
Published as a conference paper at ICLR 2026

STAR: SIMILARITY-GUIDED TEACHER-ASSISTED RE-
FINEMENT FOR SUPER-TINY FUNCTION CALLING
MODELS

Jiliang Ni∗, Jiachen Pu*, Zhongyi Yang*, Jingfeng Luo, Conggang Hu†

Algorithm Platform Team, AI Hardware Division
Alibaba
conggang.hcg@alibaba-inc.com

ABSTRACT

The proliferation of Large Language Models (LLMs) in function calling is pivotal
for creating advanced AI agents, yet their large scale hinders widespread adoption,
necessitating transferring their capabilities into smaller ones. However, existing
paradigms are often plagued by overfitting, training instability, ineffective binary
rewards for multi-solution tasks, and the difficulty of synergizing techniques. We
introduce STAR: Similarity-guided Teacher-Assisted Refinement, a novel holis-
tic framework that effectively transfers LLMs’ capabilities to super-tiny models.
STAR consists of two core technical innovations: (1) Constrained Knowledge Dis-
tillation (CKD), a training objective that augments top-k forward KL divergence
to suppress confidently incorrect predictions, ensuring training stability while pre-
serving exploration capacity for downstream RL. STAR holistically synergizes
these strategies within a cohesive training curriculum, enabling super-tiny mod-
els to achieve exceptional performance on complex function calling tasks; (2)
Similarity-guided RL (Sim-RL), a RL mechanism that introduces a fine-grained,
similarity-based reward. This provides a robust, continuous, and rich signal for
better policy optimization by evaluating the similarity between generated outputs
and the ground truth. Extensive experiments on challenging and renowned bench-
marks demonstrate the effectiveness of our method. Our STAR models establish
SOTA in their size classes, significantly outperforming baselines. Remarkably,
our 0.6B STAR model achieves the best performance among all open models un-
der 1B, surpassing even several well-known open models at a larger scale. STAR
demonstrates a training framework that distills capabilities of LLMs into super-
tiny models, paving the way for powerful, accessible, and efficient AI agents.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities as agents that inter-
act with external tools and APIs via function calling (Patil et al., 2024; Jin et al., 2025). This has
driven a new generation of applications, from automated personal assistants to complex data anal-
ysis systems. However, the prohibitive computational cost of state-of-the-art models driving these
advancements, often with tens to hundreds of billions of parameters, hinders their accessibility and
practicality for on-device deployment and large-scale services (Guo et al., 2025). This necessitates
transferring the capabilities of large models to smaller, more efficient models. However, the con-
ventional strategy (DeepSeek-AI et al., 2025; Cui et al., 2025a) to achieve this, which involves a
sequence of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), proves inadequate
for such super-tiny models. The inherently limited capacity of these models makes them prone to
overfitting when trained with SFT on finite, high-quality datasets; they memorize specific tool-use
patterns rather than generalize. Concurrently, applying RL directly to small models is notoriously
unstable and inefficient (Sarangi & Salam, 2025; Dang & Ngo, 2025).

∗Equal Contribution.
†Corresponding Author.

1

Published as a conference paper at ICLR 2026

These limitations suggest a more promising approach: combining Knowledge Distillation (KD)
to provide a robust, generalizable initialization for RL without the risk of overfitting. Yet, this
KD+RL paradigm introduces its own distinct and formidable challenges: (1) KD instability and
constrained exploration: To manage computational costs, standard KD often employs top-k trun-
cation, leaving the student’s long-tail probability distribution unsupervised. This lack of guidance
frequently leads to training instability and model collapse, while simultaneously stifling the ex-
ploratory capacity essential for the subsequent RL phase; (2) Ineffective RL rewards: For multi-
solution problems such as function calling, standard discrete or binary success/failure rewards can
excessively penalize valid, alternative solutions, thereby impeding effective learning (Wei et al.,
2025); (3) Synergistic integration challenges: Achieving true synergy between KD and RL, rather
than interference, presents a significant practical hurdle.

This context motivates our work, aiming to create an effective and stable training framework that
overcomes these obstacles. We introduce STAR: Similarity-guided Teacher-Assisted Refinement, a
holistic framework designed to meticulously transfer and refine LLMs’ capabilities into super-tiny
models. Our contributions are threefold:

• We introduce Constrained Knowledge Distillation (CKD), a novel training objective that
enhances top-k forward KL-divergence with a targeted regularization term on the student’s
probability distribution. This suppresses high-confidence but erroneous predictions without
forcing the long-tail distribution to zero, ensuring stability under top-k truncation while
preserving the crucial exploratory capacity for downstream RL.

• We propose a novel RL mechanism, Sim-RL, that augments the standard task reward with a
fine-grained similarity-based reward. This reward is computed from the similarity between
generated outputs and the ground truth, providing a robust, continuous, and rich signal to
enhance policy optimization without increasing system complexity.

• We present a unified training curriculum that effectively synergizes the strengths of CKD
and Sim-RL, culminating in STAR models that establish new SOTA on the challenging and
renowned benchmarks for their own sizes. Notably, our 0.6B STAR model achieves relative
gains of 9.2% on BFCL and over 50% on ACEBench against baselines. It outperforms all
open-source models under 1B and even several significantly larger models. The code link
is https://github.com/Qwen-Applications/STAR.

The immense inference cost of highly capable large models mainly hinders their large-scale appli-
cation, making it a critical research goal to elevate small models’ performance to near-large-model
levels. Our work validates that a well-designed training framework can transfer LLMs’ capabilities
into super-tiny models. This unlocks their potential in specialized fields, broadens the real-world
deployment of advanced AI, and enables the creation of powerful, accessible, and efficient agents.

2 TASK DEFINITION: FUNCTION CALLING AS A GENERATION PROBLEM

We formalize the task of function calling as a conditional sequence generation problem. The
model is provided with a context, which includes the user’s query, a set of available functions
F = {f1, f2, ..., fN} and other information. Each function fi is defined by its name, a descrip-
tion of its purpose, and its parameters.

The model’s goal is to generate a sequence of function calls P = (p1, p2, ..., pn) that solves the
user’s query. A function call is a structured output, typically in a specific format like JSON, e.g.,
{”name” : ”...”, ”arguments” : {”arg” : ”...”, ...}}. Additionally, the model is also required to
provide natural language responses when no function calls are needed.

3 THE STAR METHODOLOGY

The STAR methodology is a comprehensive training framework designed to imbue a super-tiny
student model (MS) with the advanced function calling capabilities of a much larger teacher model
(MT). It consists of two core technical components—CKD and Sim-RL—applied within a carefully
structured training curriculum, as illustrated in Figure 1.

2

https://github.com/Qwen-Applications/STAR

Published as a conference paper at ICLR 2026

Figure 1: The overview of the STAR training curriculum.

3.1 CONSTRAINED KNOWLEDGE DISTILLATION (CKD)

Knowledge distillation (KD) is a cornerstone for aligning a student model (MS) with a teacher
(MT). A central design choice in KD for language models is the divergence metric, typically
oscillating between the distribution-covering Forward KL-divergence (LFKL) and the mode-seeking
Reverse KL-divergence (LRKL) (Gu et al., 2024; Li et al., 2024). LRKL forces the student model
(MS) to focus on the high-probability tokens of the teacher (MT) while ignoring the vast, often
uninformative tail of the distribution, defined as:

LFKL =
∑
x∈D

DKL(PT (y|x)∥PS(y|x)) (1)

LRKL =
∑
x∈D

DKL(PS(y|x)∥PT (y|x)) (2)

where PS and PT represent the output distributions over a vocabulary for a given context x. Some
methods, like Adaptive Kullback-Leiber divergence (AKL), combine both (Wu et al., 2025).

(a) (b)

Figure 2: FKL vs. RKL/AKL. We compare format rewards and entropy losses with different KL
divergences during KD and RL training. Left: The RKL/AKL leads to catastrophic training collapse
during KD. Right: The entropy losses with stablized-RKL/AKL are constantly smaller during RL.

3.1.1 INSTABILITY WITH TOP-K TRUNCATION

For computational efficiency, KD is often performed using top-k truncation, where the loss is com-
puted only on the teacher’s top-k tokens (Vk(x)). However, we discover that combining this strategy
with the mode-seeking RKL (or its variant AKL) leads to catastrophic training collapse, as shown
in Figure 2a. Our analysis shows this is caused by the RKL component, which imposes instable
supervision on any token outside Vk(x), destabilizing the optimization. In contrast, top-k FKL re-
mains stable as it simply ignores the tail distribution, imposing no such constraint. A theoretical
justification for this instability is provided in Appendix A.3.

3.1.2 THE HIDDEN COST OF RKL

Beyond instability, we identify a more fundamental limitation of RKL-based methods: dimin-
ished exploratory capacity. Even with a stabilized variant of top-k RKL and its variant AKL

3

Published as a conference paper at ICLR 2026

(Appendix A.4), we observe that it consistently yields models that underperform a simple top-k
FKL baseline in downstream RL fine-tuning. We attribute this performance deficit to RKL’s mode-
seeking nature, which aggressively prunes the tail of the student’s distribution. While this behavior
promotes high-fidelity imitation, it critically reduces the student model’s output entropy (Figure 2b),
thereby limiting its capacity for exploration—a prerequisite for successful reinforcement learning.

3.1.3 OUR APPROACH

These findings motivate our method, Constrained Knowledge Distillation (CKD). We start with
the stable and exploration-friendly top-k FKL and introduce a targeted regularization term Ltail to
control the most problematic part of the student’s tail distribution. This term Ltail applies an L1
penalty only to tokens that the student considers probable (in its top-m set, Vm(x)) but the teacher
deems irrelevant (outside its top-k set, Vk(x)).

