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ABSTRACT

Generative Adversarial Networks (GANs) generate data based on a competi-
tion game to minimize the distribution distance between existing and new data.
However, such a competition game falls short when insights about data distri-
butions beyond their authenticity are imperative, such as in multi-modal gen-
eration and image super resolution. In recognition of the limitations inher-
ent to the pure-competition mechanism, we introduce CCGAN, a Collaborative-
Competitive Generative Adversarial Network scheme to enable data generation
with additional knowledge beyond the provided dataset distribution. For theoreti-
cally preserving the equilibrium point and numerically avoiding training collapse
issue, we show the need to convert the regularization term into a divergence met-
ric, so that the modified GAN is well-defined in game theory. By harmonizing the
competition and collaboration losses in CCGAN, we effectively reduce the degree
complexity of solving the optima, facilitating the establishment of a closed-form
equilibrium point. This equilibrium point serves as a guidance for training and
hyper-parameter tuning, resulting in consistently high-quality generations. Mean-
while, the regularization breaks the mutual dependency between the generator and
discriminator. This newfound independence empowers the CCGAN to explore a
broader parameter space, effectively mitigating the training collapse issue. To val-
idate the capabilities of CCGAN, we design comprehensive experiments across
four publicly available datasets and systematically compare CCGAN against a
range of baseline models. The experiments demonstrate the efficacy of CCGAN
on generating satisfactory samples tailored to specific requirements, particularly
when applied to the generation of images featuring regularly shaped objects.

1 INTRODUCTION

Generative Adversarial Networks (GANs) Goodfellow et al. (2014; 2020) empower the creation of
deceptively real data, showing success across diverse data types, such as images Heusel et al. (2017),
text Haidar & Rezagholizadeh (2019), and speech Eskimez et al. (2020). In GAN’s framework,
the adversarial dynamic between the generator and discriminator gives rise to a pure-competition
game scenario (see Figure 1 (a)): the generator iteratively refines its ability to create samples that
are indistinguishable from real data. It does so by learning to deceive the discriminator, who also
iteratively refines its ability to distinguish between real (authentic) and fake (synthetic) data.

While GANs gain success in their competitive design to generate synthetic data that follow authentic
distribution, this pure-competition nature becomes less effective in certain applications Huang et al.
(2022). In such applications, the need extends beyond capturing the authentic data distribution (see
Figure 1 (b)). For instance, in multi-modal generation Liu et al. (2021), the focus is on learning
one or multiple modes within the data distribution. In image super-resolution Zhu et al. (2020a),
one must not only capture the data distribution but also faithfully reproduce the original image.
The additional requisites for generation pose challenges for pure-competition GANs, as they lack a
inherent incentive for the generator and discriminator to collectively fulfill the additional requisites.

To overcome the challenges inherent in pure-competition GANs, researchers have ventured into
the realm of collaboration-competition design of GANs. By re-designing the loss function, one
can foster collaboration between the generator and discriminator to collectively fulfill additional
requirements regarding generated data Durgadevi et al. (2021). These strategies to reshape the com-
petitive nature of GANs include (1) replacing the standard binary cross-entropy loss with alternative
loss functions, such as the least square loss Mao et al. (2017) and Wasserstein loss Arjovsky et al.
(2017), (2) introducing regularization terms to promote collaboration between the generator and
discriminator (see Figure 1 (c)), such as coordinate GAN Lin et al. (2019) and collaborative GAN
(CollaGAN) Lee et al. (2019), and (3) designing multiple generators Zhang et al. (2020) and multiple
discriminators Choi & Han (2022) to promote collaboration.
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Figure 1: (a) Discriminator D learns a binary classification between fake and real data. Generator G
learns to produce deceptively real data to fool D. (b) GAN’s adversarial nature is limited in applica-
tions requiring knowledge beyond the “authentic” data distribution. (c) The architecture of original
GAN and GAN variants that conduct a collaboration-competition game. (d) The architecture of our
proposed model CCGAN and its preliminary experimental results.

