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ABSTRACT

In this study, we introduce a novel, probabilistic perspective for generating adver-
sarial examples. Within this view, geometric constraints on adversarial examples
are interpreted as distributions, facilitating the transition from geometric constraints
to data-driven semantic constraints. Proceeding from this perspective, we develop
an innovative approach for generating semantics-aware adversarial examples in
a principled manner. Our approach empowers individuals to incorporate their
personal comprehension of semantics into the model. Through human evaluation,
we validate that our semantics-aware adversarial examples maintain their inherent
meaning. Experimental findings on the MNIST, SVHN and CIFAR10 datasets
demonstrate that our semantics-aware adversarial examples can effectively cir-
cumvent robust adversarial training methods tailored for traditional adversarial
attacks.

1 INTRODUCTION

The purpose of generating adversarial examples is to deceive a classifier by making minimal changes
to the original data’s meaning. In image classification, most existing adversarial techniques ensure
the preservation of adversarial example semantics by limiting their geometric distance from the
original image (Szegedy et al., 2013; Goodfellow et al., 2014; Carlini & Wagner, 2017; Madry et al.,
2017). These methods are able to deceive classifiers with a very small geometric based perturbation.
However, when targeting robust classifiers trained using adversarial methods, an attack involving
a relatively large geometric distance may be necessary. Such alterations have a notable drawback:
they can either distort the original image’s semantics - going against the fundamental objective of
adversarial examples - or lead to discernible changes in the image. Figure 1 illustrates this issue.
When applying the PGD attack, constrained by geometric distances, to robust classifiers for digit
images, the resulting adversarial images frequently deviate from their original semantic intent. In the
case of natural images, even if the core semantics are preserved, the introduced changes can often be
readily observed.

In this paper, we introduce a probabilistic perspective for understanding adversarial examples.
Through this innovative lens, both the victim classifier and geometric constraints are regarded as
distinct distributions: the victim distribution and the distance distribution. Adversarial examples
emerge as samples drawn from the product of these two distributions, specifically from the regions
where they overlap. Notably, the overlap at the tail of the distance distribution accounts for the
apparent modifications in the resultant adversarial samples.

Based on this probabilistic perspective, we propose a new method for generating semantics-aware
adversarial examples. Instead of relying on purely geometrically-induced distance distributions, we
transition to a trainable, data-driven distance distribution. This evolution allows for the incorporation
of our subjective understanding of semantics. With an appropriate semantic comprehension, our
method can produce adversarial examples that are not only semantically aware but also highly
effective. As depicted in the right section of Figure 1, our semantics-aware adversarial attack
successfully deceives robust classifiers while largely retaining the original image’s semantic essence.
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Figure 1: Attacks on adversarially trained classifiers for MNIST, SVHN, and CIFAR10: Comparing
PGD with L2 norm, PGD with L∞ norm, and our proposed method. Parameters are adjusted to
ensure that most of the cases could successfully deceive the victim classifier. A green border marks a
successful attack, while red denotes failure. See Appendix K for more examples.

2 PRELIMINARIES

2.1 ADVERSARIAL EXAMPLES

The notion of adversarial examples was first introduced by Szegedy et al. (2013). Let’s assume we
have a classifier C : [0, 1]n → Y , where n represents the dimension of the input space and Y denotes
the label space. Given an image xori ∈ [0, 1]n and a target label ytar ∈ Y , the optimization problem
for finding an adversarial instance xadv for xori can be formulated as follows:

minimize D(xori,xadv) such that C(xadv) = ytar and xadv ∈ [0, 1]n

Here, D is a distance metric employed to assess the difference between the original and perturbed
images. This distance metric typically relies on geometric distance, which can be represented by L0,
L2, or L∞ norms.

However, solving this problem is challenging. As a result, Szegedy et al. (2013) propose a relaxation
of the problem:

minimize L(xadv, ytar) := c1 · D(xori,xadv) + c2 · f(xadv, ytar) such that xadv ∈ [0, 1]n (1)
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where c1, c2 are constants, and f is an objective function closely tied to the classifier’s prediction.
For example, in (Szegedy et al., 2013), f is the cross-entropy loss function, while Carlini & Wagner
(2017) suggest several different choices for f . Szegedy et al. (2013) recommend solving (1) using
box-constrained L-BFGS.

2.2 ADVERSARIAL TRAINING

Adversarial training, a widely acknowledged method for boosting adversarial robustness in deep
learning models, has been extensively studied (Szegedy et al., 2013; Goodfellow et al., 2014; Huang
et al., 2015; Madry et al., 2017). This technique uses adversarial samples as (part of) the training data,
originating from Szegedy et al. (2013), and has evolved into numerous variations. In this paper, we
apply the min-max problem formulation by Madry et al. (2017) to determine neural network weights,
denoted as θ. They propose choosing θ to solve:

min
θ

E(x,y)∼pdata

[
max

∥δ∥p≤ϵ
LCE(θ,x+ δ, y)

]
(2)

where pdata represents the data distribution, LCE is the cross-entropy loss, ∥·∥p denotes the Lp norm,
and ϵ specifies the radius of the corresponding Lp ball. In what follows, we will use the term “robust
classifier” to refer to classifiers that have undergone adversarial training.

2.3 ENERGY-BASED MODELS (EBMS)

An Energy-based Model (EBM) (Hinton, 2002; Du & Mordatch, 2019) involves a non-linear regres-
sion function, represented by Eθ, with a parameter θ. This function is known as the energy function.
Given a data point, x, the probability density function (PDF) is given by:

pθ(x) =
exp(−Eθ(x))

Zθ
(3)

where Zθ =
∫
exp(−Eθ(x))dx is the normalizing constant that ensures the PDF integrates to 1. For

details on sampling and training energy-based models, refer to Appendix A.

3 A PROBABILISTIC PERSPECTIVE ON ADVERSARIAL EXAMPLES

We introduce a probabilistic perspective where adversarial examples are sampled from an adver-
sarial distribution, denoted as padv. This distribution can be conceptualized as a product of expert
distributions (Hinton, 2002):

padv(xadv;xori, ytar) ∝ pvic(xadv; ytar)pdis(xadv;xori)ppri(xadv) (4)

where pvic is termed the “victim distribution”, reflecting its association with the victim classifier. pdis
represents the distance distribution. A substantial value of pdis suggests a close resemblance between
xadv and xori based on the designated distance metric. ppri acts as the prior distribution for xadv.