Our final CKD loss function combines the top-k FKL objective with this targeted tail penalty:

LCKD = LFKL-k + λtailLtail (3)

where:

LFKL-k =
∑
x∈D

∑
v∈Vk(x)

PT (v|x) log
PT (v|x)
PS(v|x)

(4)

Ltail =
∑
x∈D

∑
v∈Vm(x)\Vk(x)

PS(v|x) (5)

and λtail is a balancing hyperparameter. This approach directly suppresses the student from confi-
dently predicting tokens that the teacher has dismissed. Moreover, according to the detailed gradient
analysis (see Appendix A.5), this penalty encourages the redistribution of probability, which implic-
itly regularizes the student’s predictions within the top-k set and discourages over-confidence. It is
also beneficial for downstream RL as it retains the capacity for exploration.

3.2 SIMILARITY-GUIDED REINFORCEMENT LEARNING (SIM-RL)

Reinforcement Learning with Verifiable Rewards (RLVR) shows significant promise in enhancing
the reasoning capabilities of large language models (Lambert et al., 2025). Because the function
calling task typically admits multiple valid solutions and meets the challenges of simulating realistic
API feedback during training, the reward design often depends on process reward model (PRM) or
abstract syntax tree (AST) parsing (Goldie et al., 2025). In this work, we propose Sim-RL, a method
that generates reward signals through low-cost computation of similarity between model outputs and
ground-truth responses. This approach enables fine-grained similarity-based reward discrimination
while effectively mitigating issues of over-rewarding or excessive penalization.

3.2.1 REWARD DESIGN

Format Reward. A prerequisite for a successful function call is the generation of a response
in the correct format. To enable parsing into a structured function call object, the model output
must be constrained by a strict format. We illustrate one implementation of format reward us-
ing the Qwen tool calling template (see Appendix A.1) as an example. A generation is consid-
ered valid if it adheres to the following rules: (1) The output must contain exactly one pair of
<think>...</think> tags, encapsulating the model’s reasoning process; (2) If the model de-
cides to invoke functions, each invocation must be wrapped in <tool call>...</tool call>
tags; (3) The content must be a single JSON object containing two keys: "name" and
"arguments"; (4) The value of the "name" key must be present in the set of available func-
tions, F ; (5) Furthermore, all keys within the "arguments" object must be a subset of the keys
defined for that specific function in F .

The format reward Rformat is a binary signal defined as:

Rformat =

{
1 if all format rules are satisfied
0 otherwise

(6)

4

Published as a conference paper at ICLR 2026

Function Call Reward. Conditioned on a correct format (Rformat = 1), we evaluate the accuracy
of the tool invocations. Inspired by the Intersection over Union (IoU) principle, the tool call reward
compares the predicted sequence of tool calls P = {p1, . . . , pm} against the ground-truth sequence
G = {g1, . . . , gn}. It is defined as:

Rfc =

∑min(m,n)
i=1 sim(pi, gσ(i))

|P |+ |G| − |P ∩G|
(7)

where σ is a greedy matching scheme that establishes a one-to-one correspondence between ele-
ments of P and G (see Algorithm 2 in Appendix A.7); sim(p, g) is an argument-level similarity
function between a predicted call p and a ground-truth call g:

sim(p, g) =

∑
k∈keys(p)∩keys(g) s(pk, gk)

|keys(p) ∪ keys(g)|
(8)

The function s(pk, gk) computes the similarity for a specific argument key k, with its definition
varying by data type: (1) String: ROUGE-L F1 score (Lin, 2004); (2) Numeric/Boolean: An exact
match (1 if equal, 0 otherwise); (3) Other types: An exact match after converting both values to
their string representations. Please refer to Algorithm 3 in Appendix A.7.

Response Reward. In our task, the model may also generate a natural language response directly
without invoking any functions. For such text-only generations, the response reward is defined as
the ROUGE-L F1 score between the predicted response p and the ground-truth response g:

Rresponse = ROUGE-L(p, g) (9)

Total Reward. The total reward R is a composite function that unifies these components:

R = (Rformat − 1)︸ ︷︷ ︸
format term

+Rformat · (Rfc +Rresponse)︸ ︷︷ ︸
answer term

(10)

This structure ensures that any format error (Rformat = 0) results in a strong penalty of -1 from the
format term. If and only if the format is correct (Rformat = 1), the reward transitions to the answer
term, evaluating its correctness. The total reward R is thus bounded in the range [-1, 1], guiding the
model towards both correct answer formatting and content accuracy. For specific implementation
details, please refer to the Appendix A.7.

3.2.2 OPTIMIZATION METHOD

We employ GRPO (Shao et al., 2024) as our RL algorithm. GRPO enhances stability by using
G rollouts for each prompt and computing the advantage Â via reward standardization across the
group. The objective function is:

JGRPO(θ) = E(q,a)∼D,{oi}Gi=1∼πθold
(·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
− βDKL(πθ∥πref)

)]
(11)

where the advantage Âi,t for each token is derived from the standardized reward Ri of its corre-
sponding rollout oi:

Âi,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
(12)

Given that answer term reward is bounded in [0, 1], a group-wise mean reward of exactly 0 or 1
implies that all rollouts in the group are either entirely incorrect or perfectly correct, respectively.
In such cases, the advantage Â is zero for all samples, so these homogeneous groups contribute
no gradient signal. Inspired by DAPO (Yu et al., 2025), we introduce a filtering mechanism to
discard these groups from each training batch. This simple yet effective strategy prevents wasted
computation and accelerates the RL training process.

5

Published as a conference paper at ICLR 2026

3.3 THE STAR TRAINING CURRICULUM

Our full training process consists of model distillation and model refinement, as shown in Figure 1.

Model Distillation: Effective distillation requires the selection of a good teacher model. A capa-
ble, instruction-tuned model (e.g., Qwen3-8B) can serve this purpose. Additionally, inspired by the
teacher correction (Sreenivas et al., 2024), we employ the Sim-RL mechanism (see Section 3.2) to
better adapt the teacher model to the distillation dataset. Next, we use our stable Constrained Knowl-
edge Distillation (CKD) method to distill the refined teacher’s knowledge into the student model.
This step effectively transfers the teacher’s core capabilities while preventing training instabilities.

Model Refinement: Finally, we polish the distilled student’s policy with a final application of Sim-
RL. This phase corrects minor distillation artifacts and directly optimizes the student’s performance
and reliability on the most difficult problems.

4 EXPERIMENTS

We conduct a series of solid experiments to validate the effectiveness of our STAR methodology.

4.1 EXPERIMENTAL SETUP

Models. We use the Qwen-family of models (Yang et al., 2025). The teacher model, MT , is a
Qwen3-8B fine-tuned with Sim-RL. The student models,MS , comprise Qwen3-0.6B, Qwen3-1.7B,
and Qwen3-4B, which are trained under the guidance ofMT . Details can be seen in Appendix A.2.

Datasets. We construct our initial training set, D, by merging four datasets:

• ToolACE (Liu et al., 2025): 11.3k instances of diverse tool usage patterns.

• xLAM (Liu et al., 2024): 60k high-quality, validated function calling samples.

• xLAM-irrelevance (Lin et al., 2025): 6.7k filtered samples for irrelevant function detec-
tion, with answers synthesized using Qwen3-32B.

• Tool-use-synthetic1: 50k sampled instances of multi-step and multi-turn interactions.

Data in D is formatted to the Qwen chat specification, with responses validated by a format checker
Rformat. The teacherMT then generates rollouts on D to create an augmented dataset DT , which
includes the teacher’s reasoning and final answer. These trajectories are also filtered by Rformat to
ensure structural correctness. Detailed prompt formats are available in Appendix A.1.

Baselines. We compare our method, STAR, against several strong baselines:

• Base-model: The pre-trained model without any fine-tuning.

• SFT: Standard supervised fine-tuning on the dataset D.

• SFT-think: SFT on the teacher-augmented dataset DT .

• FKL: Training on DT with a top-k (k=100) forward KL divergence loss, guided byMT .

• ToolRL (Qian et al., 2025): Training the SFT-think model with GRPO and a specialized
reward function.

• LUFFY (Yan et al., 2025): A hybrid offline-online approach using both D and DT with
the Sim-RL reward.

• GKD (Agarwal et al., 2024): An online knowledge distillation method trained jointly with
RL on D, using the Sim-RL reward and guidance fromMT .

Benchmarks. We evaluate all models on two established benchmarks. See details of each evaluation
category of benchmarks in Appendix A.9 :

1https://huggingface.co/datasets/ai2-adapt-dev/tool-use-synthetic-gpt-4.
1-p1

6

https://huggingface.co/datasets/ai2-adapt-dev/tool-use-synthetic-gpt-4.1-p1
https://huggingface.co/datasets/ai2-adapt-dev/tool-use-synthetic-gpt-4.1-p1

Published as a conference paper at ICLR 2026

• BFCL (Patil et al., 2025): The de facto standard for function calling evaluation, assessing
serial/parallel calls, multi-language support, and multi-step reasoning.

• ACEBench (Chen et al., 2025): A new function calling benchmark that enforces a specific
output format, challenging a model’s instruction-following and generalization abilities.

4.2 MAIN RESULTS

Table 1: Performance comparison of different fine-tuning methods on Qwen3-0.6B, evaluated on
the BFCLv3 benchmark.

