
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAX: CELLULAR AUTOMATA ACCELERATED IN JAX

Anonymous authors
Paper under double-blind review

ABSTRACT

Cellular automata have become a cornerstone for investigating emergence and
self-organization across diverse scientific disciplines, spanning neuroscience, arti-
ficial life, and theoretical physics. However, the absence of a hardware-accelerated
cellular automata library limits the exploration of new research directions, hinders
collaboration, and impedes reproducibility. In this work, we introduce CAX (Cel-
lular Automata Accelerated in JAX), a high-performance and flexible open-source
library designed to accelerate cellular automata research. CAX offers cutting-edge
performance and a modular design through a user-friendly interface, and can sup-
port both discrete and continuous cellular automata with any number of dimen-
sions. We demonstrate CAX’s performance and flexibility through a wide range
of benchmarks and applications. From classic models like elementary cellular
automata and Conway’s Game of Life to advanced applications such as growing
neural cellular automata and self-classifying MNIST digits, CAX speeds up sim-
ulations up to 2,000 times faster. Furthermore, we demonstrate CAX’s potential
to accelerate research by presenting a collection of three novel cellular automata
experiments, each implemented in just a few lines of code thanks to the library’s
modular architecture. Notably, we show that a simple one-dimensional cellular
automaton can outperform GPT-4 on the 1D-ARC challenge. The anonymized
repository is available here.

1 INTRODUCTION

Emergence is a fundamental concept that has captivated thinkers across various fields of human
inquiry, including philosophy, science and art (Holland, 2000). This fascinating phenomenon oc-
curs when a complex entity exhibits properties that its constituent parts do not possess individually.
From the collective intelligence of ant colonies to the formation of snowflakes, self-organization
and emergence manifest in myriad ways. The study of self-organization and emergence holds the
promise to unravel deep mysteries, from the origin of life to the development of conciousness.

Cellular Automata (CA) are models of computation that exemplify how complex patterns and so-
phisticated behaviors can arise from simple components interacting through basic rules. Originating
from the work of Ulam and von Neumann in the 1940s (Neumann & Burks, 1966), these systems
gained prominence with Conway’s Game of Life in the 1970s (Gardner, 1970) and Wolfram’s sys-
tematic studies in the 1980s (Wolfram, 2002). The discovery that even elementary cellular automata
can be Turing-complete underscores their expressiveness (Cook, 2004). CAs serve as a powerful
abstraction for investigating self-organization and emergence, offering insights into complex phe-
nomena across scientific domains, from physics and biology to computer science and artificial life.

In recent years, the integration of machine learning techniques with cellular automata has opened
new avenues for research in morphogenesis (Mordvintsev et al., 2020) and self-organization (Ran-
dazzo et al., 2020; 2021; Najarro et al., 2022). In particular, Neural Cellular Automata (NCA)
extend traditional CAs by learning update rules via neural networks. Recent works have combined
NCA with advanced architectures like Graph Neural Networks (Grattarola et al., 2021) and Vision
Transformers (Tesfaldet et al., 2022). The advent of NCAs has significantly broadened the scope
of CA research, showcasing the power of gradient-based optimization in studying emergence and
self-organization, while demonstrating practical applications such as dynamic texture synthesis (Pa-
jouheshgar et al., 2023). This progress has not only deepened our understanding of complex systems
but also underscored the growing computational demands of CA experiments, pointing to the poten-
tial for scaling through hardware-accelerated libraries inspired by advances in deep learning.

1

https://github.com/879f4cf7/cax

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Neural Cellular AutomataContinuous Cellular AutomataDiscrete Cellular Automata

Figure 1: Cellular Automata types supported in CAX. From left to right, Discrete Cellular Automata
such as Elementary Cellular Automata and Conway’s Game of Life, Continuous Cellular Automata
such as Lenia and Neural Cellular Automata.

Despite their conceptual simplicity, cellular automata simulations can be computationally intensive,
especially when scaling to higher dimensions with large numbers of cells or implementing backprop-
agation through time for NCAs. Moreover, the implementation of CA in research settings has often
been fragmented, with individual researchers frequently reimplementing basic functionalities, cre-
ating custom implementations across various deep learning frameworks such as TensorFlow, JAX,
and PyTorch. As the field continues to grow and attract increasing interest, there is a pressing need
for a unified, robust library that facilitates collaboration, reproducibility, fast experimentation and
exploration of new research directions.

In response to these challenges and opportunities, we present CAX: Cellular Automata Accelerated
in JAX, an open-source library with cutting-edge performance, designed to provide a flexible and
efficient framework for cellular automata research. CAX is built on JAX (Bradbury et al., 2018),
a high-performance numerical computing library, enabling to speed up cellular automata simula-
tions through massive parallelization across various hardware accelerators such as CPUs, GPUs, and
TPUs. CAX is flexible and supports both discrete and continuous cellular automata with any num-
ber of dimensions, accommodating classic models like elementary cellular automata and Conway’s
Game of Life, as well as modern variants such as Lenia and Neural Cellular Automata (Figure 1).

JAX offers efficient vectorization of CA rules, enabling millions of cell updates to be processed
simultaneously. It also provides automatic differentiation capabilities to backpropagate through
time efficiently, facilitating the training of Neural Cellular Automata. CAX can run experiments
with millions of cell updates in minutes, reducing computation times by up to 2,000 times compared
to traditional implementations in our benchmark. This performance boost opens up new possibilities
for large-scale CA experiments that were previously computationally prohibitive.

