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Abstract
We show that for neural networks (NN) with normalisation layers, i.e. batch norm, layer
norm, or group norm, the Laplace model evidence does not approximate the volume of a
posterior mode and is thus unsuitable for model selection. We instead propose to use the
Laplace evidence of the linearized network, which is robust to the presence of these layers.
We also identify heterogeneity in the scale of Jacobian entries corresponding to different
weights. We ameliorate this issue by extending the scale-invariant g-prior to NNs. We
demonstrate these methods on toy regression, and image classification with a CNN.

1. Introduction

Normalisation layers, for example batch norm (Ioffe and Szegedy, 2015) or layer norm (Ba
et al., 2016), are ubiquitous in modern NN architectures (He et al., 2016; Vaswani et al.,
2017). They speed up training and make it robust to the choice of hyperparameters. They
also introduce an invariance to the scale of the weights.

We study the effects of this invariance on probabilistic inference, in particular in the
context of the linearised Laplace approximation, introduced by Mackay (1992). This method
approximates a NN with a surrogate linear model where the NN’s Jacobian acts as a feature
expansion (Khan et al., 2019). The linearised model shares its predictive mean with the
NN. Linearised Laplace predictive uncertainty is simple to compute (Immer et al., 2021b)
and performs strongly on uncertainty quantification tasks (Kristiadi et al., 2020; Daxberger
et al., 2021b,a). The Laplace model evidence or marginal log-likelihood (MLL) can also be
computed in closed form (Mackay, 1992) providing an objective for model selection.

Daxberger et al. (2021b) find that the quality of uncertainty estimates provided by
linearised Laplace is heavily dependent on the choice of Gaussian prior precision. They
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Figure 1: Fit for a 2 hidden-layer MLP with layer norm and residual connections. For the
left and middle plots, a prior precision Λ=λI is set through MLL optimisation. Left: Using
the MLL in eq. (3) leads to too large errorbars. Middle: Using the proposed MLL eq. (9)
fixes the issue. Right: The g-prior (g optimised with eq. (9)) results in smoother errorbars.

select an isotropic precision using cross validation. The MLL is a preferable alternative, as
it does not require a held out set and scales to more hyperparameters (Immer et al., 2021a).

We show that in normalised networks, the point around which the NN is linearised can
not be a mode of the posterior for neither the NN model nor the linearised NN. This results
in the traditional formulation of the Laplace MLL returning spurious values, rendering
it unsuitable for model selection. We show how to find the mode of the linearised NN
posterior and use it to propose a linearised Laplace MLL objective that is robust to the
presence of normalisation layers. Next, we observe heterogeneity in the scales of the NN
Jacobian entries corresponding to different weights. In this setting, isotropic priors can be
excessively restrictive. We address this by extending the scale invariant g-prior (Zellner,
1996) to the NN setting. This prior allows us to obtain more expressive predictive posteriors,
shown in Figure 1. We validate our proposals, first on a 1D toy problem, and then on an
image classification task, where we evaluate in and out of distribution (OOD) performance.

2. Preliminaries

We consider a supervised learning setting with observations (xi, yi)n
i=1, xi ∈ Rdx and yi ∈

Rdy . We estimate yi from xi using a NN f(xi, w) with parameters a column vector w ∈
Rdw . To do so, we maximise an objective of the form Gf (w) + R(w), where Gf (w) =∑

i≤n g(yi, f(xi, w)) is a data fit term and R(w) is a regulariser that encourages the entries
of w to be small. We denote by w⋆ the output of some stochastic gradient optimisation
algorithm (SGD) applied to this objective. Within the Bayesian framework, g and R
are obtained by assuming a probabilistic model for which g(yi, ŷi) is the log-likelihood
log p(yi | ŷi) and R(w) is the log prior log π(w). Thus, w⋆ is usually understood to be a
maximum a posteriori (MAP) solution or mode of the resulting posterior p(w | (xi, yi)n

i=1).
Linearised Laplace Inference for NNs The linearised Laplace method for approxi-

mating the intractable posterior is based on a 1st order Taylor expansion of f around w⋆

f(x, w⋆) + ∇wf(x, w⋆)(v − w⋆) =: h(x, v), (1)

where J(x) =: ∇wf(x, w)|w=w⋆ ∈ Rdy×dw is the Jacobian of f with respect to the param-
eters. The prior over v ∈ Rdw is chosen to match that of the NN weights. The posterior
is then modelled as a Gaussian with mean µ = w⋆ and covariance matrix Σ = (H + Λ)−1
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Figure 2: Log likelihood Gf (w), log prior log π(w) and posterior ∝ Gf (w) + log π(w) land-
scape projection for the input layer of the NN used in Figure 1. ⋆ corresponds to the weight
setting found with SGD, w⋆. The horizontal projection axis corresponds to the direction of
w⋆ while the vertical to some other vector v⋆, both orthonormalised.