Method Overall Acc Non-Live Acc Live Acc Multi Turn Acc
Standard methods
Base-model 47.33 71.81 65.66 1.88
SFT 44.58 66.29 62.15 1.62
SFT-think 47.59 71.54 64.46 4.50
FKL 49.51 76.44 65.93 5.12

Recent methods
ToolRL 47.35 64.81 66.55 6.75
LUFFY 49.23 76.75 64.59 5.48
GKD 47.32 67.62 67.61 3.25

Our methods
CKD 49.84 75.92 66.15 5.62
Sim-RL 49.35 75.21 67.39 3.25
SFT+Sim-RL* 50.41 76.27 66.99 6.13
CKD+Sim-RL 51.70 78.65 68.19 7.00
*It refers to Sim-RL on SFT-think.
The detailed statistics show in Table 7.

Table 2: Performance comparison of different fine-tuning methods on Qwen3-0.6B, evaluated on
the ACEBench Normal benchmark.

Method Summary Atom Single-
Turn

Multi-Turn Similar
API

Preference

Standard methods
Base-model 27.20 37.70 19.50 10.00 36.00 6.00
SFT 2.10 1.70 0.50 0.00 14.00 0.00
SFT-think 28.70 42.30 14.00 9.00 34.00 10.00
FKL 36.80 52.30 16.00 16.00 42.00 22.00
Recent methods
ToolRL 29.40 45.00 12.50 10.00 34.00 4.00
LUFFY 44.40 59.30 26.50 26.00 50.00 22.00
GKD 40.10 54.00 21.50 23.00 46.00 22.00
Our methods
CKD 39.00 55.00 21.00 19.00 48.00 10.00
Sim-RL 39.30 53.30 23.50 21.00 52.00 10.00
SFT+Sim-RL* 38.90 53.00 21.50 21.00 46.00 18.00
CKD+Sim-RL 53.00 69.30 35.00 32.00 62.00 20.00
*It refers to Sim-RL on SFT-think.
The detailed statistics show in Table 8.

7

Published as a conference paper at ICLR 2026

Table 3: Model performance on function call-
ing benchmarks across scales.

Model BFCLv3
Overall

ACEBench
Normal

Qwen3-8B 66.34 72.90
Llama3.1-8B 49.57 46.60
Watt-Tool-8B 67.79 75.60
Hammer2.1-7B 62.25 62.80
Teacher-8B 67.74 72.70

Qwen3-4B 63.39 71.80
Llama3.2-3B 45.86 29.60
Hammer2.1-3B 59.56 18.70
STAR-4B 65.24 74.10
Qwen3-1.7B 54.70 51.60
STAR-1.7B 56.05 60.90
Qwen3-0.6B 47.33 27.20
STAR-0.6B 51.70 53.00

Table 4: Model performance on function calling
benchmarks with different KD strategies.

Method
BFCLv3
Overall

ACEBench
Normal

w/o RL w/ RL w/o RL w/ RL

CE 47.59 50.41 28.70 38.90
FKL 49.51 51.46 36.80 50.00
RSKD 49.03 50.65 35.40 49.80

RKL* 49.26 50.49 35.30 41.30
AKL* 49.47 50.29 44.20 49.00
CKD 49.56 51.70 39.00 53.00
*The stable variant.

Overall Performance. As shown in Table 1 and Table 2, our proposed STAR framework, which
combines CKD and Sim-RL, establishes a new SOTA for function calling on the 0.6B model scale.
On BFCLv3 benchmark, STAR (CKD+Sim-RL) achieves an overall accuracy of 51.70, and on
ACEBench, it scores 53.00, outperforming all standard and recent methods by a significant margin.
Notably, STAR’s individual components are also highly effective; CKD and Sim-RL alone surpass
most baselines, but their combination yields a synergistic improvement, boosting the BFCLv3 score
by over 2 points and the ACEBench score by 14 points compared to their individual applications.
The detailed statistics show in Appendix A.10 and the additional results show in Appendix A.12.

Superior Generalization and Robustness. STAR’s generalization capabilities are a key advan-
tage of our framework. Standard Supervised Fine-Tuning (SFT) leads to a performance collapse
on ACEBench, as the model severely overfits to the JSON format of the training data and fails to
adapt to the benchmark’s Python-style function call syntax. In stark contrast, the STAR-trained
model, despite being trained on the same data, demonstrates exceptional robustness. It successfully
generalizes its learned function calling abilities to the unseen format, highlighting that our KD+RL
paradigm teaches the model underlying reasoning rather than mere format mimicry.

Performance Across Scales. We validate the effectiveness of STAR across various model sizes, as
detailed in Table 3. Our STAR-trained models consistently outperform their base model counterparts
and other models of similar scale. The results demonstrate that STAR significantly closes the per-
formance gap with much larger models. For instance, our STAR-0.6B model (53.00 on ACEBench)
substantially surpasses the much larger Llama3.1-8B (46.60). And our STAR-4B (74.10) outper-
forms Qwen3-8B (72.90) on ACEBench. This showcases the framework’s potent ability to distill
and refine capabilities into smaller, more efficient models across various scales.

4.3 ANALYSIS

Why KD+RL over SFT+RL for Super-Tiny Models? The prevalent SFT+RL paradigm, while
effective for large models, proves suboptimal for super-tiny models. SFT’s hard supervision forces
small, limited-capacity models to overfit and ”memorize” specific output formats . This leads to a
policy with limited generalization, as evidenced by its failure and low Pass@k score on ACEBench
(Figure 3 and Table 2), and creates a poor initialization for RL that limits refinement potential. In
contrast, our STAR framework forces the student to mimic the teacher’s full probability distribution
using ”soft” supervision through KD training. This encourages learning the teacher’s reasoning and
uncertainty, resulting in a more robust and generalizable initial policy as a stronger foundation for
the subsequent Sim-RL refinement.

8

Published as a conference paper at ICLR 2026

Figure 3: Comparison of Pass@k performance
for different methods.

Figure 4: Comparison of Pass@k performance
and entropy for different KD methods.

The Role of Constrained Distillation. Our ablation over various KD strategies (Table 4) justi-
fies choosing CKD. While all KD methods, including recent approaches like RSKD (Anshumann
et al., 2025), are better initializers for Sim-RL than cross-entropy (CE), CKD consistently yields the
best final performance. Crucially, the CKD-initialized policy already exhibits superior reasoning
capacity before RL, achieving the highest Pass@k scores among all initializers (Figure 4, bottom).
This metric is a vital indicator of a model’s potential, measuring its ability to generate a diverse set
of correct solutions rather than relying on a single, high-confidence prediction (Deng et al., 2025;
Kang et al., 2025). This advantage stems from CKD’s unique re-balancing of learning signals: it
preserves the teacher’s top-k probabilities while introducing a targeted suppression term that pe-
nalizes ”confident-but-wrong” logits more forcefully. This focused distillation creates a superior
policy initialization that is more amenable to RL refinement by endowing the model with signifi-
cantly higher policy entropy at the start of RL training (Figure 4, top). Such entropy is essential for
effective exploration and preventing premature convergence in RL (Sutton, 1988; Cui et al., 2025b).
This approach synergizes most effectively with Sim-RL, because CKD achieves higher Pass@k and
policy entropy than other advanced methods like Stabilized AKL, which are limited by a suppressed
policy entropy that prevents their gains from translating well post-RL. It underscores the importance
of our constrained approach.

Similarity-based Reward Design. Our ablation over reward designs (Table 5) demonstrates the
inadequacy of standard metrics, like binary reward (Hao et al., 2025), for complex tasks. A binary
reward proves brittle, failing to generalize as it harshly penalizes functionally correct yet syntac-
tically varied solutions. While more advanced methods like the specialized ToolRL reward and
SWiRL (Goldie et al., 2025), a Process Reward Model (PRM) based variant, offer improvements,
our Sim-RL consistently achieves superior performance, especially on the challenging generaliza-
tion benchmark. This advantage stems from its fine-grained, continuous reward signal, which eval-
uates output similarity rather than a strict pass/fail criterion. This richer signal more effectively
guides the policy towards a diverse set of valid solutions, enhancing generalization and confirming
that a task-aligned similarity metric is crucial for optimal policy refinement. The case study shows
in Appendix A.11.

Table 5: Ablation study on reward designs.

Method BFCLv3 Overall ACEBench Normal
CKD+Binary Reward 51.05 35.70
CKD+ToolRL 48.59 40.50
CKD+SwiRL 51.10 40.30
CKD+Sim-RL 51.70 53.00

9

Published as a conference paper at ICLR 2026

5 RELATED WORKS

LLM for Function Calling Function calling is a fundamental capability for agentic AI, enabling
models to interact with external tools. Early research showed that self-supervised learning could
improve zero-shot tool-calling capabilities (Schick et al., 2023). Subsequently, a dominant paradigm
has been supervised fine-tuning (SFT) on large-scale, synthetically generated datasets with verifiable
tool calls (Liu et al., 2024; 2025; Li et al., 2023). To mitigate impaired generalization caused by
naive SFT, researchers have introduced strategies like masking (Lin et al., 2025). More recently,
reinforcement learning (RL) has been applied on top of SFT to further enhance performance (Qian
et al., 2025). Notably, these advancements are not exclusive to large models, as targeted training has
enabled even 1B-scale models to achieve practical tasks like web browsing (Erdogan et al., 2024).

