 8: The visualization of the kernel fusion in FLATQUANT based on the computation within a thread block. The design
holds mainly for (a), where both transformations and quantization are fused together. For completeness, we also revise the
design for corner cases in (b) and (c), when the SRAM is not large enough to hold the intermediate results.

Memory Consumption of Online Transformations. We compute the parameter count of each online transformation
below: (1) Pa: 2(

√
hd)

2; (2) Po: a2; (3) Ph: (hd/a)
2; (4) Pug: 2(

√
hd)

2; (5) Pd: 2(
√
hi)

2. The total parameter
count in one Transformer block is 4hd + 2hi + a2 + (hd/a)

2. The additional memory consumption during inference is
2(4hd + 2hi + a2 + (hd/a)

2) bytes, which only consumes about 3.41MB extra memory space for LLaMA-2-7B.

B.3. Detailed Design of Kernel Fusion

To avoid redundant memory access and improve computational efficiency, we attempt to fuse Q(P⊤
1 ×1 X̃×2 P2) into a

single kernel, followed by the INT4 CUTLASS kernel to multiply the 4-bit quantized weights and activations. In most cases,
the shared memory per thread block is sufficient to hold the source matrices P1, P2, X̄, and their intermediate results X̄

′
,

as visualized in Figure 8a. Nonetheless, there are corner cases when the shared memory is insufficient to hold all necessary
tensors (e.g., n > 28762 with n1, n2 > 128 on the NVIDIA RTX 3090). We thus revise our design for the two cases, as
shown in Figure 8b and Figure 8c, respectively. To distinguish these scenarios more clearly, we have the following equations:

Default Design: (n1 ∗ n1 + 2 ∗ n1 ∗ n2) ∗ 2 < m

(n2 ∗ n2 + 2 ∗ n1 ∗ n2) ∗ 2 < m (5)
Corner Case 1: (tn1 ∗ n1 + n1 ∗ n2 + tn1 ∗ n2) ∗ 2 < m

(n2 ∗ n2 + 2 ∗ tn1 ∗ n2) ∗ 2 < m (6)
Corner Case 2: (n1 ∗ bn1 + bn1 ∗ n2 + n1 ∗ n2) ∗ 2 < m

(n1 ∗ bn2 + bn2 ∗ n2 + n1 ∗ n2) ∗ 2 < m (7)

where m is the shared memory size per thread block, tn1 is the tiling size of non-reduction dimension of P1, bn1 is the
tiling size of reduction dimension of P1, bn2 is the tiling size of reduction dimension of P2 and 2 refers to two bytes to hold
tensors in float16. Below we review the designs for the two corner cases respectively.

Corner Case 1. When both n and n1 are excessively large, it is suggested to prevent from loading the entire P1 and
X̄ into SRAM. We manage this by tiling the non-reduction dimension of P1 into tn1

slices. This strategy enables us to
integrate P̄1X̄P2 into one kernel, with P̄1 representing a slice of P1 on the non-reduction dimension. Subsequently, we
invoke a separate fused kernel for quantization, computing the quantization scale and scaling the input.

Corner Case 2. When both n and n2 are extremely large, P1, X̄ and P2 cannot be loaded into SRAM together. To handle
this, we first compute X̄

′
= P̄⊤

1 X̄, where each thread block slicing the non-reduction dimension of P1 and X̄ with the
tiling shape bn1 . The output X̃

′
is written back to the global memory, and the SRAM memory is thus released. Next, we

15

FLATQUANT: Flatness Matters for LLM Quantization

slice the non-reduction dimension of X̃
′

and P2 with tiling size bn2
, and compute the matrix multiplication, followed by

quantizing the result on the fly.

Kernel Profiling. We enumerate popular hidden sizes in the series of LLaMA models, and provide the detailed profiling
results of FLATQUANT’s online transformation with and without kernel fusion in Table 6. Note that the SRAM can hold all
of these shapes with the default design on the NVIDIA RTX 3090. It can be found that kernel fusion achieves significant
speedup across various hidden dimensions and batch sizes, e.g., 1.5x-3x prefill speedup and 1.2x-4x decoding speedup,
respectively. We also selectively test the two corner cases with the hidden size of 28762, both of which bring considerably
2.3x speedup.

Hidden Dimension Batch Size without Kernel Fusion with Kernel Fusion Speedup

Prefill Time (ms) Decode Time (ms) Prefill Time (ms) Decode Time (ms) Prefill Decode

4096

1 0.1956 0.0184 0.0625 0.0082 3.13x 2.25x
2 0.3809 0.0195 0.1116 0.0072 3.41x 2.71x
4 0.7199 0.0212 0.2120 0.0082 3.40x 2.59x
8 1.4019 0.0236 0.4188 0.0082 3.35x 2.88x

16 2.7628 0.0307 0.8417 0.0073 3.28x 4.20x
32 5.5101 0.0317 1.7091 0.0082 3.22x 3.87x
64 10.9752 0.0328 3.4898 0.0082 3.14x 4.00x

5120

1 0.2519 0.0195 0.1321 0.0113 1.91x 1.73x
2 0.4915 0.0205 0.2570 0.0113 1.91x 1.82x
4 0.9073 0.0225 0.5161 0.0113 1.76x 2.00x
8 1.7582 0.0266 1.0363 0.0113 1.70x 2.36x

