Under review as a conference paper at ICLR 2026

UNSUPERVISED LEARNING FOR QUADRATIC ASSIGN-
MENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce PLUME search, a data-driven framework that enhances search ef-
ficiency in combinatorial optimization through unsupervised learning. Unlike
supervised or reinforcement learning, PLUME search learns directly from prob-
lem instances using a permutation-based loss with a non-autoregressive approach.
We evaluate its performance on the quadratic assignment problem, a fundamental
NP-hard problem that encompasses various combinatorial optimization problems.
Experimental results demonstrate that PLUME search consistently improves so-
lution quality. Furthermore, we study the generalization behavior and show that
the learned model generalizes across different densities and sizes.

1 INTRODUCTION

Combinatorial Optimization (CO) represents a central challenge in computer science and operations
research, targeting optimal solutions within a large search space. CO encompasses numerous prac-
tical applications, including transportation logistics, production scheduling, network design, and
resource allocation. The computational complexity of CO problems is typically NP-hard, mak-
ing exact methods intractable for large instances. Researchers have thus developed approximation
algorithms, heuristics, and hybrid approaches that balance solution quality with computational fea-
sibility. These methods include simulated annealing, genetic algorithms, tabu search, and various
problem-specific heuristics that can generate high-quality solutions within reasonable time bud-
get (Kirkpatrick et al., [1983; [Holland, [1992; Johnson and McGeoch, 1997} (Glover and Laguna,
1998; |Gomes and Selmanl, [2001; |Blum and Rolil [2003)).

Data-driven Combinatorial Optimization Recently, data-driven methods have gained signifi-
cant attention in addressing combinatorial optimization problems. Taking the Travelling Salesman
Problem (TSP) as an example, researchers have explored both Supervised Learning (SL) and Re-
inforcement Learning (RL) methods. In SL, approaches such as pointer networks and graph neural
networks attempt to learn mappings from problem instances to solutions by training on optimal or
near-optimal tours (Joshi et al.| 2019} [Vinyals et al. [2015). These models learn to imitate optimal
or near-optimal solutions, leading to significant computational expense when building the training
dataset. RL approaches frame TSP as a sequential decision-making problem where an agent learns
to construct tours in a Markov decision process framework. While RL models have shown promise
in small instances, these methods face significant challenges when scaling to larger problems. Fur-
thermore, the sparse rewards and the high variance during training make it difficult for RL agents to
learn effective policies (Bello et al., [2016).

An alternative approach is Unsupervised Learning (UL), which avoids sequential decision making
and does not require labelled data. In (Min et al.| 2023), the authors propose a surrogate loss for
the TSP objective by using a soft indicator matrix T to construct the Hamiltonian cycle, which is
then optimized for minimum total distance. The T operator can be essentially interpreted as a soft
permutation operator, as demonstrated in (Min and Gomes| 2023)), which represents a rearrangement
of nodes on the route 1 —+ 2 — 3 — --- — n — 1, with n representing the number of cities.

The TSP loss used in UL can be formally expressed in matrix notation. Essentially, we optimize:
Lrsp = (TVT ', Drsp),)

where V represents a Hamiltonian cycle matrix encoding the route 1 — 2 — --- — n — 1, T is
an approximation of a hard permutation matrix P, and Drgp is the distance matrix with self-loop

Under review as a conference paper at ICLR 2026

distances set to A\. TVT is a heat map that represents the probability that each edge belongs to the
optimal solution, which guides the subsequent search process.

Since permutation operators are ubiquitous across many CO problems, and the application to TSP
demonstrates their effectiveness, here, we extend this approach to a broader class of problems.
Specifically, we propose Permutation-based Loss with Unsupervised Models for Efficient search
(PLUME search), an unsupervised data-driven heuristic framework that leverages permutation-
based learning to solve CO problems.

Quadratic Assignment Problem The Quadratic Assignment Problem (QAP), essentially a per-
mutation optimization problem, is an NP-hard problem with numerous applications across facility
layout, scheduling, and computing systems. For example, in facility layout, QAP finds the optimal
permutation of facilities minimizing total interaction costs based on inter-facility flows and inter-
location distances. QAP’s applications also include manufacturing plant design, healthcare facility
planning, VLSI circuit design, telecommunications network optimization, and resource schedul-
ing (Koopmans and Beckmannl [1957; [Lawler, |1963)).

