
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

LOW-RANK ADAPTING MODELS FOR SPARSE
AUTOENCODERS

Matthew Chen∗

Massachusetts Institute of Technology
Joshua Engels∗
Massachusetts Institute of Technology

Max Tegmark
Massachusetts Institute of Technology

ABSTRACT

Sparse autoencoders (SAEs) decompose language model representations into a
sparse set of linear latent vectors. Recent work has improved SAEs using lan-
guage model gradients, but these techniques are computationally expensive and
still increase downstream loss when using the SAE reconstructions. We attack
these limitations with a fundamentally different approach: we low-rank adapt the
language model itself around a pretrained SAE. We analyze our method across
SAE sparsity, SAE width, LLM size, LoRA rank, and model layer on the Gemma
Scope family of SAEs. In these settings, our method reduces the cross entropy
loss gap by 30% to 55% when SAEs are inserted. Compared to end-to-end (e2e)
SAEs, our approach achieves the same downstream cross entropy loss 3× to 20×
faster on Gemma-2-2B and 2× to 10× faster on Llama-3.2-1B. Furthermore, our
technique improves downstream metrics and can adapt multiple SAEs at once. We
argue improving model interpretability is not limited to post-hoc SAE training;
Pareto improvements can also be achieved by directly optimizing the model itself.

1 INTRODUCTION

Language models excel in tasks like in-context learning, mathematics, and coding (Brown et al.,
2020; OpenAI, 2024; Team et al., 2023; Bubeck et al., 2023; Anthropic, 2024), but the mechanisms
underlying their behavior remain opaque. Mechanistic interpretability (MI) (Bereska & Gavves,
2024) aims to reverse-engineer these mechanisms into human-understandable algorithms, with a key
focus on features—the variables of model computation (Olah et al., 2020; Mueller et al., 2024).

A central hypothesis in MI, the Linear Representation Hypothesis (LRH) (Elhage et al., 2022a; Park
et al., 2023), posits that features correspond to one-dimensional directions in activation space. While
recent studies challenge parts of this view (Engels et al., 2024a; Csordás et al., 2024; Engels et al.,
2024b), it has been empirically validated in many cases (Nanda et al., 2023; Heinzerling & Inui,
2024). Inspired by this, sparse autoencoders (SAEs) (Makhzani & Frey, 2013) have been used to
decompose activations into monosemantic features (Cunningham et al., 2023; Bricken et al., 2023).

However, inserting SAE reconstructions back into the model significantly increases cross-entropy
loss (LSAE) compared to the original model (LBASE). For instance, TopK SAE reconstructions in
GPT-4 yield a LSAE comparable to a model trained with only 10% of GPT-4’s pretraining compute
(Gao et al., 2024). To mitigate this trade-off, prior work has refined SAE architectures to optimize the
sparsity vs. LSAE frontier, including TopK SAEs (Gao et al., 2024), Gated SAEs (Rajamanoharan
et al., 2024a), JumpReLU SAEs (Rajamanoharan et al., 2024b), ProLU SAEs (Taggart, 2024), Switch
SAEs (Mudide et al., 2024), and e2e SAEs (Braun et al., 2024).

An unexplored direction is whether models themselves can be adapted post-SAE training to further
improve performance. We answer affirmatively, showing that Low-Rank Adapters (LoRA) (Hu et al.,
2021) reduce the KL divergence between the original and SAE-modified logits. This adaptation
improves LSAE and enhances various downstream SAE metrics. Overall, low-rank model adaptation
provides a simple yet effective method for improving the interpretability vs. performance trade-off.

1



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

M
LP

A
tten

tio
n

En
co

d
er

D
eco

d
er

M
LP

A
tten

tio
n

M
LP

A
tten

tio
n

M
LP

A
tten

tio
n

A A A A A A A A
B B B B B B B B

SAE
Low Rank Adapters Low Rank Adapters

Figure 1: Visual representation of our method, with a local SAE trained on layer 12 and low-rank
adapters trained on MLP and attention components on all layers.

1. In Section 3.1, we low-rank adapt for the Gemma Scope (Lieberum et al., 2024) family of SAEs.
Across SAE width, sparsity, LLM size, LoRA rank, and inserted layer, we find a 30% to 55%
improvement in LSAE, with the greatest improvements in low-sparsity regimes and larger models.

2. In Section 3.2, we compare our method to e2e SAEs on training time vs. LSAE on Gemma-2-2B
(Team et al., 2024) and Llama-3.2-1B (AI@Meta, 2024). We find that our method achieves the
same LSAE as e2e SAEs with between 2× and 20× less compute and 130× fewer backward passes.

3. In Section 3.3, we low-rank adapt with multiple SAEs inserted into Llama-3.1-8B (AI@Meta,
2024) and see large decreases in LSAE, showing our method’s potential to aid circuit analysis.

4. In Appendix A.5, we show our low-rank adapted models exhibit quantitative improvements on a
diverse set of downstream tasks using the SAE features.

2 OPTIMIZING MODELS FOR SPARSE AUTOENCODERS

We formally describe our method of adapting models for SAEs. Denote a decoder only transformer
with L layers and hidden dimension d, input x0, output y, and the activation after the ith layer by xi.
Express the ith transformer block as a function hi, so the network is

xi = hi(xi−1) 1 ≤ i ≤ L (1)
y = softmax(xL) (2)

Appendix A.2 contains a review of SAEs. Unless specified, we use layer 12 residual stream SAEs.

2.1 METHOD FOR LOW-RANK ADAPTING MODELS TO SAES

Formulation. We insert a frozen SAE immediately after layer ℓ, and the reconstructed activation
x̂ℓ = SAE

(
xℓ

)
propagates through the remaining layers to produce x̂i = hi

(
x̂i−1

)
for ℓ+ 1 ≤

i ≤ L and ŷ = softmax(x̂L).