16 3.4748 0.0338 2.0480 0.0121 1.70x 2.80x
32 6.9079 0.0358 4.1313 0.0123 1.67x 2.92x
64 13.8619 0.0379 8.2033 0.0123 1.69x 3.08x

8192

1 0.3845 0.0195 0.1608 0.0132 2.39x 1.48x
2 0.7393 0.0205 0.3092 0.0132 2.39x 1.55x
4 1.4433 0.0205 0.6257 0.0123 2.31x 1.67x
8 2.8529 0.0215 1.2411 0.0133 2.30x 1.62x

16 5.6668 0.0225 2.4904 0.0133 2.28x 1.69x
32 11.3183 0.0246 4.9418 0.0133 2.29x 1.85x
64 22.6714 0.0297 9.8459 0.0143 2.30x 2.07x

11008

1 0.6154 0.0215 0.3830 0.0173 1.61x 1.24x
2 1.2032 0.0225 0.7547 0.0173 1.59x 1.30x
4 2.3654 0.0223 1.5032 0.0164 1.57x 1.36x
8 4.7570 0.0236 2.9983 0.0174 1.59x 1.35x

16 9.4536 0.0256 6.0099 0.0184 1.57x 1.39x
32 18.9102 0.0287 12.0444 0.0195 1.57x 1.47x
64 38.2700 0.0379 24.0000 0.0248 1.59x 1.53x

13824

1 0.7260 0.0225 0.4444 0.0184 1.63x 1.22x
2 1.4203 0.0236 0.8653 0.0184 1.64x 1.28x
4 2.8088 0.0246 1.7254 0.0184 1.63x 1.33x
8 5.6228 0.0247 3.4273 0.0195 1.64x 1.27x

16 11.2297 0.0266 6.8726 0.0195 1.63x 1.37x
32 22.4302 0.0319 13.7216 0.0205 1.63x 1.56x
64 45.4374 0.0471 27.4698 0.0275 1.65x 1.72x

14336

1 0.6932 0.0215 0.4178 0.0184 1.66x 1.17x
2 1.3466 0.0225 0.8233 0.0184 1.64x 1.22x
4 2.6557 0.0236 1.6507 0.0184 1.61x 1.28x
8 5.2910 0.0246 3.2922 0.0195 1.61x 1.26x

16 10.5185 0.0257 6.5966 0.0195 1.59x 1.32x
32 20.9249 0.0317 13.0601 0.0205 1.60x 1.55x
64 42.7981 0.0461 25.9308 0.0266 1.65x 1.73x

Table 6: Prefill and decoding speedup of kernel fusion across different hidden dimensions and batch sizes. The sequence
length is 2048 for prefill and 1 for decoding. The default kernel design holds for all the above settings.

16

FLATQUANT: Flatness Matters for LLM Quantization

C. Additional Experiments
C.1. Results on Other LLM Architectures

Results on LLaMA-3.1-8B-Instruct. Aside from the pre-trained LLaMA models, we also investigate the quantization
performance of LLaMA-3.1-8B-Instruct, a representative of the instruction-tuned LLM. The perplexity of language modeling
and the accuracy of QA tasks for LLaMA-3.1-8B-Instruct are shown in Table 7, where FLATQUANT again outperforms
QuaRot by a large margin.

WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

FP16 7.22 11.38 55.20 79.67 79.20 73.14 81.12 73.80 73.69

QuaRot 9.25 15.13 45.39 73.15 73.45 66.41 76.01 66.61 66.84
FLATQUANT 7.97 12.99 52.90 79.25 76.68 70.79 79.49 73.09 72.03

Table 7: Evaluation results of FLATQUANT on LLaMA-3.1-8B-Instruct.

Results on Qwen-2.5-Instruct. In addition to the series of LLaMA models, we also validate FLATQUANT on Qwen-2.5-
Instruct, including both the 7B and 32B models. The results on language modeling and QA benchmarks are summarized in
Table 8. For the 7B model, FLATQUANT achieved a slightly lower average performance compared to the FP16 baseline,
with an average score of 68.62. For the 32B model, FLATQUANTalso demonstrates competitive performance, achieving an
average score of 74.89 (e.g., merely 0.21% drop), which is slightly lower than the FP16 baseline but higher than the QuaRot.

Model Method W Quantizer WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

7B FP16 - 8.36 14.37 51.37 75.80 79.57 67.61 80.20 69.93 70.75

FLATQUANT RTN 8.46 13.94 51.71 77.69 78.42 57.46 76.93 69.53 68.62

32B

FP16 - 5.32 10.45 58.62 77.02 85.25 75.14 81.39 73.16 75.10

QuaRot RTN 6.95 12.17 52.13 74.37 80.41 68.37 78.45 67.72 70.24
QuaRot GPTQ 6.54 11.65 56.06 76.52 81.83 71.26 78.78 69.06 72.25

FLATQUANT RTN 5.80 10.86 58.62 78.58 83.72 75.26 80.74 72.45 74.89

Table 8: Evaluation results of FLATQUANT on Qwen-2.5-Instruct models.

Results on DeepSeek-V3-Base and DeepSeek-R1. We further scale the evaluation of FLATQUANT to DeepSeek-V3-Base
and DeepSeek-R1, both of which are large-scale Mixture-of-Experts (MoE) models of 671B parameters. Table 9 presents
the results under 4-bit weight and activation quantization. It can be found that FLATQUANT maintains strong performance
across both LLMs, demonstrating its applicability beyond standard dense LLMs.