Knowledge Distillation Knowledge Distillation (KD) trains a compact student model to mimic
a larger teacher, originally by matching its output probability distribution (Hinton et al., 2015).
Prevailing methods distill knowledge from the teacher’s output logits (Gu et al., 2024; Kim et al.,
2024), intermediate features (Yang et al., 2023), or entire sequences (Kim & Rush, 2016). Logits-
based approaches, which are common, typically minimize the forward KL divergence (FKL) (Sanh
et al., 2020; Kim et al., 2023), reverse KL divergence (RKL) (Gu et al., 2024; Li et al., 2024), or
both (Wu et al., 2025). More recently, top-k distillation has been explored to improve computational
and storage efficiency (Anshumann et al., 2025; Peng et al., 2025).

Reinforcement Learning Enhancing the reasoning abilities of Large Language Models (LLMs)
through RL has emerged as a prominent research direction (Hu et al., 2025b; Xie et al., 2025; Pan
et al., 2025). This line of inquiry has yielded several high-performing models, including DeepSeek-
R1 (DeepSeek-AI et al., 2025), Qwen3 (Yang et al., 2025), and OpenAI’s o1 (Jaech et al., 2024).
Central to these advancements is Proximal Policy Optimization (PPO) (Schulman et al., 2017), a
foundational RL algorithm. Building on PPO, Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) simplifies the training pipeline by incorporating verifiable rule-based rewards. Subse-
quently, DAPO (Yu et al., 2025) further refines GRPO with techniques like clip-higher and dynamic
sampling, boosting both training efficiency and performance. In parallel, SFT is now standard prac-
tice for initializing RL training (Cui et al., 2025a), motivating further research into hybrid paradigms
that optimize the synergy between SFT and RL (Yan et al., 2025; Ma et al., 2025).

6 CONCLUSION

We introduce STAR, a framework combining constrained knowledge distillation (CKD) and a
similarity-driven RL mechanism Sim-RL to transfer LLMs’ capabilities to super-tiny models for
efficient, low-latency deployment. Empirically, STAR establishes a new performance benchmark
for this model class, rivaling and even surpassing some larger models. Our analysis demonstrates
that our training curriculum is superior to conventional paradigms for low-capacity models, effec-
tively transferring teacher competence into a generalizable student policy. We position STAR as a
promising approach for principled small-model specialization. We hope this work catalyzes further
research on compact, reliable agents—exploring multi-teacher strategies, richer reward designs, and
deployment-aware constraints—to make capable models accessible where they are most needed.

7 LIMITATION & FUTURE WORK

While STAR demonstrates strong performance on function calling, several limitations warrant fur-
ther investigation. First, our current work is validated on function calling, yet the underlying frame-
work shows promising potential for generalization to other tasks (e.g., SQL generation, mathemat-
ical reasoning), which presents a promising avenue for future work. Second, we have explored
some similarity-guided rewards to improve the training process. While this initial approach has
proven effective, a more comprehensive investigation into alternative and potentially more sophisti-
cated similarity measures is left for future work. Such an exploration could help in designing more
granular feedback, although the potential performance gains remain to be quantified.

10

Published as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research is conducted in full alignment with the ICLR Code of Ethics. This study did not in-
volve any human participants or animal experimentation. The datasets employed, namely ToolACE,
xLAM, xLAM-irrelevance, and Tool-use-synthetic, were all procured in strict accordance with their
respective usage policies, ensuring no infringement on privacy. Throughout our methodology, we
have diligently worked to prevent the introduction of bias and to avoid producing discriminatory re-
sults. Furthermore, no personally identifiable information (PII) was processed, and our experimental
procedures were designed to pose no risks to privacy or security. We uphold a steadfast commitment
to the principles of transparency and integrity in all aspects of our work.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work on the STAR framework, we provide detailed descriptions
of our methodology and experimental setup. Our core methods, Similarity-guided Reinforcement
Learning (Sim-RL) and Constrained Knowledge Distillation (CKD), are described in Section 3.2
and Section 3.1. The precise algorithm for our novel similarity-based reward function is detailed via
pseudo-code in Appendix A.7. Our full experimental setup, including the specific models, datasets,
and benchmarks used, is outlined in Section 4.1. All training hyperparameters, such as learning
rates, batch sizes, and method-specific constants, are comprehensively listed in Appendix A.2. Fur-
thermore, details on the prompt formats used for evaluation are available in Appendix A.1. The code
is open-sourced and accessible at https://github.com/Qwen-Applications/STAR.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and the area chair for their valuable feedback, which signifi-
cantly improved this paper. We also extend our appreciation to Dakui Wang and Xin Li for their
generous assistance with the research infrastructure.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=3zKtaqxLhW.

Anshumann, Mohd Abbas Zaidi, Akhil Kedia, Jinwoo Ahn, Taehwak Kwon, Kangwook Lee, Hae-
jun Lee, and Joohyung Lee. Sparse logit sampling: Accelerating knowledge distillation in llms.
In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 18085–18108. Asso-
ciation for Computational Linguistics, 2025. URL https://aclanthology.org/2025.
acl-long.885/.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
arXiv preprint arXiv:2501.12851, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025a.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
language models, 2025b. URL https://arxiv.org/abs/2505.22617.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works
and what doesn’t, 2025. URL https://arxiv.org/abs/2503.16219.

11

https://github.com/Qwen-Applications/STAR
https://openreview.net/forum?id=3zKtaqxLhW
https://aclanthology.org/2025.acl-long.885/
https://aclanthology.org/2025.acl-long.885/
https://arxiv.org/abs/2505.22617
https://arxiv.org/abs/2503.16219

Published as a conference paper at ICLR 2026

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jia Deng, Jie Chen, Zhipeng Chen, Daixuan Cheng, Fei Bai, Beichen Zhang, Yinqian Min,
Yanzipeng Gao, Wayne Xin Zhao, and Ji-Rong Wen. From trial-and-error to improvement: A
systematic analysis of llm exploration mechanisms in rlvr, 2025. URL https://arxiv.org/
abs/2508.07534.

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Sehoon Kim, Ryan Tabrizi, Suhong Moon, Cole-
man Richard Charles Hooper, Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami. TinyA-
gent: Function calling at the edge. In Delia Irazu Hernandez Farias, Tom Hope, and Man-
ling Li (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 80–88, Miami, Florida, USA, November 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-demo.9. URL https:
//aclanthology.org/2024.emnlp-demo.9/.

Anna Goldie, Azalia Mirhoseini, Hao Zhou, Irene Cai, and Christopher D Manning. Synthetic
data generation and multi-step reinforcement learning for reasoning and tool use. In Second
Conference on Language Modeling, 2025. URL https://openreview.net/forum?id=
oN9STRYQVa.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=5h0qf7IBZZ.

Wenzhe Guo, Joyjit Kundu, Uras Tos, Weijiang Kong, Giuliano Sisto, Timon Evenblij, and Manu
Perumkunnil. System-performance and cost modeling of large language model training and in-
ference, 2025. URL https://arxiv.org/abs/2507.02456.

Bingguang Hao, Maolin Wang, Zengzhuang Xu, Yicheng Chen, Cunyin Peng, Jinjie Gu, and Chenyi
Zhuang. Exploring superior function calls via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2508.05118v3.

12

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2508.07534
https://arxiv.org/abs/2508.07534
https://aclanthology.org/2024.emnlp-demo.9/
https://aclanthology.org/2024.emnlp-demo.9/
https://openreview.net/forum?id=oN9STRYQVa
https://openreview.net/forum?id=oN9STRYQVa
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://arxiv.org/abs/2507.02456
https://arxiv.org/abs/2508.05118v3
https://arxiv.org/abs/2508.05118v3

Published as a conference paper at ICLR 2026

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

Jian Hu, Xibin Wu, Wei Shen, Jason Klein Liu, Weixun Wang, Songlin Jiang, Haoran Wang, Hao
Chen, Bin Chen, Wenkai Fang, Xianyu, Yu Cao, Haotian Xu, and Yiming Liu. OpenRLHF:
A ray-based easy-to-use, scalable and high-performance RLHF framework. In Ivan Habernal,
Peter Schulam, and Jörg Tiedemann (eds.), Proceedings of the 2025 Conference on Empiri-
cal Methods in Natural Language Processing: System Demonstrations, pp. 656–666, Suzhou,
China, November 2025a. Association for Computational Linguistics. ISBN 979-8-89176-334-
0. doi: 10.18653/v1/2025.emnlp-demos.48. URL https://aclanthology.org/2025.
emnlp-demos.48/.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, and Heung-Yeung Shum Xiangyu Zhang. Open-
reasoner-zero: An open source approach to scaling reinforcement learning on the base model.
https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero, 2025b.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, An-
drey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan
Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo,
Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao,
Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya.
Openai o1 system card. CoRR, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
https://doi.org/10.48550/arXiv.2412.16720.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.09516.

Feiyang Kang, Michael Kuchnik, Karthik Padthe, Marin Vlastelica, Ruoxi Jia, Carole-Jean Wu, and
Newsha Ardalani. Quagmires in sft-rl post-training: When high sft scores mislead and what to
use instead, 2025. URL https://arxiv.org/abs/2510.01624.

Gyeongman Kim, Doohyuk Jang, and Eunho Yang. Promptkd: Distilling student-friendly knowl-
edge for generative language models via prompt tuning, 2024. URL https://arxiv.org/
abs/2402.12842.

Minsoo Kim, Sihwa Lee, Janghwan Lee, Sukjin Hong, Du-Seong Chang, Wonyong Sung, and Jung-
wook Choi. Token-scaled logit distillation for ternary weight generative language models, 2023.
URL https://arxiv.org/abs/2308.06744.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Jian Su, Xavier
Carreras, and Kevin Duh (eds.), Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 1317–
1327. The Association for Computational Linguistics, 2016. doi: 10.18653/V1/D16-1139. URL
https://doi.org/10.18653/v1/d16-1139.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris

13

http://arxiv.org/abs/1503.02531
https://aclanthology.org/2025.emnlp-demos.48/
https://aclanthology.org/2025.emnlp-demos.48/
https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero
https://doi.org/10.48550/arXiv.2412.16720
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2510.01624
https://arxiv.org/abs/2402.12842
https://arxiv.org/abs/2402.12842
https://arxiv.org/abs/2308.06744
https://doi.org/10.18653/v1/d16-1139

Published as a conference paper at ICLR 2026

Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=o2HBfgY20b.