However, these collaboration-competition studies have limitations, possibly yielding sub-optimal re-
sults. First, they lack a theoretical guarantee. Specifically, the inconsistent integration of the original
GAN loss and the collaboration regularization disrupts the original GAN’s theoretical guarantee, re-
sulting in a blind model without proper guidance Lin et al. (2019). Second, they can be numerically
stuck in local-optima if training collapses Bang & Shim (2021). Specifically, when generator and
discriminator attain a state of local optima, achieving further enhancements becomes increasingly
arduous due to their mutual dependent relationship. Overall, the absence of a theoretical guarantee
and the training collapse issue can result in misguided collaboration and sub-optimal generated data.

To address the aforementioned challenges, which involve three key aspects: (1) pushing the bound-
ary of GAN from pure-competition to collaboration-competition, (2) theoretically deriving the equi-
librium point of this collaboration-competition game, and (3) numerically avoiding training collapse,
this paper proposes a novel design of regularization for the collaboration need. Specifically, since the
existing methods fail to obtain a closed-form equilibrium point due to inconsistent integration be-
tween the collaboration and competition loss components, we aim to establish a smooth integration
(see Figure 1 (d)), where the collaboration loss function can be transformed into a divergence met-
ric. With this in mind, we present the innovative solution named Collaboration Competition-based
Generative Adversarial Network (CCGAN). Our main contributions are:

• Employing collaboration-competition mechanism, we establish a unified optimization pro-
cedure that can generate high-fidelity samples catering to specific requisites (see Figure 1
(d)). The numerical experiments also reveal one interesting phenomenon:

– The generated image samples exhibit superior quality when the objects within the im-
ages are of regular shape. This advantage can potentially be attributed to the presence
of the closed-form equilibrium point.

• We leveraged Jensen–Shannon divergence to develop a smooth integration between the
collaboration and competition loss components. It enables the attainment of a global opti-
mality, i.e., the equilibrium point.

• We prove that the generator and discriminator is not mutually dependent in CCGAN. This
non-mutual-dependence empowers CCGAN to explore more extensive parameter space,
effectively mitigating the issue of training collapse.

Overall, these findings provide both theoretical and empirical insights into collaboration-competition
GANs, paving the way for stable and consistently high-quality data generation with specific require-
ments that extend beyond the provided data distribution.
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2 RELATED WORK

Related work section considers three lines of intellectual inquiry: (1) recent developments of GAN,
(2) GANs with regularization, and (3) collaboration-competition deisgn in machine learning.

Recent developments of GAN. Addressing critical challenges identified in GAN Chen (2021),
current research trends include the follows. First, there’s a concerted effort to enhance training tech-
niques Zhong et al. (2020) and achieve training stability Neyshabur et al. (2017). Second, researchers
are working towards the development of interpretable and controllable GANs while ensuring per-
formance guarantees Tripathy et al. (2020). Scalability is another focus, with endeavors to establish
large-scale and high-resolution GANs Brock et al. (2018). Moreover, GANs are expanding their
horizons beyond image generation to include data generation in diverse domains Chen et al. (2018),
the generation of multi-modal data Liu et al. (2021), and cross-domain data translation Reed et al.
(2016). Our paper investigates the interconnected landscape of several of these trends, with the
overarching goal of advancing GAN research in training, interpretability, and application.

GANs with regularization. Building upon the original GAN, researchers have introduced various
regularization techniques for a multitude of practical objectives, such as fulfilling additional re-
quirements for generated data Lin et al. (2019); Lee et al. (2019), addressing mode collapse issue
Nagarajan & Kolter (2017); Bang & Shim (2021), ensuring training stability Brock et al. (2018), and
preserving privacy Wu et al. (2019); Chen et al. (2021). However, the introduction of regularization
terms may inadvertently alter the optimization landscape of GAN training, compromising the the-
oretical guarantee of original GAN Nagarajan & Kolter (2017). Hence, there is a demand for the
development of a novel regularization term that simultaneously addresses practical objectives while
preserving theoretical guarantees.