Model Quantization C-Eval MMLU AIME2024

DeepSeek V3-Base FP8 90.10 87.10 -
FLATQUANT-W4A4 89.59 86.32 -

DeepSeek R1 FP8 - - 79.8
FLATQUANT-W4A4 - - 73.3

Table 9: Evaluation results of FLATQUANT on LLaMA-3.1-8B-Instruct.

C.2. Results on MT-Bench

Aside from language modeling and question answering, we also evaluate FLATQUANT on MT-Bench with LLaMA-3.1-8B-
Instruct model in Table 10. We use GPT-4o as the evaluator to justify the ability multi-turn conversation. It can be found that
while FLATQUANT trails behind the FP16 baseline in coding and STEM, it consistently outperforms QuaRot with GPTQ
across all categories, narrowing the gap between the quantized model and the FP16 baseline. Notably, for math problems,
FLATQUANT matches the FP16 baseline’s score, exceeding QuaRot by 1.9 points.

17

FLATQUANT: Flatness Matters for LLM Quantization

Method Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Avg

FP16 8.17 8.10 5.05 7.00 6.10 8.67 8.50 8.91 7.60

QuaRot 7.20 6.90 3.90 5.30 4.05 6.70 6.05 7.80 5.99
FLATQUANT 7.95 7.35 4.70 7.20 4.80 7.60 7.20 8.70 6.94

Table 10: MT-Bench results of 4-bit weight & activation quantized LLaMA-3.1-8B-Instruct model.

C.3. Extension to More Quantization Settings

Weight-only Quantization While our primary analysis focuses on joint full weight-activation-kvcache quantization
schemes (Section 4.2), FLATQUANT demonstrates notable versatility across different quantization paradigms. Table 11
presents the results of the weight-only quantization compared to several state-of-the-art baselines in 4 bits and 3 bits. We
adopt per-channel symmetric quantization for weights, maintaining consistency with our full quantization scheme’s weight
processing methodology. FLATQUANT again obtains leading accuracy compared with leading baselines. Specifically, it
outperforms RTN, GTPQ, and AWQ, while also slightly surpassing GPTQ with per-group quantization (group size = 128).
Meanwhile, FLATQUANT performs comparably to QuIP. Additionally, we report results for FLATQUANT when combined
with GPTQ, where GPTQ utilizes the same calibration data for both closed-form weight updates and training. The findings
remain consistent with the results in joint full weight-activation-kvcache quantization schemes.

LLaMA-3-8B WikiText-2 PPL C4 PPL

W4A16 W3A16 W4A16 W3A16

FP16 6.14 9.45

RTN 8.70 2.2E3 14.00 5.6E3
GPTQ 7.00 13.00 11.80 45.90
GPTQ-g128 6.50 8.20 10.40 13.70
AWQ 7.10 12.80 10.10 16.80
QuIP 6.50 7.50 11.10 11.30
FLATQUANT-RTN 6.54 7.78 10.17 12.64
FLATQUANT-GPTQ 6.48 7.52 10.28 12.91

Table 11: WikiText-2 and C4 perplexity of weight-only quantizationon on LLaMA-3-8B model.

K bits V bits WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

16 16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23

4 4 6.20 9.56 52.82 78.20 79.13 75.32 80.47 72.77 73.12
4 3 6.25 9.66 52.90 77.65 79.00 75.10 80.79 73.48 73.15
4 2 6.60 10.33 49.32 74.37 77.88 72.77 79.22 72.69 71.04
3 4 6.35 9.91 52.05 77.95 78.41 73.94 79.71 73.48 72.59
3 3 6.41 10.03 52.47 76.85 78.25 74.02 79.98 72.61 72.36
3 2 6.84 10.83 47.44 73.91 77.18 70.37 78.73 71.19 69.80
2 4 7.70 13.36 49.15 74.62 74.74 63.65 77.58 68.67 68.07
2 3 7.79 13.44 46.67 71.63 74.17 63.05 77.48 68.51 66.92
2 2 8.93 16.13 42.92 68.60 71.54 55.58 75.30 64.40 63.06

Table 12: Different bits for KV cache quantization on the LLaMA-3-8B model.

KV Cache Quantization. To further evaluate its versatility, we apply FLATQUANT to KV cache only quantization. In
this setting, we retain high precision for the rest of the model (including weights and activations) and apply the group-wise
asymmetric quantization (with a group size of 128) to keys and values. Table 12 presents the results of KV cache quantization
using various bit-widths on the LLaMA-3-8B model. Consistent with previous studies (Hooper et al., 2024; Liu et al.,
2024b; Ashkboos et al., 2024), we observe that keys are more sensitive to quantization than values. Furthermore, Table 13

18

FLATQUANT: Flatness Matters for LLM Quantization

Methods K bits V bits LLaMA-2-7B LLaMA-2-13B

16 16 5.47 4.88

QuaRot
4 4 5.51 4.91
3 3 5.68 5.02
2 2 9.23 7.07

FLATQUANT
4 4 5.50 4.91
3 3 5.61 5.00
2 2 6.66 5.69

Table 13: WikiText-2 perplexity of LLaMA-2 models with different bits of KV cache quantization.

compares FLATQUANT with QuaRot for KV cache quantization on LLaMA-2-7B and LLaMA-2-13B models. As shown,
FLATQUANT delivers superior performance in most cases, particularly for lower-bit (2-3 bits). When both keys and values
are quantized to 2 bits, FLATQUANT outperforms QuaRot by 2.57 in perplexity for the 7B model.