Formally, QAP asks to assign n facilities to n locations while minimizing the total cost, which
depends on facility interactions and location distances. A flow matrix F € R"*" captures the
interaction cost between facility i and facility j. Each location is represented by a matrix X € R"*2,
where each row contains the coordinates of a location. The distance matrix D € R™*" is computed
using the Euclidean distance D;; = || X; — X]|2.

The objective is to find a permutation matrix P € {0, 1}™*™ that maps facilities to locations while
minimizing the total cost, given by minges, Y) >7_; FijDo(i),0(;)» Where o is a permutation
of {1,...,n} defining the assignment and .S,, denotes the set of all n X n permutation operators.
This cost function can be equivalently written in matrix form as:

in (PFPT . D 2
1:{2%% , D), (2)

where P is the permutation matrix representing the assignment.

Unsupervised Learning for QAP In this paper, we use PLUME search to solve QAP. Follow-
ing the TSP fashion in (Min et al., 2023), we use neural networks (NNs) coupled with a Gumbel-
Sinkhorn operator to construct a soft permutation matrix T that approximates a hard permutation
matrix P. We use the soft permutation T to guide the subsequent search process, as shown in Fig-
ure |l PLUME search is a neural-guided heuristic that learns problem representations through NNs

Input Neural Permutation
Features }V\) Network }V\) }”} Output > Search

Formulation
Figure 1: Overview of PLUME search framework: Input features are transformed through a neural
network into a permutation formulation, then the output of the neural network guides the subsequent
search process. This unified architecture allows PLUME to handle various combinatorial optimiza-
tion problems by learning permutation operators.

to directly guide the search. By integrating learned representations, PLUME search leverages UL
to enhance search performance. Here, for QAP, while TSP uses the heat map H = TVT ' as a soft
matrix (heat map) to guide the search, we directly decode a hard permutation matrix P from T. This
permutation matrix P represents an alignment in QAP and serves as an initialization to guide the
subsequent search.

2 TABU SEARCH

We adopt Tabu search as the backbone of our PLUME search framework. Tabu Search (TS) is a
method introduced by Glover (Glover and Laguna, |1998) that enhances local search methods by
employing memory structures to navigate the solution space effectively. Unlike traditional hill-
climbing algorithms, TS allows non-improving moves to escape local optima and uses adaptive

Under review as a conference paper at ICLR 2026

memory to avoid cycling through previously visited solutions. The algorithm maintains a tabu list
that prohibits certain moves, creating a dynamic balance between intensification and diversification
strategies.

Tabu Search for Quadratic Assignment TS has emerged as one of the most effective metaheuris-
tics for addressing QAP instances (Taillard,|1991}; |Drezner, |2003; James et al., 2009). The algorithm
navigates the solution space through strategic move evaluations and maintaining memory structures
to prevent cycling and encourage diversification. For QAP, TS typically begins with a random per-
mutation as the initial solution and employs a swap-based neighborhood structure where adjacent
solutions are generated by exchanging the assignments of two facilities. A key component of TS
is the tabu list, which records recently visited solutions or solution attributes to prevent immediate
revisiting. In QAP implementations, the tabu list typically tracks recently swapped facility pairs,
prohibiting their re-exchange for a specified number of iterations—the tabu tenure. This memory
structure forces the search to explore new regions of the solution space even when immediate im-
provements are not available, helping the algorithm escape local optima. The performance depends
mainly on three parameters: neighbourhoodSize, which controls the sampling density from
the complete swap neighbourhood at each iteration; evaluations, which establishes the maxi-
mum computational budget as measured by objective function calculations; and maxFails, which
implements an adaptive early termination criterion that halts the search after a predefined number
of consecutive non-improving iterations. Together, these parameters balance exploration breadth
against computational efficiency, ensuring both effective solution space coverage and predictable
runtime performance (Glover, 1989} [Blum and Rolil [2003; Battiti and Tecchiollil |1994; Misevicius,
2005).