where Λ = −∇2
w log π(w)|w=w⋆ ∈ Rdw×dw is the Hessian (or precision) of the log prior and

H =
∑
i≤n

J(xi)T H(xi, yi)J(xi) where H(x, y) = −∇2
ŷg(y, ŷ)|ŷ=f(x,w⋆), (2)

the Hessian of the log-likelihood. We assume Λ is positive definite and let H be positive
semi-definite. Under linearised Laplace, E[h(x, v)] = f(x, w⋆) and Var[h(x, v)] = ∥J(x)∥2

Σ.1
Laplace Model Evidence Approximation We adopt the common Gaussian prior

N (0, Λ−1). The precision Λ is usually chosen to maximise the volume of a Gaussian ap-
proximation to the posterior mode containing w⋆. This so-called model evidence is given by

1
2

[
−∥w⋆∥2

Λ − log
(det(H + Λ)

det(Λ)

)]
+ C, (3)

where C is independent of Λ, and w⋆ is the linearisation point obtained with an optimisation
algorithm. The norm term encourages the prior precision Λ to be small enough to accom-
modate w⋆. The determinant ratio encourages larger precisions such that the contraction
of the posterior’s variance relative to the prior’s is minimised.

3. Pathologies in Linearised Laplace with Normalised Networks

We suppose there exists a partition of the neural network parameters w into L + 1 groups
w1, . . . , wL+1, e.g. layers, and that the output of the network is invariant to the scaling of
groups of parameters w1, . . . , wL. That is, taking R+ = {x ∈ R : x > 0}, for all k ∈ RL

+,

f(x, w) = f(x, wL+1 ∪ k · w1:L), (4)

where k · w1:L =
⋃L

i=1 kiwi refers to set-element-wise multiplication in the rest of the pa-
per. Figure 2 illustrates this radial invariance. We call a neural network satisfying (4) a
normalised neural network. This invariance occurs in, for example, layer norm (Ba et al.,
2016), group norm (Wu and He, 2020), batch norm (Ioffe and Szegedy, 2015), or even in
so-called normalisation-free methods (Brock et al., 2021). Group wL+1, which corresponds
to the output layer of the neural network, is not invariant.

1. For B a positive semidefinite matrix, ∥a∥B denotes the norm given by aT Ba.

3



Antorán Allingham Janz Daxberger Nalisnick Hernández-Lobato

−6 −4 −2 0 2 4 6

w∗/||w∗||

−6

−4

−2

0

2

4

6

v∗
/
||v
∗ ||

Linearised log likelihood

−6 −4 −2 0 2 4 6

w∗/||w∗||

Linearised log prior

−6 −4 −2 0 2 4 6

w∗/||w∗||

Linearised log posterior

Figure 3: Log likelihood Gh(v), log prior log π(v) and posterior ∝ Gh(v) + log π(v) for the
input layer weights of the linearised NN from Figure 1. ⋆ corresponds to w⋆ and ⋆ to v⋆.
The projection is onto these two directions. The posterior mode v⋆ is different from w⋆.

Recall that Gf (w) =
∑

i≤n log p(yi|f(xi, w)) and π(w) = N (w; 0, Λ−1). For f , a nor-
malised neural network, a maximum of Gf (w) + log π(w), also known as a maximum a pos-
teriori, does not exist. To see this, suppose w⋆ is a MAP. Take w′ = w⋆

L+1 ∪(0.5·w⋆
1:L). Then

Gf (w′) = Gf (w⋆) and log π(w′) > log π(w⋆) (5)

and thus w⋆ is not a MAP solution. Additionally, let w⋆
l be a normalisation group of w⋆ (as

used in eq. (4)), with l ≤ L, and corresponding Jacobian entries Jl(x) = ∇wl
f(x, w)|w=w⋆ .