CAX’s flexibility and potential to accelerate research is showcased through three novel cellular
automata experiments. Thanks to CAX’s modular architecture, each of these experiments is im-
plemented in just a few lines of code (Appendix A), significantly reducing the barrier to entry for
cellular automata research. Notably, we show that a simple one-dimensional cellular automaton
implemented with CAX outperforms GPT-4 on the 1D-ARC challenge (Xu et al., 2024), see Sec-
tion 5.3. Finally, to support users and facilitate adoption, CAX comes with high-quality, diverse
examples and comprehensive documentation. The list of implemented CAs is detailed in Table 1.

2 BACKGROUND

2.1 CELLULAR AUTOMATA

A cellular automaton is a simple model of computation consisting of a regular grid of cells, each in
a particular state. The grid can be in any finite number of dimensions. For each cell, a set of cells
called its neighborhood is defined relative to the specified cell. The grid is updated at discrete time
steps according to a fixed rule that determines the new state of each cell based on its current state
and the states of the cells in its neighborhood.

A CA is defined by a tuple (L,S,N , ϕ), where L is the d-dimensional lattice or grid with c channels,
S is the cell state set, N ⊂ L is the neighborhood of the origin, and ϕ : SN → S is the local rule.
A mapping from the grid to the cell state set S : L → S is called a configuration or pattern. In
this work, we will simply refer to it by the state of the CA. S(x) represents the state of a cell

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

x ∈ L. Additionally, we denote the neighborhood of a cell x ∈ L by Nx = {x+ n,n ∈ N}, and
S(Nx) = {S(n),n ∈ Nx}.

The global rule Φ : SL → SL applies the local rule uniformly to all cells in the lattice and is defined
such that, for all x in L, Φ(S)(x) = ϕ(S(Nx)). A cellular automaton is initialized with a state S0.
Then, the state is updated according to the global rule Φ at each discrete time step t ∈ N, to give,

Φ(S0) = S1,Φ(S1) = S2, . . .

The close connection between CA and recurrent convolutional neural networks has been observed
by numerous researchers (Gilpin, 2019; Wulff & Hertz, 1992; Mordvintsev et al., 2020; Chan, 2020).
For example, the general NCA architecture introduced by Mordvintsev et al. (2020) can be concep-
tualized as a “recurrent residual convolutional neural network with per-cell dropout”.

2.2 CONTROLLABLE CELLULAR AUTOMATA

A controllable cellular automaton (CCA) is a generalization of CA that incorporates the ability to
accept external inputs at each time step. CCAs formalize the concept of Goal-Guided NCA that has
been introduced in the literature by Sudhakaran et al. (2022). The external inputs can modify the
behavior of CCAs, offering the possibility to respond dynamically to changing conditions or control
signals while maintaining the fundamental principles of cellular automata.

A CCA is defined by a tuple (L,S, I,N , ϕ), where I is the input set and ϕ : SN × IN → S is the
controllable local rule. A mapping from the grid to the input set I : L → I is called the input. I(x)
represents the input of a cell x ∈ L. Similarly to the state, we denote I(Nx) = {I(n),n ∈ Nx}.

The controllable global rule Φ : SL × IL → SL is defined such that, for all x in L, Φ(S, I)(x) =
ϕ(S(Nx), I(Nx)). A controllable cellular automaton is initialized with an initial state S0. Then, the
state is updated according to the controllable global rule Φ and a sequence of input (It)t≥0 at each
discrete time step t ∈ N, to give,

Φ(S0, I0) = S1,Φ(S1, I1) = S2, . . .

As discussed in Section 2.1, CAs can be conceptualized as recurrent convolutional neural networks.
However, traditional CAs lack the ability to take external inputs at each time step. CCAs extend
the capabilities of traditional CAs by making them responsive to external inputs, akin to recurrent
neural networks processing sequential data. CCAs bridge the gap between recurrent convolutional
neural networks and cellular automata, opening up new possibilities for modeling complex systems
that exhibit both autonomous emergent behavior and responsiveness to external control.

2.3 RELATED WORK

The field of CA has spawned numerous tools and libraries to support research and experimentation,
with CellPyLib (Antunes, 2021) emerging as one of the most popular and versatile options. This
Python library offers a simple yet powerful interface for working with 1- and 2-dimensional CA,
supporting both discrete and continuous states, making it an ideal baseline for comparative studies
and further development. While it provides implementations of classic CA models like Conway’s
Game of Life and Wireworld, CellPyLib is not hardware-accelerated and does not support the train-
ing of neural cellular automata. Golly is a cross-platform application for exploring Conway’s Game
of Life and many other types of cellular automata. Golly’s features include 3D CA rules, custom
rule loading, and scripting via Lua or Python. While powerful and versatile for traditional CA, Golly
is not designed for hardware acceleration or integration with modern machine learning frameworks.

The recent surge in artificial intelligence has increased the availability of computational resources,
and encouraged the development of sophisticated tools such as JAX (Bradbury et al., 2018), a high-
performance numerical computing library with automatic differentiation and JIT compilation. A
rich ecosystem of specialized libraries has emerged around JAX, such as Flax (Heek et al., 2024)
for neural networks, RLax (DeepMind et al., 2020) for reinforcement learning, and EvoSax (Lange,
2022), EvoJax (Tang et al., 2022) and QDax (Chalumeau et al., 2023) for evolutionary algorithms.

In the realm of cellular automata, there have been efforts to implement specific CA models using
JAX. For instance, EvoJax (Tang et al., 2022) and Leniax (Giraud, 2022) both provide a hardware-
accelerated Lenia implementation. Biomaker CA (Randazzo & Mordvintsev, 2023), a specific CA

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input

Perception
Vector

Neighborhood

Update

Kernel

Perceive
Step N Step N+1

State

New State

Figure 2: High-level architecture of CAX, illustrating the modular design with perceive and update
modules. This flexible structure supports various CA types across multiple dimensions. (Adapted
from Mordvintsev et al. (2020) under CC-BY 4.0 license.)

model focusing on biological pattern formation, further demonstrates the potential of JAX in CA
research. Finally, various GitHub repositories replicate results from neural cellular automata pa-
pers, but these implementations are typically narrow in focus. Recent advancements in continuous
cellular automata research have also benefited from JAX-based implementations. These include
Lenia (Chan, 2020) and Leniabreeder (Faldor & Cully, 2024), which have enabled large-scale sim-
ulations of open-ended evolution in continuous cellular automata (Chan, 2023).