Collaboration-competition design in machine learning. In machine learning, the notion of
collaboration-competition emerges in social network studies Wasserman & Faust (1994); Fu et al.
(2008); Lee et al. (2014). The goal was to balance collective advancement and individual progress
Lee et al. (2012), promoting cooperation for communal objectives while motivating individuals to
excel and outperform their peers Aaldering et al. (2019). Following its success in social networks,
the collaboration-competition framework extended its influence to neural network studies Shi et al.
(2020); Kopacz et al. (2023). This concept entails coordinating the contributions of various mod-
els/networks to collectively boost performance, while preserving a competitive element to drive
individual model enhancements. This approach fosters knowledge sharing Gong et al. (2020), in-
formation exchange Tan et al. (2019), and collaborative learning among neural networks, resulting
in improved generalization, model diversity, and overall network efficacy. In this paper, we leverage
the collaboration-competition idea in GAN to combine individual network strengths Poirot et al.
(2019) and harness collective intelligence for superior outcomes.

3 PROPOSED MODEL

Pure-competition GANs and challenges. To present the motivation of our method, we start from
analysing the mechanism and challenges in original GAN. The original GAN model Goodfellow
et al. (2014) conducts an adversarial training between the generator G and discriminator D as

min
G

max
D

VGAN(D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))]. (1)

It aims to capture pdata, which represents the underlying data distribution of given samples x. For this
purpose, G generates fake samples G(z) from random noises z1, while D acts as a binary classifier
to distinguish whether a sample belongs to the given training data or is generated by G (see Figure
1 (a)). From the pure-competition nature of the generator-discriminator relationship, GANs can
generate fake data that follow “real” distribution, thus showing success in generating diverse data
types. However, there also remains challenges associated with the pure-competition design where
learning the “real” distribution is not the only focus Mao et al. (2017); Huang et al. (2022). In
particular, certain applications may necessitate the acquisition of knowledge about a single mode
within the distribution or a restricted portion of the distribution (see Figure 1 (b)). For example, in
the task of multi-modal generation Liu et al. (2021), it requires to learn one or several modes within
the data distribution. In image super-resolution Zhu et al. (2020a), it is essential not only to grasp
the underlying data distribution but also to replicate the exact original image. For these applications,

1z follows a given distribution (e.g., Gaussian) denoted as pz(z)
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the focus is understanding distributions beyond its authenticity, thus necessitating another incentive
beyond the pure-competition loss function in GAN.

Collaboration-competition GANs and challenges. To fulfill the specific need beyond the authen-
ticity of the data distribution, recent studies Lin et al. (2019); Zhang et al. (2020); Lee et al. (2019)
have introduced regularization terms to GAN. They are designed to align the objectives of both the
generator and discriminator, guiding them towards a common need. The general form reads as

max
D

VGAN(D,G)− Lregularization(D,G;λ); min
G

VGAN(D,G) + Lregularization(D,G;λ), (2)

where VGAN(D,G) is the original GAN’s loss function in Equation (1), Lregularization(D,G;λ)2 the
loss tailored to address specific needs, and λ the hyperparameter.

However, the collaboration-competition game in Equation (2) represents a rough combination of
regularization Lregularization(D,G;λ) to the original GAN loss VGAN(D,G). As shown in Theorem 1,
this fragmented design compromises the equilibrium point of original GAN. Without the equilibrium
point, the model will suffer from misguided collaboration and can yield sub-optimal outcomes. For
example, the hyper-parameter (λ) tuning can become a challenging task devoid of clear guidance or
guarantees Kurach et al. (2018), and the haphazard mixing of loss functions can introduce conflicting
objectives, hindering convergence and generating subpar outputs Tran et al. (2018).
Theorem 1. [No equilibrium point]. Equation (2) lacks a closed-form equilibrium point when
Lregularization(D,G;λ) is squared loss, and the true data distribution is Gaussian.

The proof of Theorem 1 can be found in Appendix A. It demonstrates that because of the inconsistent
combination of Lregularization(D,G;λ) and VGAN(D,G), the equilibrium equation is a polynomial
equation with a degree exceeding five, thus lacking an analytical solution Ramond (2022). To resolve
this, it’s crucial to “harmonize” Lregularization(D,G;λ) and VGAN(D,G) in Equation (2), ensuring that
Lregularization(D,G;λ) doesn’t introduce extra complexity in finding an equilibrium point.

3.1 CCGAN FRAMEWORK

This section presents CCGAN, a GAN model that jointly considers the collaboration requirements
and the equilibrium point, aiming to enhance the collaboration, interpretability, and overall opti-
mality of the GAN model. The key design, as depicted in Equation (3)-(5), is chosen to enable
the conversion from the loss function to a divergence metric. This transformation can prevent the
introduction of extra degrees of complexity when seeking an equilibrium point.