Then w⋆
l lies in the null space of Jl(x). This can be seen by taking the directional derivative

⟨Jl(x), w⋆
l ⟩ = lim

δ→0

1
δ

(
f(x, w⋆

\l ∪ ((1 + δ) · w⋆
l )) − f(x, w⋆)

)
eq. (4)= 0. (6)

Similar results have been noted in the optimisation literature, where the prior term is
introduced through weight decay (van Laarhoven, 2017; Hoffer et al., 2018; Cai et al., 2019;
Li et al., 2020; Lobacheva et al., 2021). As a consequence of eq. (6), the gradient of Gf

acts like a tangential force, making the norm of w larger. The prior gradient acts like a
centripetal force, keeping the norm small. This can be seen in Figure 2. van Laarhoven
(2017) shows that SGD leads to a norm at convergence of ∥w⋆∥2

2 ∝ (σ(∇wGf )/λ)0.5, where
σ(∇wGf ) is the standard deviation of ∇wGf and λ is the precision of an isotropic Gaussian
prior. This can be understood as SGD returning wL+1 ∪ k · w1:L, where k ∈ RL

+ depends on
extraneous factors such as the learning rate or batchsize.

How does the above pertain to linearised Laplace? Denote by Gh(v) =
∑

i≤n log p(yi|h(xi, v))
the log likelihood function of the linearised model eq. (1), and recall that π(v) = N (v; 0, Λ−1).
The linearisation point w⋆ is not the maximum of Gh(v) + log π(v). To see this, suppose
that w⋆ is the MAP and take w′ to be w⋆

L+1 ∪ (0 · w⋆
1:L). We have

h(x, w′) = f(x, w⋆) + J(x)((w⋆
L+1 ∪ 0) − w⋆) = f(x, w⋆) − J1:L(x)w⋆

1:L
eq. (6)= f(x, w⋆)

= h(x, w⋆) thus Gh(w′) = Gh(w⋆) and log π(w′) > log π(w⋆), (7)

and w⋆ is not a MAP solution for the linearised model. The Laplace method relies on
w⋆ being a posterior mode such that the first order term in a quadratic expansion of the
posterior vanishes. As a consequence of eqs. (5) and (7), the Laplace evidence from eq. (3)
does not approximate the volume of a posterior mode for neither the NN nor linearised NN,
making it unsuitable for model selection. In practice, maximising eq. (3) leads to arbitrary
results due to the dependence on the norm of the SGD solution, as we will see in Section 6.
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Why do Daxberger et al. (2021b) see such strong empirical performance with linearised
Laplace in normalised NN architectures despite the above? The key insight is that the
predictive variance Var[h(x, v)] = ∥J(x)∥2

Σ, does not depend directly on the norm of w⋆.
Because Daxberger et al. (2021b) employ cross-validation, as opposed to the model evidence
(MLL), to select Λ, they do not encounter the issues described above.

In summary, SGD provides us with a solution w⋆ of arbitrary norm which may be a mode
of the likelihood but is not a mode of the posterior (MAP solution) for either the normalised
NN or its corresponding (tangent) linear model. Given a suitable prior precision, this does
not create issues when estimating uncertainty because the posterior predictive variance is
invariant to the norm of the linearisation point w⋆, only depending on its angle. However,
normalisation breaks the Laplace MLL objective, which relies on the norm of w⋆ as a
measure of model complexity.

4. Finding a MAP to the Lost Linearised Evidence

We proceed to obtain the evidence for the linearised model corresponding to a normalised
network. Its posterior landscape is shown in Figure 3. First, we note that for a NN
normalised as in eq. (4), and with a fully connected output layer, the first order expansion
matches a simple basis function linear model

h(x, v) = f(x, w⋆) + J(x)(v − w⋆) eq. (6)= f(x, w⋆) + J(x)v − JL+1(x)w⋆
L+1 = J(x)v. (8)

The final equality is due to the Jacobian entries corresponding to the last layer weights
matching the last layer activations: f(x, w⋆) = JL+1(x)w⋆

L+1. Referring to the MAP solu-
tion of Gh(w) + π(w) as v⋆, we write the linear model’s Laplace MLL objective as

log
∫ ∏

i≤n

N (yi; h(xi, v), H(xi, yi)−1)dπ = 1
2

[
−∥v⋆∥2

Λ − log
(det(H + Λ)

det(Λ)

)]
+ C. (9)

By eq. (7) we know that v⋆ ̸= w⋆. From eq. (8) we see that v⋆ corresponds to the MAP
slope of a regression hyperplane on the Jacobian basis. Intuitively, the prior density π(v⋆)
can be interpreted as a measure of model complexity, unlike π(w⋆).

The large size of our NN’s weight space or use of non-linear linking functions often pre-
cludes finding v⋆ in closed form. Instead, we propose algorithm 1 for evaluating the gradient
∇v log p(y|h(x, v)) without explicitly computing Jacobians. We derive it in Appendix B.