3 MODEL

We propose a permutation-equivariant neural architecture for the QAP. The network jointly encodes
(1) pairwise flows among facilities and (ii) pairwise distances among locations, and fuses these with
per-node positional features. Permutation equivariance is enforced by construction through row-
wise symmetric pooling operators (sum, mean, max), shared multilayer perceptron (MLP) encoders
for facility—facility and location—location interactions, and equivariant message passing updates that
avoid in-place modifications to ensure stable gradient flow. As shown in Figure[2] our neural network

Y € R**
{Final embeddings}

Fuse MLP | | | lterate |
3d —d | , for TMlayers :
! | FOT Thtayers |

Encoders
Fusion

Facility encoder
$MLP1 — d
i fast_pooling

‘ 03 mix: MLP 3d — d
msg: Linear d — d

Location encoder
¢: MLP1 — d
fast_pooling

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I —

location-feedbaek--------------

Figure 2: Neural network architecture for QAP. The model takes coordinates and flow matrix data
and passes them into MLP encoders, the resulting features are then concatenated together. We then
feed them into the main network and generate Y through an output layer.

consists of a facility encoder and a location encoder, each based on lightweight MLPs and pooled
symmetric operators, a positional lifting module that embeds 2D coordinates into the hidden space,
and a fusion block that integrates facility, location, and positional features across multiple layers.

Under review as a conference paper at ICLR 2026

By construction, our model guarantees permutation equivariance, in the sense that permuting rows
and columns of the inputs permutes the learned embeddings in the same way.

Let n denote the number of facilities/locations. The inputs of our model are 2D coordinates X €
R"™*? and a (typically symmetric) flow matrix F € R"*", We precompute once per batch the
Euclidean distance matrix D € R"*". X is embedded once by a 2-layer MLP ¢, : R? —R<,

HpOS — (st(X) c Rnxd) (3)

and reused across layers as fixed positional context.

Encoders The encoders provide node-aligned embeddings of flows, distances, and coordinates
that respect permutation equivariance. Each encoder lifts scalar pairwise inputs into R?, aggregates
across neighbors using symmetric pooling (sum/mean/max), mixes the pooled summary with an
MLP, and applies a row-stochastic message pass. This design ensures that both global context and
local interactions are captured before embeddings are fused downstream.

Our flow encoder transforms entries of the flow matrix F € R"*" with a shared 2-layer MLP
or R—R%: Xij = ¢¢(F;;), for each node 7, pooled statistics over its neighbors are computed:

3 - L 1.3 max __ -
sy = E Xij, sy =87, S —m]axX”. 4
J

These are concatenated into h?**' = [s¥ || s || s™@*] € R3¢ and passed through a mixing MLP

mix; : R3 — R? to obtain h;. To propagate information along flow structure, we normalize F
row-wise:
W = normalize; (F), 5)

and apply a linear message map msg : R? — R?, giving the encoder output
H™ = h + Wp msg;(h) € R"*", (6)

Thus, each facility embedding combines local pooled features with weighted messages from other
facilities, scaled by flow magnitude.

Our location encoder is structurally identical but uses distances. A shared 2-layer MLP ¢, : R — R?
embeds distances into G;; = ¢¢(D;;), producing pooled summaries z°°* € R3¢, After mixing,

we obtain Z = mix,(zP°). To emphasize nearby nodes, we construct a kernel from the inverse
distance:
W p = normalize;((D + 1) '), e=1073, (7

and update embeddings via
H' = 7z + Wp msg,(z) € R"*%. (8)

This encourages each node to aggregate more strongly from spatially close locations, consistent with
the QAP cost structure.

Finally, raw coordinates are embedded by a 2-layer position lift MLP ¢,, : R? —R¢:
HP = ¢,(X) € R"*¢, ©9)

computed once and reused across layers. These positional embeddings act as fixed context that
complements the dynamic flow and distance streams.

Fusion Stack and State Update To enable effective message passing, we introduce a Fusion Stack
combined with a State Update mechanism. The key idea is to iteratively refine node embeddings
so that information propagates across the entire graph, thereby capturing multi-hop dependencies
between facilities and locations. This is crucial for QAP, since the cost of assigning a facility to a
location depends not only on its direct interaction with a single other facility but also on indirect
chains of interactions involving the rest of the system.