Motivated by the work Mao et al. (2017) and Nowozin et al. (2016), we consider the regulariza-
tion in Equation (3), which mimics the form of loss function in Equation (1). The corresponding
optimization problem between discriminator D and generator G is shown in Equation (4)-(5):

Lregularization(D,G;λ) = Ex∼pdata(x) log(D(x)− λ) + Ez∼pz(z) log(D(G(z))− λ), (3)

max
D

CD(D,G;λ) = VGAN(D,G)− Lregularization(D,G;λ), (4)

min
G

CG(D,G;λ) = Ex∼pdata(x)[log(D(x))] +
λ− 1

λ
Ez∼pz(z)[log(1−D(G(z)))]. (5)

The discriminator loss CD(D,G;λ) is the original loss VGAN(D,G) combined with the regulariza-
tion term Lregularization(D,G;λ), and the generator loss function CG(D,G;λ) is the re-scaled version
of VGAN(D,G). In Equation (4)-(5), the goal of D and G is not completely opposite (unlike Equa-
tion (1)), making it a mixed-motive game which contains both the competition and the collaboration
mechanism. The collaboration is enforced through the regularization term Lregularization(D,G;λ), in
which the two networks jointly explore distributions spanning from “authentic” to “synthetic”, with
the balance controlled by the hyperparameter λ. We denote the optimization problem in Equation
(4)-(5) as Collaboration Competition-based Generative Adversarial Network (CCGAN).

Global optimality. The regularization term in Equation (3) has two advantages. First, it encourages
the discriminator to map true data to probability λ. In contrast to the original discriminator, which
always attempts to assign a probability 1 to real data, this additional regularization empowers the
model to explore the distributions spanning the spectrum from “true” to “half true”. The “half true”

2Since Lregularization(D,G;λ) is a collaborative pursuit involving both the discriminator and generator, its
impact is manifested with an opposite sign in Equation (2).
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distribution reflects the “true” distribution with specific requisites, and is mathematically mapped to
probability λ. Hence, the hyperparameter λ is configured to implement the desired level of specific
requisites for the generated data. Second, this regularization term facilitates the transformation of
the loss function into a divergence metric. The transformation prevents the introduction of additional
complexities when searching for an equilibrium point. This outcome leads to the establishment of
global optimality, as demonstrated in Theorem 2.
Theorem 2 (Global optimality of CCGAN). The optimization problem in Equation (4)-(5) is equiv-
alent to minimizing the Jensen–Shannon divergence JSD(pdata∥λ−1

λ · pgen) at optimality. It leads to
pgen = λ

λ−1 · pdata, where pdata is true data distribution, pgen the distribution of generated data.

Proof. The training criterion for the discriminator D, given a fixed generator G, is to maximize the
quantity VGAN(D,G)− Lregularization(D,G;λ) as
Ex∼pdata(x)[log(D(x))− log(D(x)− λ)] + Ez∼pz(z)[log(1−D(G(z)))− log(λ−D(G(z)))]

=

∫
x

pdata(x)[log(D(x))− log(D(x)− λ)]dx+

∫
x

pgen(x)[log(1−D(x))− log(λ−D(x))].

Then, the optimal discriminator D∗
G is obtained when

(
pdata(x)

D∗
G(x)

− pdata(x)

D∗
G(x)− λ

) + (
pgen(x)

D∗
G(x)− 1

− pgen(x)

D∗
G(x)− λ

) = 0 =⇒ D∗
G(x) =

pdata(x)

pdata(x) +
λ−1
λ · pgen(x)

.

Given the optimal D∗
G, the generator is to minimize the quantity in Equation (5) as

min
G

Ex∼pdata(x)[log(D
∗
G(x))] +

λ− 1

λ
Ez∼pz(z)[log(1−D∗

G(G(z)))]

= Ex∼pdata(x)[log
pdata(x)

pdata(x) +
λ−1
λ · pgen(x)

] + Ex∼λ−1
λ ·pgen(x)

[log
λ−1
λ · pgen(x)

pdata(x) +
λ−1
λ · pgen(x)

]

= − log 4 + 2 · JSD(pdata∥
λ− 1

λ
· pgen).