Algorithm 1: Efficient gradient evaluation for linearised model
Inputs: Neural network f , Observation x, Linearisation point w⋆, Weights to optimise

v, Likelihood function p(y|·), Machine precision ε
1 δ =

√
ε(1 + ∥w⋆∥∞)/∥v∥∞ // Set FD stepsize (Andrei, 2009)

2 ŷ = J(x)v ≈ f(x,w⋆+δv)−f(x,w⋆−δv)
2δ // Two sided FD approximation to Jvp

3 gy = ∇ŷ log p(y|ŷ)|ŷ=J(x)v // Evaluate gradient of loss at ŷ = J(x)v
4 gv = gT

y J(x) = ∇w(gT
y f(x, w))|w=w⋆ // Project gradient with backward mode AD

Output: ∇v log p(y|h(x, v)) = gv
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Figure 4: Left: Histogram of the training data’s full Jacobian expansion (J(xi))i≤n for the
NN from Figure 1, with and without g-prior scaling A−1 = diag(I(w⋆))−0.5. Middle: 15
randomly chosen Jacobian basis functions. Right: Same functions with g-prior scaling.

5. The Neural Network g-Prior

Regardless of normalisation layers, we observe different scales in the components of the Ja-
cobian basis, e.g. see Figure 4. A single prior precision will be too restrictive for weights cor-
responding to small basis components, preventing these from influencing model predictions
and error-bars while leaving weights corresponding to large components underspecified.

This issue is well studied in Bayesian linear models (Minka, 2000), with a standard
solution being the use of Zellner’s g-prior (Zellner, 1996). This is a Gaussian centred at 0
with precision the scaled Fisher information matrix πg(w) = N (w; 0, g · I−1). The scaling
factor g gives name to the prior. For NNs the Fisher is often singular (Watanabe, 2007),
making it ill-suited as a prior. We bypass this issue by diagonalising the prior

πg-NN(w) ∝ exp
(−1

2g
wT diag (I(w)) w

)
, (10)

with diag(I(w′)) = 1/n
∑

i<n Ep(y|f(xi,w′))[(∇w log p(y|f(xi, w))2|w=w′ ]I. This matrix will
vary depending on the point w′ around which it is computed, resulting in an un-normalised
density. The null space of eq. (10) only corresponds to weights which have no effect on the
output (e.g. those corresponding to dead ReLUs). We drop these from our probabilistic
model. The Laplace approximation reverts eq. (10) to N (w; 0, g · diag(I(w⋆))−1) with
I(w⋆) matching the linearised NN’s Fisher. Applying the proposed prior to our linearised
model can be interpreted as downscaling our Jacobian features by their second moment while
keeping our prior as an isotropic Gaussian of variance g. Details are in Appendix D.

6. Experiments

Our procedure is: 1) train NNs with standard methods, 2) place either an isotropic Gaussian
N (0, λI) or NN g-prior N (0, g · diag(I(w⋆))−1) over the parameters, 3) optimise the hyper-
parameters λ and g using either eq. (3) (with NN weights w⋆) or eq. (9) (with linear weights
v⋆), and 4) predict using linearised Laplace. Implementation details are in Appendix E.

We first train a 2 hidden layer, 50 hidden unit, MLP with residual connections and layer
norm on the “matern” 1d regression dataset from Antoran et al. (2020). Figure 2 shows
that the likelihood is radially invariant while the prior is rotationally invariant. Once the
network is linearised, the likelihood invariance only remains in the direction of w⋆, as shown
in Figure 3. Here we see that the norm of w⋆ is much larger than that of v⋆. Consequently,
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Figure 5: MNIST CNN MLL sweeps for normal and g-prior parameters λ and g. Left:
With w⋆ the MLL eq. (3) optima corresponds to a smaller λ than with v⋆ eq. (9). The
latter provides a higher test LL. For a given λ the test LL is the same in both cases since
the predictive mean is the same. Middle: We observe the same behaviour when choosing
g. Right: Test set evaluation, under several rotations, using optimised λ & g values.

optimising the NN MLL eq. (3) returns too small a precision and thus produces errorbars
larger than the marginal variance of the targets in Figure 1. Choosing λ with the linearised
model MLL eq. (9) produces much more sensible results qualitatively. When employing the
g-prior, the errorbars are informed by a wider variety of basis functions and thus present a
smoother, more sensible, shape.