At layer ¢, we construct node-aligned streams for facilities, locations, and positions, concatenate
them, and fuse with a learned transformation:

u®w — [Hfac I Tloc I Hpos] c]RnXi%d7 HO — fuse(U(e)) c R”Xd7 (10)

Under review as a conference paper at ICLR 2026

where fuse : R3? — R9 is implemented as a 3-layer MLP. We then perform a state update by setting
H™ + HY H"«+HY, (11)

so that both facility and location streams share the updated node representation, while HP*® remains
fixed as positional context. After njayers layers of Fusion and State Update, the network outputs
embeddings

Y = H(nu.ym) c Rmxd (12)

An additional advantage of this design is that the weighting of message updates is directly aligned
with the QAP objective. We apply row normalization to the flow matrix F and to the inverse dis-
tance matrix (D + €)1, yielding row-stochastic kernels that act as attention weights. This ensures
that messages are propagated preferentially along cost-critical interactions: strong flows between
facilities and short distances between locations. As a result, the network allocates representational
capacity to the most influential dependencies while still retaining global structural context through
symmetric pooling. This balance between broad structural awareness and targeted local refinement
enables the model to capture higher-order dependencies that are essential for achieving globally
optimal assignments.

3.1 BUILDING SOFT PERMUTATION T

Our model first generates logits which are transformed by a scaled hyperbolic tangent activation:
F =atanh(YY"), (13)

where « is a scaling parameter that controls the magnitude of the output. We then construct a soft
permutation matrix T using the Gumbel-Sinkhorn operator:

T GS(}—+ v x Gumbel noise

1), (14)

where GS denotes the Gumbel-Sinkhorn operator that builds a continuous relaxation of a permuta-
tion matrix. Here, -y controls the scale of the Gumbel noise which adds stochasticity to the process, 7
is the temperature parameter that controls the sharpness of the relaxation (lower values approximate
discrete permutations more closely), and [is the number of Sinkhorn normalization iterations.

During inference, we obtain a discrete permutation matrix P by applying the Hungarian algorithm

to the scaled logits: P = Hungarian(— M) We use the CUDA implementation of the
batched linear assignment solver for the Hungarlan operator from (Karpukhin et al.,[2024).

3.2 INVARIANCE PROPERTY OF PERMUTATION REPRESENTATION

The soft permutation matrix T is constructed through Equations|13|and |14]to preserve permutation
equivariance. Let II € S, represent a random permutation on the nodes, the distance and flow
matrices transform as D = I[IDoII" and F = IIF,II", where Dg and Fy are the distance matrix
and flow matrix before this random permutation respectively. Now, let Y denote the initial output,
given that the network output transforms under permutation IT as Y = II'Y,, we then have T =
ITeII . Consequently, the objective function (TFT ', D) remains invariant. To be specific, ¥ IT €
S,,, we have:

(TFTT, D) = (LTIl (HFOHT> (HTOHT> " DI

= MToII" T Fo I ITJ I, IIDI ") = (IITeFTy I, TIDeI ") (15)
=I =I

— (I (TOFO’JI‘OT)HT,HDOHT> — (TyFoT] , Do).

This invariance property guarantees consistent solutions for isomorphic problem instances. Overall,
Equations [I3] and [14] preserve permutation symmetry while enabling gradient-based optimization,
with the additional benefit of allowing the model to naturally generalize across different problem
sizes. This generalization capability arises because the soft permutation matrix T € R™*"™ always
matches the input graph size, independent of the model’s parameters. Consequently, our approach
scales to problems of varying sizes without needing to modify the NN.

Under review as a conference paper at ICLR 2026

4 RESULTS

Data Generation and Training We generate synthetic instances using an Erdés-Rényi (ER) graph
model following (Tan and Mu, |[2024). To build a QAP instance of size n, we generate a flow matrix
F € R™ " and the location coordinates X = (Uniform(0,1),Uniform(0,1)). We generate
uniformly random weights in [0, 1] for the upper triangular portion of F, then mirror these values
to create a symmetric matrix. We apply an ER graph mask with edge probability p to control the
sparsity of connections between facilities.