Avoidance of training collapse. Besides inheriting the theoretical advantage of original GAN, CC-
GAN can also numerically alleviate the training collapse issue, which occurs when the generator
consistently produces limited and repetitive samples, resulting in a lack of diversity and low-quality
generated data. The root cause of this problem in traditional GANs lies in the pure-competition
relationship between the generator and discriminator. Their interdependence can lead to a scenario
where stagnation in one network hinders improvements in the other. For addressing this challenge,
we argue that the regularization term introduced in Equation (3) breaks the mutual dependency be-
tween the generator and discriminator, as demonstrated in Theorem 3. This newfound independence
provides the networks with additional incentive to improve even if another network is stagnant. The
proof of Theorem 3 is in Appendix B.
Theorem 3 (Avoid training collapse). Given the generator, the optimal discriminator is obtained as

D∗(x) =
[λγ(pdata(x) + pgen(x)) + λ(pdata(x)− pgen(x))]

2 +
√
4λγpdata(x)((1− γ)pgen(x)− λpdata(x))

2(1− γ)pgen(x)− 2λpdata(x)
,

(6)
if the regularization adopts Ex∼pdata(x) log(D(x)− λ) + Ez∼pz(z) log(D(G(z))− γ).

Overall, CCGAN offers three advantages as follows, and is summarized into Algorithm 1.

• It allows the generator and discriminator to work together to fulfill specific requirements of
generated samples that lies beyond the authenticity of the “true” data distribution.

• It preserves the equilibrium point as in original GAN. The presence of an equilibrium
point can guide the selection of hyperparameter λ and bolster convergence, facilitating the
generation of consistently high-quality samples.

• It empowers the generator and discriminator to explore a more extensive parameter space,
effectively mitigating the issue of training collapse.

4 EXPERIMENTS
In this section we evaluate the advancements of CCGAN, exploring in particular its ability of gener-
ating consistently satisfactory samples and avoiding training collapse issue. The experiments were
conducted on a single NVIDIA GPU.
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Algorithm 1 CCGAN: Collaboration Competition-based Generative Adversarial Network

Input: Dataset D = {xn}Nn=1.
Initialize: Hyperparameter λ, generator training gap k, number of iterations T , batch size n0.
for T training iterations do

for k steps do
Sample minibatch of n0 images from D : {x(1), · · · ,x(n0)}.
Sample minibatch of n0 noises from Gaussian distribution : {z(1), · · · , z(n0)}.
Update the discriminator D(·) by ascending its stochastic gradient:

∇D
1

n0

n0∑
i=1

[
logD(x(i))− log[D(x(i))−λ]+ log

(
1−D

(
G(z(i))

))
− log

(
λ−D

(
G(z(i))

))]
.

Update the generator G(·) by descending its stochastic gradient:

∇G
1

n0

n0∑
i=1

[
log

(
1−D

(
G(z(i))

))]
Output: CCGAN with the ability to generate customized images.

4.1 SETTINGS

Datasets and Applications. To assess CCGAN’s ability in handling diverse data types, we use four
image datasets and one power dataset, each with specific collaboration requirements. The image
datasets cover various subjects, including humans, animals, buildings, and natural landscapes. (1)
Coloring grayscale shapes. We start from simple objects like rectangles and circles. For this, we
synthesize a dataset Syn containing grayscale images of standardized geometric shapes, where the
task is applying suitable colors for different shapes. (2) Coloring grayscale images. Then, we
proceed to colorize grayscale images of common objects. For this, we choose the Common Objects
in Context (COCO) dataset Lin et al. (2014). (3) Image super resolution. Besides coloring, we
consider the task of producing a high-resolution image from its low-resolution counterpart, using the
dataset SuperRes Bevilacqua et al. (2012); Zeyde et al. (2012) containing life-scenes and natural
landscapes. (4) Multi-modal generation. We explore multi-modal generation, aiming to create
coherent and realistic outputs based on the input information. We use the Facade dataset Tyleček &
Šára (2013); Isola et al. (2017) and deepFashion dataset Liu et al. (2016); Zhu et al. (2020b), which
provides paired inputs/outputs for building facades and human clothes, respectively. (5) False data
injection attack. Besides image data, we study power data from power systems, specifically for
an adversarial attack task. It conducts imperceptible (for power utility) modifications to power
measurements using the dataset FDIA Costilla-Enriquez & Weng (2021).