Next, we train a ∼46k parameter batch norm Lenet-style CNN on MNIST. Figure 5
shows a much stronger test log-likelihood when hyperparameters are optimised with our
proposed linearised MLL eq. (9) than when using eq. (3), for both isotropic and g priors.
Given that in all settings, the predictive mean is the same across methods, we can attribute
the increase in LL to better calibrated error-bars. Interestingly, our proposed model selec-
tion criteria eq. (9) tends to choose the smallest precision that maximises the test LL. This
maximises uncertainty while not sacrificing in-distribution performance. We evaluate OOD
uncertainty estimation on rotated digits. The hyperparameters found with the NN weights
w⋆ perform well OOD at the cost of overestimating uncertainty in-distribution. Our pro-
posed criteria combined with the isotropic Gaussian prior performs well in-distribution but
is overconfident OOD. The more expressive g-prior, when combined with eq. (9), retains
in-distribution performance while expressing increased uncertainty OOD.

7. Conclusion

We have highlighted and provided solutions to two pitfalls of the naive application of lin-
earised Laplace to modern NNs. First, normalisation layers preclude finding an optima of
the loss for a NN, or its tangent linear model, by optimising the loss function of the NN.
This invalidates the assumption that the point at which we linearise our model is stationary.
However, every linearisation point implies an associated basis function linear model. As we
use this model to provide errorbars, we propose to also choose hyperparameters using this
model’s evidence. This can be done by solving a convex optimisation problem, much simpler
than NN optimisation. Second, the scales of basis functions corresponding to the Jacobian
entries for different weights can be very heterogeneous. We propose the extension of the
g-prior to the NN setting. This empirical prior assigns a variance to each weight inversely
proportional to the scale of its associated feature.
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editors, Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, pages 3088–3098, 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/b3bbccd6c008e727785cb81b1aa08ac5-Abstract.html.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit,
fixes overconfidence in relu networks. In Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 5436–5446. PMLR, 2020. URL
http://proceedings.mlr.press/v119/kristiadi20a.html.

Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with
traditional optimization analyses: The intrinsic learning rate. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a7453a5f026fb6831d68bdc9cb0edcae-Abstract.html.

Ekaterina Lobacheva, Maxim Kodryan, Nadezhda Chirkova, Andrey Malinin, and Dmitry P.
Vetrov. On the periodic behavior of neural network training with batch normalization and
weight decay. CoRR, abs/2106.15739, 2021. URL https://arxiv.org/abs/2106.15739.

David John Cameron Mackay. Bayesian Methods for Adaptive Models. PhD thesis, USA,
1992. UMI Order No. GAX92-32200.

James Martens. New insights and perspectives on the natural gradient method. arXiv
preprint arXiv:1412.1193, 2014.

Tom Minka. Bayesian linear regression. July 2000. URL https://www.microsoft.com/
en-us/research/publication/bayesian-linear-regression/.

Twan van Laarhoven. L2 regularization versus batch and weight normalization. CoRR,
abs/1706.05350, 2017. URL http://arxiv.org/abs/1706.05350.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

Sumio Watanabe. Almost all learning machines are singular. In Proceedings of the IEEE
Symposium on Foundations of Computational Intelligence, FOCI 2007, part of the IEEE
Symposium Series on Computational Intelligence 2007, Honolulu, Hawaii, USA, 1-5 April
2007, pages 383–388. IEEE, 2007. doi: 10.1109/FOCI.2007.371500. URL https://doi.
org/10.1109/FOCI.2007.371500.

10

https://proceedings.neurips.cc/paper/2019/hash/b3bbccd6c008e727785cb81b1aa08ac5-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b3bbccd6c008e727785cb81b1aa08ac5-Abstract.html
http://proceedings.mlr.press/v119/kristiadi20a.html
https://proceedings.neurips.cc/paper/2020/hash/a7453a5f026fb6831d68bdc9cb0edcae-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a7453a5f026fb6831d68bdc9cb0edcae-Abstract.html
https://arxiv.org/abs/2106.15739
https://www.microsoft.com/en-us/research/publication/bayesian-linear-regression/
https://www.microsoft.com/en-us/research/publication/bayesian-linear-regression/
http://arxiv.org/abs/1706.05350
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/FOCI.2007.371500
https://doi.org/10.1109/FOCI.2007.371500


Linearised Laplace with Normalisation Layers and the Neural g-Prior

Yuxin Wu and Kaiming He. Group normalization. Int. J. Comput. Vis., 128(3):
742–755, 2020. doi: 10.1007/s11263-019-01198-w. URL https://doi.org/10.1007/
s11263-019-01198-w.

Arnold Zellner. Models, prior information, and bayesian analysis. Journal of Econometrics,
75(1):51–68, 1996.

