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ABSTRACT

De novo drug design constitutes a fundamental challenge within the domain of
computer-aided drug discovery (CADD). Generative models relying on SMILES
molecular strings have emerged as promising tools for this purpose. However,
extant SMILES-based generative models all adopt a fixed vocabulary, leading
to deficiencies in both sampling efficiency and interpretability. In this paper,
we propose RLDV, a reinforcement learning (RL) algorithm based on a GPT
agent, which uses a dynamic chemical vocabulary (DV) during RL iterations.
Specifically, we utilize SMILES pair encoding to analyze high-scoring molecular
SMILES strings generated during the RL process, and extract their high-frequency
common substrings, which are then added as new tokens to the agent’s vocabulary.
These additions aid in the generation of molecules during subsequent RL steps.
Experimental results on the GuacaMol benchmark demonstrate that our algorithm
outperforms existing models across multiple tasks, highlighting the practical sig-
nificance of the dynamic vocabulary in drug design. Furthermore, the application
of our algorithm in the design of protein-targeting drugs for SARS-CoV-2 under-
scores its substantial practical relevance.

1 INTRODUCTION

Over the past few years, the application of artificial intelligence (AI) in computer-aided drug dis-
covery (CADD) has witnessed remarkable progress (Sabe et al., 2021; Zhang et al., 2023). This
advancement has been driven by the continual accumulation of data from diverse scientific disci-
plines such as biology, chemistry, and pharmacy, coupled with ongoing enhancements in algorith-
mic capabilities. Consequently, there has been a revolutionary improvement in the efficiency of drug
discovery processes, notably achieving performance levels that satisfy pharmaceutical researchers
in tasks such as virtual screening (Maia et al., 2020) and protein structure prediction (Jumper et al.,
2021). Nevertheless, as of the present, de novo drug molecular design remains a paramount chal-
lenge within the domain of CADD. Despite the introduction of numerous methodologies including
deep learning aimed at this challenge, their practical efficacy in real-world drug development en-
deavors remains limited (Dara et al., 2022).

Due to the success of generative models in the field of natural language processing, SMILES-based
algorithms for de novo drug design have been regarded as promising, particularly in light of the
potential demonstrated by generative pre-training and RL-based fine-tuning in the chemical domain.
However, current SMILES-based generative models all employ fixed vocabularies, with the majority
consisting solely of atomic-level tokens, encompassing atoms, ions, functional groups, numbers, and
symbols. This vocabulary is concise, requiring fewer than 200 tokens to generate SMILES strings
for nearly all small molecules, but it inherently lacks any chemical structural prior knowledge, and
maximizes the number of tokens required to make up a SMILES string. On the other hand, some
recent approaches employ larger fixed vocabularies that include pre-extracted SMILES substrings
from datasets (Li et al., 2023). However, such vocabularies often encompass thousands or more
tokens, containing a plethora of information that is unhelpful for the particular molecular generation
tasks at hand.

In response to the aforementioned challenges, drawing inspiration from the prevalent fragment-
based approaches in molecular graph generation, we introduce RLDV (Reinforcement Learning
with Dynamic Vocabulary), which innovatively integrates a dynamic vocabulary module into the
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reinforcement learning framework based on SMILES representations. In particular, the vocabulary
of the agent in RLDV comprises two components: a fixed set of atomic-level tokens and a dynami-
cally updated set of higher-level tokens. Throughout the RL process, we employ the SMILES pair
encoding algorithm to extract high-frequency common sub-strings from the generated high-scoring
molecules. These sub-strings are then periodically integrated into the dynamic part of the agent’s
vocabulary as tokens. The dynamic vocabulary explicitly preserves task-specific structural informa-
tion at the SMILES level. This not only enhances the efficiency of subsequent RL steps but also
enhances the model’s interpretability.

Experimental results on the GuacaMol benchmark demonstrate that RLDV outperforms existing
baselines, and visual analysis of the tokens in the dynamic vocabulary reveals that the extracted
substrings correspond to substructures within the target molecules, effectively boosting the model’s
generation efficiency. Furthermore, in experiments on the design of inhibitors against SARS-CoV-2
protein targets, RLDV exhibits potential in real-world drug discovery. The appearance of crucial
substructures associated with specific protein binding within the dynamic vocabulary reflects the
task-specific interpretability of our algorithm. Our code will be publicly available following the
publication of this paper.

