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Abstract

Transformer models have achieved superior performance in various natural
language processing tasks. However, the quadratic computational cost of
the attention mechanism limits its practicality for long sequences. There
are existing attention variants that improve the computational efficiency,
but they have limited ability to effectively compute global information. In
parallel to Transformer models, state space models (SSMs) are tailored for
long sequences, but they are not flexible enough to capture complicated
local information. We propose SPADE, short for State sPace AugmenteD
TransformEr. Specifically, we augment a SSM into the bottom layer of
SPADE, and we employ efficient local attention methods for the other lay-
ers. The SSM augments global information, which complements the lack
of long-range dependency issue in local attention methods. Experimental
results on the Long Range Arena benchmark and language modeling tasks
demonstrate the effectiveness of the proposed method. To further demon-
strate the scalability of SPADE, we pre-train large encoder-decoder models
and present fine-tuning results on natural language understanding and
natural language generation tasks.

1 Introduction

With the rise of large language models, the difficulties of modeling long sequences have
gained increasing attention. For instance, ChatGPT is capable of handling context that
comprises up to 8k tokens, while GPT-4 (OpenAI, 2023) scales this ability up to 32k tokens.
Conventional Transformer-based models rely on the attention mechanism (Vaswani et al.,
2017), which computes a dependency score for every pair of tokens in the input sequence.
Thus, full attention has a quadratic time and space complexity with respect to the length of
the sequence. However, such complexity proves computationally prohibitive for tasks that
require modeling long sequences such as text summarization (Nallapati et al., 2016) and
question-answering (Kwiatkowski et al., 2019). In fact, we find that training a Transformer
model (250M parameters) takes up over 80G of GPU memory when modelling an input
sequence of length 8k.

In addition, Transformer models that rely on full attention run the risk of overfitting due to
the lack of structural biases (Lin et al., 2022). The attention mechanism does not impose any
structural prior over the input. As a result, order information (such as sinusoidal encoding)
is required to train a Transformer model successfully. Transformer models, equipped with
full attention mechanism, prove overly flexible resulting in overfitting to the noise. This
significantly impacts the models’ practicality in long sequence modeling, where the depen-
dency signal is often weak, and signal-to-noise ratio is low (i.e., in long sequences, a majority
of input tokens are useless). Empirical evidence shows that Transformer models without
structural biases have a classification accuracy rate of 57.5% on a two-way classification task,
nearly 30% less than state-of-the-art approaches that are equipped with powerful structural
biases (see Section 4.1 for details).
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Several methods have been proposed to address the problem of full attention’s quadratic
complexity and the need to introduce structural biases to Transformer models. One of the
primary approaches is employing approximation methods, which approximates full attention
using fast algorithms with linear complexity. Low-rank approximations (Wang et al., 2020b)
or kernel methods (Peng et al., 2021), for instance, could simplify and speed up calculation
of the attention score matrix (i.e., softmax(QK⊤/

√
d) in Eq. 1). Nevertheless, although these

methods mitigate the computational complexity of full attention, they inherit the problems
associated with the lack of structural bias.

To incorporate structural biases into Transformer, partial attention methods have been pro-
posed. The methods can be further categorized in to sparse attention (Beltagy et al., 2020)
and clustering (Kitaev et al., 2020). In the former approach, individual tokens attend to only
a subset of tokens determined by pre-defined sparsity patterns. In the latter, tokens are
divided into clusters and intra-cluster attention is performed. However, introducing these
structural biases restricts the models’ ability to capture global information. Local window at-
tention, for instance, assumes that each token depends only on its direct neighbors, causing
long-range and global information to be lost.

State space models (SSMs) introduce structural biases tailored for computing global infor-
mation (Gu et al., 2022b), in contrast to partial attention. Specifically, SSMs design fixed
global dependency patterns that facilitate effective and efficient computation, and can be
seen as linear recurrent neural networks with specifically designed fixed weights. Moreover,
efficient algorithms have been developed to train these models. However, it should be noted
that SSMs can be restrictive, because they do not capture local information as effectively as
attention-based models, which explicitly compute dependencies among input tokens.