The subsequent theorem demonstrates the compatibility of our probabilistic approach with the
conventional optimization problem for generating adversarial examples:

Theorem. Given the condition that pvic(xadv; ytar) ∝ exp(−c2 · f(xadv, ytar)), pdis(xadv;xori) ∝
exp(−c1 · D(xori,xadv)), and set ppri(xadv) as a constant, the samples drawn from padv will exhibit
the same distribution as the adversarial examples derived from applying the box-constrained Langevin
Monte Carlo method to the optimization problem delineated in equation (1).

The proof of the theorem can be found in Appendix B. Within the context of our discussion, we
initially define pvic, pdis, and ppri to have the same form as described in the theorem. Given this
formulation, we can conveniently generate samples from padv, pdis, and pvic using LMC. Detailed
procedures are provided in Appendix C. As we delve further into this paper, we may explore
alternative formulations for these components.
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(a) (b) (c) (d)

Figure 2: (a) and (b) display samples drawn from pvic(·; ytar) with the victim classifier being non-
adversarially trained and adversarially trained, respectively. (c) showcases samples from pdis(·;xori)
when D is the square of L2 norm. (d) illustrates t(xori) for t ∼ T , where T represents a distribution
of transformations, including TPS (see Section 5.2), scaling, rotation, and cropping. The xoris in (c)
and (d) consist of the first 36 images from the MNIST test set.

The victim distribution pvic is dependent on the victim classifier. As suggested by Szegedy et al.
(2013), f could be the cross-entropy loss of the classifier. We can sample from this distribution
using Langevin dynamics. Figure 2(a) presents samples drawn from pvic when the victim classifier
is subjected to standard training, exhibiting somewhat indistinct shapes of the digits. This implies
that the classifier has learned the semantics of the digits to a certain degree, but not thoroughly.
In contrast, Figure 2(b) displays samples drawn from pvic when the victim classifier undergoes
adversarial training. In this scenario, the shapes of the digits are clearly discernible. This observation
suggests that we can obtain meaningful samples from adversarially trained classifiers, indicating that
such classifiers depend more on semantics, which corresponds to the fact that an adversarially trained
classifier is more difficult to attack. A similar observation concerning the generation of images from
an adversarially trained classifier has been reported by Santurkar et al. (2019).

The distance distribution pdis relies on D(xori,xadv), representing the distance between xadv and
xori. By its nature, samples that are closer to xori may yield a higher pdis, which is consistent with
the objective of generating adversarial samples. For example, if D represents the square of the L2

norm, then pdis becomes a Gaussian distribution with a mean of xori and a variance determined by c1.
Figure 2(c) portrays samples drawn from pdis when D is the square of the L2 distance. The samples
closely resemble the original images, xoris. This is attributed to the fact that each sample converges
near the Gaussian distribution’s mean, which corresponds to the xoris.

The prior distribution ppri encapsulates our assumptions about the distribution of xadv. It is usually
set as a constant, which corresponds to a uniform distribution, signifying a noninformative prior.
In this paper, while we don’t present an intricate choice for ppri, we emphasize that it serves as a
principle concept for incorporating prior knowledge about xadv into the sampling process.

The product of the distributions Samples drawn from padv tend to be concentrated in the regions
of high density resulting from the product of pvic and pdis, assuming ppri is constant. As is discussed, a
robust victim classifier possesses generative capabilities. This means the high-density regions of pvic
are inclined to generate images that embody the semantics of the target class. Conversely, the dense
regions of pdis tend to produce images reflecting the semantics of the original image. If these high-
density regions of both pvic and pdis intersect, then samples from padv may encapsulate the semantics
of both the target class and the original image. As depicted in Figure 3(a), the generated samples
exhibit traces of both the target class and the original image. From our probabilistic perspective, the
tendency of the generated adversarial samples to semantically resemble the target class stems from
the generative ability of the victim distribution.

4 GENERATING SEMANTICS-AWARE ADVERSARIAL EXAMPLES

We propose semantic divergence, denoted by a non-symmetric divergence Dsem(xadv,xori) :=
E(xadv;xori), where E(·;xori) represents the energy of an energy-based model trained on a dataset
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Figure 3: (a): Samples from padv(·;xori, ytar) ∝ exp(−c1 · D(xori,xadv)) exp(−c2 · f(xadv, ytar)),
where D is the L2 norm, f is the cross-entropy fCE, xori are the first 36 images from the MNIST
test set, ytar are set to 1, c1 is 10−3, and c2 is 10−2. (c): Similar to (a), but with f replaced by fCW,
as introduced in section 5.1. Essentially, this case applies the L2 CW attack (Carlini & Wagner,
2017) using LMC instead of Adam optimization (We can call it prob CW). A green border indicates
successful deception of the victim classifier, while a red border signifies failure. (b) & (d): the
predictive probability (softmax probability) of the target class, corresponding to each digit of Figures
(a) and (c) on a one-to-one basis.

consisting of {t1(xori), t2(xori), . . . }. Here, ti ∼ T , and T is a distribution of transformations that do
not alter the original image’s semantics. In practice, the choice of T depends on human subjectivity
related to the dataset. Individuals are able to incorporate their personal comprehension of semantics
into the model by designing their own T . For instance, in the case of the MNIST dataset, the
transformations could include scaling, rotation, distortion, and cropping, as illustrated in Figure 2(d).
We assume that such transformations do not affect the semantics of the digits in the MNIST dataset.
Consequently, our proposed semantic divergence induces the corresponding distance distribution
pdis(xadv;xori) ∝ exp(−c1 · E(xadv;xori)), which is exactly the distribution of the energy-based
model introduced in formula (3). It is worth noting that the choice of T is subjective, for more details,
see section 8 and appendix D.

By proposing semantic divergence, we successfully transformed simple distance distributions induced
by geometric distances (such as the Gaussian distribution corresponding to the L2 distance and the
Laplace distribution for the L1 distance) into trainable, data-driven distributions. This data-driven
approach enables users to apply data augmentation or integrate supplementary data to characterize
semantic distances, based on their personal interpretation of semantics. As a result, it transitions the
geometric distance constraints in adversarial attacks to semantic-based constraints.

We claim that, given an appropriate T , semantic divergence can surpass geometric distance. Empiri-
cally, when attempting to deceive a robust classifier, it’s challenging to limit the geometric distance
between the adversarial and original images without leaving traces of the adversarial attack, as
depicted in Figure 1 and Figure 3. The attacked images either display a ‘shadow’ of the target digits
or reveal conspicuous tampering traces, such as in Figure 3(c), where the attacked digit turns gray.
This phenomenon was empirically observed and tested by Song et al. (2018) through an A/B test.
Conversely, the samples from padv, as shown in Figure 4, scarcely display any evident signs of an
adversarial attack. While semantic divergence can’t entirely prevent the generation of a sample
resembling the target class, as shown in Figure 4(a), we discuss certain techniques to mitigate this
issue in Section 5.1.