2 RELATED WORKS

2.1 DE NOVO DRUG DESIGN

In some tasks within the field of CADD, machine learning methods have demonstrated practical suc-
cess, such as in molecular docking simulation (Trott & Olson, 2010), molecular property prediction
(Wieder et al., 2020), protein structure prediction (Jumper et al., 2021), and retro-synthesis (Segler
et al., 2018b; Liu et al., 2023). However, the ultimate goal of drug discovery is the production of
real-world drugs, with the most critical step being the design of candidate drug compounds that meet
specified criteria. Presently, existing approaches cannot offer satisfactory solutions to this challenge,
which arises from the vast and unstructured chemical space (Polishchuk et al., 2013), as well as the
complexity of the relationship between molecular biochemical properties and structures.

As a subset of molecular generation, de novo drug design algorithms fundamentally rely on molec-
ular representations. From this perspective, these algorithms can be primarily categorized into three
classes: those based on 1D molecular strings, those based on 2D molecular graphs, and those based
on 3D geometric structures (Du et al., 2022). In 2D and 3D algorithms, some cutting-edge ma-
chine learning techniques, such as diffusions (Xu et al., 2022; Vignac et al., 2023), flows (Bengio
et al., 2021), and equivariant networks (Gebauer et al., 2019; Adams & Coley, 2022), have found
widespread applications. However, up to the present, for de novo drug design, reinforcement learn-
ing methods based on 1D strings (Olivecrona et al., 2017) and genetic algorithms based on 2D
graphs (Jensen, 2019) remain the most competitive choices (Gao et al., 2022). With the explosive
developments of generative AI in the field of natural language processing (NLP) in recent years
(Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020), we believe that methods based on 1D
molecular strings hold significant potential in the context of de novo drug design.

SMILES-based molecular generation SMILES (Simplified Molecular Input Line Entry System)
(Weininger, 1988) is the most widely utilized molecular string representation. It encodes 2D molec-
ular graphs into concise and readable character sequences, substantially aiding the field of chemoin-
formatics in the processing of molecular data. Currently, numerous machine learning techniques
have been employed for the SMILES-based generation of molecules, including recurrent neural net-
works (RNNs) Segler et al. (2018a), variational autoencoders (VAEs) (Gómez-Bombarelli et al.,
2018; Eckmann et al., 2022), generative adversarial networks (GANs) (Guimaraes et al., 2017),
genetic algorithm (GA) (Yoshikawa et al., 2018), and Bayesian optimization (BO) (Moss et al.,
2020). Notably, Transformer models have demonstrated their capabilities in processing and gener-
ating SMILES strings (Bagal et al., 2022; Irwin et al., 2022; He et al., 2022).

RL-based de novo drug design Reinforcement Learning (RL) is a machine learning paradigm
that enables intelligent agents to maximize cumulative rewards through interactions with an en-
vironment. Currently, it has gained significant popularity in the field of de novo drug molecular
design. The Reinvent framework (Olivecrona et al., 2017; Blaschke et al., 2020a) pioneers the use
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of a SMILES-based deep reinforcement learning algorithm to train an RNN model for generating
SMILES strings, and now it continues to lead the way in de novo drug design (Gao et al., 2022).
Building upon Reinvent, several RL-based methods have introduced techniques such as curriculum
learning (Mokaya et al., 2023), knowledge distillation (Wang et al., 2021), alternating rewards (Goel
et al., 2021), and RNN-based property predictor (Popova et al., 2018) for drug design. Furthermore,
some graph-based approaches also employ RL techniques, typically treating the addition or removal
of molecular components like atoms, bonds, and cycles as actions to intuitively design molecular
graphs, as exemplified by methods like GCPN (You et al., 2018), MolDQN (Zhou et al., 2019),
RationaleRL (Jin et al., 2020), GEGL (Ahn et al., 2020), and FREED (Yang et al., 2021).