Yixing Li, Yuxian Gu, Li Dong, Dequan Wang, Yu Cheng, and Furu Wei. Direct preference knowl-
edge distillation for large language models. arXiv preprint arXiv:2406.19774, 2024.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo,
Jiamu Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Robust function-calling
for on-device language model via function masking. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=yVQcr4qjD6.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning
the points of LLM function calling. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=8EB8k6DdCU.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh R. N., Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline
for generating verifiable and diverse function-calling datasets. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
- 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_
Benchmarks_Track.html.

Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu,
Chengyu Shen, Runming He, Bin Cui, and Wentao Zhang. Learning what reinforcement learning
can’t: Interleaved online fine-tuning for hardest questions, 2025. URL https://arxiv.org/
abs/2506.07527.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large lan-
guage model connected with massive apis. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
e4c61f578ff07830f5c37378dd3ecb0d-Abstract-Conference.html.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

14

https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://openreview.net/forum?id=o2HBfgY20b
https://aclanthology.org/W04-1013/
https://openreview.net/forum?id=yVQcr4qjD6
https://openreview.net/forum?id=8EB8k6DdCU
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2506.07527
https://arxiv.org/abs/2506.07527
http://papers.nips.cc/paper_files/paper/2024/hash/e4c61f578ff07830f5c37378dd3ecb0d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e4c61f578ff07830f5c37378dd3ecb0d-Abstract-Conference.html

Published as a conference paper at ICLR 2026

Hao Peng, Xin Lv, Yushi Bai, Zijun Yao, Jiajie Zhang, Lei Hou, and Juanzi Li. Pre-training distil-
lation for large language models: A design space exploration. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna,
Austria, July 27 - August 1, 2025, pp. 3603–3618. Association for Computational Linguistics,
2025. URL https://aclanthology.org/2025.acl-long.181/.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru WANG, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. ToolRL: Reward is all tool learning needs. In The Thirty-ninth Annual Confer-
ence on Neural Information Processing Systems, 2025. URL https://openreview.net/
forum?id=eOLdGbXT6t.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter, 2020. URL https://arxiv.org/abs/1910.
01108.

Sneheel Sarangi and Hanan Salam. Small llms do not learn a generalizable theory of mind via
reinforcement learning, 2025. URL https://arxiv.org/abs/2507.15788.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Ameya Sunil Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe
Diao, Chenhan Yu, Wei-Chun Chen, Hayley Ross, Oluwatobi Olabiyi, Ashwath Aithal, Olek-
sii Kuchaiev, Daniel Korzekwa, Pavlo Molchanov, Mostofa Patwary, Mohammad Shoeybi, Jan
Kautz, and Bryan Catanzaro. Llm pruning and distillation in practice: The minitron approach,
2024. URL https://arxiv.org/abs/2408.11796.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Mach. Learn., 3:9–
44, 1988. doi: 10.1007/BF00115009. URL https://doi.org/10.1007/BF00115009.

Chenxing Wei, Jiarui Yu, Ying Tiffany He, Hande Dong, Yao Shu, and Fei Yu. Redit: Reward
dithering for improved llm policy optimization, 2025. URL https://arxiv.org/abs/
2506.18631.

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Re-
thinking kullback-leibler divergence in knowledge distillation for large language models. In
Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and
Steven Schockaert (eds.), Proceedings of the 31st International Conference on Computational
Linguistics, COLING 2025, Abu Dhabi, UAE, January 19-24, 2025, pp. 5737–5755. Associ-
ation for Computational Linguistics, 2025. URL https://aclanthology.org/2025.
coling-main.383/.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.14768.

15

https://aclanthology.org/2025.acl-long.181/
https://openreview.net/forum?id=eOLdGbXT6t
https://openreview.net/forum?id=eOLdGbXT6t
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2507.15788
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.11796
https://doi.org/10.1007/BF00115009
https://arxiv.org/abs/2506.18631
https://arxiv.org/abs/2506.18631
https://aclanthology.org/2025.coling-main.383/
https://aclanthology.org/2025.coling-main.383/
https://arxiv.org/abs/2502.14768

Published as a conference paper at ICLR 2026

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. In The Thirty-ninth Annual Conference on Neu-
ral Information Processing Systems, 2025. URL https://openreview.net/forum?id=
vO8LLoNWWk.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Chuanguang Yang, Xinqiang Yu, Zhulin An, and Yongjun Xu. Categories of response-based,
feature-based, and relation-based knowledge distillation, 2023. URL https://arxiv.org/
abs/2306.10687.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

16

https://openreview.net/forum?id=vO8LLoNWWk
https://openreview.net/forum?id=vO8LLoNWWk
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2306.10687
https://arxiv.org/abs/2306.10687
https://arxiv.org/abs/2503.14476

Published as a conference paper at ICLR 2026

A APPENDIX

A.1 PROMPT

Our training data is organized according to the Qwen chat template. On BFCL, we employed the
QwenHandler with a customized system prompt (see Figure 5). Conversely, to adhere to the strict
evaluation protocol of ACEBench, we used its official, unmodified prompt template2.

A.2 TRAINING DETAILS

All experiments were conducted using the OpenRLHF framework (Hu et al., 2025a) on a single
server equipped with 8 NVIDIA H20 GPUs. For the various training schemes in our experiments,
we employed the following hyperparameter settings:

• Reinforcement Learning (RL): For RL training, we employed GRPO for fine-tuning.
We set a constant learning rate of 3e-7, with both rollout and training batch sizes of 128.
The KL-divergence constraint was managed via the k2 approximation, with an initial KL
coefficient of 1e-3. For each prompt, 8 response rollouts were generated.

• Knowledge Distillation (KD): For KD training, the model was optimized with a learning
rate of 3e-6 and a batch size of 128. For the tail-suppression term, λtail was set to 10, and
both k and m were fixed at 100.

• Supervised Fine-tuning(SFT): For SFT, the learning rate is fixed at 2e-5, while the batch
size is set to 128.

A.3 ANALYSIS OF TOP-K FKL AND RKL

This work dissects the gradient dynamics of top-k knowledge distillation to provide a principled ex-
planation for the contrasting empirical performance of Forward KL (FKL) and Reverse KL (RKL)
divergences. We reveal that FKL’s success stems from a stable, bounded gradient, whereas RKL is
prone to instability due to a potentially unbounded gradient signal, thereby elucidating the funda-
mental mechanism behind their differing behaviors.

Notation:

• A teacher model produces logits zT ∈ RC , yielding a probability distribution p =
softmax(zT).

• A student model produces logits zS ∈ RC , yielding a probability distribution q =
softmax(zS).

• We denote Ik = top-k-indices(p) as the index set of the the k largest probabilities in the
teacher distribution p. As this set is determined solely by the teacher, it is treated as a
constant in the gradient computation with respect to the student’s parameters.

A.3.1 ANALYSIS OF TOP-K FKL

The top-K FKL loss is defined as:

LFKL-TopK =
∑
i∈Ik

pi log
pi
qi

=
∑
i∈Ik

pi(log pi − log qi) (13)

2The official ACEBench prompt is available at: https://github.com/chenchen0103/
ACEBench/blob/main/model_inference/prompt_en.py

17

https://github.com/chenchen0103/ACEBench/blob/main/model_inference/prompt_en.py
https://github.com/chenchen0103/ACEBench/blob/main/model_inference/prompt_en.py

Published as a conference paper at ICLR 2026

<|im start|>assistant
You are a helpful assistant. The assistant first thinks
about the reasoning process in the mind and then provides
the user with the answer. The reasoning process are
enclosed within <think>explain why the user’s question can
be answered without calling a function or why you should
ask the user for more information or why you should call
one or more functions and your plan to solve the user’s
question.</think>, and then give the answer. You can call
the tool by <tool call> </tool call> tag.
If the user’s question can be answered without calling any
function, please answer the user’s question directly. In
this situation, you should return your thought and answer
the user’s question directly.
If the user cannot be answered without calling any
function, and the user does not provide enough information
to call functions, please ask the user for more information.
In this situation, you should return your thought and ask
the user for more information.
If the user’s question cannot be answered without
calling any function, and the user has provided enough
information to call functions to solve it, you should call
the functions. In this situation, the assistant should
return your thought and call the functions.
Tools
You may call one or more functions to assist with the user
query.
You are provided with function signatures within
<tools></tools> XML tags:
<tools>
{"name": "earnings.getbymonth", "description":
"Fetches earning data for a specific month and year
using the RapidAPI service.", "parameters": {"month":
{"description": "The month for which to fetch earnings
data.", "type": "str", "default": "05"}, "year":
{"description": "The year for which to fetch earnings
data.", "type": "str", "default": "2022"}}} {"name":
"creditcard.generate cc number", "description": "Generates
a fake credit card number using the specified brand and
API key.", "parameters": {"brand": {"description": "The
desired card brand (e.g., ’Visa’, ’MasterCard’). Defaults
to None.", "type": "str, optional", "default": ""}}}
</tools>
For each function call, return a json object with function
name and arguments within <tool call></tool call> XML tags:
<tool call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool call><|im end|>
<|im start|>user
I want to analyze the market for Apple (AAPL). First, give
me the most recent Minus Directional Indicator (MINUS DI) for
AAPL using daily intervals, then interpret what that value
implies for the stock’s short-term price movement.<|im end|>
<|im start|>
assistant
<think>

Figure 5: Customized system prompt example on BFCL evaluation.