For JumpReLU SAEs we only adapt layers after the SAE to maintain average sparsity, while for TopK
SAEs we can train adapters on all layers. We add low-rank r adapters in each MLP and attention
sublayer of every layer we are adapting. Concretely, for each frozen weight matrix Wi ∈ Rd1×d2 , we
add Ai ∈ Rd1×r and Bi ∈ Rr×d2 and modify the forward pass according to Equation (3).

Our method is extremely parameter efficient: we train only the low-rank adapters Θ = {Ai} ∪ {Bi}.
For all experiments the training objective is DKL(ŷ,y)—the KL divergence between the next token
probability distribution with and without the SAE inserted.

3 RESULTS

3.1 SCALING LAWS FOR DOWNSTREAM LOSS

We first explore how our method scales across SAE sparsity, SAE width, language model size, LoRA
rank, and model layer. Specifically, we use Gemma Scope’s JumpReLU SAEs (Rajamanoharan
et al., 2024b). Over different sparsities, widths, and layers, we track the absolute and percent
improvement in LSAE −LBASE after low-rank adapting. We train on 15M random tokens of The Pile
(uncopyrighted) dataset (Gao et al., 2020), and evaluate on a held out validation set of 1M random
tokens. We report our findings in Figure 3 for model size and in Figure 2 for other scaling axes.

2



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0.05

0.10

0.15

CE
 Im

pr
ov

em
en

t Rank 1
Rank 4
Rank 16
Rank 64
Rank 256

Rank 1
Rank 4
Rank 16
Rank 64
Rank 256

Rank 1
Rank 4
Rank 16
Rank 64
Rank 256

0 100 200 300 400
Sparsity (L0)

30

35

40

45

50

55

CE
 Im

pr
ov

em
en

t (
%

)

0 100 200 300 400 500
Width (k)

6 9 12 15 18
Layer

Figure 2: Cross entropy loss improvement (Top: absolute, Bottom: percentage of CE loss gap closed)
using our method for Gemma Scope SAEs on Gemma-2-2B. Left: Scaling across sparsity with fixed
width=16k and layer=12. Middle: Scaling across width with fixed L0 = 68 and layer=12. Right:
Scaling across layer with fixed L0 = 68 and width=16k.

2B 9B 27B
Gemma Size

0.02

0.03

0.04

0.05

0.06

CE
 Im

pr
ov

em
en

t

2B 9B 27B
Gemma Size

25

30

35

40

45

50
CE

 Im
pr

ov
em

en
t (

%
)

Rank 1
Rank 4
Rank 16
Rank 64
Rank 256

Figure 3: Cross entropy loss improvement (Top: absolute, Bottom: percentage) for Gemma Scope
SAEs of width 16k and L0 closest to 70 on Gemma-2-2B, 7B, and 27B. We find that our method
works increasingly well on larger models.

Across all of the scaling regimes, we close the LSAE −LBASE gap by at least 30%, and sometimes by
up to 55%. Using larger rank LoRA adapters reliably decreases the final LSAE; this, combined with
the fact that we adapt on only 15M tokens and do not see our adapters fully converge, implies that
with more compute our method may be even more successful.

The improvement is largest on lower sparsities, lower widths, and larger models; all of these results
may be caused by these SAEs having a higher cross entropy loss gap to start with. We do still find it
extremely promising that the effectiveness of our technique increases on larger models.

Another question is which LoRA layers are most important for reducing LSAE. In Figure 8, we plot
the results of an experiment where we train LoRA adapters on each individual layer after the layer
with the inserted SAE. The LoRA performance degrades as it gets farther from the original layer;
training LoRA adapters on just the first layer after the SAE achieves 88.14% of the loss reduction in
adapting all the layers after the SAE, suggesting the loss improvement mechanism may be simple.

3.2 DOWNSTREAM LOSS VS. COMPUTATIONAL COST

We study LSAE versus training time for TopK SAEs, e2e SAEs, and TopK SAEs + LoRA. We train
our own TopK and e2e SAEs and use their training curves. For TopK SAEs + LoRA, we adapt on all
layers with rank 64 for every 10% checkpoint during TopK training. TopK and e2e SAEs are trained

3



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0 50 100 150 200 250 300
Training Time (hours)

2.50

2.55

2.60

2.65

2.70

CE
 L

os
s

Original Model Loss (best achievable) = 2.4760

TopK SAE
e2e SAE
TopK + LoRA

0 25 50 75 100 125 150 175 200
Training Time (hours)

2.6

2.7

2.8

2.9

3.0

CE
 L

os
s

Original Model Loss (best achievable) = 2.5481

TopK SAE
e2e SAE
TopK + LoRA

Figure 4: Cross entropy loss vs. training time over 2B tokens for Gemma-2-2B TopK SAEs with
width = 18, 432,L0 = 64 (Left) and for Llama-3.2-1B with TopK SAEs of L0 = 64 and width
16384 (Right). We find our method (TopK + LoRA in the plot) has significant speedups.

for 4B tokens on Llama-3.2-1B and 2B tokens on Gemma-2-2B. We low-rank adapt for 100M tokens
on Llama-3.2-1B TopK checkpoints and 15M tokens on Gemma-2-2B TopK checkpoints.

The Pareto cross entropy frontiers for Gemma-2-2B and Llama-3.2-1B in Figure 4 show our method
dominates. Quantitatively, we achieve speedups of 2× to 20× in wall clock time in achieving various
CE loss threshold when using TopK + LoRA versus e2e (Tables 1 and 2). We also require 130×
fewer backward passes through the model than e2e SAEs on Gemma-2-2B and 40× fewer backward
passes on Llama-3.2-1B. We do note, however, that e2e SAEs achieve a lower final CE loss than our
method on Llama-3.2-1B (although not on Gemma-2-2B).

3.3 ADAPTING MULTIPLE SAES

1 3 5 7 10 15
Number of SAEs

0

2

4

6

8

10

12

Co
m

po
un

d 
CE

 V
al

 L
os

s

2.60
3.55

9.88

7.83

9.89
11.00

2.25 2.45
2.94 2.78

3.36

5.78

No SAEs
TopK
TopK + LoRA

Figure 5: Downstream cross entropy loss when multiple
Llama Scope SAEs are inserted into Llama-3.1-8B at
once. “Base” is the original loss without any fine-tuning,
while “LoRA” is the loss after 15M tokens of LoRA
training.