11

https://doi.org/10.1007/s11263-019-01198-w
https://doi.org/10.1007/s11263-019-01198-w


Antorán Allingham Janz Daxberger Nalisnick Hernández-Lobato

Appendix A. On Invariances Introduced by Normalisation Layers

We relate eq. (4) to common normalisation layers. For some input z ∈ Rdz these apply the
function

z − E[z]√
Var(z)

γ + β

where the expectation and variance are estimated empirically and γ ∈ R, β ∈ R. We have
invariance to scaling the input by some constant κ ∈ R

κz − E[κz]√
Var(κz)

γ + β = κ(z − E[z])
κ
√

Var(z)
γ + β = z − E[z]√

Var(z)
γ + β.

For batch norm, the input to the above function z, corresponds to the different values of a
neural activation across a mini-batch of data. As a result, normalisation groups correspond
to the fan-in weights of each node. For layer norm, z corresponds to a layer’s activations for
a single input. Here, the normalisation group is the complete set of layer weights. Group
norm applies the same operation as layer norm but across a subset of a convolutional layer’s
channels. Here, the normalisation group is the subset of the previous layer’s weights which
acts on any of the output channels that fall into a specific group.

Appendix B. Derivation and Analysis of Algorithm 1

We denote NN Jacobians as J(x) =: ∇wf(x, w)|w=w⋆ ∈ Rdy×dw and a linear model weight
vector v ∈ Rdw . dy is the output size. Consider the linear model J(x)v where we wish
to optimise v according to the objective log p(y|J(x)v). Expanding the expression of the
gradient using the chain rule

∇v log p(y|J(x)v) = ∇ŷp(y|ŷ)|ŷ=J(x)v J(x)

we see that it is equal to the gradient of the loss projected onto the weights through the
Jacobian. We first need to evaluate our basis function linear model ŷ = J(x)v. This
Jacobian vector product can be computed with forward mode automatic differentiation
or finite differences (FD). We rely on finite differences because it is slightly cheaper to
compute. Specifically, we employ the method of Andrei (2009) to select the optimal step
size. We empirically evaluate this approach in Figure 6, finding it to return the near-
optimal step-size for a wide range of queries. We then evaluate the loss gradient at the
linear model output, gy = ∇ŷp(y|ŷ)|ŷ=J(x)v. This can often be done in closed form. Finally,
we project onto the weights using backward mode automatic differentiation gw = gT

y J(x) =
∇w(gT

y f(x, w))|w=w⋆ .
For the small MLP used in the toy experiments from Section 6, it is tractable to compute

the Jacobians for the full training set. In this setting, we can evaluate the fidelity of the
gradient update computed with algorithm 1 relative to exact gradient descent (GD). In
Figure 7, we show that the proposed FD based method tracks the GD trajectory very
closely. The gradient bias, computed in terms of rmse across all weights, stays below 2e − 2
during the whole optimisation. The bias in the weights accumulates throughout training,
reaching a maximum of ∼ 0.015 at convergence.
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of Andrei (2009) provides almost optimal step sizes.
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Figure 7: Left: Optimisation trajectories for exact gradient descent and the proposed
method: algorithm 1. Middle: Gradient bias throughout training in terms of rmse across
all weights. Right: Weight bias throughout training in terms of rmse across all weights.

In Figure 8, we compare the fits and weight histograms obtained when optimising the
linear model corresponding to the MLP from Section 6 with algorithm 1 and with the
closed form solution for Gaussian linear regression. Both fits agree seemingly perfectly in
the range of the data, with some slight disagreement in the extrapolation regime. The
weight histograms overlap almost perfectly in the body, with some outliers being placed in
different locations. This suggests that the MLL values obtained with eq. (9) when finding
v⋆ with algorithm 1 will be a good approximation to the true linearised model MLL.

Appendix C. Additional Plots

In Figure 9 we compare the fits obtained on our toy problem when employing the NN
function f(x, w⋆) and the linearised model h(x, v⋆). In the latter case we compare both
an isotropic Gaussian prior and the a g-prior. All three methods return very similar mean
predictions, with the most notable difference being the g-prior’s additional non-smoothness
in the out-of-distribution regime. This is due to the g-prior allowing for more basis functions
to contribute the the mean prediction. The histogram plot shows that w⋆ presents a both
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Figure 8: Left: Fits obtained with the exact MAP setting of a linearised MLP and with
our proposed optimisation algorithm 1 on the toy task presented in Section 6. Right:
Histogram displaying the MAP weights computed with each method.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

−4

−2

0

2

4

y

f (x, w?) = h(x, w?)

h(x, v?)

h(x, v?) g-prior

−1.0 −0.5 0.0 0.5 1.0
weights

10−2

10−1

100

101

de
ns

it
y

w?

v?

v? g-prior

Figure 9: Left: Fits obtained with an MLP f(x, w⋆) and its linearised model h(x, v⋆) on
the toy task presented in Section 6. For the latter we compare an isotropic Gaussian prior
and with the g-prior. Right: Histogram displaying MAP weights for all 3 settings.

wider and heavier tailed distribution than v⋆. This explains why choosing hyperparameters
with eq. (3) leads to excessively wide error bars in Figure 1. The weights obtained when
using the g-prior present a wider distribution than w⋆ but show less heavy tails.