While existing implementations demonstrate JAX’s potential in CA research, they also reveal sig-
nificant gaps in the field. Current tools are often specialized for specific CA types (e.g., discrete, 1-
and 2-dimensional), narrow in focus (e.g., replicating specific neural CA papers), or lack hardware
acceleration. This limitation underscores the need for a comprehensive, flexible, and efficient library
that can handle a broad spectrum of CA types while leveraging hardware acceleration. CAX aims
to address this gap by providing a versatile, JAX-based tool to accelerate progress across the entire
landscape of cellular automata research.

3 CAX: CELLULAR AUTOMATA ACCELERATED IN JAX

CAX is a high-performance and flexible open-source library designed to accelerate cellular automata
research. In this section, we detail CAX’s architecture, design and key features. At its core, CAX
leverages JAX and Flax (Heek et al., 2024), capitalizing on the well-established connection between
CA and recurrent convolutional neural networks. This synergy, discussed in Section 2, allows CAX
to harness advancements in machine learning to accelerate CA research. CAX offers a modular
and intuitive design through a user-friendly interface, supporting both discrete and continuous cel-
lular automata across any number of dimensions. This flexibility enables researchers to seamlessly
transition between different CA types within a single, unified framework (Table 1). We have made
our anonymized repository available at github.com/b769eb6f/cax. We invite readers to experience
CAX’s capabilities firsthand by accessing our curated examples as interactive notebooks in Google
Colab, conveniently linked in the repository’s README.md file.

3.1 ARCHITECTURE AND DESIGN

CAX introduces a unifying framework for all cellular automata types. This flexible architecture is
built upon two key components: the perceive module and the update module, see Figure 2. To-
gether, these modules define the local rule of the CA. At each time step, this local rule is applied
uniformly to all cells in the grid, generating the next global state of the system, as explained in Sec-
tion 2.1. This modular approach not only provides a clear separation of concerns but also facilitates
easy experimentation and extension of existing CA models.

Building on the controllable CA framework introduced in Section 2.2, our architecture generalizes
the neural cellular automata approach to recurrent convolutional neural architectures, enabling seam-
less integration of external inputs and control signals. By implementing both modules using standard
machine learning components from Flax, CAX makes it straightforward to experiment with various
neural architectures while maintaining the cellular automata paradigm - from simple convolutional
layers to sophisticated attention mechanisms.

4

https://github.com/879f4cf7/cax

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

@nnx.jit
def step(self, state: State, input: Input | None = None) -> State:

"""Perform a single step of the CA.

Args:
state: Current state.
input: Optional input.

Returns:
Updated state.

"""
perception = self.perceive(state)
state = self.update(state, perception, input)
return state

The architecture of CAX allows for easy composition of different perceive and update modules,
enabling the creation of a wide variety of cellular automata models. This modular design also
facilitates experimentation with new types of cellular automata by allowing users to define custom
perceive and update modules while leveraging the existing infrastructure provided by the library.

3.1.1 PERCEIVE MODULE

The perceive module in CAX is responsible for gathering information from the neighborhood of each
cell. This information is then used by the update module to determine the cell’s next state. CAX
provides several perception mechanisms, including Convolutional Perception, Depthwise Convolu-
tional Perception and Fast Fourier Transform Perception. The perceive modules are designed to be
flexible and can be customized for different types of cellular automata.

3.1.2 UPDATE MODULE

The update module in CAX is responsible for determining the next state of each cell based on its
current state and the information gathered by the perceive module. CAX provides several update
mechanisms, including MLP Update, Residual Update and Neural Cellular Automata Update. Like
the perceive modules, the update modules are designed to be flexible and can be customized for
different cellular automata models.

3.2 FEATURES

3.2.1 PERFORMANCE

Conway's Game of Life Elementary Cellular Automata
100

101

102

103

104

105

St
ep

s p
er

 se
co

nd
 (l

og
 st

ep
/s

)

Cellular Automata Simulation
CAX
CellPyLib

Growing Neural Cellular Automata Self-classifying MNIST Digits
0

20

40

60

80

100

120

140

Tr
ai

ni
ng

 st
ep

s p
er

 se
co

nd
 (s

te
ps

/s
)

Neural Cellular Automata Training
CAX
TensorFlow

Figure 3: Performance benchmarks of CAX. Left: Simulation speed comparison between CAX and
CellPyLib for classical cellular automata. CAX demonstrates a 1,400x speed-up for Elementary
Cellular Automata and a 2,000x speed-up for Conway’s Game of Life. Right: Training speed
comparison between CAX and the official TensorFlow implementation for neural cellular automata
experiments. CAX achieves a 1.5x speed-up on the Self-classifying MNIST Digits task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

CAX leverages JAX’s powerful vectorization and scan capabilities to achieve remarkable speed im-
provements over existing implementations. Our benchmarks, conducted on a single NVIDIA RTX
A6000 GPU, demonstrate significant performance gains across various cellular automata models.
For Elementary Cellular Automata, CAX achieves a 1,400x speed-up compared to CellPyLib. In
simulations of Conway’s Game of Life, a 2,000x speed-up is observed relative to CellPyLib.