18

Published as a conference paper at ICLR 2026

The partial derivative of the loss with respect to a student logit zSj
is found by applying the chain

rule with the softmax derivative ∂qi
∂zSj

= qi(δij − qj), yielding:

∂LFKL-TopK

∂zSj

=

C∑
i=1

∂L
∂qi

∂qi
∂zSj

=
∑
i∈Ik

(
−pi
qi

)
∂qi
∂zSj

=
∑
i∈Ik

(
−pi
qi

)
qi(δij − qj)

= qj
∑
i∈Ik

pi − pj · 1j∈Ik (14)

To elucidate the underlying training dynamics, we decompose the FKL-TopK gradient by analyzing
its components for logits within the top-k set versus non-top-k set:

For a non-top-k logit (j /∈ Ik):
∂LFKL-TopK

∂zSj

= qj
∑
i∈Ik

pi (15)

For a top-k logit (j ∈ Ik):
∂LFKL-TopK

∂zSj

= qj
∑
i∈Ik

pi − pj (16)

This formulation induces a learning dynamic where logits for top-k and non-top-k items receive
fundamentally different treatments. The gradient for a top-k logit is strictly smaller than the gradient
for any non-top-k logit (since pj > 0). This creates a clear, stable dynamic: the logits of non-top-k
items are strongly suppressed, while the logits of top-K items are either encouraged (if the gradient
is negative) or suppressed much more weakly. The model learns to focus its probability mass on the
teacher’s chosen top-K candidates.

A.3.2 ANALYSIS OF TOP-K RKL

The RKL objective presents a fundamental issue. If we define a proper probability distribution p′

from the teacher’s top-k logits by padding with zeros (i.e., p′i = 0 for i /∈ Ik), the RKL DKL(q||p′)
becomes ill-defined. Any student probability qi > 0 for an index i /∈ Ik would result in a term
qi log(qi/0), causing the loss to diverge to infinity, which is impossible to optimize.

The only viable alternative is a masked RKL, which is not a true KL divergence over the full vocab-
ulary:

LRKL-TopK =
∑
i∈Ik

qi log
qi
pi

(17)

The gradient of this loss with respect to a student logit zSj
is:

∂LRKL-TopK

∂zSj

=
∑
i∈Ik

∂(qi log
qi
pi
)

∂qi

∂qi
∂zSj

=
∑
i∈Ik

(
log

qi
pi

+ 1

)
qi(δij − qj)

= qj

[(
log

qj
pj

+ 1

)
1j∈Ik −

∑
i∈Ik

qi

(
log

qi
pi

+ 1

)]
(18)

Let’s analyze the dynamics by defining the summation term S =
∑

i∈Ik
qi(log

qi
pi

+ 1).

For a non-top-k logit (j /∈ Ik):
∂LRKL-TopK

∂zSj

= −qjS (19)

19

Published as a conference paper at ICLR 2026

For a top-k logit (j ∈ Ik):

∂LRKL-TopK

∂zSj

= qj

(
log

qj
pj

+ 1− S

)
(20)

This structure, however, can induce undesirable optimization dynamics. Specifically, when the
teacher assigns negligible probabilities (pj → 0) to certain top-k items, or when the student be-
comes over-confident (i.e., its probability mass qj is highly concentrated), the gradients for some
top-k logits can become smaller than those for non-top-k logits. In this regime, the model is para-
doxically incentivized to promote non-top-k items over some within the top-k set, irrespective of
an external signal S. This behavior often leads to poor convergence and, in extreme cases, training
collapse.

A.4 STABLE VARIANT OF TOP-K RKL AND AKL

To remedy the instability of top-k RKL and Adaptive KL divergence (AKL), we introduce a tail
suppression term, analogous to the one used in CKD. Let Jm = top-m-indices(q) be the indices of
the student’s top-m predictions, and J ′

m = Jm \ Ik be the set of ”confident but wrong” predictions.
The stabilized top-K RKL loss is defined as:

LStabilized-RKL-TopK = LRKL-TopK + Ltail =
∑
i∈Ik

qi log
qi
pi

+
∑
j∈J′

m

qi (21)

The gradient of Ltail with respect to a student logit zSj
is:

∂L
∂zSj

=
∑
i∈J′

m

∂(λqi)

∂qi

∂qi
∂zSj

=
∑
i∈J′

m

λqi(δij − qj)

= λqj · 1j∈J′
m
− λqj

∑
i∈J ′

m

qi (22)

Let’s analyze the the new gradients with the tail suppression term.

For a top-k logit (j ∈ Ik):

∂LStabilized-RKL-TopK

∂zSj

= qj

log qj
pj

+ 1− S + λ

1−
∑
i∈J′

m

qi

 (23)

For a confident-but-wrong logit (j ∈ J ′
m):

∂LStabilized-RKL-TopK

∂zSj

= qj

λ
1−

∑
i∈J′

m

qi

− S

 (24)

The tail suppression term introduces a positive component λqj(1 −
∑

i∈J′
m
qi). For a sufficiently

large λ, the gradient for a confident-but-wrong logit is larger than that for a top-k logit. This restores
a stable learning dynamic by ensuring that the student is penalized for confidently predicting classes
outside the teacher’s top-k set.

A.5 GRADIENT ANALYSIS FOR CKD

Our proposed CKD method combines top-k FKL with the same tail suppression mechanism (see
Equation 3). Unlike with RKL, the goal here is not to fix instability but to refine the already stable
FKL dynamics to prevent over-confidence. The gradient with respect to zSj is:

20

Published as a conference paper at ICLR 2026

For a top-k logit (j ∈ Ik):

∂LCKD

∂zSj

= qj

∑
i∈Ik

pi − λ
∑
i∈J′

m

qi

− pj (25)

For a confident-but-wrong logit (j ∈ J ′
m):

∂LCKD

∂zSj

= qj

∑
i∈Ik

pi + λ

1−
∑
i∈J′

m

qi

 (26)

For other non-top-k logits (j /∈ Ik ∪ J ′
m):

∂LCKD

∂zSj

= qj

∑
i∈Ik

pi − λ
∑
i∈J′

m

qi

 (27)

Compared to the standard FKL gradient in Equation 14, CKD strategically re-balances the learning
signals:

1. Targeted Suppression: The gradient for ”confident-but-wrong” logits (j ∈ J ′
m) is signif-

icantly increased. This focuses the suppressive force on the most likely sources of error,
penalizing the student for being confident in incorrect predictions.

2. Relaxed Suppression: The gradient for other non-top-k logits (j /∈ Ik ∪ J ′
m) is reduced.

This tells the model not to waste capacity aggressively suppressing classes it already assigns
low probability to.

This re-balancing mechanism prevents the model from collapsing its probability mass entirely onto
the top-k set Ik. By forcing the student to specifically avoid confident mistakes outside of Ik, CKD
encourages a healthier, less peaky student distribution, which translates to improved generalization
and robustness, thus addressing the primary limitation of top-k FKL.

A.6 SENSITIVITY ANALYSIS

Table 6: Sensitivity analysis on hyperparameters k and λtail for CKD.

k λtail BFCL v3 Overall AceBench Normal
w/o RL w/ RL w/o RL w/ RL

10
10

49.58 51.48 43.20 49.20
100 49.56 51.70 39.00 53.00

1000 49.84 51.59 36.70 52.20

100

1 50.12 51.11 38.00 48.20
3 48.78 50.62 39.10 50.10

10 49.56 51.70 39.00 53.00
30 49.82 51.80 41.70 47.80

100 48.85 51.83 42.10 48.20

We investigate the sensitivity of our Constrained Knowledge Distillation (CKD) method to its two
key hyperparameters: k and λtail. Table 6 presents the results on both BFCLv3 and ACEBench-
Normal benchmarks, with and without subsequent Sim-RL refinement. For this analysis, m is fixed
at 100, a value large enough to capture the student’s most probable and potentially erroneous outputs.

First, we observe that across a wide range of hyperparameter settings, CKD maintains strong per-
formance, frequently surpassing the results of competing methods shown in Tables 1 and 2. This
demonstrates the robustness of our proposed approach.

21

Published as a conference paper at ICLR 2026

Analysis of k. The hyperparameter k defines the size of the trusted vocabulary set from the teacher
model. A very small k (e.g., k = 10) overly constrains the student, forcing it to mimic a narrow
distribution, which can harm generalization as reflected by the lower performance on ACEBench
post-RL. Conversely, a very large k (e.g., k = 1000) makes the LFKL-k term approximate the stan-
dard forward KL divergence and reduces the impact of the tail penalty, offering diminishing returns
while still performing well. Our chosen value of k = 100 strikes an effective balance, providing suf-
ficient guidance from the teacher without excessively restricting the student’s distribution, proving
beneficial for both initial distillation and subsequent RL adaptation.

Analysis of λtail. The weight λtail controls the strength of the tail suppression penalty. A small
weight (e.g., λtail = 1) is insufficient to suppress the student’s tendency to assign probability to
irrelevant tokens, leading to suboptimal performance after RL. As λtail increases, performance im-
proves, peaking at λtail = 10, especially on ACEBench. However, excessively large values (e.g.,
λtail ≥ 30) can be overly punitive. This may excessively suppress the student’s output probabilities,
making the distribution too sharp and hindering the exploratory capacity that is crucial for effective
RL fine-tuning, as reflected by the performance drop on ACEBench. Thus, λtail = 10 provides an
optimal balance that effectively regularizes the tail distribution while preserving a healthy capacity
for exploration.