Fragment-based drug design The utilization of molecular fragments, structural motifs, sub-
graphs, or substructures in drug design, as opposed to only using fundamental atomic-level com-
ponents, as exemplified by methods such as RationaleRL (Jin et al., 2020), FREED (Yang et al.,
2021), RS-VAE (Kong et al., 2022), and MiCaM (Geng et al., 2023), presents several advantages.
Firstly, assembling the same molecule can be achieved through fewer steps, reducing the combina-
torial complexity associated with molecular generation, thereby enhancing algorithm performance
and efficiency. Secondly, fragments and motifs explicitly retain task-specific information, thereby
improving the model’s interpretability. Thirdly, we can inject prior knowledge of certain structures
into the set of substructures, facilitating the utilization of expert experience. However, the appli-
cation of molecular fragments is primarily confined to 2D graph-based de novo molecular design,
while 1D string-based methods have not yet fully exploited this concept.

2.2 DYNAMIC VOCABULARY

In scenarios involving the application of language models where tokens not present in the pre-
trained dataset are encountered, it becomes imperative to dynamically adjust or expand the model’s
vocabulary. This dynamic vocabulary serves to endow the model with heightened adaptability and
accuracy, thereby mitigating the maintenance costs arising from sparse data while augmenting its
capacity to provide personalized user support and multilingual support. Consequently, dynamic
vocabularies have found extensive utilization in domain-specific applications with many custom
terminologies, in the processing of user-generated content, and within multilingual systems Jean
et al. (2015); Wu et al. (2018); Lakew et al. (2018); Amba Hombaiah et al. (2021). Notably, it is
worth mentioning that Lan et al. (2023) introduces a method for generating new text by copying
text segments from an existing text collection. This approach fundamentally relies on a dynamic
vocabulary and demonstrates significant domain-specific adaptability.

Existing algorithms for de novo drug design all utilize fixed vocabularies, whereas we are the first
to introduce a dynamic vocabulary for tokenizing SMILES strings, thereby significantly enhancing
the model’s sampling efficiency and task-specific interpretability.

3 METHODOLOGY

In this section, we will provide a detailed exposition of our de novo drug design algorithm, RLDV
(Reinforcement Learning with Dynamic Vocabulary), including reinforcement learning (RL) based
on a GPT agent, dynamic chemical vocabulary, and other technical details.

3.1 REINFORCEMENT LEARNING WITH A GPT AGENT

We construct a reinforcement learning framework for designing drug candidates with specific prop-
erties. As illustrated in Figure 1, for each goal-directed molecular generation task, the RL process of
RLDV consists of iterative steps, wherein the parameters of a GPT agent with a dynamic vocabulary
is updated using the REINFORCE algorithm (Williams, 1992). In specific terms, a GPT prior model
pre-trained on a large chemical language dataset (see section 3.3) is utilized to initialize the agent. In
each RL step, the GPT agent generates a set of SMILES strings, and the likelihood of these strings
from the prior model as well as their scores predicted by the scoring function are used to compute
the loss for updating the agent.

Furthermore, a memory is maintained to store the top-k high-scoring molecules in their canonical
SMILES representations. In each RL step, newly generated molecules are used to update this mem-
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Figure 1: Overview of the RL framework of RLDV.

ory, and some high-scoring molecules are randomly sampled for experience replay. Additionally, at
regular intervals of steps, new tokens are generated from these high-scoring molecules by SMILES
pair encoding algorithm, which are used to update the dynamic vocabulary of the RL agent.

The GPT agent’s vocabulary consists of two parts: one comprises fixed atomic-level tokens initial-
ized from the prior’s vocabulary, and the other comprises higher-level tokens that are dynamically
updated during the RL process. In contrast, the vocabulary and parameters of the prior model remain
unchanged during the RL process.

Typically, the number of tokens in the agent’s vocabulary tends to increase during the RL process,
indicating the gradual accumulation of task-specific knowledge within the vocabulary. Moreover,
the average scores of the molecules generated by the GPT agent show an upward trend, suggesting
that it progressively acquires a understanding of the structural patterns of desirable molecules in the
chemical language.