Furthermore, in the domain of Neural Cellular Automata, specifically the Self-classifying MNIST
Digits experiment, CAX demonstrates a 1.5x speed-up over the official TensorFlow implementation.
These performance improvements, illustrated in Figure 3, are made possible by JAX’s efficient
vectorization and the use of its scan operation for iterative computations. The following code snippet
exemplifies how CAX utilizes JAX’s scan function to optimize multiple CA steps:

def step(carry: tuple[CA, State], input: Input | None) -> tuple[tuple[CA,
State], State]:
ca, state = carry
state = ca.step(state, input)
return (ca, state), state if all_steps else None

(_, state), states = nnx.scan(
step,
in_axes=(nnx.Carry, input_in_axis),
length=num_steps,

)((self, state), input)

This optimized approach allows for rapid execution of complex CA simulations, opening new pos-
sibilities for large-scale experiments and real-time applications.

3.2.2 UTILITIES

CAX offers a rich set of utility functions to support various aspects of cellular automata research. A
high-quality implementation of the sampling pool technique is provided, which is crucial for training
stable growing neural cellular automata (Mordvintsev et al., 2020). To facilitate the training of unsu-
pervised neural cellular automata and enable generative modeling within the CA framework, CAX
incorporates a variational autoencoder implementation. Additionally, the library provides utilities
for handling image and emoji inputs, allowing for diverse and visually engaging CA experiments.
These utilities are designed to streamline common tasks in CA research, allowing researchers to
focus on their specific experiments rather than reimplementing standard components.

3.2.3 DOCUMENTATION AND EXAMPLES

CAX prioritizes user experience and ease of adoption through comprehensive documentation and ex-
amples. The entire library is thoroughly documented, with typed classes and functions accompanied
by descriptive docstrings. This ensures users have access to detailed information about CAX’s func-
tionality and promotes clear, type-safe code. To help users get started and showcase advanced usage,
CAX offers a collection of tutorial-style interactive Colab notebooks. These notebooks demonstrate
various applications of the library and can be run directly in a web browser without any prior setup,
making it easy for new users to explore CAX’s capabilities.

For easy access and integration into existing projects, CAX can be installed directly via PyPI, al-
lowing users to quickly incorporate it into their Python environments. The library maintains high
standards of code quality, with extensive unit tests covering a significant portion of the codebase.
Continuous Integration (CI) pipelines ensure that all code changes are thoroughly tested and linted
before integration. These features collectively make CAX not just a powerful tool for cellular au-
tomata research, but also an accessible and user-friendly library suitable for both novice and experi-
enced researchers in the field.

4 IMPLEMENTED CELLULAR AUTOMATA AND EXPERIMENTS

To showcase the versatility and capabilities of the library, we show that CAX supports a wide array
of cellular automata, ranging from classical discrete models to advanced continuous CAs and in-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

cluding neural implementations. In this section, we provide an overview of these implementations,
demonstrating the library’s flexibility in handling various dimensions and types (Table 1).

We begin with three classic models that highlight CAX’s ability to support both discrete and con-
tinuous systems across different dimensions. The Elementary CA, a foundational one-dimensional
discrete model studied extensively by Wolfram (2002), demonstrates CAX’s efficiency in handling
simple discrete systems. Conway’s Game of Life (Gardner, 1970), a well-known two-dimensional
model, showcases CAX’s capability in simulating complex emergent behaviors in discrete space.
Lenia (Chan, 2019), a continuous, multi-dimensional model, illustrates CAX’s flexibility in sup-
porting more complex, continuous systems in arbitrary dimensions.

Furthermore, we have replicated four prominent NCA experiments that have gained significant at-
tention in the field. The Growing NCA (Mordvintsev et al., 2020) demonstrates CAX’s ability to
handle complex growing patterns and showcases the implementation of the sampling pool technique,
crucial for stable growth and regeneration. The Growing Conditional NCA (Sudhakaran et al., 2022)
utilizes CAX’s Controllable CA capabilities, as introduced in Section 2.2 allowing for targeted pat-
tern generation. The Growing Unsupervised NCA (Palm et al., 2021) highlights CAX’s versatility
in incorporating advanced machine learning techniques, specifically the use of a Variational Au-
toencoder within the NCA framework. The Self-classifying MNIST Digits (Randazzo et al., 2020)
showcases CAX’s capacity for self-organizing systems with global coordination via local interac-
tions, contrasting with growth-based tasks.

These implementations not only validate CAX’s performance and flexibility but also serve as valu-
able resources for researchers looking to build upon or extend these models. We complement these
implementations with three novel experiments, which will be detailed in the following section.

Table 1: Overview of Cellular Automata implemented in CAX

Cellular Automata Reference Type Dimensions

Elementary Cellular Automata Wolfram (2002) Discrete 1D
Conway’s Game of Life Gardner (1970) Discrete 2D
Lenia Chan (2019) Continuous ND
Growing Neural Cellular Automata Mordvintsev et al. (2020) Neural 2D
Growing Conditional Neural Cellular Automata Sudhakaran et al. (2022) Neural 2D
Growing Unsupervised Neural Cellular Automata Palm et al. (2021) Neural 2D
Self-classifying MNIST Digits Randazzo et al. (2020) Neural 2D
Diffusing Neural Cellular Automata Section 5.1 Neural 2D
Self-autoencoding MNIST Digits Section 5.2 Neural 3D
1D-ARC Neural Cellular Automata Section 5.3 Neural 1D

5 NOVEL NEURAL CELLULAR AUTOMATA EXPERIMENTS

5.1 DIFFUSING NEURAL CELLULAR AUTOMATA

In this experiment, we introduce a novel training procedure for NCA, inspired by diffusion models.
Traditionally, NCAs have predominantly relied on growth-based training paradigms, where the state
is initialized with a single alive cell and trained to grow towards a target pattern (Sudhakaran et al.,
2022; Mordvintsev et al., 2020; Palm et al., 2021). However, this approach often faces challenges in
maintaining stability and achieving consistent results (Mordvintsev et al., 2020). The conventional

Figure 4: Inspired by diffusion models, the NCA learns to denoise images over a fixed number of
steps. The process evolves from pure noise (left) to a target pattern (right).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

NCA training method typically employs a “sample pool” strategy to address stability issues and en-
courage the formation of attractors. This approach involves maintaining a diverse pool of interme-
diate states, sampling from this pool for training, and periodically updating it with newly generated
states. By exposing the NCA to various intermediate configurations and consistently guiding them
towards the target pattern, the sample pool method helps shape the system’s dynamics, making the
desired pattern a more robust attractor in the state space.