We propose SPADE, short for State sPace AugmenteD TransformEr. SPADE is a multi-layer
Transformer model that can effectively and efficiently capture complicated dependencies.
Specifically, we augment a state space model (SSM) into the bottom layer of the model to
integrate inputs with global information. Because the SSM only provides coarse global
information, at the subsequent top layers of SPADE, we employ local attention methods
to capture more complicated and refined local information. With this approach, the SSM
induces a strong structural bias that augments global information and complements the
long-range dependency issue in local attention methods. SPADE is flexible to accommodate
different building blocks. For example, we can use SSMs such as S4 (Gu et al., 2022b)
and S5 (Smith et al., 2022) in the bottom layer; while for subsequent layers, local attention
algorithms such as sliding window attention and chunk attention can be applied.

We demonstrate the efficiency and effectiveness of SPADE on various tasks. First, we show
that SPADE outperforms existing approaches on the Long Range Arena (Tay et al., 2021b)
benchmark, which is designed to test models’ ability in modeling long sequences. Second,
we show that in autoregressive language modeling, SPADE is not only significantly faster
than the vanilla Transformer (Vaswani et al., 2017), but also yields better performance. Third,
we demonstrate the scalability of SPADE by conducting language model pre-training and
fine-tuning experiments. Specifically, we pre-train an encoder-decoder model similar to T5
(Raffel et al., 2020). And we fine-tune the model on various tasks, including natural language
understanding and natural language generation benchmarks. In all the settings, SPADE
outperforms the baselines. Our code1 and pre-trained model checkpoints2 are publicly
available.

2 Background

2.1 Attention Mechanism

Suppose the input to the layer is X ∈ RL×d, where L is the sequence length and d is the
embedding dimension, then the attention mechanism outputs

Attn(X) = softmax(QK⊤/
√

d)V, where Q = XWq, K = XWk, V = XWv. (1)

1https://github.com/microsoft/EfficientLongSequenceModeling
2https://github.com/namisan/mt-dnn
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Here Wq, Wk, Wv ∈ Rd×d are learnable weights. The attention mechanism can simulta-
neously compute the alignment between any pair of input tokens, such that it models
long-range dependencies better than recurrent neural networks. Specifically, denote the
attention score matrix A = softmax(QK⊤/

√
d) ∈ RL×L. Then, Aij captures the alignment

between the i-th and the j-th input tokens.

2.2 State Space Models

Continuous time state space model. A continuous time latent state space model maps
a 1-dimensional input signal u(t) to a ds-dimensional latent state x(t), after which x(t) is
mapped to a 1-dimensional output signal y(t). Concretely,

x′(t) = Ax(t) + Bu(t), y(t) = Cx(t). (2)

Here, A ∈ Rds×ds , B ∈ Rds and C ∈ Rds .

Existing works leverage Eq. 2 to model long sequences. For example, Gu et al. (2020) claim
that randomly initialized parameters A, B and C cannot model long-range dependencies
well. Subsequently, a class of matrices (termed HiPPO, high-order polynomial projection
operators) are proposed to initialize A. The HiPPO matrices are designed such that the state
x(t) at time t can memorize the history of the input u(t) up to time t.

Discrete time state space model. In practice, we often work with discrete sequences such
as natural language inputs (u0, u1, · · · , uL), where L is the sequence length. To facilitate
modeling discrete data, the model in Eq. 2 can be discretized (using the bilinear method) by
a step size ∆, such that

xk = Axk−1 + Buk, yk = Cxk, (3)

where A = (I − ∆/2 · A)−1(I + ∆/2 · A), B = (I − ∆/2 · A)−1∆B, C = C.
We unroll the above recurrent representation, after which we have

yk = CAkBu0 + · · ·+ CABuk−1 + CBuk.
This can be written as a convolutional representation

y = K ∗ u, where K ∈ RL =
(

CB, CAB, · · · , CAL−1B
)

. (4)

Here, K is the convolutional kernel, “∗” is the discrete convolution operator, u represents
the input sequence (u0, u1, · · · , uL), and y represents the corresponding output sequence
(y0, y1, · · · , yL).

In Eq. 4, the output y can be computed efficiently given that the convolution kernel K is
known (e.g., using Fast Fourier Transform). However, computing the kernel is non-trivial.
Most of existing algorithms have O(L2) time and space complexity.