Figure 10 shows the weight histogram for the CNN used in Section 6. Its architecture
is described in Appendix E. The NN weights w⋆ are significantly larger than those of the
linearised model v⋆. As a result, the MLL that uses w⋆ favours smaller prior precisions
which result in strong underconfidence in-distribution, as found in Section 6.
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Figure 10: Histogram displaying MAP weights for our CNN (described in Appendix E) w⋆

and its linearised counterpart v⋆.

Appendix D. Feature Normalisation and the Diagonal g-Prior

In this appendix, we provide some intuition for the effects of the diagonal g-prior on the
linearised NN model. We stack the features (J(xi))i≤n, into the tensor J ∈ Rn×dy×dw . We
will suggestively refer to the tensor that has the first and third indexing dimensions flipped
as JT ∈ Rdw×dy×n for notational convenience. The log-likelihood Hessian, stacked across
observations is H ∈ Rn×dy×dy . For exponential family distributions, the Fisher I ∈ Rdw×dw

matches the GGN matrix (Martens, 2014)

I =
n∑
i

(Ji)⊤HiJi (11)

and thus the NN g-prior precision is

g−1diag(
n∑
i

J⊤
i HiJi)I = g−1AT A. (12)

A ∈ Rdw×dw is a diagonal matrix which will act as a feature normaliser J s = JA−1. The
entries of A are

A2
k,k = 1

n

n∑
i

dy∑
l

dy∑
j

Ji,l,kHi,l,jJi,j,k, (13)

where H regulates linear interactions across output dimensions and observations.

D.1. Parameter Optima, Linearised Laplace Predictive Distribution and
Laplace Marginal Likelihood induced by Feature Normalisation and
Diagonal g-Prior

Consider a generalised linear model h(x, w), which we optimise with the loss function G(ŷ) =∑
i≤n log p(yi|ŷ). We consider 2 scenarios. In the first we choose the regulariser based on

the diagonal g-prior log πg(v) ∝ −0.5g−1 · vT AT Av. In the second we choose an isotropic
regulariser log π(v) ∝ g−1 · vT v but we scale our features as J s = JA−1. We refer to the
former as the g-prior model and to the latter as the scaled model.
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Parameter Optima An optima of the parameters v⋆ satisfies

(∇vG(h({xi}n
i=0, v)) − ∇v log π(v))|v=v⋆ = 0. (14)

We first apply the chain rule to the loss gradient ∇wG(w)|w=w⋆ = ∇ŷG(ŷ)|ŷ=w⋆JJ . In the
g-prior setting, this is

(∇ŷG(ŷ))|ŷ=v⋆
gJ

T J + g−1 · AT Av⋆
g = 0 (15)

and we have denoted the stationary point v⋆
g . For the scaled model, the stationary point is

(∇ŷG(ŷ))|ŷ=v⋆
s A−1JT JA−1 + g−1 · v⋆

s = (∇ŷG(ŷ))|ŷ=v⋆
s A−1JT J + g−1 · Av⋆

s = 0 (16)

with stationary point v⋆
s . Combining both eqs. (15) and (16) we get that the scaled model

weights are just the scaling matrix applied to the g-prior weights A−1v⋆
s = v⋆

g .
We now show this in the special case of the Gaussian likelihood case, with precision H,

v⋆
g =

(
n∑
i

(Ji)T HiJi + g−1 · AT A

)−1 n∑
j

(Jj)T y =

A−1
(

n∑
i

A−1(Ji)T HiJiA
−1 + g−1 · I

)−1 n∑
j

A−1(Jj)T y = A−1v⋆
s (17)

Linearised Laplace Predictive The predictive mean for both the g-prior model and
scaled model is the same:

Epg(v|(xi,yi)n
i=1)[Jv] = J(x′)v⋆

g = J(x′)A−1v⋆
s = Eps(v|(xi,yi)n

i=1)[vA−1J ] (18)