A.7 PESUDO CODE OF THE REWARD

The total reward R is calculated using a composite function that first evaluates the syntactic for-
mat and then, if the format is correct, the accuracy of the tool calls or the textual response. The
framework is defined by the main function CalculateTotalReward(see Algorithm 1 and its
subroutines.

Algorithm 1 Total Reward Calculation

1: function CALCULATETOTALREWARD(Generation, GroundTruth, ToolSchema)
2: Input:
3: Generation: The full string output from the model.
4: GroundTruth: The label string containing the correct output.
5: ToolSchema: A definition of available tools F and their parameters.
6: Output:
7: R: The final reward score in the range [-1, 1].

8: Rformat ← CALCULATEFORMATREWARD(Generation, ToolSchema)
9: if Rformat = 0 then

10: return -1
11: end if
12: Pcalls, Presponse ← PARSE(Generation)
13: Gcalls, Gresponse ← PARSE(GroundTruth)

14: Rtool ← 0
15: Rresponse ← 0
16: if Gcalls is not empty then
17: Rtool ← CALCULATETOOLREWARD(Pcalls, Gcalls) ▷ See Algorithm 2
18: else
19: Rresponse ← CALCULATERESPONSEREWARD(Presponse, Gresponse)
20: end if
21: R← Rtool +Rresponse
22: return R
23: end function

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we employed a Large Language Model (LLM), specif-
ically Gemini 2.5 Pro as a tool for linguistic enhancement and technical formatting, to assist in
polishing the language in certain sections. The model’s contributions were directed towards improv-

22

Published as a conference paper at ICLR 2026

Algorithm 2 Tool Call Reward Calculation (Rtool)

1: function CALCULATETOOLREWARD(Pcalls, Gcalls)
2: total similarity← 0
3: G′

calls ← a mutable copy of Gcalls
4: for each predicted call p ∈ Pcalls do
5: best match score← −1
6: best match g← null
7: for each ground-truth call g ∈ G′

calls do
8: if p.name = g.name then
9: s← ARGUMENTSIMILARITY(p.arguments, g.arguments) ▷ See Algorithm 3

10: if s > best match score then
11: best match score← s
12: best match g← g
13: end if
14: end if
15: end for
16: if best match g is not null then
17: total similarity← total similarity + best match score
18: Remove best match g from G′

calls
19: end if
20: end for
21: union size← |Pcalls|+ |Gcalls|
22: if union size = 0 then return 1
23: elsereturn total similarity/union size
24: end if
25: end function

Algorithm 3 Argument-level Similarity (sim)

1: function ARGUMENTSIMILARITY(Pargs, Gargs)
2: intersection keys← keys(Pargs) ∩ keys(Gargs)
3: union keys← keys(Pargs) ∪ keys(Gargs)
4: weighted sum← 0
5: for each key k ∈ intersection keys do
6: pk ← Pargs[k], gk ← Gargs[k]
7: if pk, gk are Strings then
8: score← ROUGE-L F1(pk, gk)
9: else if pk, gk are Numeric/Boolean then

10: score← (1 if pk = gk else 0)
11: else
12: score← (1 if str(pk) = str(gk) else 0)
13: end if
14: weighted sum← weighted sum + score
15: end for
16: if |union keys| = 0 then return 1
17: else return weighted sum/|union keys|
18: end if
19: end function

ing readability, clarity, and the overall flow of the text through tasks such as sentence rephrasing and
grammar correction. Furthermore, it was used for assistance with LaTeX syntax to ensure proper
formatting.

It must be emphasized that the LLM’s function was strictly supportive and limited to the aspects
mentioned above. The model had no role in the core intellectual work, which includes the ideation,
research methodology, experimental design, data analysis, or interpretation of results. All scientific
ideas, concepts, and analyses presented herein are exclusively conducted by the authors.

23

Published as a conference paper at ICLR 2026

The authors have thoroughly reviewed and verified the entire manuscript and take full responsibility
for its final content, including all text polished or formatted with the aid of the LLM.

A.9 DETAILS OF EVALUATION METRICS

Evaluation Metrics for BFCLv3. The evaluation metrics for BFCLv3 are listed below:

• Overall Acc: This metric represents the comprehensive performance of the model on the
entire BFCLv3 benchmark. It is calculated as a weighted average of the accuracies from
various specific evaluation categories, providing a single, overarching score to rank differ-
ent methods.

• Non-Live Acc: This metric assesses model performance primarily on the static BFCL
V1 dataset. This dataset was curated by the benchmark creators and includes single-turn
scenarios like simple, multiple, and parallel function calls. As noted in the documentation,
this portion of the benchmark may be susceptible to data contamination for models trained
on public datasets.

• Live Acc: This metric measures model performance on the BFCL V2 live dataset. This
dataset is composed of live, user-contributed function documentation and queries, designed
to tackle issues of data contamination and bias. It aims to faithfully evaluate a model’s
ability to generalize and perform effectively in diverse, real-world tool-use scenarios that it
has not seen before.

• Multi Turn Acc: Introduced with the BFCL V3 dataset, this metric specifically evalu-
ates the model’s proficiency in handling multi-turn and multi-step function calling tasks.
It tests the model’s ability to maintain conversational context over several exchanges, cor-
rectly interpret user follow-up requests, and make appropriate function calls based on the
accumulated dialogue history.

Evaluation Metrics for ACEBench-Normal. The evaluation metrics for ACEBench-Normal are
listed below:

• Summary: This is a summary score that aggregates the performance across all sub-
categories within the Normal dataset to provide a single, comprehensive measure of the
model’s general tool-use capability in standard scenarios.

• Atom: This metric evaluates the model’s performance on atomic cases, with a specific
focus on its ability to handle different parameter types. It involves the precise assessment
of the model’s handling of data types such as enums, numbers, lists, booleans, and objects.

• Single-Turn: This metric assesses the model’s basic tool-calling competence in scenarios
that are resolved within a single conversational turn.

• Multi-Turn: This metric measures the model’s capability in multi-turn dialogue flows. It
assesses whether the model can perform context-sensitive orchestration of tool calls and
maintain state memory across several conversational turns to fulfill the user’s goal.

• Similar API: This metric tests the model’s ability to distinguish between nearly identical
tool specifications. The model must select the correct API based on subtle differences in
the user’s query and the API documentation.

• Preference: This metric evaluates if the model can incorporate contextual user information
for API selection. The model must make a preference-based selection by taking the user’s
history or profile into account.

A.10 STATISTICAL SIGNIFICANCE

To ensure the statistical significance of our findings, we conduct experiments with 3 different random
seeds. The results are presented as mean± standard deviation. Tables 7 and 8 detail the comprehen-
sive performance of our methods against various baselines on the BFCLv3 and ACEBench Normal
benchmarks, respectively, showing that our CKD+Sim-RL approach consistently achieves strong re-
sults across most evaluation metrics. We further validate our architectural choices through ablation
studies: Table 9 confirms the superiority of our proposed CKD strategy over other knowledge distil-
lation techniques, and Table 10 demonstrates the significant advantage of our Sim-RL reward design

24

Published as a conference paper at ICLR 2026

compared to alternative reward functions. The consistently low variance and superior performance
of our proposed components across all these detailed tables underscore that our method is robust
and its effectiveness is statistically well-supported.

Table 7: Performance comparison of different fine-tuning methods on Qwen3-0.6B, evaluated on
the BFCLv3 benchmark. Values are presented as mean ± std.

Method Overall Acc Non-Live Acc Live Acc Multi Turn Acc

Standard methods
Base-model† 47.33 71.81 65.66 1.88
SFT 44.19 ± 0.17 65.40 ± 0.33 61.67 ± 0.05 1.45 ± 0.15
SFT-think 47.14 ± 0.20 69.82 ± 0.81 64.59 ± 0.33 3.94 ± 0.31
FKL 49.68 ± 0.12 76.05 ± 0.26 66.16 ± 0.41 5.41 ± 0.25

Recent methods
ToolRL 47.78 ± 0.13 66.27 ± 0.57 66.57 ± 0.14 6.95 ± 0.52
LUFFY 48.81 ± 0.18 75.68 ± 0.30 64.80 ± 0.29 4.62 ± 0.44
GKD 47.71 ± 0.20 67.50 ± 0.74 67.89 ± 0.17 3.95 ± 0.42

Our methods
CKD 49.61 ± 0.31 75.44 ± 0.38 66.09 ± 0.20 5.12 ± 0.54
Sim-RL 49.56 ± 0.15 75.51 ± 0.32 67.52 ± 0.20 3.33 ± 0.11
SFT+Sim-RL* 50.30 ± 0.14 76.78 ± 0.35 66.81 ± 0.20 5.62 ± 0.30
CKD+Sim-RL 51.80 ± 0.12 78.98 ± 0.29 68.41 ± 0.30 6.93 ± 0.48
†Results from the official benchmark; error bars not provided.
*It refers to Sim-RL on SFT-think.

Table 8: Performance comparison of different fine-tuning methods on Qwen3-0.6B, evaluated on
the ACEBench Normal benchmark. Values are presented as mean ± std.