Inserting multiple SAEs into a language
model causes LSAE to increase rapidly–e.g.,
inserting 5 SAEs results in worse cross en-
tropy than a unigram model (Gao et al.,
2024). Despite this, multi-SAE insertion
is valuable for circuit analysis, as it reveals
dependencies between SAE latents. Prior
work (Marks et al., 2024) mitigate this is-
sue with error terms at the cost of inter-
pretability.

To address this, we modify our approach by
inserting all SAEs simultaneously during
training while following Section 2.1. We
evaluate performance using “Compound
Cross Entropy Loss” (Lai & Heimersheim,
2024), which measures LSAE with all SAEs
inserted. We use the Llama Scope (He
et al., 2024) set of TopK SAEs trained on Llama-3.1-8B, and test configurations that maximize
layer-wise distance between SAEs: 1 SAE at {16}, 3 SAEs at {10, 20, 30}, 5 SAEs at {6, 12, 18, 24,
30}, 7 SAEs at {4, 8, 12, . . . , 28}, 10 SAEs at {3, 6, 9, . . . , 30}, and 15 SAEs at {2, 4, 6, . . . , 30}.

Figure 5 shows our method significantly reduces compound CE loss; for instance, the compound CE
loss for 3 SAEs goes from 3.55 nats to 2.45 nats (lower than the original validation CE loss with a
single SAE and no LoRA). Thus, our technique seems extremely promising for circuit analysis.

4 CONCLUSION

Low-rank adapting models for SAEs is a fast, cheap, and effective path to achieving interpretable
combined model and SAE systems. In Appendix A.5, we find our LoRA models use SAE fea-
tures more effectively on downstream tasks. Our work challenges the prevailing assumption that

4



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

improving interpretability must rely solely on post-hoc model decomposition and hope our results lay
groundwork for future techniques.

REFERENCES

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Technical report, Anthropic, 2024.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. arXiv
preprint arXiv:2404.14082, 2024.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally
important features with end-to-end sparse dictionary learning, 2024. URL https://arxiv.
org/abs/2405.12241.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Trenton Bricken, Jonathan Marcus, Kelley Rivoire, and Thomas Henighan. Transformer cir-
cuits: September update, 2024. URL https://transformer-circuits.pub/2024/
september-update/index.html#oversampling. Accessed: 2025-01-19.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. arXiv preprint
arXiv:2412.06410, 2024.

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for absorption: Studying feature splitting and absorption in sparse autoencoders, 2024. URL
https://arxiv.org/abs/2409.14507.

Corbt. All recipes dataset. https://huggingface.co/datasets/corbt/
all-recipes, 2024. Accessed: 2025-01-30.

Róbert Csordás, Christopher Potts, Christopher D Manning, and Atticus Geiger. Recurrent neural
networks learn to store and generate sequences using non-linear representations. arXiv preprint
arXiv:2408.10920, 2024.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023. URL https://arxiv.
org/abs/2309.08600.

Jacob Drori. Domain-specific saes, 2024. URL https://www.lesswrong.com/posts/
ojERTvdGWW6XRZAqr/domain-specific-saes.

5

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241
https://transformer-circuits.pub/2024/september-update/index.html#oversampling
https://transformer-circuits.pub/2024/september-update/index.html#oversampling
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2409.14507
https://huggingface.co/datasets/corbt/all-recipes
https://huggingface.co/datasets/corbt/all-recipes
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://www.lesswrong.com/posts/ojERTvdGWW6XRZAqr/domain-specific-saes
https://www.lesswrong.com/posts/ojERTvdGWW6XRZAqr/domain-specific-saes


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-
tion. Transformer Circuits Thread, 2022a. URL https://transformer-circuits.pub/
2022/toy_model/index.html.

Nelson Elhage, Neel Nanda, Zachary Kernfeld, Tom Henighan, Catherine Olsson, and Nicholas
Joseph. Softmax linear units, 2022b. URL https://transformer-circuits.pub/
2022/solu/index.html.

Joshua Engels, Eric J. Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
features are linear, 2024a. URL https://arxiv.org/abs/2405.14860.

Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse autoencoders.
arXiv preprint arXiv:2410.14670, 2024b.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//arxiv.org/abs/2406.04093.

Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,
Qipeng Guo, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang, and Xipeng Qiu. Llama scope:
Extracting millions of features from llama-3.1-8b with sparse autoencoders, 2024.

Stefan Heimersheim. You can remove gpt2’s layernorm by fine-tuning, 2024. URL https:
//arxiv.org/abs/2409.13710.

Benjamin Heinzerling and Kentaro Inui. Monotonic representation of numeric properties in language
models. arXiv preprint arXiv:2403.10381, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Arthur Conmy, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Samuel
Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse autoencoders, 2024.
URL https://www.neuronpedia.org/sae-bench/info.

Connor Kissane, Robert Krzyzanowski, Neel Nanda, and Arthur Conmy. Saes
are highly dataset dependent: A case study on the dataset, 2024. URL
https://www.alignmentforum.org/posts/rtp6n7Z23uJpEH7od/
saes-are-highly-dataset-dependent-a-case-study-on-the.

Taras Kutsyk, Tommaso Mencattini, and Ciprian Florea. Do sparse
autoencoders (saes) transfer across base and target?, 2024. URL
https://www.alignmentforum.org/posts/bsXPTiAhhwt5nwBW3/
do-sparse-autoencoders-saes-transfer-across-base-and.

Peter Lai and Stefan Heimersheim. Sae regularization produces more interpretable mod-
els, 2024. URL https://www.lesswrong.com/posts/sYFNGRdDQYQrSJAd8/
sae-regularization-produces-more-interpretable-models.