Our proposed diffusion-inspired approach offers several advantages over the traditional growing
mechanism. First, unlike the growing mechanism, our diffusion-based approach does not require
a sample pool, which simplifies the training process and reduces memory requirements, making it
more efficient and scalable. Second, our diffusion-inspired approach naturally guides the NCA to-
wards more stable dynamics, effectively creating a stronger attractor basin around the target pattern.
In Figure 5, we compare the regeneration capabilities of growing NCAs with diffusing NCAs. We
create an artificial damage by cutting the tail of the gecko and observe that diffusing NCA demon-
strate emergent regenerating capabilities.

Growing NCA Diffusing NCA

Figure 5: Diffusing NCAs demonstrate emergent regenerating capabilities compared to growing
NCAs that are unstable if not trained explicitely to regenerate and recover from damage.

5.2 SELF-AUTOENCODING MNIST DIGITS

Figure 6: The 3D NCA is initialized with an
MNIST digit (left). The NCA learns to recon-
struct the digit on the opposite red face (right).

In this experiment, we draw inspiration from
Randazzo et al. (2020) where an NCA is trained
to classify MNIST digits through local inter-
actions. In their work, each cell (pixel) of an
MNIST digit learns to output the correct digit
label through local communication with neigh-
boring cells. The NCA demonstrates the abil-
ity to reach global consensus on digit classi-
fication, maintain this classification over time,
and adapt to perturbations or mutations of the
digit shape. Their model showcases emergent
behavior, where simple local rules lead to com-
plex global patterns, analogous to biological
systems achieving anatomical homeostasis.

Building upon this concept, we propose a novel experiment that could be termed “Self-autoencoding
MNIST Digits”. In this setup, we utilize a three-dimensional NCA initialized with an MNIST digit
on one face, see Figure 6. The objective of the NCA is to learn a rule that will replicate the MNIST
digit on its opposite face (red face). However, we introduce a critical constraint: in the middle of the
NCA, there is a mask where cells cannot be updated, effectively preventing direct communication
between the two faces. Crucially, we allow for a single-cell wide hole in the center of this mask,
creating a minimal channel for information transfer.

To successfully replicate the MNIST digit on the opposite face, the NCA must develop a sophis-
ticated rule set that accomplishes two key tasks. First, it must encode the MNIST image into a
compressed form that can pass through the single-cell hole. Second, it must then decode this infor-
mation on the other side to accurately reconstruct the original digit. A notable aspect of this result is
that each cell in the NCA performs an identical local update rule, contributing to the system’s over-
all emergent behavior. As shown in Figure 7, the NCA successfully reconstructs MNIST digits on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the red face, demonstrating its ability to encode, transmit, and decode complex visual information
through a minimal channel. This experiment highlights the power of NCAs in learning complex
information processing tasks using simple, uniform rules, while demonstrating CAX’s ability to
support sophisticated 3-dimensional CA rules.

Figure 7: The top row shows the original digits from the test set, while the bottom row displays the
corresponding reconstructions on the red face of the NCA.

5.3 1D-ARC NEURAL CELLULAR AUTOMATA

In this experiment, we train a one-dimensional NCA on the 1D-ARC dataset (Xu et al., 2024). The
1D-ARC dataset is a novel adaptation of the original Abstraction and Reasoning Corpus (Chollet,
2019) (ARC), designed to simplify and streamline research in artificial intelligence and language
models. By reducing the dimensionality of input and output images to a single row of pixels, 1D-
ARC maintains the core knowledge priors of ARC while significantly reducing task complexity. For
example, the tasks in 1D-ARC include “Static movement by 3 pixels”, “Fill”, and “Recolor by Size
Comparison”. For a full description of the dataset, see the project page. Our experiment focuses on
training an NCA to solve the 1D-ARC tasks. Each input sample consists of a single row of colored
pixels and a corresponding target row. The NCA’s objective is to transform the input into the target
through successive applications of its rule. We consider a task successful if all pixels in the NCA’s
output match the target pixels after a predetermined fixed number of steps.

Move
Dynamic Fill

MirrorPadded
Fill Denoise Denoise

Multicolor

Recolor by
Odd Even

Move 3Move 1 Move 2 Move 2
Towards

Hollow Flip

Pattern
Copy

Pattern Copy
Multicolor

Recolor by
Size

Recolor by Size
Comparison Scaling

Figure 8: 1D-ARC NCA space-time diagrams for each task. The top row of pixels in each image is
the input. Subsequent rows of pixels show the NCA’s intermediate steps as it attempts to transform
the input into the target. The bottom row of pixels represents the NCA’s final output after a fixed
number of steps, which is compared to the target for task completion.

9

https://khalil-research.github.io/LLM4ARC/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: GPT-4 and NCA accuracy in percentage on
all tasks from the 1D-ARC test set. The GPT-4 val-
ues are direct-grid approach, directly taken from Xu
et al. (2024).