A plausible interpretation is that, when using L1 or L2 distances, depending on a geometric distance-
based distribution causes pdis(·,xori) to cluster tightly around xori. This results in a minimal overlap
between pdis and pvic, with the overlapping region located in the tail areas of the Gaussian or Laplace
distribution. Consequently, image samples manifest a combination of Gaussian noise and features
from the victim distribution. This mixture often gives rise to discernible “shadows” or evident markers
of unnatural alterations. However, when using a distribution based on a proper semantic divergence,
the overlap between pdis and pvic expands, occurring in regions that retain the desired semantics,
while still effectively deceiving the classifier.
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Figure 4: (a) & (c): Samples from padv(·;xori, ytar) ∝ exp(−c1·D(xori,xadv)) exp(−c2·f(xadv, ytar)),
where xori refers to the original image of digit “7” shown in Figure 1 and ytar refers to class 9. D
represents our proposed semantic divergence. In (a), f is the cross-entropy fCE, while in (c), f is fCW.
Constants are set as c1 = 1.0 and c2 = 10−2. A green border indicates successful deception of the
victim classifier, whereas a red border denotes failure. (b) & (d): The predictive probability (softmax
probability) of the target class, corresponding to each digit in Figures (a) and (c) on a one-to-one
basis.

5 TECHNIQUES FOR DECEIVING ROBUST CLASSIFIERS

In this paper, we introduce four techniques that enhance the performance of our proposed method in
generating high-quality adversarial examples. Due to space constraints, we detail only two of these
techniques in this section. For the remaining two techniques, please refer to Appendix E.

5.1 VICTIM DISTRIBUTIONS

The victim distribution pvic ∝ exp(c2 · f(xadv, ytar)) is influenced by the choice of function f . Let
gϕ : [0, 1]n → R|Y| be a classifier that produces logits as output with ϕ representing the neural
network parameters, n denoting the dimensions of the input, and Y being the set of labels (the output
of gϕ are logits). Szegedy et al. (2013) suggested using cross-entropy as the function f , which can be
expressed as

fCE(x, ytar) := −gϕ(x)[ytar] + log
∑
y

exp(gϕ(x)[y]) = − log σ(gϕ(x))[ytar]

where σ denotes the softmax function.

Carlini & Wagner (2017) explored and compared multiple options for f . They found that, empirically,
the most efficient choice of their proposed fs is:

fCW(x, ytar) := max(max
y ̸=ytar

gϕ(x)[y]− gϕ(x)[ytar], 0).

From Figure 3 and Figure 4, we observe that fCW outperforms fCE when the pdis depends on either
geometric distance or semantic divergence. A potential explanation for this phenomenon is that,
according to its definition, fCW becomes 0 if the classifier is successfully deceived during the iteration
process. This setting ensures that the generator does not strive for a relatively high softmax probability
for the target class; it simply needs to reach a point where the victim classifier perceives the image as
belonging to the target class. Consequently, after the iteration, the victim classifier assigns a relatively
low predictive probability to the target class σ(gϕ(xadv))[ytar], as demonstrated in Figure 3(d) and
Figure 4(d).

In this study, we introduce two additional choices for the function f . Although these alternatives are
not as effective as fCW, we present them in Appendix I for further exploration.

5.2 DATA AUGMENTATION BY THIN PLATE SPLINES (TPS) DEFORMATION

Thin-plate-spline (TPS) (Bookstein, 1989) is a commonly used image deforming method. Given a
pair of control points and target points, TPS computes a smooth transformation that maps the control
points to the target points, minimizing the bending energy of the transformation. This process results
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in localized deformations while preserving the overall structure of the image, making TPS a valuable
tool for data augmentation.

Psou Ptar

xori tTPS(xori,Psou,Ptar)

Figure 5: TPS as a data augmentation.
Left: The original image xori superim-
posed with a 5× 5 grid of source control
points Psou. Right: The transformed im-
age overlaid with a grid of target control
points Ptar.

As introduced in Section 4, we aim to train an energy-
based model on transformations of a single image xori.
In practice, if the diversity of the augmentations of xori,
represented as t(xori), is insufficient, the training of the
probabilistic generative model is prone to overfitting.
To address this issue, we use TPS as a data augmen-
tation method to increase the diversity of t(xori). For
each xori, we set a 5 × 5 grid of source control points,
Psou = {(x(i), y(i))}5×5

i=1 , and defining the target points as
Ptar = {(x(i) + ϵ

(i)
x , y(i) + ϵ

(i)
y )}5×5

i=1 , where ϵ
(i)
x , ϵ

(i)
y ∼

N (0, σ2) are random noise added to the source control
points. We then apply TPS transformation to xori with
Psou and Ptar as its parameters. This procedure is depicted
in Figure 5. By setting an appropriate σ, we can substan-
tially increase the diversity of the one-image dataset while
maintaining its semantic content.

6 EXPERIMENT

6.1 IMPLEMENTATION

We implemented our proposed semantics-aware adversarial attack on three datasets: MNIST, SVHN
and CIFAR10. For MNIST, the victim classifier we used was an adversarially trained MadryNet
(Madry et al., 2017). For SVHN and CIFAR10, we utilized an adversarially trained ResNet18, in
accordance with the methodology outlined by Song et al. (2018). On the distance distribution side, for
every original image xori, we trained an energy-based model on the training set, which is represented
as {t1(xori), t2(xori), . . . }. In this case, ti follows a distribution of transformations, T , that do not
change the semantics of xori. For MNIST, we characterized TMNIST as including Thin Plate Spline
(TPS) transformations, scaling, and rotation. For SVHN, we defined TSVHN as comprising TPS
transformations and alterations in brightness and hue. For CIFAR10, TCIFAR10 contains TPS only.
Detailed specifics related to our implementation can be found in Appendix G.
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Figure 6: The success rates (%) of our targeted adversarial attack. Corresponding sample examples
for each grid are depicted in the top right and bottom right sections of Figure 1. Refer to Table 1 for
overall success rate.
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Table 1: Success rate comparison between the method proposed by Song et al. (2018) and ours. The
results presented in this table are for reference only, as Song’s results are taken directly from their
paper, and we did not use the same group of annotators for our evaluation.