Peter Lai and Winston Huang. Gpt-2 circuits, 2024. URL https://peterlai.github.io/
gpt-mri/. Accessed: 2025-01-30.

6

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/solu/index.html
https://transformer-circuits.pub/2022/solu/index.html
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2409.13710
https://arxiv.org/abs/2409.13710
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://www.neuronpedia.org/sae-bench/info
https://www.alignmentforum.org/posts/rtp6n7Z23uJpEH7od/saes-are-highly-dataset-dependent-a-case-study-on-the
https://www.alignmentforum.org/posts/rtp6n7Z23uJpEH7od/saes-are-highly-dataset-dependent-a-case-study-on-the
https://www.alignmentforum.org/posts/bsXPTiAhhwt5nwBW3/do-sparse-autoencoders-saes-transfer-across-base-and
https://www.alignmentforum.org/posts/bsXPTiAhhwt5nwBW3/do-sparse-autoencoders-saes-transfer-across-base-and
https://www.lesswrong.com/posts/sYFNGRdDQYQrSJAd8/sae-regularization-produces-more-interpretable-models
https://www.lesswrong.com/posts/sYFNGRdDQYQrSJAd8/sae-regularization-produces-more-interpretable-models
https://peterlai.github.io/gpt-mri/
https://peterlai.github.io/gpt-mri/


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Ziming Liu, Eric Gan, and Max Tegmark. Seeing is believing: Brain-inspired modular training for
mechanistic interpretability, 2023. URL https://arxiv.org/abs/2305.08746.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y. Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks, 2024. URL https:
//arxiv.org/abs/2404.19756.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv
preprint arXiv:2403.19647, 2024.

MedAlpaca. Medical meadow medical flashcards dataset. https://huggingface.co/
datasets/medalpaca/medical_meadow_medical_flashcards, 2024. Accessed:
2025-01-30.

Anish Mudide, Joshua Engels, Eric J. Michaud, Max Tegmark, and Christian Schroeder de Witt.
Efficient dictionary learning with switch sparse autoencoders, 2024. URL https://arxiv.
org/abs/2410.08201.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, et al. The quest for the right
mediator: A history, survey, and theoretical grounding of causal interpretability. arXiv preprint
arXiv:2408.01416, 2024.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Jeffrey Olmo, Jared Wilson, Max Forsey, Bryce Hepner, Thomas Vin Howe, and David Wingate.
Features that make a difference: Leveraging gradients for improved dictionary learning, 2024.
URL https://arxiv.org/abs/2411.10397.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. July 2024. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

OpenAI. Learning to reason with language models, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Pain. Arabic tweets dataset. https://huggingface.co/datasets/pain/
Arabic-Tweets, 2024. Accessed: 2025-01-30.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Itamar Pres, Laura Ruis, Ekdeep Singh Lubana, and David Krueger. Towards reliable evaluation
of behavior steering interventions in llms, 2024. URL https://arxiv.org/abs/2410.
17245.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders, 2024a. URL https://arxiv.org/abs/2404.16014.

7

https://arxiv.org/abs/2305.08746
https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756
https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
https://arxiv.org/abs/2410.08201
https://arxiv.org/abs/2410.08201
https://arxiv.org/abs/2411.10397
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://huggingface.co/datasets/pain/Arabic-Tweets
https://huggingface.co/datasets/pain/Arabic-Tweets
https://arxiv.org/abs/2410.17245
https://arxiv.org/abs/2410.17245
https://arxiv.org/abs/2404.16014


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435.

Roudranil. Shakespearean and modern english conversational
dataset. https://huggingface.co/datasets/Roudranil/
shakespearean-and-modern-english-conversational-dataset, 2024.
Accessed: 2025-01-30.

Glen M. Taggart. Prolu: A nonlinearity for sparse autoencoders.
https://www.alignmentforum.org/posts/HEpufTdakGTTKgoYF/
prolu-a-nonlinearity-for-sparse-autoencoders, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala,
Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang.
Redpajama: an open dataset for training large language models, 2024. URL https://arxiv.
org/abs/2411.12372.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

A APPENDIX

A.1 RELATED WORK

SAE Architecture Improvements. Early SAEs for language models used a simple linear encoder,
ReLU activation with an L1 penalty (approximating L0), and a linear decoder (Bricken et al., 2023;
Cunningham et al., 2023). The next generation introduced TopK and BatchTopK SAEs, which
enforce sparsity by retaining only the k largest activations (Gao et al., 2024; Bussmann et al., 2024),
and GatedSAEs and JumpReluSAEs, which use gating functions and straight-through estimators
to approximate direct L0 optimization (Rajamanoharan et al., 2024a;b). These methods improve
the LSAE vs. sparsity tradeoff, though no single approach is definitively superior on downstream
tasks (Karvonen et al., 2024). Beyond sparsity penalties, Braun et al. (2024) optimize SAEs for KL
divergence with the model’s logits to directly improve LSAE, while Olmo et al. (2024) incorporate
model gradients into TopK activations for more causal representations. However, gradient-based
methods introduce computational overhead and have a large limitation: SAEs are typically trained on
cached activations without available gradients (Lieberum et al., 2024).

Fine-tuning SAEs. While this paper focuses on fine-tuning a model around an SAE, another research
direction explores fine-tuning SAEs. Some work tailors SAEs to specific domains by oversampling
certain contexts (Bricken et al., 2024) or fine-tuning on domain-specific activations (Drori, 2024).
Kissane et al. (2024) find that training SAEs on chat data captures the refusal latent, whereas training
on the Pile (Gao et al., 2020) does not. Kutsyk et al. (2024) further analyze when base model SAEs
generalize to a chat-tuned model, showing that it depends on the language model used.