The Laplace predictive covariance is also the same:

J(x′)
(

n∑
i

(Ji)T HiJi + g−1 · AT A

)−1

JT (x′)

= A−1J(x′)
(

n∑
i

A−1(Ji)T HiJiA
−1 + g−1·

)−1

JT (x′)A−1 (19)

Linearised Laplace MLL This quantity also matches for the g-prior model and scaled
model:

−g−1 · v⋆T
g AT Av⋆

g − log
(

det(
∑n

i (Ji)T HiJi + g−1 · AT A)
det(g−1 · AT A)

)

= g−1 · v⋆T
s A−T AT AA−1v⋆

s − log
(

det(A−1) det(
∑n

i (Ji)T HiJi + g−1 · AT A) det(A−1)
det(g−1 · I)

)

= g−1 · v⋆T
s v⋆

s − log
(

det(
∑n

i A−1(Ji)T HiJiA
−1 + g−1I)

det(g−1 · I)

)
. (20)

We have dropped the data fit terms and other constants as these match for the g-prior and
scaled model since both models make the same mean predictions eq. (18).
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D.2. What type of Feature Normalisation does the Diagonal g-Prior Induce?

In this subsection we discuss the similarity between the scaled model, induced by use of
the g-prior and a generalised linear model in which the inputs have been scaled such that
all inputs share some summary statistic (e.g. 0 mean, unit variance, etc). We make the
assumption that our data is iid and thus the likelihood function is factorised across data-
points. Let’s first consider the case where our log-likelihood is homoscedastic and factorised
across output dimensions Hi = κ · I ∀ i ≤ n, where κ ∈ R+ is the likelihood precision. Here
we have that the scaling matrix matches the empirically computed second moment of each
basis function in our expansion

A2
k,k = κ

n

n∑
i

dy∑
l

J2
i,l,k = κ

dy∑
l

Ep̂(x)[J2
l (x)], (21)

summed across output dimensions and scaled by the noise precision. In fact, the constant
κ can be absorbed into g. For one output dimension dy = 1, this leaves us with a scaling
procedure that matches commonly used standard deviation normalisation for the case of 0-
mean features. Whether our Jacobian features are 0-mean will depend on if the linearisation
point w⋆ is stationary. In the multi-response setting dy > 1, the standardisation for the
feature corresponding to each weight is proportional to the sum of the second moments of
the gradients of each output dimension with respect to the weight. For a heteroscedastic
likelihood function factorised across output dimensions Hi = κi · I ∀ i < n, where κ ∈ Rn

+
we have

A2
k,k = 1

n

n∑
i

dy∑
l

κiJ
2
i,l,k. (22)

Now different datapoints contribute to the scaling factor proportionally to their noise preci-
sion. Finally we consider the case where our likelihood function is heteroscedastic and does
not factorise across output dimensions, like is the case for the softmax-categorical. Here Hi

is full rank. The entries of our scaling matrix are given by eq. (13).

Appendix E. Image Classification Experimental Setup

For the image classification experiments, we employ a CNN based on the LeNet architecture
with a few variations found in more modern neural networks. The architecture contains
3 convolutional blocks, followed by global average pooling in the spatial dimensions, a
flatten operation, and finally a fully-connected layer. The convolutional blocks consist of
a convolution layer, a ReLU activation, and a batch norm layer, in that order. Instead
of using max pooling layers, as in the original LeNet variants, we use convolutions with a
stride of 2. The first convolution is 5 × 5, while the next two are 3 × 3. Table 1 shows the
sizes of the filters and number of parameters. These where chosen to create a model as large
as possible while keeping full-covariance Laplace inference tractable on one A100 GPU.

The NN weights w⋆ are learnt using SGD, with an initial learning rate of 0.1, momentum
of 0.9, and weight decay of 1×10−4. We trained for 90 epochs, using multi-step LR scheduler
with a decay rate of 0.1 applied at epochs 40 and 70.
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Table 1: Architecture parameters for CNN used in experiments.

Conv1 Filters Conv2 Filters Conv3 Filters Params. Hessain Size

CNN 42 48 60 46 024 15.68 GB

The linear weights v⋆ are learnt using SGD but with the gradient calculated via algo-
rithm 1. We use a learning rate of 1 × 10−4 and train for 100 epochs. We set the weight
decay value to 1 × 10−4 when using isotropic priors and to 1 × 10−1 when scaling features
according to the g-prior. The latter choice is made due to the model with scaled features
having a larger effective dimensionality and thus needing stronger regularisation. We do
not use momentum or learning rate decay.
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