Loss function In RLDV, we define the scores predicted by the task-specific scoring function as
the RL reward, as our primary objective is to enhance the scores of molecules generated by the
GPT agent. Additionally, inspired by Olivecrona et al. (2017), to prevent the agent from losing
the fundamental grammar of chemical language learned during the pre-training phase (ensuring the
validity of generated SMILES strings), we penalize the deviation between the policies of agent and
prior within the loss function. It is worth noting that because the vocabulary of the agent undergoes
dynamic changes during the RL process, the tokenization results for the same SMILES string may
differ between the agent and the prior. The loss function used to update the agent is defined as
follows:

L(x; Θ) =
[
logPPrior(TPrior(x))− logPAgent(x) + σ · s(x)

]2
(1)

where Θ represents the parameters of the GPT agent, x is a generated SMILES string, σ is a coef-
ficient for controlling the term of scores, s(·) is the task-specific scoring function, TPrior(·) refers
to the atomic-level tokenizer of the prior model, and PPrior(·) and PAgent(·) respectively calculates
the likelihood of generating a series of tokens from Prior and Agent.

3.2 DYNAMIC CHEMICAL VOCABULARY

The existing SMILES-based molecular generation models utilize fixed vocabularies, thereby lim-
iting the efficiency and interpretability of the models. In RLDV, we introduce a novel concept of
dynamic vocabulary to the chemical language. The dynamic vocabulary is updated dynamically
during the RL process, thereby explicitly preserving the task-specific knowledge acquired by the
agent within the new tokens added to the vocabulary, which also contribute to subsequent RL steps.
Regarding the vocabulary updating mechanism, we employ the SMILES pair encoding algorithm to
extract frequent substrings from SMILES strings of high-scoring molecules. These substrings are
merged from atomic-level tokens and are used for updating the vocabulary of the RL agent. Figure
2 provides an illustrative example of updating the dynamic vocabulary.
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Celecoxib

Osimertinib

Troglitazone

Cc1ccc(-c2cc(C(F)(F)F)nn2-c2ccc(S(N)(=O)=O)cc2)cc1

FC(c1cc(-c2ccc(C)cc2)n(-c2ccc(S(=O)(=O)N)cc2)n1)(F)F

C=CC(=O)Nc1cc(Nc2nccc(-c3cn(C)c4ccccc34)n2)c(OC)cc1N(C)CCN(C)C

Cn1c2c(cccc2)c(-c2ccnc(Nc3cc(NC(=O)C=C)c(N(C)CCN(C)C)cc3OC)n2)c1

Cc1c(C)c2c(c(C)c1O)CCC(C)(COc1ccc(CC3SC(=O)NC3=O)cc1)O2

C1C(C)(COc2ccc(CC3SC(=O)NC3=O)cc2)Oc2c(C)c(C)c(O)c(C)c2C1

Randomization

SMILES pair encoding
MVS = 1000, MF = 5

Randomization

Randomization

                  Pair      /   Frequency
1: cc / 34
2: c( / 19
3: C) / 17
4: O) / 12
5: c2 / 11
6: =O) / 10
7: C( / 8
8: ccc( / 7
9: c1 / 7
10: 2) / 7
11: cc2) / 5
12: c(C) / 5
13: CC / 5
14: -c2 / 5
15: (C) / 5

Updated Vocabulary

Atomic-level tokens (100+): 

C, N, O, S, P, F, Cl, Br, c, n, o, s, …

1, 2, 3, 4, 5, 6, 7, 8, 9, %10, …

[C+], [C-], [C@], [C@H], [18F]…

(, ), -, =, #, …
New tokens (15):
cc, c(, C), O), c2, =O), 
C(, ccc(, c1, 2), cc2), c(C), 
CC, -c2, (C)

Updated Tokenizer

Canonical SMILES Tokenization
C c1 ccc( -c2 cc ( C( F ) ( F ) F ) n n 2 -c2 ccc( S ( N ) ( =O) =O) cc2) cc 1

C = C C( =O) N c1 cc ( N c2 n ccc( - c 3 c n (C) c 4 cc cc c 3 4 ) n 2) c( O C) cc 1 N (C) CC N (C) C
C c1 c(C) c2 c( c(C) c1 O) CC C( C) ( C O c1 ccc( CC 3 S C( =O) N C 3 =O) cc 1 ) O 2