Training interpretable models. We are aware of two prior works that investigate training more
interpretable models using SAEs: both (Lai & Heimersheim, 2024) and (Lai & Huang, 2024) train
SAEs and models concurrently, and find that this improves LSAE. However, because this requires
training models from scratch, it is impractical to apply to existing models and is only shown to work
in toy settings; in contrast, our method is extremely efficient, and we show it works on models up

8

https://arxiv.org/abs/2407.14435
https://huggingface.co/datasets/Roudranil/shakespearean-and-modern-english-conversational-dataset
https://huggingface.co/datasets/Roudranil/shakespearean-and-modern-english-conversational-dataset
https://www.alignmentforum.org/posts/HEpufTdakGTTKgoYF/prolu-a-nonlinearity-for-sparse-autoencoders
https://www.alignmentforum.org/posts/HEpufTdakGTTKgoYF/prolu-a-nonlinearity-for-sparse-autoencoders
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/2411.12372


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

to 27B parameters. Many prior works also investigate this direction without SAEs. Elhage et al.
(2022b) introduce the softmax linear unit (SoLU) activation function, which increases the fraction
of interpretable neurons at no cost on downstream performance; Liu et al. (2023) propose a new
loss term penalizing spatially distant connections in the network that leads to visually interpretable
networks; Liu et al. (2024) introduce Kolmogorov-Arnold Networks, an alternative to standard MLPs
with trainable activation functions that can be replaced by symbolic formulas; and Heimersheim
(2024) fine-tune out the LayerNorm components in GPT-2 with a small downstream loss effect.

Parameter Efficient Fine Tuning. Parameter efficient fine tuning (PEFT) reduces the cost of full
supervised fine tuning by updating fewer effective parameters. One of the simplest and most effective
PEFT methods is low-rank adaptation (LoRA) (Hu et al., 2021). LoRA works as follows: for a
frozen pretrained weight matrix W0 ∈ Rd×k, and low-rank matrices A ∈ Rd×r, B ∈ Rr×k with
r ≪ min(d, k), the original forward pass h(x) = W0x becomes

ĥ(x) = W0x+ABx. (3)

A and B can then be trained while the rest of the model is frozen, resulting in a low-rank update of
the base model.

A.2 PRELIMINARIES

A.2.1 TOPK SPARSE AUTOENCODERS

SAEs learn an encoder Wenc ∈ Rm×d for m ≫ d, a decoder Wdec ∈ Rd×m with unit norm columns,
and biases benc ∈ Rm,bdec ∈ Rd. We call the m columns of Wdec latents. For activation xl, the
TopK SAE (Gao et al., 2024) reconstructs activation x̂l as follows:

z = TopK(Wenc(xl − bdec) + benc) (4)

x̂l = Wdecz + bdec =
∑

wifi (5)

During training, the SAE minimizes the reconstruction error L = ∥xl − x̂l∥2. We train TopK
SAEs with k = 64 for Gemma-2-2B and Llama-3.2-1B for 2B and 4B tokens, respectively, on the
RedPajama dataset (Weber et al., 2024).

A.2.2 END-TO-END SPARSE AUTOENCODERS

In an e2e SAE (Braun et al., 2024), the SAE minimizes KL divergence with the base model instead
of reconstruction error. Formally, if we have

x̂l = SAE(xl),

x̂i = hi(x̂i−1) l < i ≤ L,

ŷ = softmax(x̂L),

then the e2e SAE minimizes L = DKL(ŷ,y). For both e2e and TopK SAEs, we use a TopK activation
function with the same sparsity to allow for fair comparisons.

A.2.3 JUMPRELU SPARSE AUTOENCODERS

We also evaluate our method on the Gemma Scope JumpReLU SAEs. Instead of the TopK function,
JumpReLU SAEs (Rajamanoharan et al., 2024b) use the JumpReLU activation function,

JumpReLUθ(z) := zH(z − θ),

where H is the Heaviside step function and θ > 0 is the JumpReLU’s threshold. The SAE is trained
to minimize

L = ∥x̂− x∥22 + λ ∥z∥0 , (6)

where z is defined from Equation (4).

9



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 1: Gemma-2-2B timing results and speedups, nearest hour

CE Loss TopK + LoRA TopK e2e Speedup

2.60 12h 59h 37h 3.05x
2.59 12h — 79h 6.53x
2.58 12h — 148h 12.18x
2.57 12h — 243h 20.01x
2.55-2.57 12h–107h — — —

Table 2: Llama-3.2-1B timing results and speedups, nearest hour

CE Loss TopK + LoRA TopK e2e Speedup

2.73 9h — 96h 10.38x
2.72 12h — 113h 9.08x
2.71 19h — 135h 7.14x
2.70 70h — 156h 2.23x
2.67-2.70 — — 156h–213h —

A.3 SPEEDUPS

We present the speedups in achieving varying cross entropy thresholds when using our method (TopK
+ LoRA) compared to direct e2e SAE training.

A.4 ANALYZING WHY OUR METHOD WORKS

A.4.1 PER TOKEN IMPROVEMENT BREAKDOWN

In this experiment, we analyze how LoRA impacts LSAE improvements. Figure 6 shows the distribu-
tion of ∆LSAE between the original and LoRA models across 15M validation tokens. The per-token
loss change varies greatly, with the loss on 37% of tokens even getting worse (see the degradation
histogram in the figure). Most of the overall improvement comes from small per-token decreases in
loss (roughly 10−2 to 1 nats), suggesting LoRA improves loss across many tokens rather than a more
bimodal distribution.

10 5 10 4 10 3 10 2 10 1 100 101

|Base Loss - LoRA Loss|

0
2000
4000
6000
8000

10000
12000
14000
16000

# 
of

 V
al

id
at

io
n 

To
ke

ns

Loss Improvement
Loss Degradation

Figure 6: Distribution of loss improvements and loss degredations across validation tokens. We see
that more tokens have a loss improvement than degredation (although a substantial number have a
degradation) and most loss improvements and degredations happen in a range of about 0.01 to 1 ∆
LSAE nats.

A.4.2 ACTIVATION DISTANCES

One concern identified by (Braun et al., 2024) is that optimizing towards KL divergence may lead the
activations to be off distribution and follow a different computational path through the model. We
find this is not the case with our method: as shown in Figure 7, over a validation set of 500k tokens,

10



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

our method slightly decreases the distance between activations after the SAE and activations in the
original model, while the cosine similarities slightly increase.