Formally, for each QAP instance ¢:

P, — Uniform(0,1) 1frand() <pandi#j Vi< (16)
0 otherwise

We build datasets with varying problem sizes n € {100,200} and graph densities p €
{0.1,0.2,...,0.9}. For each configuration, we generate 30,000 instances for training, 5,000 for
validation and 5,000 for test, respectively. We run experiments using an NVIDIA H100 GPU and an
Intel Xeon Gold 6154 CPU. We optimize our NNs to minimize the QAP objective:

(TFT', D), (18)

with the model’s hidden dimension set to either 128 or 256. The number of layers njayers is set to 3.
For the Gumbel-Softmax operator used in Equation we set 7 = 3 and [= 100. The noise scale
v = 0.01. The tanh scale is set to @ = 40. We use the AdamW optimizer with a learning rate
of 3 x 1075 and train for 300 epochs. We train our model on each problem size n and each graph
density p. After training the model, we then validate it and select the best parameters before testing.
We implement a PLUME search in a straightforward way. As mentioned, the model outputs the
soft permutation matrix T, and we decode the hard permutation matrix P from T. P corresponds
to a learned assignment. We then start the tabu search for QAP using this learned assignment as the
initial solution.

Table 1: Comparison between the average costs of UL predicted solutions and random solu-
tions. The gap value indicates the average percentage improvement of the predicted solution
over the random solution’s cost. Inference time denotes the average total time (running NN in-
ference+Hungarian) required to build the UL predicted solutions.

n = 100 n = 200
p UL random Gap (%) Inference (ms) UL random Gap (%) Inference (ms)
0.1 214.169 257.877 16.95 0.5747 913.790 1037.01 11.88 2.0885
0.2 457.821 515.381 11.17 0.5686 1908.48 2074.41 8.00 2.0589
0.3 709.034 773.459 8.33 0.5672 2917.46 3110.27 6.20 2.0049
0.4 960.346 1031.92 6.94 0.5673 3939.86 4144.96 4.95 1.9856
0.5 1214.74 1288.90 5.75 0.5633 4963.71 518432 4.26 1.9822
0.6 147290 1547.62 4.83 0.5588 5996.06 6219.82 3.60 1.9626
0.7 1729.11 1805.83 4.25 0.5572 7035.88 7257.90 3.06 1.9375
0.8 1989.98 2064.49 3.61 0.5535 8072.96 8298.41 2.72 1.8735
0.9 2251.18 2320.06 297 0.5488 9122.38 9336.99 2.30 1.9690
Mean 1222.14 1289.50 7.20 0.5621 4985.62 5184.90 5.22 1.9736

Effectiveness of UL-Based Initialization Before diving into the PLUME search’s final results,
we first check whether the learned assignment improves the solution quality without any subsequent
search. We directly compare the quality of solutions using learned assignments versus random
assignments in the initialization stage.

Table [1| demonstrates the cost of using UL-predicted solutions compared to random initialization.
(PFP' D)
(PrandomFP [,

random’

We define the gap as: 1—

D) where P is the learned assignment and P .1, 40, 1S @

Under review as a conference paper at ICLR 2026

random assignment. The gap percentage shows consistent improvement across all problem densities,
with more significant gains observed in sparser problems. For n = 100 with density p = 0.1, the
UL approach achieves a 16.95% improvement over random initialization, while for n = 200, it
yields a 11.88% improvement. As problem density increases, the gap narrows but remains positive,
indicating that our approach maintains its advantage even for denser problems.

Table 2: Performance comparison of selected tabu search configurations on QAP instances with n =
100, 200. TS(u, k,w) denotes the tabu search with evaluations : y, neighbourhoodSize :
K, and maxFails : w.

n = 100 n = 200
TS(1k, 25, 25) TS(10k, 100, 100) TS(1k, 25, 25) TS(10%, 100, 100)
P UL random UL random UL random UL random