C C( =O) O c1 cc cc c1 C( =O) O
C N [C@H] 1 CC [C@@H] ( c2 ccc( Cl ) c( Cl ) c2 ) c2 cc cc c2 1

Aspirin CC(=O)Oc1ccccc1C(=O)O

Sertraline  CN[C@H]1CC[C@@H](c2ccc(Cl)c(Cl)c2)c2ccccc21

Figure 2: An illustrative example of updating the dynamic vocabulary. We use canonical SMILES
strings of 3 drugs as the training set for SMILES pair encoding, incorporating one time of SMILES
randomization. Employing a sufficiently large MVS of 1000 and a MF of 5, we extract 15 high-
frequency substrings, which are used to update the atomic-level vocabulary. We demonstrate the
tokenization results of applying the updated vocabulary to the training set and new SMILES strings.
Atomic-level tokens are depicted in gray, tokens exclusive to the training set are shown in black, and
tokens present in both the training set and new strings are represented in color. The results indicate
that the new vocabulary effectively encodes the training set and exhibits representation ability for
new SMILES strings to some degree.

3.2.1 SMILES PAIR ENCODING

In the pursuit of identifying the most frequent substrings in a set of SMILES strings, we introduce
Byte Pair Encoding (BPE) (Gage, 1994) to the chemical language, which is a commonly used tech-
nique in NLP for data compression and text tokenization (Sennrich et al., 2016). The core idea
behind BPE is to construct a smaller or more effective vocabulary by merging or encoding a fre-
quently occurring pair of characters into a single token.

With SmilesPE (Li & Fourches, 2021) as a reference, our SMILES pair encoding algorithm takes a
set of SMILES strings as input and aims to expand the chemical vocabulary with common SMILES
substrings in the set. Specifically, we initialize from the atomic-level vocabulary, which is tokenized
from ChEMBL (Mendez et al., 2019), a large dataset of drug molecules. Then for the given set
of SMILES strings, through an iterative process, the occurrence of all token pairs in the tokenized
set are counted. The token pair with the highest frequency of occurrence is merged as a new token,
which is then incorporated into the evolving vocabulary. This iterative procedure terminates upon the
satisfaction of either of two conditions: (1) the attainment of a pre-determined maximum vocabulary
size (MVS) or (2) the absence of any token pair with a frequency exceeding a pre-defined minimum
frequency (MF). The MVS and MF are two pivotal hyper-parameters for the SMILES pair encoding
algorithm.

Moreover, for a given molecule, distinct atom orderings lead to various equivalent SMILES strings,
each of which encompasses different substrings. Therefore, we employ SMILES randomization
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(enumeration) (Bjerrum, 2017) as a data augmentation technique in SMILES pair encoding algo-
rithm, which is a widely-adopted strategy in SMILES-based deep learning algorithms (Arús-Pous
et al., 2019; Chen & Tseng, 2021).

3.2.2 VOCABULARY UPDATE

With the SMILES pair encoding algorithm in place, following several RL iterations, we are able to
obtain high-frequency common substrings of high-scoring molecules at the SMILES level. These
substrings are formed by concatenating two or more atomic-level tokens, preserving task-specific
knowledge in the form of short sequences of tokens, which will aid in the subsequent RL steps.

Specifically, after each vocabulary update interval (VUI), we apply the SMILES pair encoding al-
gorithm to the high-scoring molecules stored in the memory, with a sufficiently large maximum
vocabulary size (MVS) and a minimum frequency (MF) not less than 100. Consequently, we typi-
cally obtain several hundred new higher-level tokens, which are used to replace the non-fixed part
of the GPT agent’s vocabulary. In other words, at each interval, the higher-level part of tokens in
the agent’s vocabulary are entirely refreshed, and vocabulary accumulated from previous steps may
also be discarded in subsequent steps.