Task GPT-4 NCA

Move 1 66 100
Move 2 26 100
Move 3 24 100
Move Dynamic 22 12
Move 2 Towards 34 98
Fill 66 66
Padded Fill 26 28
Hollow 56 98
Flip 70 28
Mirror 20 6
Denoise 36 100
Denoise Multicolor 60 58
Pattern Copy 36 100
Pattern Copy Multicolor 38 100
Recolor by Odd Even 32 0
Recolor by Size 28 0
Recolor by Size Comparison 20 0
Scaling 88 88
Total 41.56 60.12

The primary goal of this experiment is for the
NCA to learn a generalizable rule from the
training set, enabling it to solve unseen ex-
amples in the test sets. This challenge tests
the NCA’s ability to infer abstract patterns and
apply them to new situations, a key aspect of
human-like reasoning. Figure 8 illustrates the
NCA’s “reasoning” on all 1D-ARC tasks. The
visualization shows the input at the top, in-
termediate steps, and final output of the NCA
at the bottom of each image, and is called a
space-time diagram.

To evaluate the NCA’s performance, we com-
pare it to GPT-4, a state-of-the-art language
model, on the 1D-ARC test set. Table 2
presents the accuracy of the NCA and GPT-
4 across 18 different task types. The GPT-
4 values are direct-grid results, directly taken
from Xu et al. (2024). Notably, the NCA out-
performs GPT-4 on several tasks, particularly
those involving movement, pattern copying,
and denoising. Overall, the NCA achieves a
total accuracy of 60.12% compared to GPT-
4’s 41.56%, as reported by Xu et al. (2024).

These results demonstrate the potential of
NCAs in solving abstract reasoning tasks,
even outperforming sophisticated language models in certain domains. The NCA’s success in tasks
like “Move 3” and “Pattern Copy Multicolor” showcases its ability to learn complex spatial trans-
formations and apply them consistently.

However, the NCA struggles with tasks involving more abstract concepts like odd-even distinctions
or size comparisons. This limitation suggests areas for future improvement, possibly through the
integration of additional priors or more sophisticated architectures. While the average of NCA
outperforms GPT4, it is interesting to note that GPT4 performs equally in every task, while NCA
completely fails on some of them (0% accuracy). This opens interesting questions for future work.
This experiment not only highlights the capabilities of NCAs in abstract reasoning tasks but also
demonstrates CAX’s flexibility in implementing and training NCA models for diverse applications.

6 CONCLUSION

In this paper, we introduce CAX: Cellular Automata Accelerated in JAX, an open-source library,
designed to provide a high-performance and flexible framework to accelerate cellular automata re-
search. CAX provides substantial speed improvements over existing implementations, enabling
researchers to run complex simulations and experiments more efficiently.

CAX’s flexible architecture supports a wide range of cellular automata types across multiple di-
mensions, from classic discrete models to advanced continuous and neural variants. Its modular
design, based on customizable perceive and update components, facilitates rapid experimentation
and development of novel CA models, enabling efficient exploration of new ideas.

CAX’s comprehensive documentation, example notebooks, and seamless integration with machine
learning workflows not only lower the barrier to entry but also promote reproducibility and collabo-
ration in cellular automata research. We hope this accessibility will accelerate the pace of discovery
by attracting new researchers.

In the future, we envision several exciting directions, such as expanding the model zoo to implement
and optimize a wider range of cellular automata models, and exploring synergies between cellular
automata and other approaches, such as reinforcement learning or evolutionary algorithms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Luis M. Antunes. Cellpylib: A python library for working with cellular automata. Journal of Open
Source Software, 6(67):3608, 2021. doi: 10.21105/joss.03608. URL https://doi.org/10.
21105/joss.03608.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Felix Chalumeau, Bryan Lim, Raphael Boige, Maxime Allard, Luca Grillotti, Manon Flageat,
Valentin Macé, Arthur Flajolet, Thomas Pierrot, and Antoine Cully. QDax: A Library for Quality-
Diversity and Population-based Algorithms with Hardware Acceleration, August 2023. URL
http://arxiv.org/abs/2308.03665. arXiv:2308.03665 [cs].

Bert Wang-Chak Chan. Lenia - Biology of Artificial Life. Complex Systems, 28(3):251–286,
October 2019. ISSN 08912513. doi: 10.25088/ComplexSystems.28.3.251. URL http:
//arxiv.org/abs/1812.05433. arXiv:1812.05433 [nlin].

Bert Wang-Chak Chan. Lenia and Expanded Universe. In The 2020 Conference on Artificial Life, pp.
221–229, 2020. doi: 10.1162/isal a 00297. URL http://arxiv.org/abs/2005.03742.
arXiv:2005.03742 [nlin].

Bert Wang-Chak Chan. Towards Large-Scale Simulations of Open-Ended Evolution in Con-
tinuous Cellular Automata, April 2023. URL http://arxiv.org/abs/2304.05639.
arXiv:2304.05639 [nlin].

François Chollet. On the Measure of Intelligence, November 2019. URL http://arxiv.org/
abs/1911.01547. arXiv:1911.01547 [cs].

Matthew Cook. Universality in Elementary Cellular Automata. Complex Systems, 15(1):1–40,
March 2004. ISSN 08912513. doi: 10.25088/ComplexSystems.15.1.1. URL https://www.
complex-systems.com/abstracts/v15_i01_a01/.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu
Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http:
//github.com/deepmind.

Maxence Faldor and Antoine Cully. Toward artificial open-ended evolution within lenia using
quality-diversity. Artificial Life, 2024.

Martin Gardner. Mathematical games. Scientific American, 223(4):120–123, 1970. ISSN 00368733,
19467087. URL http://www.jstor.org/stable/24927642.