Extreme Low-bit Quantization. We quantize the LLM to extreme low-bit representations (e.g., INT3) to investigate the
limitations of quantization. The results in Table 14 show that FLATQUANT still keeps most of the model’s abilities in the
3-bit setting, whereas QuaRot struggles under such extreme low-bit conditions. Nevertheless, 4-bit quantization remains a
better balance between inference resource efficiency and acceptable performance degradation for now.

LLaMA3-8B WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23

QuaRot-W4A4KV4 8.16 13.38 45.73 70.83 72.97 62.70 75.35 67.17 65.79
FLATQUANT-W4A4KV4 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

QuaRot-W3A3KV3 686.54 630.89 25.34 28.41 28.07 0.78 50.71 48.70 30.33
FLATQUANT-W3A3KV3 10.82 19.03 35.41 63.26 65.30 52.49 73.56 60.69 58.45

Table 14: Extreme low bit quantization results on LLAMA-3-8B models.

Train One and Get More. Remarkably, we demonstrate that the affine transformations learned from weight-activation
quantization can be directly applied to other quantization settings, such as weight-only or KV cache quantization, with
surprisingly strong performance. The associated results are presented in Table 15. For instance, the results labeled as “W4”
are comparable to those in Table 11 that are specifically trained for weight-only quantization. This significantly saves time
when applying FLATQUANT to different quantization settings, as only one set of transformation matrices is saved.

W4 A4 KV4 WikiText-2 PPL C4 PPL QA Acc

6.14 9.45 73.23
✓ 6.56 10.25 72.92

✓ 6.49 10.13 72.20
✓ 6.23 9.61 73.43

✓ ✓ ✓ 6.98 11.13 71.23

Table 15: Extending the affine transformations trained under W4A4KV4 to different quantization settings on LLaMA-3-8B
model. QA Acc is the average accuray of the six QA tasks in lm-eval-harness.

C.4. Detailed Ablation Study

To better disentangle the contributions of affine transformations and clipping thresholds, we present the full ablation results
in Table 16, as an extension of the analysis in Table 3. The results highlight the effectiveness of each component in
FLATQUANT, with learnable transformations (LT) playing a central role. Moreover, when built upon LT, other components
further enhance the overall performance of FLATQUANT.

19

FLATQUANT: Flatness Matters for LLM Quantization

LT PS LCT WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg.

1266.60 936.41 25.26 28.62 27.04 1.26 51.80 51.93 30.99
✓ NaN NaN 22.70 25.08 25.04 0.00 49.51 49.57 28.65

✓ 1149.08 1490.08 22.95 29.29 27.35 0.60 52.99 50.83 30.67
✓ ✓ 8197.96 4654.07 25.43 25.72 25.96 0.02 50.49 48.86 29.41

✓ 8.50 13.51 44.97 71.38 73.17 67.05 76.88 67.48 66.82
✓ ✓ 7.95 12.74 44.20 71.89 74.21 68.72 77.15 66.30 67.08
✓ ✓ 7.11 11.47 49.32 76.14 76.30 72.17 78.89 71.51 70.72
✓ ✓ ✓ 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

Table 16: Ablation study of FLATQUANT’s main components on LLaMA-3-8B.

C.5. Additional Discussions

Calibration Set. Since FLATQUANT employs a gradient-based method to optimize transformations for increased flatness,
one reasonable concern is whether FLATQUANT might overfit the calibration set. To assess its generalization ability,
we conducted an ablation study using different calibration datasets: WikiText-2, C4, and Pile. As shown in Table 17,
FLATQUANT maintains stable performance across all datasets. For example, when calibrated on different datasets,
FLATQUANT exhibits similar performance on WikiText-2, with PPL ranging from 6.98 to 7.04. On the C4 dataset, results
are equally consistent, with PPLs between 11.05 and 11.13. Furthermore, QA accuracy remains within a narrow range
(71.04% to 71.23%), suggesting that FLATQUANT generalizes well across different calibration datasets. This robustness is
attributed to FLATQUANT’s focus on learning an equivalent affine transformation with minimal quantization loss, rather
than altering the model’s weights. Nevertheless, it is reasonable to assume that the diversity of calibration data can further
enhance the performance of our method.

Calibration set WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

WikiText2 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23
C4 7.04 11.05 50.34 75.38 76.74 73.28 78.67 71.82 71.04
Pile 7.04 11.08 51.11 77.36 76.63 72.37 78.94 70.56 71.16

Table 17: Ablation study of FLATQUANT’s calibration set on LLaMA-3-8B model.