0.1 186.255 198931 164.509 167.250 855.216 918.224 792.157 816.504
0.2 417.235 434907 386.651 390.903 1827.18 1913.14 1740.81 1773.71
0.3 659.526 679.353 623.167 627.494 2820.25 292198 271891 2758.39
0.4 905.508 928.427 865.668 871.310 3830.55 3937.86 3718.45 3758.61
0.5 1156.03 1179.51 1113.97 1119.23 4846.67 4965.70 4728.44 4776.09
0.6 1411.77 1435.01 1368.36 1373.03 5874.34 5994.81 5752.03 5800.11
0.7 1667.47 1692.78 1624.33 1630.24 6912.64 7032.42 6790.50 6836.88
0.8 1928.97 1953.37 1886.45 1892.27 7950.10 8076.76 7829.94 7884.92
0.9 219191 221392 2151.28 2155.33 9003.56 9125.34 8888.56 8941.46

Average 116941 1190.69 1131.60 1136.34 4880.06 4987.36 4773.31 4816.30

PLUME Search for QAP We then run tabu search using different initializations. Tables [2] shows
the performance of PLUME tabu search compared with tabu search with random initialization. Our
experimental results demonstrate that our UL-based method effectively solves QAPs. The solu-
tions consistently outperform random initialization across all problem sizes and density parame-
ters. Specifically, we vary the evaluations : u, neighbourhoodSize : kK, maxFails : w
and test PLUME search. We show that our UL-based initialization consistently outperforms ran-
dom initialization within each parameter set, and the solution quality improves with increased
evaluations u.

Table 3: Average time comparison of selected tabu search configurations on QAP instances with
n = 100 and n = 200, in ms (x 1072 s). TS(u, x,w) denotes the tabu search with evaluations :
W, neighbourhoodSize : kK, and maxFails : w.

n = 100 n = 200
TS(1,000,25,25) TS(10,000,100,100) TS(1,000,25,25) TS(10,000,100,100)
p UL random UL random UL random UL random

0.1 1.55014 1.47786 6.89681 6.40729 2.42600 2.29224 11.8025 11.8930
0.2 1.40809 1.72910 6.19193 6.92497 2.29030 2.33664 11.9798 11.8780
0.3 2.23220 2.30824 6.34255 6.50180 2.34508 2.32658 11.9024 11.7376
0.4 2.72354 291837 6.73373 6.90415 2.18291 2.57973 12.0805 11.9279
0.5 257762 1.60781 6.87188 6.36137 2.34563 2.22272 12.0350 11.9095
0.6 1.90425 1.71858 6.63121 6.72185 2.54630 2.29580 12.0519 11.6976
0.7 1.60661 1.57086 6.60751 6.77780 2.27941 2.27283 12.1370 11.8553
0.8 1.91665 2.06804 6.81585 6.88984 2.35310 2.39341 11.6703 11.8593
0.9 242608 2.11719 6.28867 6.47949 2.18062 2.51180 11.6522 11.5438

Mean 2.03835 1.94623 6.59779 6.66317 2.32771 2.35908 11.92351 11.81135

The performance gap is most pronounced in sparse problems (low p values). With parameters y =
1,000, k = 25, and w = 25, PLUME search yields a 6.37% improvement at p = 0.1, n = 100, and a

Under review as a conference paper at ICLR 2026

6.86% improvement at p = 0.1, n = 200. This advantage diminishes as problem density increases,
indicating that our models are particularly effective at capturing structural patterns in sparse settings.

The relative improvement from using PLUME search is more significant for larger problem sizes,
with n = 200 showing consistently higher percentage improvements than n = 100 at comparable
densities. This trend holds for tabu search with different parameters. For example, with parameters
w = 1,000, k = 25, and w = 25, the tabu search with random initialization achieves 1190.69 on
average for n = 100, while PLUME search achieves 1169.41, yielding a 1.79% improvement. At
n = 200, PLUME search achieves 4880.06 on average while random initialized tabu search achieves
4987.36, resulting in a more substantial 2.15% improvement. The most intensive tabu search config-
uration, TS(10,000, 100, 100), provides the most comprehensive exploration of the solution space
and thus yields the best solution quality across all initialization methods. At this parameter set-
ting, PLUME search further improves solution quality. For graphs with n = 100, PLUME search
achieves an average solution cost of 1131.60 compared to 1136.34 for random initialization, yielding
a 0.42% improvement. While this may appear modest, it is important to note that as search param-
eters increase, the final solutions converge closer to optimality, leaving less room for improvement.
The fact that PLUME search maintains its advantage even in this setting underscores the quality of
its initialization. For larger graphs with n = 200 vertices, the benefit becomes more pronounced.
PLUME search achieves an average cost of 4773.31 compared to 4816.30 for random initialization,
yielding a 0.89% improvement. This increasing advantage with problem size suggests that PLUME
search scales well to larger problems.