Structured State Space Sequence model (S4). Gu et al. (2022b) develop the S4 model to
efficiently compute Eq. 4. Specifically, C in Eq. 2 is randomly initialized, and A and B are
initialized as

A = A(ds) − PP⊤, Bi = (2i + 1)1/2, (5)

where Pi = (i + 1/2)1/2 , A(ds)
ij = −


(i + 1/2)1/2(j + 1/2)1/2, i > j,
1/2, i = j,
−(i + 1/2)1/2(j + 1/2)1/2, i < j.

Subsequently, the convolution kernel K in Eq. 4 can be computed efficiently with near linear
time and space complexity. Then, for an input u, the S4 output y = K ∗ u can be computed
efficiently.

More state space models. Despite the superior performance of S4, it suffers from known
issues such as difficulty in scaling. Other state space models are subsequently developed,
such as MEGA (Ma et al., 2022), S4-D (Gu et al., 2022a), H3 (Fu et al., 2022), S5 (Smith et al.,
2022), GSS (Mehta et al., 2022) and Hyena (Poli et al., 2023). Through experiments, we
demonstrate that the proposed model is flexible to accommodate variants of SSMs.
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Figure 1: Illustration of window attention (left)
and chunk attention (right). For window attention,
the window size is 2 (on each side); for chunk
attention, the chunk size is 2.

Figure 2: Performance of Trans-
former with full attention, window
attention, chunk attention, and S4.
We use language modeling experi-
ments (see Section 4.2), and the se-
quence length is 3k.

3 Method

We first conduct experiments to demonstrate that SSMs do not model local information
well. Then, we present SPADE, which effectively combines global and local information by
augmenting SSMs into the Transformer architecture.

3.1 Attention vs. State Space Models

Figure 3: Demonstration of SPADE with 4 layers.
Left: overview; Right: details of global layer.

The motivation behind SPADE is that
even though SSMs perform well on sev-
eral long sequence classification tasks
(Gu et al., 2022b), they perform poorly
on language modeling, which is a fun-
damental task in natural language pro-
cessing. To demonstrate such an ob-
servation, we compare S4 with Trans-
former with full attention and Trans-
former with local (window and chunk)
attention. In local attention, each to-
ken can only attend to its neighboring
tokens (see Figure 1 for illustrations).
We conduct experiments on token-level
language modeling. In this setting, lo-
cal information is more important than
global information. This is because in
practice, we rarely see words (tokens)
that are thousands of positions apart exhibit strong dependencies (Sukhbaatar et al., 2019).

Experimental results are illustrated in Figure 2. We see that both Transformer with full
attention and Transformer with local attention (e.g., window and chunk) outperforms S4.
Notice that replacing full attention with local attention does not significantly hurt model
performance, indicating that local information is more important in this setting. We remark
that SSMs such as S4 produces a fixed dependency pattern, e.g., the convolution kernel in
Eq. 4. Moreover, unlike attention, SSMs do not explicitly compute dependencies among
tokens. Therefore, SSMs are not refined enough to capture local information, such that they
perform poorly on language modeling tasks.

3.2 SPADE: State Space Augmented Transformer

We propose SPADE, which is a multi-layer Transformer model that can capture complicated
global and local information. The overall architecture of SPADE is shown in Figure 3 (left).
The proposed model employs a hierarchical structure. Specifically, at the bottom layer of
SPADE (termed the global layer), we capture global dependencies using a SSM. Because
the SSM only provides coarse global information, the subsequent local layers facilitate the
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model to handle more refined and complicated local dependencies. In other words, the SSM
induces a strong structural bias that augments global information to the inputs.

To instantiate the local layer, we replace the full attention in the conventional Transformer
layer with off-the-shelf efficient local attention methods. SPADE is flexible to accommodate
different approaches, such as window attention and chunk attention (see Figure 1 for
illustrations).

In the global layer (Figure 3, right), given the input X to the layer, we have the output Y as

Y = FFN (LN(Xa)) + Xa, where Xa = W
[
LN(Xlocal), LN(Xglobal)

]
+ X,

Xlocal = Local (LN(X)) , Xglobal = SSM (LN(X)) .

Here, LN(·) denotes layer normalization (Ba et al., 2016), FFN(·) denotes a two-layer
feed-forward neural network, and W is a trainable weight that combines local and global
representations. Notice that we apply normalization to Xlocal and Xglobal to align their scales.