In Figure 7 we show how low rank adapting the model affects the cosine similarity and L2 distance
of the model activations with and without the SAE.

0 2 4 6 8 10 12
Number of Layers after SAE

0.0005

0.0000

0.0005

0.0010

0.0015

Ch
an

ge
 in

 C
os

 S
im

ila
rit

y Rank 64

0 2 4 6 8 10 12
Number of Layers after SAE

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Ch
an

ge
 in

 D
ist

an
ce

Rank 64

Figure 7: Change in average distance to original activations before and after applying LoRA; increases
in cosine similarity (Top) and decreases in Euclidean distance (Bottom) are good.

A.4.3 ADAPTING ONE LYAER AT A TIME

In an effort to see which components of the model are most important in low-rank adapting for SAEs,
we plot the improvement when low-rank adapting just one layer for each layer after a Gemmascope
JumpReLU SAE inserted at layer 12.

2 4 6 8 10 12
Number of Layers after SAE

0.00

0.02

0.04

CE
 Im

pr
ov

em
en

t All layers after
Rank 64

0

10

20

30

40

CE
 Im

pr
ov

em
en

t (
%

)

Figure 8: Plot of LSAE when running LoRA on just a single layer of Gemma Scope 2B. We find that
LoRA on layers closer to the SAE layer do better, and that also LoRA on just the next layer achieves
much of the loss reduction of training on all layers.

A.5 DOWNSTREAM IMPROVEMENTS

A common criticism of previous SAE optimizations is the lack of grounded metrics for evaluating
how good an SAE is. Prior work has largely relied on unsupervised metrics such as in Section 3.
Recent work, however, has introduced evaluation metrics to measure a model and SAE according

11



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 3: Using the same TopK SAE trained on Gemma-2-2B, we compare the SAEBench metrics
when the underlying model is low-rank adapted with rank 64. We see across most applicable metrics,
the LoRA model shows meaningful improvement. Full results over various thresholds are displayed
in Table 6.

DOWNSTREAM METRIC TOPK + LORA TOPK

SCR (MAX) 0.526 0.448
SCR (AVERAGE) 0.314 0.289
TPP (MAX) 0.412 0.372
TPP (AVERAGE) 0.145 0.111
SPARSE PROBING (TOP 1) 0.760 0.732
SPARSE PROBING (TEST) 0.956 0.955
AUTOINTERP 0.830 0.832
ABSORPTION 0.210 0.205

to their performance on downstream tasks (Karvonen et al., 2024; Pres et al., 2024). Thus, in this
section, we evaluate our method on a diverse set of downstream benchmarks:

1. In Appendix A.5.1, we show that using LoRA on all layers improves downstream tasks on
SAEBench.

2. In Appendix A.5.2, we introduce a novel steering metric and show that our method improves on
it. We introduce a new metric because SAEBench metrics do not test the effects of SAEs on next
token prediction.

3. In Appendix A.5.3, we show that our method improves overall model performance with the SAE
inserted on MMLU, HellaSwag, and TruthfulQA.

A.5.1 SAEBENCH IMPROVEMENTS

To address the core challenge of measuring how effectively a model and SAE work together, Karvonen
et al. (2024) introduce SAEBench, a benchmark of SAE metrics that are faithful to possible real
world use cases. For the Gemma-2-2B TopK SAE (L0 = 64) we trained in Section 3.2, we evaluate
the model with the SAE and the model with the SAE + LoRA on SAEBench.

Specifically, we look at spurious correlation removal (SCR), targeted probe perturbation (TPP),
SPARSE PROBING, automated interpretability (AUTOINTERP), and feature absorption (ABSORPTION).
SCR measures the separation of latents for different concepts, with higher scores indicating better
ability to debias a classifier. TPP evaluates the impact of ablating specific latents on probe accuracy,
where higher scores reflect well-isolated latents corresponding to classes on a dataset. SPARSE
PROBING tests the accuracy of a k-sparse probe trained on SAE latents, with higher scores indicating
better feature learning. AUTOINTERP, assessed using an LLM judge (GPT-4o-mini (OpenAI, 2024)),
quantifies the interpretability of SAE latents. ABSORPTION quantifies to what extent latents are
“absorbed” together to improve sparsity. All metrics range from 0 to 1, with higher being better except
for ABSORPTION. 1 For full in depth definitions of the SAEBench metrics, see Appendix A.5.6.

We display our results in Table 3, showing our low-rank adapted model outperforms the base model
on TPP, SCR, and SPARSE PROBING, while very slightly underperforming on AUTOINTERP and
ABSORPTION.

A.5.2 FEATURE STEERING

In this section, we demonstrate that the LoRA tuned model improves at activation steering–repressing
or eliciting model behavior by scaling a steering vector–using its SAE latents. Given an SAE latent
v ∈ Rd at layer l, we steer via

xl → xl + α(xl · v)v, α ∈ R. (7)

We assess steering effectiveness following (Pres et al., 2024), who evaluate steering by analyzing
increases in likelihood for “positive” texts (aligned with the desired behavior) and decreases for

1Excluded from our results are the RAVEL and UNLEARNING SAEBench metrics. RAVEL is not yet
implemented in SAEBench and UNLEARNING is recommended for instruct models only.

12



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

“negative” texts (not aligned). We note that Olmo et al. (2024) also introduce an SAE steering
evaluation, but it does not follow the best practices for steering laid out by (Pres et al., 2024) so we
do not use it.

Our method is slightly different than (Pres et al., 2024) because we are comparing different models
with the same steering method instead of comparing different steering methods on the same model. For
a given SAE latent, we steer on a dataset of 500 positive and negative samples. The negative dataset
consists of an equal mix of arabic tweets (Pain, 2024), medical facts (MedAlpaca, 2024), recipes
(Corbt, 2024), shakespearean quotes (Roudranil, 2024), and law texts (GPT-4o-mini generated). We
generate the positive datasets by selecting a latent about 1) machine learning, 2) San Fransisco,
3) Donald Trump, and 4) Covid-19. We then generate text samples where that latent fires using
GPT-4o-mini. See Appendix A.5.5 for full prompt details.