Robust Classifier Success Rate of Our Success RateSong et al. (2018)

MadryNet (Madry et al., 2017) on MNIST 85.2 96.2
ResNet18 (He et al., 2016) (adv-trained) on SVHN 84.2 86.3

6.2 TARGETED ATTACKS AGAINST ADVERSARIAL TRAINING

MNIST / SVHN Our method generates adversarial samples that can deceive classifiers, but it does
not guarantee the preservation of the original image’s semantic meaning. As such, we consider an
adversarial example successful if human annotators perceive it as having the same meaning as the
original label, in line with the approach by Song et al. (2018). In detail, we randomly select 10 digits,
each representing a different class, from the MNIST/SVHN test set to serve as the original image xori.
These are depicted on the left side of Figure 1. For each xori, we iterate through the target class ytar
ranging from 0 to 9, excluding the class yori that signifies the ground-truth label of xori. For every
pair of xori and ytar, we generate N = 100 adversarial examples post sample refinement. The result
of each pair is illustrated in Figure 6. The overall success rate is illustrated in Table 1. The detail of
calculating the success rate is in Appendix F.

CIFAR10 As illustrated in Figure 1, for CIFAR10, both PGD and our approach generate adversarial
examples that largely maintain the original image’s semantics. To emphasize the superiority of
our method, we undertake a human-driven comparison, juxtaposing images from PGD-L2 and our
method, as well as PGD-L∞ and our method. In detail, by selecting an appropriate value for ϵ, we
ensure that in most cases, both PGD attack variants can deceive the classifier, as demonstrated in
Figure 1. Under these circumstances, we extract examples that successfully mislead the classifier. We
then pair images produced by the PGD attack with those generated by our method and present them
to 10 annotators. They are tasked with determining which image appears more natural (i.e., without
signs of computational tampering). The interface used by the annotators can be found in Appendix H.
When comparing our method to PGD-L∞, annotators found that 96.3% of samples produced by our
technique were more similar to real images. Likewise, in the comparison between our method and
PGD-L2, 87.4% of the time, annotators felt that our method’s samples were more akin to real images.

6.3 TRANSFERABILITY

Table 2 and Table 3 shows the transferability of our proposed method. We attack adversarially trained
Madry Net with our method and feed legitimate unrestricted adversarial examples, as verified by
annotators, to other classifiers.

Table 2: Transferability of our proposed method on MNIST. Numbers represent accuracies of
classifiers.

Attack Type
Classifier Madry Net Madry Net ResNet ResNet Certified defence

(no adv) (adv) (no adv) (adv) Wong & Kolter (2018)

No attack 99.5 98.4 99.3 99.4 98.2
Song et al. (2018) (w/o noise) 95.1 0 92.7 93.7 84.3
Song et al. (2018) (w/ noise) 78.3 0 73.8 84.9 63.0
Our method 38.3 0 76.8 82.5 60.5

7 RELATED WORK

Unrestricted adversarial examples Song et al. (2018) proposed generating unrestricted adversarial
examples from scratch using conditional generative models. In their work, the term “unrestricted”

8



Under review as a conference paper at ICLR 2024

Table 3: Transferability of our proposed method on SVHN and CIFAR10.

Dataset Attack Type ResNet18 ResNet18 VGG19 VGG19 Certified defence
(no adv) (adv) (no adv) (adv) Wong & Kolter (2018)

SVHN No attack 95.2 93.6 94.0 95.0 79.6
Our method 26.0 0 32.0 46.9 40.4

CIFAR10 No attack 93.0 83.5 92.6 81.0 73.0
Our method 33.4 0 47.5 55.7 42.1

indicates that the generated adversarial samples, xadv, are not restricted by a geometric distance
such as the L2 norm or L∞ norm. The key difference between their approach and ours is that their
adversarial examples xadv are independent of any specific xori, while our model generates xadv based
on a given xori. By slightly modifying (4), we can easily incorporate Song’s “unrestricted adversarial
examples” into our probabilistic perspective:

padv(xadv; ysou, ytar) ∝ pvic(xadv; ytar)pdis(xadv; ysou)ppri(xadv) (5)

where ysou is the source class. It becomes evident that the adversarial examples generated by our
padv(·;xori, ytar) adhere to Song’s definition when xori is labeled as ysou. By training class-conditional
energy-based model we are able to generate adversarial samples from this padv, see Appendix L.
Discussions of other works on unrestricted adversarial examples (Xiao et al., 2018; Bhattad et al.,
2019; Joshi et al., 2019; Hosseini & Poovendran, 2018) can be found in Appendix M.

TPS as a Data Augmentation Technique To the best of our knowledge, Vinker et al. (2021) were
the first to employ TPS as a data augmentation method. They utilized TPS as a data augmentation
strategy in their generative model for conditional image manipulation based on a single image.

8 DISCUSSION

MNIST and SVHN are not ‘easy’ At first glance, MNIST and SVHN might appear simpler due to
their low resolution and basic structure, especially when compared to natural images. Contrary to this
initial impression, they pose a greater challenge than natural images. This is because the digit data
lacks diversity. Consequently, robust classifiers can easily memorize the distinct shape of each digit,
making them particularly resistant to attacks, as illustrated in Figure 2(b). As depicted in Figure 1,
more significant transformations are required to successfully deceive the classifiers on MNIST and
SVHN.

Limitations of Energy-Based Models A limitation of this work is the challenges associated with
training energy-based models (EBMs). As highlighted by earlier research from Du & Mordatch
(2019) and Grathwohl et al. (2019), the process of training EBMs can be intricate and demanding.
There remains a discernible difference in the generation quality between EBMs and other popular
probabilistic generative models, such as variational autoencoders and diffusion models. As a result,
our current framework struggles to produce adversarial samples for higher-resolution images. How-
ever, given the ongoing advancements in deep learning and generative models, we are optimistic that
this challenge will be addressed in the near future.

9 CONCLUSION

In this work, we present a novel probabilistic perspective on adversarial examples. Building on this
probabilistic perspective, we introduce semantic divergence as an alternative to the commonly used
geometric distance. We also propose corresponding techniques for generating semantically-aware
adversarial examples. Human participation experiments indicate that our proposed method can often
deceive robust classifiers while maintaining the original semantics of the input, although not in all
cases. We believe that our new perspective and methodology will pave the way for a fresh paradigm
in adversarial attacks.

9
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arXiv preprint arXiv:1511.03034, 2015.

Ameya Joshi, Amitangshu Mukherjee, Soumik Sarkar, and Chinmay Hegde. Semantic adversarial
attacks: Parametric transformations that fool deep classifiers. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 4773–4783, 2019.