Effect of Clipping. While weight clipping has been widely adopted in LLM quantization, activation clipping remains
relatively underexplored. Prior works (Ashkboos et al., 2024; Liu et al., 2024c) have shown that activation clipping alone
yields limited benefits, primarily due to the presence of severe outliers. In contrast, our method demonstrates that learnable
clipping thresholds (LCT), when applied after transformation, yields significant improvements. As shown in Table 18,
applying LCT before transformation, similar to the RTN-style approach, yields only marginal gains. This observation is
consistent with prior findings (Dettmers et al., 2022), suggesting that early clipping fails to effectively suppress activation
outliers. In our method, the affine transformation redistributes outliers across channels, enabling the subsequent LCT step to
more effectively clip a larger portion of extreme values. Crucially, the inverse transformation retains the ability to recover
the original scale of informative signals, thereby preserving model quality after quantization. For comparison, we also report
results using a QuaRot-style clipping strategy (with thresholds of 0.9 for activations and 0.95 for KV cache values). Overall,
these results highlight that the integration of learnable transformations and adaptive clipping significantly enhances the
performance of weight-activation quantization.

LLaMA3-8B WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23

w/o LCT 7.95 12.74 44.20 71.89 74.21 68.72 77.15 66.30 67.08
LCT before Transformation 7.37 11.86 48.72 76.18 75.11 66.65 77.91 67.17 68.62
QuaRot-style Fixed Threshold 7.25 11.62 48.21 75.29 75.66 71.32 78.73 70.01 69.87
LCT after Transformation 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

Table 18: The effect of Learnable Clipping Thresholds.

20

FLATQUANT: Flatness Matters for LLM Quantization

Effect of Mixed-precision Schemes. To further evaluate the practicality of FlatQuant, we evaluate its performance under
a mixed-precision quantization scheme. Specifically, we explore how integrating FlatQuant into a layer-wise heterogeneous
bit-width setting can improve accuracy while retaining high inference speedup. As shown in Table 19, we apply W8A8
quantization to the top 5 important Transformer layers and all down-projection layers, based on their relative importance (Kim
et al., 2024). This configuration substantially mitigates the degradation observed in uniform low-bit settings. These results
indicate that FlatQuant can be effectively combined with mixed-precision strategies, enhancing its applicability in real-world
deployments.

WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23

FLATQUANT 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

+ down proj 8bits 6.73 10.62 50.00 77.78 77.49 73.96 79.54 70.56 71.55
+ Top5 8bits 6.80 10.82 49.23 76.56 76.54 73.51 79.71 73.95 71.58
+ Top5 & down proj 8bits 6.61 10.43 51.11 77.74 77.47 74.69 79.92 72.14 72.18

Table 19: The effect of mixed-precision quantization with selectively higher-bit layers in FlatQuant.

C.6. Experiment Details of Figure 5

In Figure 5, we present the prefill speedup and WikiText2 PPL results of different decomposed matrix sizes on LLaMA-2-7B
model. We decompose the hidden dimension 4096 into n1 × n2 and range n1 from 1 to 2048, where n1 = 1 amounts to
maintaining a full-size transformation matrix. The intermediate dimension 11008 is decomposed into 64× 172 as done
in FLATQUANT. For PPL evaluation, we only quantize the last Transformer block and learn the affine transformations
within it. For speedup evaluation, we do not leverage the online transformation kernel in Section 3.3 and implement online
transformations with naive matrix multiplication in PyTorch.

C.7. Analysis of Inference Memory

To further validate the efficiency of FLATQUANT, we provide additional results on its inference-time memory consumption.
These experiments complement our theoretical analysis in Appendix B.2, and empirically confirm that the online affine
transformations introduced in FlatQuant incur negligible memory overhead.

Table 20 reports the peak memory usage during single-token decoding on a single Transformer layer of the LLaMA-2-7B
model, under varying KV cache lengths, with batch size set to 1. We compare standard FP16 inference, INT4 quantization,
and our method, FlatQuant. As shown, FlatQuant matches the memory efficiency of INT4 quantization across all sequence
lengths, achieving a consistent memory reduction of over 3.3× compared to FP16. These results indicate that FlatQuant
preserves the low memory footprint of INT4 quantization, while introducing no additional memory cost from its online
processing.

Sequence Length FP16 (GB) INT4 (GB) FlatQuant (GB) Saving Factor

256 0.393 0.110 0.110 3.58×
512 0.399 0.112 0.112 3.56×
1024 0.411 0.118 0.118 3.48×
2048 0.434 0.130 0.130 3.35×

Table 20: Peak memory usage for decoding a single token on one Transformation layer of LLaMA-2-7B model with KV
caches of different lengths and batch size 1.

C.8. Additional Analysis of Inference Latency

Baseline. We implement and report the latency results of INT4 quantization and QuaRot with QuaRot’s official code4.
These baselines share the same quantization settings with FLATQUANT as described in Section 4.1 for fair comparison.

4https://github.com/spcl/QuaRot

21

https://github.com/spcl/QuaRot

FLATQUANT: Flatness Matters for LLM Quantization

End-to-end Speedup. We decode 256 tokens after the prefill on a sequence length of 2048 and provide the prefill and
decoding speedup of FLATQUANT in Figure 9 and Figure 10. FLATQUANT achieves a prefill speedup of 2.30x and decoding
speedup of 1.76x under the batch size of 64, with only 0.07x speedup loss compared to the naive INT4 quantization for both
prefill and decoding. Note that when the batch size is smaller than 16, quantization overhead outweighs the benefits brought
by KV cache memory reduction for the decoding stage, resulting in less than 1x speedup for both INT4 quantization and
FLATQUANT. However, since the decoding speedup shows good scalability with the batch size, we can gain a practical
decoding speedup simply by employing a large batch size.