SPADE is flexible to accommodate different building blocks. For example, in the experiments
we use S4 (Gu et al., 2022b), S5 (Smith et al., 2022) and Hyena (Poli et al., 2023) as the SSM
in the bottom layer. In the top layers, local attention algorithms such as sliding window
attention and chunk attention can be used.

We remark that because of the sequential nature of SSMs (Eq. 3), the global layer can encode
positional information of the inputs. Therefore, we do not need additional fixed-length
positional embedding techniques (Devlin et al., 2019).

4 Experiments

In the experiments, we implement all the models using PyTorch (Paszke et al., 2019) and
Fairseq (Ott et al., 2019). Training details such as hyper-parameter settings are deferred to
the appendix.

4.1 Long Range Arena

Dataset and models. We evaluate SPADE on Long Range Arena (LRA, Tay et al. 2021b),
which is a benchmark tailored for evaluating models’ ability in modeling long sequences.
Dataset details are presented in Appendix B.

Following the setting in Ma et al. 2022, we use small models (less than 2M parameters) for
all the tasks. We limit the computational budget such that all the models are trained with
similar speed for the same amount of time. To aggregate local information, we consider two
approaches: window attention and chunk attention. We use S4 Gu et al. as the SSM in the
bottom layer.

Dataset Listops Text Retrieval Image Pathfinder Path-X Avg.

Sequence length 2k 4k 8k 1k 1k 16k —

Transformer (full attention) 36.37 64.27 57.46 42.44 71.40 ✗ 53.66
S4 (Gu et al., 2022b) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
MEGA (chunk) (Ma et al., 2022) 58.76 90.19 90.97 85.80 94.41 93.81 85.66

SPADE (S4+window) 59.70 87.55 90.13 89.11 96.42 94.22 86.19
SPADE (S4+chunk) 60.50 90.69 91.17 88.22 96.23 97.60 87.40

Table 1: Experimental results on LRA. The best results are shown in bold. For Path-X, “✗”
indicates unavailable results due to computational constraints. See Table 11 in the appendix
for comparison with other baselines.
Results. Experimental results are summarized in Table 1 (results of other baselines are
shown in Table 11 in the appendix). We see that both variants of SPADE (window and
chunk) significantly outperform all the baselines in terms of average accuracy. For example,
the window attention variant outperforms the best-performing baseline (MEGA-chunk) by
0.5%, and the chunk attention variant has a 1.8% performance gain. Therefore, SPADE is
more suitable to model long sequences than existing approaches.
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4.2 Language Modeling

Model Test ppl

Transformer (Vaswani et al., 2017) 18.8
Transformer (relative) (Shaw et al., 2018) 18.7

Transformer (window) 19.7
Transformer (chunk) (Hua et al., 2022) 20.9
MEGA (chunk) (Ma et al., 2022) 19.8
S4 (Gu et al., 2022b) 23.2
S5 (Smith et al., 2022) 23.0
Hyena (Poli et al., 2023) 23.2

SPADE (S4+chunk) 19.5
SPADE (S4+window) 18.5
SPADE (S5+window) 18.3
SPADE (Hyena+window) 18.5

Table 2: Experimental results on Wikitext-103.
We present model perplexity on the test set.

Dataset and models. We further eval-
uate our model by conducting language
modeling experiments on Wikitext-103.
The dataset contains English-language
Wikipedia articles, and the total number
of tokens is 103M. In all the experiments,
we set the input sequence length to 3k and
train for 286k steps. During testing, we set
the sequence length to 3k and the context
window size to 400.

We use window attention as the local infor-
mation extractor in SPADE. And we equip
our model with three variants of SSMs: S4
(Gu et al., 2022b), S5 (Smith et al., 2022) and
Hyena (Poli et al., 2023). For SPADE and
Transformer-based baselines, we follow the settings in Baevski & Auli (2019), where we use
a large-scale Transformer model with 16 layers and about 250M parameters. For SSM-only
baselines (e.g., S4), we also scale the models such that they contain approximately the same
number of parameters.

Results. Experimental results are presented in Table 2. From the results, we see that the
proposed model achieves significant performance improvement and outperforms all the
baselines. We remark that SPADE with window attention is not only significantly faster
than the Transformer with full attention, but also yields a better performance.