After each update, tokens corresponding to the same code in the GPT agent’s vocabulary may
change, thus the vocabulary update interval (VUI) should not be too short to ensure that agents
adequately learn and utilize new tokens to generate new molecular strings. Additionally, it is worth
noting that higher-level tokens are composed of atomic-level tokens, both of which exist in the
agent’s vocabulary, resulting in the possibility of multiple generated paths for the same SMILES
string within the agent. We anticipate reinforcing newly discovered higher-level tokens in this re-
gard, making experience replay (see section 3.3) indispensable.

3.3 OTHER TECHNICAL DETAILS

Pre-training GPT for SMILES generation Inspired by MolGPT (Bagal et al., 2022), we employ
a tiny GPT-2 model (Radford et al., 2019) as a generator for SMILES strings. We construct a vo-
cabulary comprising 108 atomic-level tokens, while setting the maximum vocabulary size (MVS)
of the model to 1000 to accommodate the storage of higher-level tokens effectively. Pre-training is
conducted using the ChEMBL dataset Mendez et al. (2019), wherein SMILES strings containing
tokens outside the vocabulary and those exceeding a length of 100 tokens are removed. The pre-
processed dataset encompasses approximately 1.8 million molecules. Through supervised training
together with SMILES randomization, we obtain a GPT prior model capable of generating SMILES
strings with a validity exceeding 98%.

Memory & Experience replay Inspired by Blaschke et al. (2020b), we utilize a memory that
sorts and stores top-k high-scoring molecules discovered during the RL process, with k set to 1000.
This approach not only facilitates vocabulary updates and the final output of drug design results, but
also enables experience replay (Lin, 1992), a commonly used technique in the field of reinforcement
learning, for high-scoring molecules. We define a hyper-parameter t, named ER, to control the
number of molecules for experience replay. In each RL step, t molecules are randomly sampled
from the top-5t high-scoring molecules, and they are then used to update the agent and reinforce its
learning of higher-level tokens.

4 EXPERIMENTS

4.1 GUACAMOL BENCHMARK

4.1.1 EXPERIMENTAL SETUP

GuacaMol (Brown et al., 2019) is a widely recognized benchmark for de novo drug design, con-
taining 20 meticulously designed goal-directed molecular generation tasks. These tasks cover a
wide range of objectives, including designing similar molecules, rediscovering specific structures,
enumerating isomers, designing median molecules, and some multi-property objectives. Therefore,
GuacaMol can comprehensively evaluate the performance of models for de novo drug design. Each
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task assess a model with a score ranging from 0 to 1, where a higher score indicates superior perfor-
mance.

We evaluate our RLDV algorithm on all 20 goal-directed tasks in GuacaMol, with each task running
for 5000 RL steps, which is chosen to ensure algorithm stability on each task. Besides, a batch
size of 256, σ of 10−5, MVS of 1000, MF of 500, VUI of 1000 and t of 10 for experience replay
are employed. The testing of all tasks, sequentially executed on an NVIDIA A100 GPU, can be
completed within a span of 200 hours.

4.1.2 RESULTS ON GOAL-DIRECTED TASKS

The results of RLDV on the 20 GuacaMol goal-directed tasks are shown in Table 1, compared
with other official baselines and Reinvent, the most competitive baseline for de novo drug design as
claimed by Gao et al. (2022).

Table 1: The evaluation results of RLDV and other baselines on the 20 GuacaMol goal-directed
tasks.

Tasks dataset Graph
MCTS

SMILES
GA

SMILES
LSTM

Graph
GA Reinvent RLDV

1. Celecoxib rediscovery 0.505 0.355 0.732 1.000 1.000 1.000 1.000
2. Troglitazone rediscovery 0.419 0.311 0.515 1.000 1.000 1.000 1.000
3. Thiothixene rediscovery 0.456 0.311 0.598 1.000 1.000 1.000 1.000
4. Aripiprazole similarity 0.595 0.380 0.834 1.000 1.000 1.000 1.000

5. Albuterol similarity 0.719 0.749 0.907 1.000 1.000 1.000 1.000
6. Mestranol similarity 0.629 0.402 0.790 1.000 1.000 1.000 1.000