INT4 QuaRot FlatQuant w/o Kernel Fusion FlatQuant w/ Kernel Fusion

1 2 4 8 16 32 64
Batch Size

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

2.17x 2.21x 2.25x 2.28x 2.32x 2.35x 2.37x

1.97x 1.99x 2.04x 2.05x 2.08x 2.09x 2.11x
1.94x 1.99x 2.02x 2.07x 2.10x 2.11x 2.11x2.12x 2.16x 2.21x 2.23x 2.27x 2.28x 2.30x

Figure 9: Prefill speedup of LLaMA-2-7B on a sequence length of 2048.

INT4 QuaRot FlatQuant w/o Kernel Fusion FlatQuant w/ Kernel Fusion

1 2 4 8 16 32 64
Batch Size

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Sp
ee

du
p

0.81x 0.78x 0.82x

0.97x

1.18x

1.50x

1.83x

0.70x 0.66x
0.74x

0.83x

1.01x

1.38x

1.75x

0.64x 0.63x 0.68x
0.77x

1.05x

1.38x

1.76x

0.71x 0.69x 0.73x
0.83x

1.05x

1.43x

1.76x

Figure 10: Decoding speedup on LLaMA-2-7B model. We decode 256 tokens after the prefill on a sequence length of 2048.

Speedup across Sequence Lengths. In addition to the results presented in Figure 4, we further evaluate the runtime
speedup of FlatQuant under varying sequence lengths to better characterize its practical efficiency. Table 21 and Table 22
provide detailed prefill and decoding speedups on LLaMA-3-8B, under different input and KV cache lengths. For the prefill
stage with batch size 1, FLATQUANT achieves consistent speedups across sequence lengths, achieving 2.12× at length
2048 and 1.80× at length 16384, comparable to INT4 and outperforming QuaRot. In the decoding stage with batch size 64,
FLATQUANT consistently surpasses QuaRot across all KV cache lengths and closely approaches the efficiency of INT4
quantization. These results demonstrate that FLATQUANT maintains its low-overhead advantage across a wide range of
generation scenarios, including both short and long contexts.

C.9. Comparison with AffineQuant

AffineQuant also proposed learning an equivalent affine transformation to reduce quantization error. As shown in Table 1,
AffineQuant and FLATQUANT exhibit markedly different performance. To further clarify why FLATQUANT outperforms
AffineQuant, how their differences affect quantization performance, and what factors matter most in quantization, we

22

FLATQUANT: Flatness Matters for LLM Quantization

Prefill Length INT4 QuaRot FlatQuant

2048 2.16× 1.97× 2.12×
4096 2.06× 1.90× 2.04×
8192 1.94× 1.79× 1.92×

16384 1.83× 1.72× 1.80×

Table 21: Prefill Speedup on LLaMA-3-8B Compared to FP16 for Different Input Sequence Lengths at Batch Size 1.

KV Cache Length INT4 QuaRot FlatQuant

256 1.38× 1.09× 1.24×
512 1.62× 1.38× 1.56×
1024 1.70× 1.61× 1.63×
2048 1.78× 1.72× 1.76×

Table 22: Decoding Speedup on LLaMA-3-8B Compared to FP16 for Different KV Cache Lengths at Batch Size 64.

provide additional analysis below.

Improved Expressivity. Although FLATQUANT adopts a Kronecker product with two lightweight matrices, its expressivity
remains competitive. As shown in Figure 5, the decomposed transformation achieves accuracy comparable to a full-size
affine transformation, suggesting that such a structural constraint does not lead to a loss in functional capacity. In contrast,
AffineQuant enforces strictly diagonally dominant transformations to ensure invertibility, which may inadvertently reduce
expressivity and make the transformation behave similarly to per-channel scaling (see Figure 7 in the AffineQuant paper).

Applicability to All Linear Layers. FLATQUANT offers broader applicability across the model architecture. Thanks to
its lightweight Kronecker structure, it can be efficiently applied to all linear layers with negligible overhead. In contrast,
AffineQuant directly learns a full-size affine matrices, which are only feasible to apply to output projection layers due to their
high computational cost. For other layers, AffineQuant reverts to simpler per-channel scaling. These practical limitations
further constrain its overall effectiveness, whereas FLATQUANT maintains a unified and expressive transformation across
the entire model.

23

FLATQUANT: Flatness Matters for LLM Quantization

D. Additional Visualizations
D.1. More Visualizations of Weight and Activation Distributions

Experiment Details. We visualize the distribution of weights and activations after different transformations, including
per-channel scaling in SmoothQuant (Xiao et al., 2023), Hadamard transformation in QuaRot (Ashkboos et al., 2024), and
affine transformation in FLATQUANT. We compute the per-channel Frobenius norm to quantify the channel magnitude. We
randomly sample from the C4 (Raffel et al., 2020) dataset to collect activation statistics.

Visualizations on the LLaMA Models. We visualize the distribution envelopes of both original and transformed weights
and activations on the LLaMA models in Figure 11-15. It can be observed that neither per-channel scaling nor Hadamard
transformation can fully smooth out outlier channels to produce flatness, still leaving outlier channels, especially on
activations. On the other hand, the affine transformation learned by FLATQUANT can effectively produce flatter distributions
for both weights and activations which are easier to quantize.