Benchmark methods. We consider baselines in GAN that implement a regularization to promote
collaboration between the generator and discriminator. The following methods are utilized: (1) the
original GAN (GAN) Goodfellow et al. (2014; 2020), (2) conditional coordinating GAN (COCO-
GAN) Lin et al. (2019), (3) collaborative GAN (CollaGAN) Lee et al. (2019), and (4) cooperation
GAN (Co-GAN) Zhang et al. (2020).

Implementing details of CCGAN. For the generator and discriminator architecture, we employ
five convolutional layers and two fully-connected layers that incorporates a skip connection He et al.
(2016). Each layer comprises approximately ten neurons, and the neurons are activated through
pooling layers and Rectified Linear Units (ReLU) Agarap (2018). We set the number of maximal
iterations to T = 300 for sufficient training. Additionally, for every k = 5 iterations will we train
the generator so that we prioritize training the discriminator to allow for better convergence. For
each iteration, we sample n0 = 50 mini-batches to compute gradients for advanced searching for
parameters. We update these parameters using the Adam optimizer with a learning rate of 2×10−4.

4.2 CHALLENGES: NO PERFORMANCE GUARANTEE AND TRAINING COLLAPSE ISSUE

Prior to evaluating CCGAN’s improvements, we show two challenges that may arise in existing
GAN models. First, the lack of performance guarantee may hinder a successful joint optimiza-
tion of competition and collaboration in GAN. Specifically, an inconsistent regularization term
Lregularization(D,G;λ) can result in poor collaboration, leading to the generation of subpar outcomes.
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For instance, in image super-resolution (see Figure 2 (a)) and image colorization (see Figure 2 (b)),
an improper hyperparameter (λ) selection to balance competition and collaboration is shown in the
third row and indicated by blue arrows. It yields unexpected and unsatisfactory results in both tasks.

Parameters 

Performance 

Poor collaboration

(a)   Image Super Resolution (b)   Image Colorization

Local optima

Figure 2: Two challenges in existing GANs: poor collaboration (blue arrows) and local optima (pink
arrows), are simulated in the task of (a) image super resolution and (b) image colorization.

Second, in pure-competition GANs, the mutual dependence between the generator and discriminator
often leads to a susceptibility to getting trapped in local optima, a phenomenon known as training
collapse. This occurs when the networks reach a state of local optima and lose the incentive to
further improve due to their competitive mechanism. For instance, in Figure 2, the seemingly good
results in the second row might represent local optima resulting from insufficient training of the two
networks, as indicated by the pink arrows.

4.3 EVALUATION OF CCGAN

This section evaluates the ability of CCGAN to resolve the above two challenges. For this purpose,
we provide qualitative and quantitative results as follows.

The benefits of performance guarantee. In the colorization task using the COCO dataset Lin
et al. (2014), we verify the benefit of CCGAN’s equilibrium point result as outlined in Theorem
2. To do this, we colorize images to a predefined color spectrum, specifically the yellow and blue
channels. This prior knowledge allows us to optimize the hyperparameter λ in the regularization
term Lregularization(D,G;λ), avoiding the need for random selection and post-training observation
as in other baselines. As depicted in Figure 3, the baseline model CollaGAN may achieve good
results after exploring the hyperparameter space, but it remains susceptible to suboptimal hyperpa-
rameter choices that lead to unexpected outcomes. In contrast, CCGAN is equipped with optimized
hyperparameter due to the existence of equilibrium point. Thus, it can accurately infer and apply
pre-defined colors to grayscale inputs. This eliminates the troublesome process of hyperparameter
tuning and the associated risk of selecting suboptimal values.

Gray Image

CCGAN

Colla GAN

Figure 3: Image colorization: CCGAN leads to optimal with equilibrium point in Theorem 2.

The avoidance of training collapse. To evaluate CCGAN’s efficacy in mitigating training collapse,
we consider the multi-modal generation task. This task involves generating a new image that is
realistic and coherent with an input image, necessitating the model to capture multiple modes within
the underlying distribution. To achieve this, GAN models often incorporate regularization terms,
striking a balance between fidelity and diversity. However, regularization can also lead to training
collapse when applied inconsistently, resulting in unrealistic or incoherent generated images. The
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results of multi-modal generation on both the Facade dataset Tyleček & Šára (2013); Isola et al.
(2017) and deepFashion dataset Liu et al. (2016); Zhu et al. (2020b) are shown in Figure 4.