7. C11H24 0.684 0.410 0.829 0.993 0.971 0.999 1.000
8. C9H10N2O2PF2Cl 0.747 0.631 0.889 0.879 0.982 0.877 0.956
9. Median molecules 1 0.334 0.225 0.334 0.438 0.406 0.434 0.448
10. Median molecules 2 0.351 0.170 0.380 0.422 0.432 0.395 0.425
11. Osimertinib MPO 0.839 0.784 0.886 0.907 0.953 0.889 0.970

12. Fexofenadine MPO 0.817 0.695 0.931 0.959 0.998 1.000 1.000
13. Ranolazine MPO 0.792 0.616 0.881 0.855 0.920 0.895 0.939
14. Perindopril MPO 0.575 0.385 0.661 0.808 0.792 0.764 0.810
15. Amlodipine MPO 0.696 0.533 0.722 0.894 0.894 0.888 0.906
16. Sitagliptin MPO 0.509 0.458 0.689 0.545 0.891 0.539 0.843
17. Zaleplon MPO 0.547 0.488 0.413 0.669 0.754 0.590 0.770

18. Valsartan SMARTS 0.259 0.040 0.552 0.978 0.990 0.895 0.993
19. deco hop 0.933 0.590 0.970 0.996 1.000 0.994 1.000

20. scaffold hop 0.738 0.478 0.885 0.998 1.000 0.990 1.000
Total 12.144 9.009 14.396 17.340 17.983 17.150 18.060

The results demonstrate that our RLDV algorithm outperforms all baselines in 17 out of the 20 tasks,
with a notably higher total score than all baselines. This strongly attests to the superior performance
of RLDV in de novo drug design tasks.

4.1.3 VISUALIZATION OF SUBSTRINGS VS. SUBSTRUCTURES

In order to validate whether the inclusion of higher-level tokens in the dynamic vocabulary is indeed
beneficial for the generation of desirable molecules, we select the three rediscovery tasks from the
GuacaMol benchmark. Each task involves the objective of generating a specific drug molecule. In
all three tasks, our algorithm successfully rediscover the specified molecules (with a score of 1.0).
We utilize the vocabulary at the conclusion of the algorithm’s execution to tokenize the canoni-
cal SMILES strings of these three molecules. Subsequently, we visualize these substrings in 2D
molecular graphs, as depicted in Figure 3.

The tokenization results of the three drug molecules are:

• Celecoxib: C, c1ccc(, -c2cc(C(F)(F)F)nn2-c2ccc(, S(N)(=O)=O)cc2)cc1

• Troglitazone: Cc1, c(C)c2c(c(C)c, 1O, )CC, C(C)(COc1ccc(CC3SC(=O)NC3=O)cc1)O2

• Thiothixene: CN1CC, N(, CC, /, C, =C2, /, c3ccccc3Sc3ccc(S(=O)(=O)N(C)C)cc32)CC1
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(1) Celecoxib (2) Troglitazone (3) Thiothixene

Figure 3: Visualization of the substructures corresponding to the tokens (SMILES substrings) on
three drug molecules from the GuacaMol benchmark.

The results indicate that the dynamic vocabulary encompasses multiple substrings from the tar-
get molecule’s SMILES representation, and these substrings exhibit a strong correspondence with
molecular substructures. Most of the atomic-level tokens present in the target SMILES strings are
covered by higher-level tokens in the dynamic vocabulary. Consequently, the utilization of the dy-
namic vocabulary significantly reduces the number of tokens required to generate the target SMILES
strings. This observation suggests that the dynamic vocabulary effectively acquires structural knowl-
edge of the target molecule and contributes to the efficiency of goal-directed molecular generation.

4.2 DESIGNING INHIBITORS AGAINST A SARS-COV2 PROTEIN TARGET

The COVID-19 pandemic has inflicted significant global losses over the past few years. Its char-
acteristics, such as high transmissibility and rapid mutation, underscore the critical importance of
expedited drug development. The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus
2) virus is the culprit behind this pandemic, and numerous protein target structures associated with
this virus have been reported. Among these, the papain-like protease (PLPro) (Osipiuk et al., 2021),
whose Protein Data Bank entry is 7JIR1, is particularly intriguing. To validate the effectiveness
of our RLDV algorithm in real-world de novo drug design, we apply it to the design of inhibitors
against the 7JIR protein target.