An important observation emerges when analyzing initialization performance at larger problem
scales. For n = 200, the UL-based initialization produces solutions of comparable quality to those
obtained by a lightweight tabu search configuration, TS(1,000, 25, 25). This finding highlights that
the UL model does not merely provide a heuristic shortcut, but rather learns to internalize and ex-
ploit the underlying problem structure. Consequently, the UL-based initialization can be interpreted
as a learned search mechanism in its own right, capable of directly yielding high-quality solutions
without requiring extensive local exploration.

Tables [3| shows the execution time comparison (TS runtime) between random and UL-based initial-
ization approaches for tabu search. The inference time for generating UL-predicted solutions is 0.56
ms for n = 100 and 1.98 ms for n = 200 (see Table[T)). As discussed, the UL-based initialization on
n = 200 achieves competitive performance with respect to TS with parameters p = 1,000, x = 25,
and w = 25 (4985.62 vs. 4987.36), while the TS runtime is 2.35 ms. It should be noted that our UL
inference is performed on GPU, whereas tabu search is executed on CPU; therefore, the runtimes are
not directly comparable. Nevertheless, the shorter inference cost highlights that UL is an efficient
and effective method for initialization.

Table 4: Cross-size generalization: Models trained and tested on different problem sizes (both with
p = 0.7). Random Initialization shows cost from random assignments; UL-based Initialization
shows cost from UL model. TS(u, k,w) shows costs after running tabu search from random initial-
ization. PLUME TS(u, &, w) shows costs after running tabu search from UL-predicted initialization.

Train Test Random UL-based TS PLUME TS TS PLUME TS
Size Size Initialization Initialization (1k,25,25) (1k,25,25) (10k,100,100) (10%,100,100)
200 100 1805.83 1754.69 1692.78 1674.92 1630.24 1625.90
100 200 7257.90 7081.93 7023.566 6934.05 6836.88 6798.40

Compared with Other Data-driven Methods We compare with recent work by (Tan and Mu,
2024])), where the authors use RL and test only on QAP instances up to size 100. We run their model
on n = 100 and p = 0.7, using their model, we observe an average cost of 1644.37 with an average
time of ~ 150 ms, our PLUME TS(10,000, 100, 100) achieves better performance with a cost of
1624.33. Notably, our methods are substantially faster, with average time costs within 10 ms. It
should be noted that although (Tan and Mu,[2024) also uses tabu search as a benchmark; they employ
a Python implementation, which is not as computationally efficient as our C++ implementation of
tabu search. We didn’t fine-tune the RL method and fine-tuning may yield better performance.

Under review as a conference paper at ICLR 2026

However, the gaps are so dramatically large that even with optimization, the RL approach would
remain substantially inferior.

5 GENERALIZATION

Table 5: Generalization across selected densities for models trained on n = 100, p = 0.7 and
n = 200, p = 0.7. Random initialization shows costs using random initial assignments. UL-based
initialization shows costs using assignments predicted by our neural network. TS(u, k,w) shows
costs after running tabu search from random initialization. PLUME TS(y, x,w) shows costs after
running tabu search from UL-predicted initialization.

Random TS(1,000,25,25) TS(10,000, 100, 100)
n p Random UL-based Random PLUME Random PLUME

100 0.6 1547.62 1500.26 1435.01 1420.25 1373.03 1370.25
100 0.8 206449 205836 1953.37 1950.79 1892.27 1891.46
200 0.6 6219.82 6205.04 599498 5984.02 5800.17 5795.99
200 0.8 8298.41 8283.00 8076.76 8060.64 7884.66 7874.34

Cross-density Generalization We further study how the model generalizes across different den-
sities, as shown in Table 5] Using models trained on a specific edge density (p = 0.7), we test the
model’s performance on nearby densities (p = 0.6 and p = 0.8). Our results suggest the model
captures transferable structural patterns that work best within a reasonable proximity to its training
conditions. This effect is more pronounced with TS(1,000, 25, 25) compared to configurations with
more extensive search parameters. For n = 100 and p = 0.6, the UL-based initialization achieves
a 3.06% improvement over random initialization. When applying TS(1,000, 25, 25), the perfor-
mance gap between PLUME and random initialization is reduced to 1.03%, and with the stronger
configuration TS(10,000, 100, 100), the gap further narrows to 0.20%.