Following (Pres et al., 2024), we compute mean token log-likelihoods before and after steering,
normalizing them so the original likelihoods span 0 to 100. We tune the hyperparameter α in
Equation (7) by selecting a value that increases the likelihood of positive samples while minimizing
likelihood increases on a validation subset of negative samples (medical facts). After tuning, we
evaluate the effect of α on a test consisting of the remaining negative samples. This tuning process is
repeated for the base and LoRA models.

To compare models, let ∆POSITIVE and ∆NEGATIVE represent the change in normalized likelihoods for
positive and negative datasets when switching from the base to the LoRA model. The LoRA model
is better suited for steering if ∆POSITIVE > 0 and ∆NEGATIVE ≤ 0. We compute 90% confidence
intervals for ∆POSITIVE and ∆NEGATIVE across 500 examples for each of our four SAE latents. Results
are summarized in Table 4. We show a histogram of changes across all examples after steering for
various latents in Figure 9.

Table 4: For each SAE latent, ∆POSITIVE and ∆NEGATIVE denote the 90% CI improvement in nor-
malized log-likelihood increase when using the LoRA model for steering on positive and negative
examples, respectively. Because ∆POSITIVE > 0 and ∆NEGATIVE ≤ 0, we see the LoRA model is
better at steering for a given SAE latent while not affecting other features.

SAE FEATURE ∆POSITIVE ∆NEGATIVE

MACHINE LEARNING 0.86± 0.82 −0.84± 0.43
SAN FRANCISCO 0.97± 0.76 0.06± 0.20
DONALD TRUMP 2.50± 0.56 0.20± 0.40
COVID-19 0.44± 0.25 −0.01± 0.06

A.5.3 GENERAL LANGUAGE MODEL CAPABILITIES

In addition to downstream tasks, we evaluate the model’s general language capabilities on MMLU
(Hendrycks et al., 2020), HellaSwag (Zellers et al., 2019), and TruthfulQA (Lin et al., 2021) in the
following 3 settings: 1) Original, the original model with no SAE, 2) SAE, the original model with
the SAE, and 3) SAE + LoRA, a low rank adapted model with the SAE. Our results, shown in
Table 5, show that our method improves on all datasets. For discussion of why we think our method
is effective, see Appendix A.4.

A.5.4 STEERING DISTRIBUTION PLOTS

In Figure 9, we plot histograms for the changes in normalized log-likelihoods for each of the four
datasets from Table 4.

A.5.5 GENERATING STEERING POSITIVE DATASETS

To generate our “positive” examples dataset, we generate examples eliciting the SAE feature with
GPT-4o-mini. We prompt using the following chat template.

prompt = """
Generate {num_examples} text examples that have the following feature:

13



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 5: Comparisons of SAE, SAE + LoRA, and original model performance on standard NLP
benchmarks. Error ranges represent one standard error; largest value between SAE and SAE + LoRA
is bolded.

METRIC GEMMA 2B GEMMA 9B
SAE SAE + LORA ORIGINAL SAE SAE + LORA ORIGINAL

MMLU 44.2± 0.4 45.8± 0.4 49.3± 0.4 64.2± 0.4 65.7± 0.4 70.0± 0.4
HELLASWAG 50.9± 0.5 52.1± 0.5 55.0± 0.5 58.3± 0.5 59.6± 0.5 61.2± 0.5
BLEU 29.9± 1.6 30.6± 1.6 30.4± 1.6 40.9± 1.7 42.4± 1.7 43.8± 1.7
ROUGE-1 28.2± 1.6 28.5± 1.6 26.9± 1.6 39.0± 1.7 40.6± 1.7 42.7± 1.7
ROUGE-2 24.8± 1.5 26.6± 1.5 25.6± 1.5 33.4± 1.7 36.4± 1.7 38.3± 1.7
MC1 23.1± 1.5 23.4± 1.5 24.1± 1.5 27.1± 1.6 28.0± 1.6 30.5± 1.6

0 20
0
5

10
15
20
25
30
35
40

Co
un

t

Positive Examples
Base Model
LoRA Model

0 10 20 30
0
5

10
15
20
25
30
35
40

Negative Examples

Change in Normalized LL after Steering
20 0 20 40

0

10

20

30

40

50

Co
un

t

Positive Examples
Base Model
LoRA Model

5 0 5
0

5

10

15

20

25

30

35

Negative Examples

Change in Normalized LL after Steering

0 10 20 30
0

10

20

30

40

Co
un

t

Positive Examples
Base Model
LoRA Model

0 10 20
0

5

10

15

20

25

30

35

Negative Examples

Change in Normalized LL after Steering
5 0 5 10 15

0

10

20

30

40

50

60

70

Co
un

t

Positive Examples
Base Model
LoRA Model

0 2 4
0

10

20

30

40

50

60

Negative Examples

Change in Normalized LL after Steering

Figure 9: Distribution plots of the change in normalized log-likelihood after steering for various SAE
latents. Top left is for machine learning (neuron 8421). Top right is for San Francisco (neuron 2195).
Bottom left is for Donald Trump (neuron 13677). Bottom right is for COVID-19 (neuron 17811).

{feature_description}

Below are examples of text that have the feature described above.

Examples:
{examples}

Each text example should be around **twelve** words long and be unique.
Try to be varied in the content of the examples.

"""

A.5.6 SAEBENCH METRICS

Here, we define in more detail the SAEBench metrics defined by (Karvonen et al., 2024) and used in
Appendix A.5.1, along with the full results over different hyperparameter splits.

Absorption. Feature absorption occurs when a latent representing concept A implicitly encodes a
related concept B (e.g., Elephant ⇒ gray), leading to redundancy or loss of interpretability. This
phenomenon disrupts feature disentanglement, as absorbed features may activate inconsistently,
obscuring their semantic meaning.