Andrew Lamperski. Projected stochastic gradient langevin algorithms for constrained sampling and
non-convex learning. In Conference on Learning Theory, pp. 2891–2937. PMLR, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
gradient langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory, pp.
1674–1703. PMLR, 2017.

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, pp. 341–363, 1996.

Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Image synthesis with a single (robust) classifier. Advances in Neural Information Processing
Systems, 32, 2019.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

10



Under review as a conference paper at ICLR 2024

Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unrestricted adversarial
examples with generative models. Advances in Neural Information Processing Systems, 31, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations for
stochastic gradient langevin dynamics. Journal of Machine Learning Research, 17, 2016.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Belinda Tzen, Tengyuan Liang, and Maxim Raginsky. Local optimality and generalization guarantees
for the langevin algorithm via empirical metastability. In Conference On Learning Theory, pp.
857–875. PMLR, 2018.

Yael Vinker, Eliahu Horwitz, Nir Zabari, and Yedid Hoshen. Image shape manipulation from a
single augmented training sample. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 13769–13778, 2021.

John Von Neumann. 13. various techniques used in connection with random digits. Appl. Math Ser,
12(36-38):3, 1951.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688,
2011.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International conference on machine learning, pp. 5286–5295. PMLR,
2018.

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially transformed
adversarial examples. arXiv preprint arXiv:1801.02612, 2018.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynamics
based algorithms for nonconvex optimization. Advances in Neural Information Processing Systems,
31, 2018.

Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic gradient
langevin dynamics. In Conference on Learning Theory, pp. 1980–2022. PMLR, 2017.

11



Under review as a conference paper at ICLR 2024

A PRELIMINARIES (CONTINUED)

A.1 LANGEVIN MONTE CARLO (LMC)

Langevin Monte Carlo (also known as Langevin dynamics) is an iterative method that could be used
to find near-minimal points of a non-convex function g (Raginsky et al., 2017; Zhang et al., 2017;
Tzen et al., 2018; Roberts & Tweedie, 1996). It involves updating the function as follows:

x0 ∼ p0, xt+1 = xt −
ϵ2

2
∇xg(xt) + ϵzt, zt ∼ N (0, I) (6)

where p0 could be a uniform distribution. Under certain conditions on the drift coefficient ∇xg, it has
been demonstrated that the distribution of xt in (6) converges to its stationary distribution (Chiang
et al., 1987; Roberts & Tweedie, 1996), also referred to as the Gibbs distribution p(x) ∝ exp(−g(x)).
This distribution concentrates around the global minimum of g(Gelfand & Mitter, 1991; Xu et al.,
2018; Roberts & Tweedie, 1996). If we choose g to be Eθ, then the stationary distribution corresponds
exactly to the EBM’s distribution defined in (3). As a result, we can draw samples from the EBM
using LMC. By replacing the exact gradient with a stochastic gradient, we obtain Stochastic Gradient
Langevin Dynamics (SGLD) (Welling & Teh, 2011; Teh et al., 2016).

A.2 TRAINING EBM

To train an EBM, we aim to minimize the minus expectation of the log-likelihood, represented by
LEBM = EX∼pd [− log pθ(X)] = EX∼pd [Eθ(X)]− logZθ

where pd is the data distribution. The gradient is
∇θLEBM = EX∼pd [∇θEθ(X)]−∇θ logZθ = EX∼pd [∇θEθ(X)]− EX∼pθ [∇θEθ(X)] (7)

(see (Song & Kingma, 2021) for derivation). The first term of ∇θLEBM can be easily calculated as
pd is the distribution of the training set. For the second term, we can use LMC to sample from pθ
(Hinton, 2002).

Effective training of an energy-based model (EBM) typically requires the use of techniques such
as sample buffering and regularization. For more information, refer to the work of Du & Mordatch
(2019).

B PROOF OF THE THEOREM

Theorem. Given the condition that pvic(xadv; ytar) ∝ exp(−c2 · f(xadv, ytar)), pdis(xadv;xori) ∝
exp(−c1 · D(xori,xadv)), and set ppri(xadv) as a constant, the samples drawn from padv will exhibit
the same distribution as the adversarial examples derived from applying the box-constrained Langevin
Monte Carlo method to the optimization problem delineated in equation (1).

Proof. Lamperski (2021) introduced the Projected Stochastic Gradient Langevin Algorithms (PS-
GLA) to address box-constraint optimization problems. By leveraging the PSGLA, we can generate
samples close to the solution of the optimization problem as stated in Equation (1). This leads us to
the following update rule:

x0 ∼ p0, xt+1 = Π[0,1]n

(
xt −

ϵ2

2
∇xL(xt, ytar) + ϵzt

)
, zt ∼ N (0, I) (8)

where Π[0, 1]n is a projection that clamps values within the interval [0, 1]n. According to Lamperski
(2021), samples generated via this update rule will converge to a stationary distribution, which can be
termed the Gibbs distribution pgibbs:

pgibbs(xadv; ytar) ∝ exp(−L(xadv, ytar))

∝ exp(−c1 · D(xori,xadv)− c2 · f(xadv, ytar)) · 1
∝ exp(−c1 · D(xori,xadv)) · exp(−c2 · f(xadv, ytar)) · 1
∝ pdis(xadv;xori)pvic(xadv; ytar)ppri(xadv)

which matches the form of padv. It is a well-established fact that random variables with identical
unnormalized probability density functions share the same distribution.
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Figure 7: Adversarial examples generated by our proposed method with varying TPS variance. Left:
TPS standard deviation set at 0.12; Right: TPS standard deviation set at 0.05.

C SAMPLE FROM ADVERSARIAL DISTRIBUTIONS

In this paper, the distributions we often refer to (e.g., padv, pvic, pdis, and ppri) typically take the
unnormalized form exp(−c · g(x)) or a constant. Sampling from the product of these distributions
can be efficiently done using Langevin Monte Carlo, specifically its box-constraint variant, PSGLA.
For instance, consider sampling from a distribution p(x) ∝ exp(−c1g1(x)) exp(−c2g2(x)). This
can be reformulated as p(x) ∝ exp(−c1g1(x) − c2g2(x)). Notably, this distribution mirrors the
Gibbs distribution that results from applying PSGLA to the potential L = −c1g1(x)−c2g2(x). Thus,
samples can be obtained using the update rule in equation (8) with L = −c1g1(x)− c2g2(x).