Cross-size Generalization Our model naturally generalizes across problem sizes due to its
permutation-equivariant design, where the soft permutation matrix T € R™*™ automatically adapts
to match input dimensions. Experiments show that a model trained on n = 100 effectively general-
izes to n = 200 problems and vice versa, while consistently outperforming random initialization, as
shown in Table[d] For instance, when a model trained on n = 200 is applied to n = 100 problems,
UL initialization achieves a solution cost of 1754.69 compared to 1805.83 for random initialization,
and when used with TS(1,000, 25, 25), PLUME TS reaches 1674.92 versus 1692.78 for standard TS
with random initialization.

6 CONCLUSION

In this paper, we propose PLUME search, a framework to enhance combinatorial optimization
through unsupervised learning. By leveraging a permutation-based loss, we demonstrate that neural
networks can effectively learn the quadratic assignment problem directly from instances, rather than
relying on supervised or reinforcement learning. Our experimental results indicate that UL can
generate high-quality initial solutions that significantly outperform random initialization, and these
improved starting points consistently lead to superior final solutions after tabu search, while also
exhibiting strong generalization across varying problem densities and sizes.

A key insight is that our method does not merely act as an initializer, but rather learns to capture
and exploit the intrinsic problem structure. In this sense, our unsupervised method can itself be re-
garded as a form of search, providing solutions of comparable quality to conventional heuristics after
substantial exploration. PLUME search therefore takes a different path from traditional heuristics,
offering a complementary paradigm that integrates seamlessly with existing frameworks rather than
competing with them.

Under review as a conference paper at ICLR 2026

REFERENCES

Roberto Battiti and Giampietro Tecchiolli. The reactive tabu search. ORSA journal on computing, 6
(2):126-140, 1994.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM computing surveys (CSUR), 35(3):268-308, 2003.

Zvi Drezner. A new genetic algorithm for the quadratic assignment problem. INFORMS Journal on
Computing, 15(3):320-330, 2003.

Fred Glover. Tabu search—part i. ORSA Journal on computing, 1(3):190-206, 1989.
Fred Glover and Manuel Laguna. Tabu search. Springer, 1998.

Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43-62,
2001.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT press, 1992.

Tabitha James, César Rego, and Fred Glover. Multistart tabu search and diversification strategies for
the quadratic assignment problem. IEEE TRANSACTIONS ON SYSTEMS, Man, And Cybernetics-
part a: systems and humans, 39(3):579-596, 2009.

David S Johnson and Lyle A McGeoch. The traveling salesman problem: a case study. Local search
in combinatorial optimization, pages 215-310, 1997.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Ivan Karpukhin, Foma Shipilov, and Andrey Savchenko. Hotpp benchmark: Are we good at the
long horizon events forecasting? arXiv preprint arXiv:2406.14341, 2024.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671-680, 1983.

Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location of economic
activities. Econometrica: journal of the Econometric Society, pages 53-76, 1957.

Eugene L Lawler. The quadratic assignment problem. Management science, 9(4):586-599, 1963.

Yimeng Min and Carla Gomes. Unsupervised learning permutations for tsp using gumbel-sinkhorn
operator. In NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36:47264-47278, 2023.

Alfonsas Misevicius. A tabu search algorithm for the quadratic assignment problem. Computational
Optimization and Applications, 30:95-111, 2005.

Eric Taillard. Robust taboo search for the quadratic assignment problem. Parallel computing, 17
(4-5):443-455, 1991.

Zhentao Tan and Yadong Mu. Learning solution-aware transformers for efficiently solving quadratic
assignment problem. arXiv preprint arXiv:2406.09899, 2024.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

10

	Introduction
	Tabu Search
	Model
	Building Soft Permutation T
	Invariance Property of Permutation Representation

	Results
	Generalization
	Conclusion