Input COCO-GAN CCGAN

(a) : Image-to-image generation: buildings

Ground truth

(b) : Image-to-image generation: human clothes

Input mask COCO-GAN CCGAN Ground truth

Figure 4: The multi-modal reconstruction results of CCGAN and baseline method.

As depicted in Figure 4, the images produced by CCGAN exhibit superior clarity and coherence
when contrasted with those generated by COCO-GAN. This distinction may stem from the inherent
nature of the regularization loss within our design, which allows the model to explore more modes
in the data distribution, as discussed in Theorem 3. Furthermore, our model benefits from the per-
formance guarantee established in Theorem 2, allowing it to achieve more precise reconstructions
with smoothly delineate image edges.

Enhanced performance of CCGAN with regular-shaped objects. After evaluating CCGAN’s ca-
pabilities, we want to identify the scenarios where CCGAN exhibits enhanced efficacy. We hypothe-
size that CCGAN, benefiting from its equilibrium point, thrives when processing images containing
“convex” objects. These objects can be represented by convex functions within neural networks,
allowing models with global optimality guarantee to excel. To test our hypothesis, we created a syn-
thetic dataset Syn comprising various geometric shapes, from regular rectangles to irregular circles.
We argue that rectangles, describable by multiple line segments, exhibit “convexity” more than ir-
regular circles. In Figure 5, we compare CCGAN and Co-GAN in applying colors to these synthetic
geometric shapes. The results reveal that Co-GAN struggles more with rectangles than circles. This
may be attributed to inconsistent regularization, leading to unclear and jagged edges in generated
images, thereby diminishing their quality and realism. In contrast, our model, benefiting from the
equilibrium point, excels at discerning objects with well-defined shapes and edges.

Shape Co-GAN CCGAN

Irregular circles Regular rectangles

Shape Co-GAN CCGAN

Figure 5: Image colorization on synthetic shapes.

In addition to testing this phenomenon with synthetic data, we extend our validation to real-world
datasets, specifically in the context of image super-resolution task. This task often incorporate regu-
larization into GAN models to faithfully reproduce the low-resolution input. Figure 6 presents visual
results comparing CCGAN and baselines. The comparison highlights CCGAN’s ability to produce
clearer, higher-resolution reconstructions. Notably, CCGAN exhibits superior performance when
processing objects with regular shapes and well-defined edges. This heightened performance can
be attributed to the inherent performance guarantee of the CCGAN design, which promotes greater
accuracy when the depicted objects in the image exhibit convex characteristics.
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LR image COCO-GAN CCGAN LR image COCO-GAN CCGAN

Complex objects Regular-shape objects

Figure 6: CCGAN and COCO-GAN reconstruction results and reference low-resolution (LR) image.

For image super-resolution task, we also evaluate the result using commonly used metrics, including
peak signal-to-noise ratio (PSNR) Yang et al. (2007), structural similarity (SSIM) Wang et al. (2004)
and mean opinion score (MOS) . The results in Table 1 validate our performance is better than the
baselines, verifying the capability of CCGAN to generate satisfactory data catering to specific need.

Table 1: Comparison of CCGAN and baselines and the original High Resolution (SR) image.

SuperRes COCO-GAN CollaGAN Co-GAN CCGAN HR

PSNR ↑ 29.53 28.91 29.40 30.43 ∞
SSIM ↑ 0.8621 0.8835 0.8472 0.9011 1
MOS ↑ 3.19 2.85 3.64 3.69 4.25

Performance of CCGAN on generating power data. Beyond image datasets, we explore power
data from power systems. We consider a scenario known as the false data injection attack. This
task assesses CCGAN’s ability to create deceptive power data based on real power data, capable
of passing the chi-square test for power utility evaluation. Notably, power data differs from image
data, representing continuous time-series data, which enriches our validation on CCGAN. Figure 7
displays CCGAN’s superior performance in generating deceptive data based on the FDIA dataset,
as it yields a higher probability of passing the chi-square test compared to baseline models.
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Figure 7: False data injection results from CCGAN and baselines