We use the Quick Vina software (Hassan et al., 2017) for docking simulations, as the scoring func-
tion within RLDV. The binding affinity between small molecule inhibitors and protein targets typi-
cally falls within the range of -1.0 to -14.0 kcal/mol, with strong binding affinity typically being less
than -12.0 kcal/mol. The top 100 high-scoring molecules designed by RLDV all meet this criterion
as drug candidates.

Three exemplary instances with favorable properties are as follows:

• O=C(C(c1ccccc1)c1cccc(-c2cccc(-c3cccc(-c4cccc(-c5cccc(-c6ccccc6)
c5)c4)c3)c2)c1)N1CCCC1

• O=C(c1ccnc(-c2cccc(-c3cccc(-c4cccc(-c5cccc(-c6ccccc6)c5)c4)c3)c2)c1)c1ccc2ccccc2c1
• CNc1nc(-c2cccc(-c3cccc(-c4cccc(-c5cccc(-c6cccc(C(=O)Nc7ccccc7)

c6)c5)c4)c3)c2)cc(=O)[nH]1

In each SMILES string, a complete token present in the dynamic vocabulary is highlighted in purple,
which corresponds to the substructures annotated in Figure 4. For instance, the first two molecules’
strings correspond to five connected benzene rings, and the third molecule also contains five con-
nected benzene rings. However, in the case of the third molecule, due to the presence of other atoms
on both ends of the chain of benzene rings, it corresponds to a slightly shorter token at the SMILES
level.

Figure 5 visualizes the binding modes of the three candidate inhibitors against the protein target.
Here, we can observe that the substructure of five connected benzene rings aligns well with the

1https://www.rcsb.org/structure/7jir
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(1) (2) (3)

Figure 4: Visualization of common substrings in candidate inhibitors against the 7JIR target de-
signed by RLDV.

binding affinity: -13.4 kcal/mol
SA: 2.74

binding affinity: -12.0 kcal/mol
SA: 2.33

binding affinity: -12.2 kcal/mol
SA: 2.67

Figure 5: Visualization of the binding modes of designed candidate inhibitors against the 7JIR
protein target, using the ChimeraX software (Pettersen et al., 2021).

7JIR target. This indicates that our dynamic vocabulary has indeed learned the crucial features for
designing such drugs and explicitly preserving them in the form of SMILES sub-strings, which
provide practical assistance in the design of candidate inhibitors.

It is also worth noting that the candidate molecules designed by RLDV exhibit favorable SA (syn-
thetic accessibility) (Ertl & Schuffenhauer, 2009), which is advantageous for downstream drug de-
velopment and production. This underscores the benefits commonly associated with fragment-based
drug design methods and indirectly demonstrates the utility of the substructure information learned
by RLDV.

5 CONCLUSION AND DISCUSSION

In this paper, we propose RLDV, a de novo drug design algorithm that leverages reinforcement learn-
ing and dynamic chemical vocabulary. By updating the vocabulary with high-frequency common
substrings from SMILES strings of high-scoring molecules as tokens, RLDV exhibits superior sam-
pling efficiency and task-specific interpretability. Our experiments on the GuacaMol benchmark and
the design of inhibitors against SARS-CoV-2 protein target robustly demonstrate the advantages of
our algorithm.

In the future, potential directions for improving our algorithm include:

1. Incorporating task-specific prior knowledge or expert experience to enhance the utilization
of the dynamic vocabulary.

2. Facilitating diverse exploration by partitioning the dynamic vocabulary into distinct sub-
sets.

3. Integrating 1D SMILES substrings with 2D graph substructures to design multi-modal dy-
namic models for molecular generation.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Keir Adams and Connor W Coley. Equivariant shape-conditioned generation of 3d molecules for
ligand-based drug design. arXiv preprint arXiv:2210.04893, 2022.

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 12008–12021. Curran
Associates, Inc., 2020.

Spurthi Amba Hombaiah, Tao Chen, Mingyang Zhang, Michael Bendersky, and Marc Najork. Dy-
namic language models for continuously evolving content. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2514–2524, 2021.
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