D CHOICE OF THE SUBJECTIVE TRANSFORMATIONS

In Section 4, we mentioned that the distribution of transformations, T , is influenced by human
subjectivity. It’s worth noting that what one individual perceives as a non-semantically-altering
transformation might not be acceptable to another. For instance, as illustrated in Figure 7, one person
might believe that the transformation on the left doesn’t hinder their ability to discern the object’s
semantics and finds this degree of TPS transformation acceptable. However, another individual might
perceive the left transformation as overly distorted, and only the more subtle TPS transformation on
the right preserves the unchanged semantics. Thus, in practice, it’s essential to select a transformation
that not only maintains semantics but is also widely accepted by the general populace.

E TECHNIQUES FOR DECEIVING ROBUST CLASSIFIERS (CONTINUE)

E.1 REJECTION SAMPLING

Directly sampling from padv(·;xori, ytar) does not guarantee the generation of samples capa-
ble of effectively deceiving the classifier. To overcome this issue, we adopt rejection sam-
pling (Von Neumann, 1951), which eliminates unsuccessful samples and ultimately yields samples
from padv(xadv| argmaxy gϕ(xadv)[y] = ytar;xori, ytar).

E.2 SAMPLE REFINEMENT

After rejection sampling, the samples are confirmed to successfully deceive the classifier. However,
not all of them possess high visual quality, as demonstrated in Figure 4(c). To automatically obtain N
semantically valid samples1, we first generate M samples from the adversarial distribution. Following
rejection sampling, we sort the remaining samples and select the top κ percent based on the softmax

1In practice, we could select adversarial samples by hand, but we focus on automatic selection here.
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probability of the original image’s class, as determined by an auxiliary classifier. Finally, we choose
the top N samples with the lowest energy E, meaning they have the highest likelihood according to
the energy-based model.

The auxiliary classifier is trained on the data-augmented training set. We do not use the energy of the
samples as the sole criterion for selection because some low-visual quality samples may also have a
high likelihood. This occurrence is further explained and examined in Appendix J. The entire process
of rejection sampling and sample refinement is portrayed in Algorithm 1.

Algorithm 1 Rejection Sampling and Sample Refinement
Input: A trained energy based model E(·;xori) based on the original image xori, the victim classifier
gϕ, an auxiliary classifier gψ, number of initial samples M , number of final samples N , the
percentage κ.

Output: N adversarial samples x.
x = ∅
for 0 ≤ i < M do

xadv ∼ padv(·;xori, ytar) ▷ Sample from the adversarial distribution.
if argmaxy gϕ(xadv)[y] = ytar then ▷ Accept if xadv deceive the classifier.

x = x ∪ {xadv}
end if

end for
Sort x by σ(gψ(xi))[yori] for i ∈ {1, . . . , |x|} in descent order
x = (xi)

⌊κ|x|⌋
i=1 ▷ Select the first κ percent elements from x.

Sort x by E(xi;xori) for i ∈ {1, . . . , |x|} in ascent order
x = (xi)

N
i=1 ▷ Select the first N elements from x.

F CALCULATING THE SUCCESS RATE

To enhance the signal-to-noise ratio, we assign the same image to five different annotators and use the
majority vote as the human decision, as done in (Song et al., 2018). The screenshot of the annotator’s
interface is in Appendix H.

In detail, we begin with an original image xori, its label yori, and a target class ytar. We draw
M = 2000 samples from padv(·;xori, ytar), rejecting those that fail to deceive the victim classifier.
After sample refinement, we obtain N = 100 adversarial examples, x(i)

adv for i ∈ {1, . . . , N}. We
express the human annotators’ decision as function h and derive the human decision y

(i)
hum = h(x

(i)
adv).

As previously mentioned, an adversarial example x(i)
adv is considered successful if y(i)hum is equal to yori.

We then compute the success rate s as follows:

s =

∑N
i=1 1(y

(i)
hum = yori)

N

where 1 represents the indicator function.

G IMPLEMENTATION DETAILS

In this section, we delve into the specifics of this study’s implementation. The related source code
has been provided within the supplementary materials. In case of any remaining uncertainties, please
refer to the included source code for further clarity.

G.1 VICTIM CLASSIFIERS

We utilize two distinct classifiers as the victim classifiers, each with a specific dataset:
MadryNet (Madry et al., 2017) with MNIST, and ResNet18 (He et al., 2016) with the SVHN
and CIFAR10 dataset.
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G.1.1 MADRYNET

We utilize MadryNet (Madry et al., 2017), a convolutional neural network (CNN), as the victim
classifier for the MNIST dataset. The MadryNet model is trained using the Adam optimizer, with a
learning rate set at 10−4. Our training regimen comprises 14 epochs, with a batch size of 64. Any
additional hyperparameters are retained at their default settings as prescribed by PyTorch.

During adversarial training on MadryNet, we implement a Projected Gradient Descent (PGD)
untargeted attack on the training data, using the parameters ϵ = 0.3, α = 0.036, and 10 steps.

G.1.2 RESNET18

In the case of the SVHN and CIFAR10 dataset, we employ ResNet18 (He et al., 2016), another
well-known architecture. The ResNet18 model is trained using the Adam optimizer, with a learning
rate set at 10−4. Our training regimen comprises 14 epochs, with a batch size of 64. Any additional
hyperparameters are retained at their default settings as prescribed by PyTorch. Similarly to the
MadryNet, adversarial training on ResNet18 also involves a PGD untargeted attack on the training
data, but with different parameters: ϵ = 0.03, α = 0.01, and 10 steps.

G.2 ENERGY-BASED MODELS

G.2.1 NEURAL NETWORK STRUCTURE

For the MNIST dataset, we utilize a specialized convolutional neural network with the undermentioned
architecture:

• The model commences with a 2D convolutional layer employing 64 filters of 5x5 kernel
size, a stride of 2, and a larger padding of 4, effectively augmenting the input image size to
32x32. A ‘Swish’ activation function is then invoked to incorporate non-linearity.

• The second layer consists of another convolutional layer using 128 filters of 3x3 size, with a
stride of 2 and padding of 1, followed by the ’Swish’ activation function.

• The third layer is a replica of the previous one but escalates the filter count to 256 while
preserving the filter size, stride, and padding, followed by a ‘Swish’ activation.

• The fourth convolutional layer utilizes 256 filters, similar to the third layer, with a 3x3 kernel
size, stride of 2, and padding of 1. This is succeeded by a ‘Swish’ activation function.

• Post convolution, the output undergoes flattening to eliminate spatial dimensions.

• The flattened output is then passed through a fully connected layer with 256 units, followed
by the ‘Swish’ activation function.

• The architecture culminates with a second fully connected layer mapping the 256 units
to a determined output size. This size usually correlates to the number of classes in a
classification task or the desired output size in regression tasks.