William Gilpin. Cellular automata as convolutional neural networks. Physical Review E, 100(3):
032402, September 2019. ISSN 2470-0045, 2470-0053. doi: 10.1103/PhysRevE.100.032402.
URL http://arxiv.org/abs/1809.02942. arXiv:1809.02942 [cond-mat, physics:nlin,
physics:physics].

Morgan Giraud. Leniax: efficient and differentiable lenia simulator, 2022. URL http://
github.com/morgangiraud/leniax.

Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Learning Graph Cellular Automata. In Ad-
vances in Neural Information Processing Systems, volume 34, pp. 20983–20994. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
af87f7cdcda223c41c3f3ef05a3aaeea-Abstract.html.

11

https://doi.org/10.21105/joss.03608
https://doi.org/10.21105/joss.03608
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
http://arxiv.org/abs/2308.03665
http://arxiv.org/abs/1812.05433
http://arxiv.org/abs/1812.05433
http://arxiv.org/abs/2005.03742
http://arxiv.org/abs/2304.05639
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1911.01547
https://www.complex-systems.com/abstracts/v15_i01_a01/
https://www.complex-systems.com/abstracts/v15_i01_a01/
http://github.com/deepmind
http://github.com/deepmind
http://www.jstor.org/stable/24927642
http://arxiv.org/abs/1809.02942
http://github.com/morgangiraud/leniax
http://github.com/morgangiraud/leniax
https://proceedings.neurips.cc/paper/2021/hash/af87f7cdcda223c41c3f3ef05a3aaeea-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/af87f7cdcda223c41c3f3ef05a3aaeea-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL
http://github.com/google/flax.

J.H. Holland. Emergence: From Chaos to Order. Popular science / Oxford University Press. Oxford
University Press, 2000. ISBN 9780192862112. URL https://books.google.co.uk/
books?id=VjKtpujRGuAC.

Robert Tjarko Lange. evosax: JAX-based Evolution Strategies, December 2022. URL http:
//arxiv.org/abs/2212.04180. arXiv:2212.04180 [cs].

Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. Growing neural
cellular automata. Distill, 2020. doi: 10.23915/distill.00023. https://distill.pub/2020/growing-ca.

Elias Najarro, Shyam Sudhakaran, Claire Glanois, and Sebastian Risi. HyperNCA: Growing Devel-
opmental Networks with Neural Cellular Automata, April 2022. URL http://arxiv.org/
abs/2204.11674. arXiv:2204.11674 [cs].

John Von Neumann and Arthur W. Burks. Theory of Self-Reproducing Automata. University of
Illinois Press, USA, 1966.

Ehsan Pajouheshgar, Yitao Xu, Tong Zhang, and Sabine Süsstrunk. DyNCA: Real-Time Dynamic
Texture Synthesis Using Neural Cellular Automata. In 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 20742–20751, Vancouver, BC, Canada, June
2023. IEEE. ISBN 9798350301298. doi: 10.1109/CVPR52729.2023.01987. URL https:
//ieeexplore.ieee.org/document/10204488/.

Rasmus Berg Palm, Miguel González Duque, Shyam Sudhakaran, and Sebastian Risi. Variational
Neural Cellular Automata. October 2021. URL https://openreview.net/forum?id=
7fFO4cMBx_9.

Ettore Randazzo and Alexander Mordvintsev. Biomaker CA: a Biome Maker project using Cellular
Automata, July 2023. URL http://arxiv.org/abs/2307.09320. arXiv:2307.09320
[cs].

Ettore Randazzo, Alexander Mordvintsev, Eyvind Niklasson, Michael Levin, and Sam Grey-
danus. Self-classifying mnist digits. Distill, 2020. doi: 10.23915/distill.00027.002.
https://distill.pub/2020/selforg/mnist.

Ettore Randazzo, Alexander Mordvintsev, Eyvind Niklasson, and Michael Levin. Adversarial
reprogramming of neural cellular automata. Distill, 2021. doi: 10.23915/distill.00027.004.
https://distill.pub/selforg/2021/adversarial.

Shyam Sudhakaran, Elias Najarro, and Sebastian Risi. Goal-Guided Neural Cellular Automata:
Learning to Control Self-Organising Systems, April 2022. URL http://arxiv.org/abs/
2205.06806. arXiv:2205.06806 [cs].

Yujin Tang, Yingtao Tian, and David Ha. EvoJAX: Hardware-Accelerated Neuroevolution. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 308–311,
July 2022. doi: 10.1145/3520304.3528770. URL http://arxiv.org/abs/2202.05008.
arXiv:2202.05008 [cs].

Mattie Tesfaldet, Derek Nowrouzezahrai, and Chris Pal. Attention-based Neural Cellular
Automata. Advances in Neural Information Processing Systems, 35:8174–8186, Decem-
ber 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/361e5112d2eca09513bbd266e4b2d2be-Abstract-Conference.html.

Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002. ISBN 1579550088. URL
https://www.wolframscience.com.

N. Wulff and J A Hertz. Learning Cellular Automaton Dynamics with Neural Net-
works. In Advances in Neural Information Processing Systems, volume 5. Morgan-
Kaufmann, 1992. URL https://proceedings.neurips.cc/paper/1992/hash/
d6c651ddcd97183b2e40bc464231c962-Abstract.html.