Remark. We remark that we do not need to train the S4 in the bottom layer of SPADE
(S4+window) to achieve the performance in Table 2. That is, we initialize the parameters in
S4 using Eq. 5, and the parameters are frozen during training. This is because even without
training, the initialization of S4 yields intriguing theoretical properties, which facilitates S4’s
ability to capture global information.

5 Language Model Pre-Training

We implement model pre-training using Fairseq, and we implement model fine-tuning using
MT-DNN (Liu et al., 2019a; 2020b). Note that all our experiments only use single task
fine-tuning. Details such as pre-training settings and hyper-parameter settings are deferred
to the appendix.

5.1 Pre-Training Details

To demonstrate the scalability of the proposed method, we pre-train an encoder-decoder
variant of SPADE. The model architecture is the same as T5base (Raffel et al., 2020), except
that we use post-layernorm instead of pre-layernorm to improve model performance (Liu
et al., 2020a; Xiong et al., 2020). The embedding dimension is 768, the hidden dimension of
the FFN is 3072, the number of attention heads is 12, and both the encoder and the decoder
have 12 layers. We add a S4 module to the bottom layer of SPADE, and the parameters of the
S4 are fixed after initialization (Eq. 5). We use the window attention as the local information
extractor, where we set the window size to 128. The model contains about 290M parameters.

We consider two pre-training settings. In the first setting, we follow the pre-training settings
in BERT (Devlin et al., 2019), and we term the trained model SPADEbase. In the second
setting, we follow the pre-training settings in RoBERTa (Liu et al., 2019b), and we term the
trained model SPADEbase++. To facilitate fair comparisons, we also pre-train a T5 model
using the second setting (the model yields better performance than the first setting), and we
term the pre-trained model T5base (re-imp).

We remark that because the S4 module is not trained after proper initialization, and we do
not use fixed-length positional embedding, our pre-trained model can be fine-tuned with
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any sequence length. For example, we can set the sequence length to 16k during fine-tuning,
which is longer than the sequence length used in pre-training.

5.2 Natural Language Understanding

We fine-tune the pre-trained models on the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019), which is a collection of natural language under-
standing tasks. Dataset details are presented in Appendix B. We do not consider the long
sequence setting in these tasks. In the experiments, all models are fine-tuned under the
sequence length of 512.

RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Avg.
Acc Acc/F1 Mcc Acc P/S Corr Acc Acc/F1 Acc Score

T5base 76.9 90.8/– 55.5 92.8 86.5 91.9 90.9/– 84.4/83.5 —
T5base (re-imp) 78.0 91.7/88.6 61.5 93.6 88.2 92.9 91.2/87.9 87.0/86.9 85.1

SPADEbase 77.9 92.2/89.0 63.2 94.0 87.9 92.8 91.6/88.2 87.1/87.2 85.4
SPADEbase++ 80.5 92.3/89.2 64.7 95.9 89.2 93.9 91.7/88.4 89.6/89.2 86.8

Table 3: Experimental results on GLUE development set. The best results are shown in bold.
T5base results are from Raffel et al. 2020. We pre-train a T5 model T5base (re-imp) to facilitate
fair comparisons).

Experimental results are presented in Table 3. We see that both variants of SPADE signifi-
cantly outperforms T5base. For example, T5base has a 83.9 average accuracy on the MNLI
dataset (average of MNLI-m and MNLI-mm); while SPADEbase has a 87.2 average accuracy
(+3.3) and SPADEbase++ has a 89.4 average accuracy (+5.5). Recall that the sequence length
is set to 512, which is the standard setting instead of the long-sequence setting. Therefore,
the results indicate that SPADE is universal in that it is suitable to model both long and
short sequences.

5.3 Natural Language Generation

arXiv CNN/DailyMail
Length R-2 Length R-2

LongT5base 4k 18.54 4k 20.11
LongT5large 16k 21.63 4k 20.51
LongT5xl 16k 21.92 4k 21.40

SPADEbase++ 16k 21.65 4k 20.40
MediaSum MultiNews

Length R-2 Length R-2

LongT5base 4k 18.35 4k 17.37
LongT5large 4k 19.04 8k 18.44
LongT5xl 4k 19.66 8k 19.43

SPADEbase++ 4k 19.03 8k 19.63

Table 4: Experimental results (ROUGE-2) on test
sets. LongT5 results are from Guo et al. 2022.