D.2. More Visualizations of Quantization Error Landscapes

Experiment Details. We randomly sample 128 samples from the C4 (Raffel et al., 2020) dataset and compute their
average mean squared error for visualization. For per-channel scaling, we follow SmoothQuant (Xiao et al., 2023) and only
perform per-channel scaling for the inputs of the self-attention and feed-forward modules. For the Hadamard transformation,
we replace the affine transformation in FLATQUANT with a fixed Hadamard transformation. The quantization settings are
the same as those described in Section 4.1.

Visualizations on the LLaMA Models. We visualize the quantization error landscapes of LLaMA models in Figure 2 and
Figure 18-21. With the affine transformation to smooth outliers, FLATQUANT can effectively suppress the quantization
errors at pivot tokens and ease the quantization error propagation, leading to a flatter quantization error landscape compared
with per-channel scaling and Hadamard transformation.

E. Limitations
In this study, we present FLATQUANT, but there are certain limitations to acknowledge. First, the full potential of 4-bit
quantization has not been thoroughly explored. While we follow the previous studies to build the calibration set and
demonstrate that FLATQUANT is robust across various data sources, the optimal selection of calibration sets remains an
open question. Additionally, our focus has primarily been on the INT4 data type, and we have not examined the integration
of FLATQUANT with newer data types, such as MXFP4, which may offer advantages over INT4. Addressing these aspects
represents promising avenues for future research.

Original Per-channel Scaling Hadamard FlatQuant

5.5

6.0

0 1000 2000 3000 40000.0

0.5

1.0

1.5

2.0

Channels

M
ag

ni
tu

de

(a) Wo of the 10th Transformer
layer in LLaMA-2-7B.

25

30

0 1000 2000 3000 40000

5

10

Channels

M
ag

ni
tu

de

(b) Xo of the 10th Transformer
layer in LLaMA-2-7B.

20.0

22.5

25.0

0 1000 2000 3000 40000.0

2.5

5.0

7.5

Channels

M
ag

ni
tu

de

(c) Wg of the 30th Transformer
layer in LLaMA-2-7B.

120

0 1000 2000 3000 40000

10

20

30

40

Channels

M
ag

ni
tu

de

(d) Xg of the 30th Transformer
layer in LLaMA-2-7B.

Figure 11: Distributions of weights and inputs from LLaMA-2-7B, sorted by the channel magnitudes (i.e., the Frobenius
norm) in descending order.

24

FLATQUANT: Flatness Matters for LLM Quantization

Original Per-channel Scaling Hadamard FlatQuant
6

0 1000 2000 3000 4000 50000

1

2

3

Channels

M
ag

ni
tu

de

(a) Wo of the 10th Transformer
layer in LLaMA-2-13B.

40.0
42.5

0 1000 2000 3000 4000 50000.0
2.5
5.0
7.5

10.0
12.5

Channels

M
ag

ni
tu

de
(b) Xo of the 10th Transformer

layer in LLaMA-2-13B.

12

14

0 1000 2000 3000 4000 50000

2

4

6

Channels

M
ag

ni
tu

de

(c) Wg of the 30th Transformer
layer in LLaMA-2-13B.

0 1000 2000 3000 4000 5000
Channels

0

10

20

30

40

M
ag

ni
tu

de

(d) Xg of the 30th Transformer
layer in LLaMA-2-13B.

Figure 12: Distributions of weights and inputs from LLaMA-2-13B, sorted by the channel magnitudes (i.e., the Frobenius
norm) in descending order.

3.0

0 2000 4000 6000 80000.0

0.5

1.0

1.5

Channels

M
ag

ni
tu

de

(a) Wo of the 10th Transformer
layer in LLaMA-2-70B.

6

8

0 2000 4000 6000 80000

2

Channels

M
ag

ni
tu

de

(b) Xo of the 10th Transformer
layer in LLaMA-2-70B.

10

12

14

0 2000 4000 6000 80000

2

4

Channels

M
ag

ni
tu

de

(c) Wg of the 30th Transformer
layer in LLaMA-2-70B.

35

0 2000 4000 6000 80000

5

10

15

Channels

M
ag

ni
tu

de

(d) Xg of the 30th Transformer
layer in LLaMA-2-70B.

Figure 13: Distributions of weights and inputs from LLaMA-2-70B, sorted by the channel magnitudes (i.e., the Frobenius
norm) in descending order.

1.8

2.0

0 1000 2000 3000 40000.0

0.2

0.4

0.6

0.8

1.0

Channels

M
ag

ni
tu

de

(a) Wo of the 10th Transformer
layer in LLaMA-3-8B.

35

0 1000 2000 3000 40000

5

10

15

Channels

M
ag

ni
tu

de

(b) Xo of the 10th Transformer
layer in LLaMA-3-8B.

0 1000 2000 3000 4000
Channels

0

5

10

15

20

M
ag

ni
tu

de

(c) Wg of the 30th Transformer
layer in LLaMA-3-8B.

120

0 1000 2000 3000 40000

20

40

Channels

M
ag

ni
tu

de

(d) Xg of the 30th Transformer
layer in LLaMA-3-8B.

Figure 14: Distributions of weights and inputs from LLaMA-3-8B, sorted by the channel magnitudes (i.e., the Frobenius
norm) in descending order.