The neural network training employs the Adam optimizer with a learning rate of 10−4, batch size of
128, and 200 epochs.

For the SVHN and CIFAR10 dataset, we utilize the WideResNet structure, specifically, the WRN-28-
10 variant. Training the WRN-28-10 also involves the Adam optimizer with a learning rate of 10−4,
batch size of 128, and spans across 50 epochs.

G.3 HARDWARE SPECIFICATIONS

All of our experiments were conducted on a machine equipped with an Intel E5-2680 v3 CPU and an
NVIDIA RTX 3090 GPU.
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H ANNOTATOR INTERFACE

Figure 8: Annotator Interface for image annotation

Figure 9: Annotator Interface for comparison
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I CHOOSING A PROPER F

In this section, we propose two additional f functions, where the first is based on predictive entropy
and the second is rooted in joint-energy.

The Predictive Entropy based f , denoted as fPE, is formulated as follows:

fPE(x, ytar) := −cPE

∑
y

σ(gϕ(x))[y] log σ(gϕ(x))[y] + fCE(x, ytar)

Here, cPE is a constant that determines the weight of the predictive entropy.

On the other hand, the Joint-Energy based f , denoted as fJE, is given by:

fJE(x, ytar) := −gϕ(x)[ytar] + cJE log
∑
y

exp(gϕ(x)[y])

In this case, cJE is a constant controlling the weight of the logsumexp term. It is worth noting that
when cJE = 1, fJE simplifies to fCE.

As shown in Figure 10, when pdis is fixed, choosing fCW results in better generation compared to fCE,
fPE, and fJE.

An interesting visual interpretation of this phenomenon can be found in Figure 11. Here, we draw
samples from pvic(·; ytar), observing that the samples drawn from the pvic induced by fCW contain the
least semantic information.

fCE fCW fPE fJE

75.0 80.5 78.7 78.6 79.2 80.5

77.9 81.3 78.2 75.5 78.4 80.3

77.7 77.5 79.3 73.7 78.1 73.1

82.1 69.6 86.0 63.5 76.4 80.7

77.4 79.9 74.3 83.9 74.6 79.6

78.7 79.2 81.5 84.2 77.0 77.6

22.7 36.9 23.9 38.5 38.6 35.6

35.3 40.5 35.8 24.5 38.6 21.5

26.3 21.9 32.9 43.0 19.9 14.6

30.1 23.6 23.8 16.6 40.3 42.6

22.9 22.9 40.5 24.3 24.1 34.0

35.3 29.1 21.8 35.8 22.2 38.8

47.7 46.0 48.4 47.1 44.8 52.6

44.2 54.1 47.6 44.0 47.5 42.6

44.4 50.3 47.1 50.4 46.5 43.7

45.2 45.0 53.2 42.0 48.8 55.2

46.0 49.3 53.9 53.0 43.7 50.0

49.2 51.4 51.5 54.2 44.4 48.7

40.1 46.6 40.8 42.9 44.6 42.6

45.3 42.4 42.3 38.1 44.4 45.3

45.0 42.9 41.5 44.8 40.3 46.0

46.3 34.2 41.4 36.8 45.0 38.3

42.0 41.0 48.0 44.6 40.4 41.6

43.3 41.5 43.0 49.3 41.8 44.7

Figure 10: Targeted Attack on a Single Image: The source image belongs to class 7, and the target
class is 9. The first row displays samples drawn from padv(·,xori, ytar), where xori is an image from
class 7 and ytar = 9. All cases share the same random seed and the same pdis(·;xori) trained on
augmentations of xori. The key distinction among the plots is the function f used, in this order: fCE,
fCW, fPE, fJE. The second row of plots showcases the predictive probability (softmax probability) of
the target class, corresponding to each digit in the first row on a one-to-one basis. A green border
signifies a successful deception of the victim classifier, while a red border indicates failure.
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fCE fCW fPE fJE

98.5 98.4 95.8 97.6 98.4 96.6

98.4 97.8 98.1 98.2 96.7 96.8

98.2 97.8 98.0 98.9 95.3 98.8

93.5 95.7 97.7 95.9 97.9 98.1

97.9 99.0 93.2 97.2 96.7 94.9

99.0 96.3 94.4 98.0 97.5 97.3

23.1 28.7 26.6 22.0 22.0 28.7

35.4 18.7 19.7 22.6 27.1 16.8

25.5 20.0 18.8 30.9 28.1 28.6

32.1 23.8 21.3 25.0 24.1 28.5

18.5 31.8 34.8 18.5 18.0 41.2

33.0 30.9 17.1 28.0 17.9 26.1

48.5 48.9 48.7 47.9 48.6 47.6

48.7 48.7 48.3 48.5 48.8 48.7

48.5 48.7 48.5 49.1 48.9 47.8

48.7 48.6 48.8 48.8 48.5 47.9

48.0 48.8 48.2 47.3 48.4 48.6

48.7 48.6 46.9 48.1 48.5 49.0

54.2 53.5 54.3 54.0 54.0 51.7

53.4 54.6 55.7 54.6 52.7 54.7

55.9 52.8 55.1 53.9 55.0 55.5

50.6 55.6 52.8 56.4 55.2 54.4

54.5 53.5 49.4 50.2 53.7 50.6

54.1 55.5 49.2 54.7 55.4 53.2

Figure 11: Samples drawn from the victim distribution pvic(·; ytar) with randomly sampled ytar. All
four cases share the same random seed. The parameters are consistent with those in Figure 10.

J LOW-VISUAL QUALITY SAMPLES WITH HIGH LIKELIHOOD

During our experiments, we observed that high likelihood samples do not invariably exhibit high
visual quality. This phenomenon is showcased in Figure 12, where, despite being sorted by energy
(a parameter proportional to likelihood), the earliest samples do not always deliver high visual
quality. Further, we empirically identified a pattern: high likelihood samples that possess low visual
quality often correspond to a low softmax probability for class yori (the label of the original image).
Leveraging this observation, we decided to retain only the top few percentile of samples that have the
highest softmax probability for class yori within an auxiliary classifier, and then sort the remaining
samples by energy.