12

http://github.com/google/flax
https://books.google.co.uk/books?id=VjKtpujRGuAC
https://books.google.co.uk/books?id=VjKtpujRGuAC
http://arxiv.org/abs/2212.04180
http://arxiv.org/abs/2212.04180
http://arxiv.org/abs/2204.11674
http://arxiv.org/abs/2204.11674
https://ieeexplore.ieee.org/document/10204488/
https://ieeexplore.ieee.org/document/10204488/
https://openreview.net/forum?id=7fFO4cMBx_9
https://openreview.net/forum?id=7fFO4cMBx_9
http://arxiv.org/abs/2307.09320
http://arxiv.org/abs/2205.06806
http://arxiv.org/abs/2205.06806
http://arxiv.org/abs/2202.05008
https://proceedings.neurips.cc/paper_files/paper/2022/hash/361e5112d2eca09513bbd266e4b2d2be-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/361e5112d2eca09513bbd266e4b2d2be-Abstract-Conference.html
https://www.wolframscience.com
https://proceedings.neurips.cc/paper/1992/hash/d6c651ddcd97183b2e40bc464231c962-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/d6c651ddcd97183b2e40bc464231c962-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B. Khalil. LLMs and
the Abstraction and Reasoning Corpus: Successes, Failures, and the Importance of Object-
based Representations, February 2024. URL http://arxiv.org/abs/2305.18354.
arXiv:2305.18354 [cs].

13

http://arxiv.org/abs/2305.18354

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXAMPLE NOTEBOOK

Import
import jax
import jax.numpy as jnp
import mediapy
import optax
from cax.core.ca import CA
from cax.core.perceive.depthwise_conv_perceive import

DepthwiseConvPerceive
from cax.core.perceive.kernels import grad_kernel, identity_kernel
from cax.core.state import state_from_rgba_to_rgb, state_to_rgba
from cax.core.update.nca_update import NCAUpdate
from cax.nn.pool import Pool
from cax.utils.image import get_emoji
from flax import nnx
from tqdm.auto import tqdm

Configuration
seed = 0

channel_size = 16
num_kernels = 3
hidden_size = 128
cell_dropout_rate = 0.5

pool_size = 1_024
batch_size = 8
num_steps = 128
learning_rate = 2e-3

emoji = "gecko"
target_size = 40
target_padding = 16

key = jax.random.key(seed)
rngs = nnx.Rngs(seed)

Dataset
target = get_emoji(emoji, size=target_size, padding=target_padding)

Init state
def init_state():

state_shape = target.shape[:2] + (channel_size,)

state = jnp.zeros(state_shape)
mid = tuple(size // 2 for size in state_shape[:-1])
return state.at[mid[0], mid[1], -1].set(1.0)

Model
perceive = DepthwiseConvPerceive(channel_size, rngs)
update = NCAUpdate(channel_size, num_kernels * channel_size, (hidden_size

,), rngs, cell_dropout_rate=cell_dropout_rate)

kernel = jnp.concatenate([identity_kernel(ndim=2), grad_kernel(ndim=2)],
axis=-1)

kernel = jnp.expand_dims(jnp.concatenate([kernel] * channel_size, axis
=-1), axis=-2)

perceive.depthwise_conv.kernel = nnx.Param(kernel)

ca = CA(perceive, update)

Train
state = jax.vmap(lambda _: init_state())(jnp.zeros(pool_size))
pool = Pool.create({"state": state})

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

lr_sched = optax.linear_schedule(init_value=learning_rate, end_value=0.1
* learning_rate, transition_steps=2_000)

optimizer = optax.chain(
optax.clip_by_global_norm(1.0),
optax.adam(learning_rate=lr_sched),

)

update_params = nnx.All(nnx.Param, nnx.PathContains("update"))
optimizer = nnx.Optimizer(ca, optimizer, wrt=update_params)

def mse(state):
return jnp.mean(jnp.square(state_to_rgba(state) - target))

@nnx.jit
def loss_fn(ca, state, key):

state_axes = nnx.StateAxes({nnx.RngState: 0, ...: None})
state = nnx.split_rngs(splits=batch_size)(

nnx.vmap(
lambda ca, state: ca(state, num_steps=num_steps, all_steps=True),
in_axes=(state_axes, 0),

)
)(ca, state)

Sample a random step
index = jax.random.randint(key, (state.shape[0],), num_steps // 2,
num_steps)

state = state[jnp.arange(state.shape[0]), index]

loss = mse(state)
return loss, state

@nnx.jit
def train_step(ca, optimizer, pool, key):

sample_key, loss_key = jax.random.split(key)

Sample from pool
pool_index, batch = pool.sample(sample_key, batch_size=batch_size)
current_state = batch["state"]

Sort by descending loss
sort_index = jnp.argsort(jax.vmap(mse)(current_state), descending=True)
pool_index = pool_index[sort_index]
current_state = current_state[sort_index]

Sample a new target to replace the worst
new_state = init_state()
current_state = current_state.at[0].set(new_state)

(loss, current_state), grad = nnx.value_and_grad(loss_fn, has_aux=True,
argnums=nnx.DiffState(0, update_params))(
ca, current_state, loss_key

)
optimizer.update(grad)

pool = pool.update(pool_index, {"state": current_state})
return loss, pool

num_train_steps = 8_192
print_interval = 128

pbar = tqdm(range(num_train_steps), desc="Training", unit="train_step")
losses = []

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

for i in pbar:
key, subkey = jax.random.split(key)
loss, pool = train_step(ca, optimizer, pool, subkey)
losses.append(loss)

if i % print_interval == 0 or i == num_train_steps - 1:
avg_loss = sum(losses[-print_interval:]) / len(losses[-print_interval
:])
pbar.set_postfix({"Average Loss": f"{avg_loss:.6f}"})

16

	Introduction
	Background
	Cellular Automata
	Controllable Cellular Automata
	Related Work

	CAX: Cellular Automata Accelerated in JAX
	Architecture and Design
	Perceive module
	Update module

	Features
	Performance
	Utilities
	Documentation and Examples

	Implemented Cellular Automata and Experiments
	Novel Neural Cellular Automata Experiments
	Diffusing Neural Cellular Automata
	Self-autoencoding MNIST Digits
	1D-ARC Neural Cellular Automata

	Conclusion
	Example Notebook