Method Summary Atom Single-Turn Multi-Turn Similar API Preference

Standard methods
Base-model† 27.20 37.70 19.50 10.00 36.00 6.00
SFT 2.03 ± 0.16 1.23 ± 0.41 0.16 ± 0.23 0.00 ± 0.00 16.67 ± 1.88 0.00 ± 0.00
SFT-think 30.17 ± 1.28 44.47 ± 1.67 14.62 ± 1.63 12.75 ± 2.16 29.00 ± 4.12 11.49 ± 2.59
FKL 37.76 ± 1.52 53.55 ± 3.03 19.43 ± 2.06 18.31 ± 3.03 42.37 ± 4.42 14.00 ± 3.84

Recent methods
ToolRL 27.77 ± 1.00 41.00 ± 2.35 12.25 ± 1.03 10.00 ± 0.70 35.50 ± 3.84 7.50 ± 2.17
LUFFY 44.83 ± 0.97 60.56 ± 1.56 25.50 ± 2.48 22.99 ± 2.16 56.00 ± 4.32 22.00 ± 1.63
GKD 37.36 ± 1.17 49.43 ± 2.04 21.50 ± 1.08 18.66 ± 0.94 48.00 ± 4.32 23.33 ± 4.98

Our methods
CKD 39.71 ± 1.20 55.94 ± 2.09 20.51 ± 2.24 20.00 ± 2.77 43.06 ± 4.87 16.87 ± 4.12
Sim-RL 40.63 ± 0.83 54.76 ± 1.11 25.83 ± 1.02 22.99 ± 4.08 50.66 ± 3.39 10.66 ± 2.49
SFT+Sim-RL* 38.35 ± 0.84 52.80 ± 1.43 22.59 ± 2.17 19.56 ± 3.11 44.43 ± 4.54 14.43 ± 3.59
CKD+Sim-RL 52.11 ± 0.91 69.76 ± 1.51 33.67 ± 1.62 30.66 ± 3.09 57.67 ± 4.10 21.33 ± 1.94
†Results from the official benchmark; error bars not provided.
*It refers to Sim-RL on SFT-think.

25

Published as a conference paper at ICLR 2026

Table 9: Model performance on function calling benchmarks with different KD strategies. Values
are presented as mean ± std.

Method
BFCLv3
Overall

ACEBench
Normal

w/o RL w/ RL w/o RL w/ RL

CE 47.14 ± 0.20 50.36 ± 0.10 30.17 ± 1.28 38.35 ± 0.84
FKL 49.68 ± 0.12 51.16 ± 0.14 37.76 ± 1.52 49.96 ± 1.04
RSKD 49.34 ± 0.29 50.50 ± 0.11 38.10 ± 0.92 50.53 ± 0.54

RKL* 49.29 ± 0.26 50.58 ± 0.06 36.19 ± 1.07 40.56 ± 0.37
AKL* 49.59 ± 0.39 50.40 ± 0.10 43.80 ± 1.23 49.33 ± 0.77
CKD 49.61 ± 0.31 51.80 ± 0.12 39.71 ± 1.20 52.11 ± 0.91
*The stable variant.

Table 10: Ablation study on reward designs. Values are presented as mean ± std.

Method BFCLv3 Overall ACEBench Normal
CKD+Binary Reward 50.83 ± 0.09 37.43 ± 0.90
CKD+ToolRL 49.01 ± 0.13 43.00 ± 1.51
CKD+SwiRL 50.96 ± 0.09 37.63 ± 2.05
CKD+Sim-RL 51.80 ± 0.12 52.11 ± 0.91

A.11 CASE STUDY

This appendix provides a qualitative analysis illustrating how Sim-RL addresses critical failure
modes present in other reward designs.

Table 11 demonstrates the rigidity of binary rewards. Functionally correct outputs—such as a func-
tion call missing an optional argument or containing a trivial formatting difference—are incorrectly
assigned a score of 0. This provides no useful learning signal. Sim-RL resolves this by assign-
ing partial credit for correct function and primary argument (0.5) and a full score for semantically
equivalent outputs (1.0), thus rewarding genuine progress.

Table 12 highlights that even some well-performing RL methods can still encounter the issue of
”reward hacking.” For instance, a tool call may receive a perfect score (1.0) because it is syntacti-
cally correct for the user’s immediate question. However, by ignoring the conversation history, this
rewards an inefficient and redundant action if the model already has the answer. The model then
learns to game the system by making simple, unnecessary tool calls, exacerbating this inefficient
behavior. Sim-RL avoids this by comparing the action against the optimal context-aware response
(a direct answer) and correctly assigns a score of 0.0 to penalize the suboptimal action.

In summary, Sim-RL combines semantic flexibility to handle near-correctness with contextual
grounding to prevent reward hacking, resulting in a more robust and reliable reward signal for train-
ing agents.

26

Published as a conference paper at ICLR 2026

Table 11: Binary Reward vs. Sim-RL for Partially Correct Tool Calls.

Example 1: Missing a Default
Argument

Example 2: Trivial Formatting
Difference

Function check wordpress label template brands

Query ”Can you check if
https://example.com is
running WordPress?”

”Can you list the brands available
for A4 size blank label sheets?”

Model Rollout {"name":
"check wordpress",
"arguments": {"url":
"https://example.com"}}

{"name":
"label template brands",
"arguments": {"format":
"a4"}}

Ground Truth {"name":
"check wordpress",
"arguments": {"url":
"https://example.com",
"user agent":
"Mozilla/5.0"}}

{"name":
"label template brands",
"arguments": {"format":
"A4"}}

Binary RL Score 0 (Mismatch) 0 (Mismatch)

Sim-RL Score 0.5 (Partial credit for correct
function and primary argument)

1.0 (ROUGE-L is case-insensitive)

Table 12: Example of Reward Hacking via a Redundant Tool Call

Example: Redundant Tool Call (Reward Hacking)
Context In a previous turn, the model already looked up information for ”SFO” airport.

Query ”What is the ICAO code for SFO airport, and how many runways does it
have?”

Model Rollout <tool call> {"name": "airportstatistics",
"arguments": {"iata": "SFO"}} </tool call>

Ground Truth ”The ICAO code for SFO is KSFO, and it has 4 runways.”

SwiRL Score 1.0 (Rewards the valid-looking tool call, ignoring context)

Sim-RL Score 0.0 (Penalizes the unnecessary call compared to the optimal response)

27

Published as a conference paper at ICLR 2026

A.12 ADDITIONAL RESULTS

To strengthen our claims and provide deeper insights, we have conducted the additional experiments
and incorporated a more detailed analysis.

Comparison on a Larger Student Model: We apply our method to a 1.7B student model and
compare its performance against the SFT+Sim-RL baseline. As Table 13 shows, CKD continues to
outperform SFT, confirming the scalability and effectiveness of our approach on larger models.

Ablation on Teacher Model Size: We also conduct an ablation study on the teacher model’s size,
using a Qwen3-14B model as the teacher. The results in Table 14 below show that our method
remains effective, demonstrating its robustness to the choice of teacher model size.

Ablation on Teacher Refinement: We run an ablation study comparing Qwen3-0.6B students dis-
tilled from the base teacher vs. the refined teacher, which is shown in Table 15. The results show
that while a better teacher indeed leads to a better student, this does not affect the overall validity
of our method. With the un-refined teacher, our core STAR method (CKD + Sim-RL) still clearly
outperforms the standard SFT+Sim-RL baseline. Furthermore, without refinement, the suboptimal
base teacher model leads to the comparatively lower performance of the student model after only
the CKD stage. However, the subsequent Sim-RL to this student model results in a substantial per-
formance gain. These observations are crucial as they substantiate the robustness of our framework,
demonstrating its effectiveness even when initialized with a less capable teacher model.

Table 13: Performance comparison of CKD and SFT, followed by Sim-RL. The teacher model is
the refined Qwen3-8B, and the student model is Qwen3-1.7B.

Method BFCLv3 Overall ACEBench Normal
SFT to Qwen3-1.7B + Sim-RL 55.54 56.20
CKD to Qwen3-1.7B + Sim-RL 56.05 60.90

Table 14: Ablation study on teacher model size. The student model is Qwen3-0.6B.

Method
BFCLv3
Overall

ACEBench
Normal

w/o RL w/ RL w/o RL w/ RL

CKD from Qwen3-8B + Sim-RL 49.56 51.70 39.00 53.00
CKD from Qwen3-14B + Sim-RL 50.12 50.75 38.50 54.30

Table 15: Ablation study on teacher refinement. The teacher model is Qwen3-8B and the student
model is Qwen3-0.6B.

Method
BFCLv3
Overall

ACEBench
Normal

w/o RL w/ RL w/o RL w/ RL

SFT+Sim-RL 47.59 50.41 28.70 38.90
CKD from Qwen3-8B (Base)+Sim-RL 47.13 51.35 31.40 47.20
CKD from Qwen3-8B (Refined)+Sim-RL 49.56 51.70 39.00 53.00

28

	Introduction
	Task Definition: Function Calling as a Generation Problem
	The STAR Methodology
	Constrained Knowledge Distillation (CKD)
	Instability with Top-k Truncation
	The Hidden Cost of RKL
	Our Approach

	Similarity-Guided Reinforcement Learning (Sim-RL)
	Reward Design
	Optimization Method

	The STAR Training Curriculum

	Experiments
	Experimental Setup
	Main Results
	Analysis

	Related Works
	Conclusion
	Limitation & Future work
	Appendix
	Prompt
	Training Details
	Analysis of Top-k FKL and RKL
	Analysis of Top-k FKL
	Analysis of Top-k RKL

	Stable Variant of Top-k RKL and AKL
	Gradient Analysis for CKD
	Sensitivity Analysis
	Pesudo Code of the Reward
	The Use of Large Language Models (LLMs)
	Details of Evaluation Metrics
	Statistical Significance
	Case Study
	Additional Results