Figure 12: In this instance, the source image, denoted as xori, represents the digit ‘0’ as displayed
in Figure 1, while the target is class 1. We derived 4641 samples from padv(·; 0, 1) via rejection
sampling. The Left portion of the figure shows the initial 100 samples, ordered by energy. The Right
section, on the other hand, depicts the same initial 100 samples, also sorted by energy, but only after
retaining the top 10 percent of samples with the highest softmax probability of class 0 in the auxiliary
classifier.
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K PGD ATTACKS ON ADVERSARIALLY TRAINED VICTIM CLASSIFIERS

This section is dedicated to showcasing the application of Projected Gradient Descent (PGD) attacks
on robustly trained classifiers, employing a variety of parameters.
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Figure 13: Targeted attacks on an adversarially trained MadryNet (Madry et al., 2017) using Projected
Gradient Descent (PGD) with L∞ norm, α = 0.04, and 100 steps. Left: ϵ = 0.3. Right: ϵ = 0.4.
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Figure 14: Targeted attacks on an adversarially trained MadryNet (Madry et al., 2017) using Projected
Gradient Descent (PGD) with L2 norm, α = 0.2, and 100 steps. Left: ϵ = 3. Right: ϵ = 4.
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Figure 15: Targeted attacks on an adversarially trained ResNet18 (He et al., 2016) using Projected
Gradient Descent (PGD) with L∞ norm, α = 0.005, and 100 steps. Left: ϵ = 0.1. Right: ϵ = 0.15.
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Figure 16: Targeted attacks on an adversarially trained MadryNet (Madry et al., 2017) using Projected
Gradient Descent (PGD) with L2 norm, α = 0.1, and 100 steps. Left: ϵ = 1. Right: ϵ = 3.

L UNRESTRICTED ADVERSARIAL ATTACK

Figure 17 illustrates the unrestricted adversarial examples generated by our method.

M ADDITIONAL DISCUSSION ABOUT RELATED WORKS

Xiao et al. (2018) introduced spatially transformed adversarial examples, a type of unrestricted
adversarial examples. These are not bounded by geometric distance but rather by the total variation
of the flow field. Bhattad et al. (2019) proposed unrestricted perturbations that alter semantically
meaningful visual descriptors—color and texture—to create effective and photorealistic adversarial
examples. Hosseini & Poovendran (2018) demonstrated that manipulating the HSV color space can
produce unrestricted adversarial examples capable of misleading classifiers not trained for adversarial
resistance. Additionally, Joshi et al. (2019) developed a GAN-based method to generate adversarial
examples by perturbing the latent space.
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Figure 17: Unrestricted adversarial attack generated by our method

N EXPERIMENTS ON RESTRICTED IMAGENET128

As highlighted by Tsipras et al. (2018), adversarial training on the ImageNet dataset is particularly
challenging due to the inherent complexity of the classification task and the computational demands
of standard classifiers. In line with Tsipras et al. (2018)’s approach, we concentrate on a smaller
subset of the dataset. We have grouped semantically similar ImageNet classes into 9 super-classes,
detailed in Table 4. Our training and evaluation are exclusively based on examples from these classes.

As currently implemented, EBMs (Du & Mordatch, 2019) do not support high-resolution inputs;
therefore, we downscale ImageNet images from their typical size of 224× 224 pixels to 128× 128.
Our empirical results suggest that this resolution constraint is a limitation of the current EBM
implementations, which we discussed in Section 8.

To reduce the distortion induced by TPS transformations, we employ the original image as the starting
point for the Langevin Monte Carlo process. Surprisingly, this method yields significantly better
results than the random noise initialization previously utilized. The visual outcomes are illustrated
in Figures 18, 19, and 20. By comparing these three images, we can discern that our method leaves
fewer traces of tampering.

Class Corresponding ImageNet Classes

Dog 151 to 268
Cat 281 to 285

Frog 30 to 32
Turtle 33 to 37
Bird 80 to 100

Primate 365 to 382
Fish 389 to 397
Crab 118 to 121
Insect 300 to 319

Table 4: Classes used in the Restricted ImageNet128 model. The class ranges are inclusive.
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Figure 18: Attack restricted Imagenet128 by our method.
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Figure 19: Attack restricted Imagenet128 by PGD with L2 norm.
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Figure 20: Attack restricted Imagenet128 by PGD with Linf norm.

O PROBABILISTIC CW

When f is set as fCW and pdis is chosen to be the Gaussian distribution corresponding to the L2

distance, this configuration results in the probabilistic CW attack (L2). In this scenario, the primary
difference between our approach and the traditional CW attack is the optimizer used. Specifically,
we utilize Langevin Dynamics for optimization, following the method described by Welling & Teh
(2011). Figure 21 demonstrates the outcomes of the Probabilistic CW attack on an adversarially
trained MadryNet under various parameters.
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Figure 21: Probablistic CW attack (L2) on MadryNet with adversarial training.

P REPLICATION OF STADV

We replicated the StAdv approach as proposed by Xiao et al. (2018), with the results showcased in
Figure 22. We employed StAdv to target MadryNet, which was adversarially trained using PGD,
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mirroring the settings in our current work. The original paper sets the default value of τ at 0.05 for
normal classifiers. However, we found this setting inadequate for adversarially trained classifiers.
Consequently, we adjusted the τ parameter to more effectively deceive the adversarially trained
MadryNet in most instances, setting τ to 0.001.
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Figure 22: StAdv Attack on MadryNet with adversarial training.

Q COMPARISON OF PROB CW, STADV AND OUR PROPOSED METHOD

Figure 23 showcases adversarial examples generated by Prob CW, StAdv, and our proposed method,
each attacking the same adversarially trained MadryNet. The examples reveal that Prob CW and
StAdv’s outputs exhibit noticeable tampering. For instance, when ‘0’ is the source, Prob CW’s
adversarial examples often fail to form a complete circle, whereas most of StAdv’s examples, though
complete, lose the circular shape. In contrast, our method maintains the zero shape. Similarly,
when ‘1’ is the source, both Prob CW and StAdv produce examples that take on the target class’s
semantics, indicating a failure. In various instances, our method exhibits notable superiority over
these alternatives. For example, many adversarial examples generated by their methods display
shadows, a clear indication of tampering. This visual superiority underscores the benefits of our
data-driven pdis.
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Figure 23: Comparison of Prob CW, StAdv and Our Proposed Method

R BROADER IMPACTS OF THIS WORK

The present study introduces a novel approach: the semantics-aware adversarial attack. This method
provides significant insights into the resilience and vulnerability of sophisticated classifiers.

From an advantageous perspective, it highlights the inherent risks associated with robust classifiers.
By exposing potential weak points in such systems, the study underscores the necessity for further
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improvements in classifier security. This can pave the way for building more resilient artificial
intelligence systems in the future.

Conversely, the work also presents potential pitfalls. There is a risk that malicious entities might
exploit the concepts discussed here for nefarious purposes. It is crucial to take into account the
potential misuse of this semantics-aware adversarial attack and accordingly develop preventive
measures to deter its utilization for unethical ends.
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