5 CONCLUSION

We presente a technique that enables collaboration in Generative Adversarial Networks. Unlike
prior work, our proposed framework preserves the performance guarantee of original GAN, and
mitigates the training collapse issue. In specific, we introduced an elegant transformation from the
collaboration regularization term to a distribution divergence metric, avoiding addition complexity
when seeking an equilibrium point. Our work not only enhances collaboration, interpretability,
and the overall optimality of GAN models, but also paves the way for exploring generative models
capable of meeting additional requirements with a performance guarantee.
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A PROOF OF THEOREM 1

Proof. The formulation in Equation (2) can be seen as the following optimization over the generator
and discriminator:

min
pgen

JS(pdata, pgen)︸ ︷︷ ︸
learn “true” distribution

+ λ · Lregularization(pneed, pgen)︸ ︷︷ ︸
fulfill “other” requirements

, (7)

where the original loss VGAN(D,G) is equivalent Goodfellow et al. (2014) to the Jensen–Shannon
(JS) divergence JS(pdata∥pgen) between true data distribution pdata and generated data distribution
pgen. Minimizing the JS divergence JS(pdata∥pgen) can make learned distribution pgen match the true
distribution pgen. Minimizing the Lregularization fulfills specific need pneed beyond the authenticity
of the data distribution. Under the assumption of Gaussianality, we denote pdata = N (µ1, σ

2
1),

pneed = N (µ2, σ
2
2) and pgen = N (µ, σ2). Then, Equation (7) reads as

min
µ,σ

JS(N (µ1, σ
2
1),N (µ, σ2)) + λ · Lregularization(N (µ2, σ

2
2),N (µ, σ2))

=min
µ,σ

log
σ2
1 + σ2

2σ1σ
+

(µ1 − µ)2

σ2
1 + σ2

+ λ · (µ2 − µ)2 + λ · (σ2
2 − σ2)2. (8)

For deriving the equilibrium point of (µ, σ), we assign corresponding derivative for µ to zero as

2(µ1 − µ)

σ2
1 + σ2

+ 2λ · (µ2 − µ) = 0 ⇒ µ =
µ1 + λ(σ2

1 + σ2)µ2

1 + λ(σ2
1 + σ2)

. (9)

Taking the above result into Equation (8) and assign derivative for σ to zero, we have

σ2 − σ2
1

(σ2 + σ2
1)σ

− 4λσ(σ2
2 − σ2) + λ(µ2 − µ1)

2 −2λσ

[1 + (σ2 + σ2
1)]

2
= 0, (10)

which is a polynomial equation of degree higher than five, where an analytic (closed-form) solution
is absent Ramond (2022).

B PROOF OF THEOREM 3

Proof. The training criterion for the discriminator D, given a fixed generator G, is to maximize the
quantity VGAN(D,G)− Lregularization(D,G;λ) as

Ex∼pdata(x)[log(D(x))− log(D(x)− λ)] + Ez∼pz(z)[log(1−D(G(z)))− log(γ −D(G(z)))]

=

∫
x

pdata(x)[log(D(x))− log(D(x)− λ)]dx+

∫
z

pz(z)[log(1−D(G(z)))− log(γ −D(G(z)))]

=

∫
x

pdata(x)[log(D(x))− log(D(x)− λ)]dx+

∫
x

pgen(x)[log(1−D(x))− log(γ −D(x))].

Then, the optimal discriminator D∗
G is obtained when

(
pdata(x)

D∗
G(x)

− pdata(x)

D∗
G(x)− λ

) + (
pgen(x)

D∗
G(x)− 1

− pgen(x)

D∗
G(x)− γ

) = 0

=⇒ −λpdata(x)(D
∗
G(x)− 1)(D∗

G(x)− γ) + (1− γ)pgen(x)D
∗
G(x)(D

∗
G(x)− λ)

=⇒ D∗
G(x) =

1

2

[λγ(pdata(x) + pgen(x)) + λ(pdata(x)− pgen(x))]
2 +

√
4λγpdata(x)((1− γ)pgen(x)− λpdata(x))

(1− γ)pgen(x)− λpdata(x)
.
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