0 2000 4000 6000 8000
Channels

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ag

ni
tu

de

(a) Wo of the 10th Transformer
layer in LLaMA-3-70B.

4

5

0 2000 4000 6000 80000

1

2

Channels

M
ag

ni
tu

de

(b) Xo of the 10th Transformer
layer in LLaMA-3-70B.

10

15

0 2000 4000 6000 80000

5

Channels

M
ag

ni
tu

de

(c) Wg of the 30th Transformer
layer in LLaMA-3-70B.

35

0 2000 4000 6000 80000

5

10

15

Channels

M
ag

ni
tu

de

(d) Xg of the 30th Transformer
layer in LLaMA-3-70B.

Figure 15: Distributions of weights and inputs from LLaMA-3-70B, sorted by the channel magnitudes (i.e., the Frobenius
norm) in descending order.

25

FLATQUANT: Flatness Matters for LLM Quantization

Original Per-channel Scaling Hadamard FlatQuant

24

0 1000 2000 3000 40000

2

4

6

8

10

Channels

M
ag

ni
tu

de

(a) Wq of the 30th Transformer
layer in LLaMA-3-8B.

180

200

0 1000 2000 3000 40000

20

40

60

Channels
M

ag
ni

tu
de

(b) Xq of the 30th Transformer
layer in LLaMA-3-8B.

24

0 1000 2000 3000 40000

2

4

6

Channels

M
ag

ni
tu

de

(c) Wk of the 30th Transformer
layer in LLaMA-3-8B.

175

200

0 1000 2000 3000 40000

25

50

Channels

M
ag

ni
tu

de

(d) Xk of the 30th Transformer
layer in LLaMA-3-8B.

6

7

0 1000 2000 3000 40000

1

2

3

Channels

M
ag

ni
tu

de

(e) Wv of the 30th Transformer
layer in LLaMA-3-8B.

175

200

0 1000 2000 3000 40000

25

50

Channels

M
ag

ni
tu

de

(f) Xv of the 30th Transformer
layer in LLaMA-3-8B.

20.0

22.5

25.0

0 5000 10000 150000.0

2.5

5.0

7.5

10.0

Channels
M

ag
ni

tu
de

(g) Wd of the 30th Transformer
layer in LLaMA-3-8B.

330

340

350

0 5000 10000 150000

10

20

Channels

M
ag

ni
tu

de

(h) Xd of the 30th Transformer
layer in LLaMA-3-8B.

Figure 16: Distributions of weights and inputs from LLaMA-3-8B, sorted by the channel magnitudes (i.e., the Frobenius
norm) in descending order.

20.0

22.5

25.0

0 2000 4000 6000 80000.0

2.5

5.0

Channels

M
ag

ni
tu

de

(a) Wq of the 30th Transformer
layer in LLaMA-3-70B.

160

170

0 2000 4000 6000 80000

10

20

Channels

M
ag

ni
tu

de

(b) Xq of the 30th Transformer
layer in LLaMA-3-70B.

19

20

0 2000 4000 6000 80000

1

2

3

4

Channels

M
ag

ni
tu

de

(c) Wk of the 30th Transformer
layer in LLaMA-3-70B.

160

170

0 2000 4000 6000 80000

10

20

Channels

M
ag

ni
tu

de

(d) Xk of the 30th Transformer
layer in LLaMA-3-70B.

2.75

3.00

0 2000 4000 6000 80000.00

0.25

0.50

0.75

1.00

Channels

M
ag

ni
tu

de

(e) Wv of the 30th Transformer
layer in LLaMA-3-70B.

160

170

0 2000 4000 6000 80000

10

20

Channels

M
ag

ni
tu

de

(f) Xv of the 30th Transformer
layer in LLaMA-3-70B.

10

11

0 10000 20000 300000

1

2

3

4

5

Channels

M
ag

ni
tu

de

(g) Wd of the 30th Transformer
layer in LLaMA-3-70B.

8

10

12

14

0 10000 20000 300000

2

Channels

M
ag

ni
tu

de

(h) Xd of the 30th Transformer
layer in LLaMA-3-70B.

Figure 17: Distributions of weights and inputs from LLaMA-3-70B, sorted by the channel magnitudes (i.e., the Frobenius
norm) in descending order.

26

FLATQUANT: Flatness Matters for LLM Quantization

Per-channel Scaling Hadamard FlatQuant

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 18: The MSE of quantization across Transformer layers and input sequence in LLaMA-2-7B. Figure 18a-18c plot the
MSE surface of each method, while Figure 18d overlays these surfaces by dividing each MSE with that of FLATQUANT.

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 19: The MSE of quantization across Transformer layers and input sequence in LLaMA-2-13B. Figure 19a-19c plot
the MSE surface of each method, while Figure 19d overlays these surfaces by dividing each MSE with that of FLATQUANT.

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 20: The MSE of quantization across Transformer layers and input sequence in LLaMA-2-70B. Figure 20a-20c plot
the MSE surface of each method, while Figure 20d overlays these surfaces by dividing each MSE with that of FLATQUANT.

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 21: The MSE of quantization across Transformer layers and input sequence in LLaMA-3-70B. Figure 21a-21c plot
the MSE surface of each method, while Figure 21d overlays these surfaces by dividing each MSE with that of FLATQUANT.

27