14



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

To measure absorption, (Karvonen et al., 2024) adapt the method of (Chanin et al., 2024) using a
first-letter classification task. A logistic regression probe is trained on residual stream activations
to establish a ground-truth feature direction. They then perform k-sparse probing on SAE latents,
identifying primary latents responsible for the task. If increasing k significantly improves F1 by some
threshold, the new latent is classified as a feature split.

They then detect absorption by identifying test cases where primary latents fail while the probe
succeeds. A latent is flagged as absorbing the feature if it strongly aligns with the probe in cosine
similarity and accounts for a sufficient fraction of the probe projection.

Spurious Correlation Removal. The spurious correlation removal (SCR) metric evaluates whether
the SAE captures separate latents for distinct concepts (e.g., gender vs. profession). A classifier
is trained on a deliberately “biased” dataset (e.g., only male + professor, female + nurse), thereby
picking up the spurious correlation, and then the latents most associated with the spurious feature
(e.g., gender) are zero-ablated.

During evaluation, the classifier is to be debiased. Choosing the top n latents according to their
probe attribution score, a modified classifier is defined in which all latents except for the spuriously
correlated latent are zero ablated. Evaluated on a balanced dataset, this modified classifier’s accuracy
in classifying its concept is tracked, and the metric is defined as

SSHIFT =
Aabl −Abase

Aoracle −Abase
,

where Aabl is the probe accuracy after ablation, Abase is the original spurious probe’s accuracy, and
Aoracle is the accuracy of a probe directly trained on the concept. This SHIFT score quantifies how
much ablation improves accuracy (removing the spurious signal), relative. A higher score indicates
better separation of the spurious feature and stronger debiasing.

Targeted Probe Perturbation. SHIFT operates on datasets with correlated labels. To extend SHIFT
to all multiclass NLP datasets, (Karvonen et al., 2024) introduce TPP, a method that identifies
structured sets of SAE latents that disentangle dataset classes. This approach involves training probes
on model activations and assessing the impact of ablating specific latent sets on probe accuracy.
Ideally, removing a disentangled set of latents should only impact the corresponding class probe
while leaving other class probes unaffected.

Consider a dataset where each input is assigned a single label from a set of m possible concepts,
C = {c1, c2, ..., cm}. For each class indexed by i ∈ {1, ...,m}, the most relevant latents Li are
determined using probe attribution scores. To evaluate their effect, the dataset is partitioned into
instances belonging to the target concept ci and a mixed subset containing randomly sampled instances
from other labels.

A linear classifier Cj is defined to predict concept cj with an accuracy of Aj . Furthermore, let Ci,j

denote the classifier for cj when latents in Li are ablated. The accuracy of each classifier Ci,j on the
corresponding dataset partition for cj is then computed as Ai,j . The TPP metric is given by:

STPP =
1

m

∑
i=j

(Ai,j −Aj)−
1

m

∑
i ̸=j

(Ai,j −Aj)

This metric quantifies the extent to which ablating a disentangled set of latents selectively affects its
corresponding class. A well-disentangled latent representation should cause a significant accuracy
drop when i = j (i.e., ablating latents relevant to class i in classifier Ci) while having minimal effect
when i ̸= j.

Sparse Probing. To evaluate the SAE’s ability to learn specific features, SAEs are tested on diverse
tasks (e.g., language ID, profession classification, sentiment analysis). Inputs are encoded with the
SAE, mean-pooled over non-padding tokens, and the top-K latents are selected via maximum mean
difference. A logistic regression probe is trained on these latents and evaluated on a held-out test
set to assess how well the SAE captures the target features. A higher score reflects better feature
representation (Karvonen et al., 2024).

15



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 6: Using the same TopK SAE trained on Gemma-2-2B, we compare the SAEBench metrics
when the underlying model is low-rank adapted with rank 64. The threshold hyperparameter for SCR
and TPP denotes how many of the top n latents are used in the modified classifier.

DOWNSTREAM METRICS LORA MODEL BASE MODEL

SCR METRIC @2 0.094 0.097
SCR METRIC @5 0.196 0.177
SCR METRIC @10 0.260 0.253
SCR METRIC @20 0.336 0.327
SCR METRIC @50 0.447 0.448
SCR METRIC @100 0.526 0.400
SCR METRIC @500 0.342 0.325

TPP METRIC @2 0.013 0.007
TPP METRIC @5 0.023 0.014
TPP METRIC @10 0.035 0.023
TPP METRIC @20 0.085 0.039
TPP METRIC @50 0.184 0.128
TPP METRIC @100 0.266 0.194
TPP METRIC @500 0.412 0.372

SPARSE PROBING (TOP 1) 0.760 0.732
SPARSE PROBING (TOP 2) 0.833 0.832
SPARSE PROBING (TOP 5) 0.875 0.875
SPARSE PROBING (TOP 10) 0.910 0.907
SPARSE PROBING (TOP 20) 0.930 0.930
SPARSE PROBING (TOP 50) 0.946 0.946
SPARSE PROBING (TEST) 0.956 0.955

AUTOINTERP 0.830 0.832
ABSORPTION 0.210 0.205

16


	Introduction
	Optimizing Models for Sparse Autoencoders
	Method for Low-Rank Adapting Models to SAEs

	Results
	Scaling Laws for Downstream Loss
	Downstream Loss vs. Computational Cost
	Adapting Multiple SAEs

	Conclusion
	Appendix
	Related Work
	Preliminaries
	TopK Sparse Autoencoders
	End-to-End Sparse Autoencoders
	JumpReLU Sparse Autoencoders

	Speedups
	Analyzing Why Our Method Works
	Per Token Improvement Breakdown
	Activation Distances
	Adapting One Lyaer at a Time

	Downstream Improvements
	SAEBench Improvements
	Feature Steering
	General Language Model Capabilities
	Steering Distribution Plots
	Generating Steering Positive Datasets
	SAEBench Metrics