Figure 4: Performance of models
with different global information ex-
tractors under two sequence length.
We conduct language modeling ex-
periments on Wikitext-103 with win-
dow attention (window=128).

We fine-tune the pre-trained models on several abstractive summarization datasets. Dataset
details are presented in Appendix B. We use ROUGE-2 as the evaluation metric.

We compare SPADE with LongT5 (Guo et al., 2022), which is a state-of-the-art model tailored
for long sequences. Experimental results are summarized in Table 4. From the results, we
see that our model significantly outperforms LongT5. Note that SPADEbase++ have about
290M parameters, while LongT5large contains about 770M parameters and LongT5xl contains
about 3B parameters. From the results, we see that in all the tasks, our base-sized models
have on par or better performance compared with LongT5large. On the MultiNews dataset,
our model even outperforms LongT5xl, which is over ten times larger than our model.
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6 Analysis

6.1 Effectiveness of Global Information Extractors

Recall from Eq. 3 that SSMs are essentially linear recurrent neural networks which can be
computed much more efficiently than conventional RNNs. In Figure 4, we explore model
variants with different global information extractors. Specifically, we equip Transformer
with window attention with either S4 or LSTM (Hochreiter & Schmidhuber, 1997).

From the results, we see that RNNs can indeed capture global information. Also, we see that
SSMs are more effective than RNNs. This is because RNNs suffer from known numerical
problems such as forgetting and gradient explosion/vanishing (Pascanu et al., 2013). On
the other hand, the theoretical properties of SSMs (Gu et al., 2020; 2021; 2022b) can greatly
alleviate such issues.

Figure 5: Efficiency comparison of differnet mod-
els on language modeling tasks.

Figure 6: Performance vs. location
of SSMs. We conduct language mod-
eling experiments with window at-
tention (window=256). By default,
the model has 16 layers, where the
bottom layer is a global layer and
the rest are local layers. Here, “b-
k” means the bottom-k layers are
global layers, “all” means all layers
are global layers, and “top-1” means
the top-1 layer is a global layer.

6.2 Efficiency Comparison

We compare the efficiency of SPADE with other models: Transformer with full attention,
Transformer with window attention, MEGA-chunk, and S4. The results are illustrated in
Figure 5. We see that SPADE is efficient in terms of both training speed and GPU memory
usage. For example, when the sequence length is 6k, Transformer uses about 60GB of GPU
memory, whereas SPADE with window attention only uses 27GB. Moreover, notice that
SPADE also trains significantly faster than the vanilla Transformer under all settings. Notice
that S4 may be less efficient than the vanilla Transformer (e.g., when the sequence length is
3k). This is because in Gu et al. 2022b, each layer of the model contains multiple S4 modules
and expensive non-linear components. Therefore, the per-layer computational cost can
exceed full attention when the sequence is not extremely long.

We remark that even though we add a S4 module to the bottom layer of SPADE, such an
additional module does not induce much computational overhead. We see that both the
training speed and the memory usage of SPADE with window is only marginally different
from those of window-attention Transformer. We have similar observations for the chunk
attention variant.

6.3 Location and Number of Global Layers

Recall that in SPADE, the bottom layer is equipped with a SSM and serves as the global
layer, while the rest are local layers (see Figure 3). In Figure 6, we empirically justify this
design choice.

We investigate the possibility of incorporating more global layers: we set the bottom 1 (the
default choice), 4, 8, and 16 (all) layers as global layers. From the results, we see that model
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Figure 7: Performance with different configurations. Left:
Transformer with full attention using different sequence
length; Right: Transformer with window attention using
different window size and sequence length.

Sequence length
2k 3k 4k 6k

128 19.55 19.42 19.50 19.55
256 18.90 18.95 18.99 19.00
512 18.63 18.64 18.52 18.67

Table 5: Performance of SPADE
with different sequence length
and window size. We conduct
language modeling experiments
on Wikitext-103.

performance decreases as we use more global layers. This is because the SSM in the bottom
layer captures and filters out global information, such that subsequent SSMs only introduce
noise to the intermediate representations.

We also investigate whether the global layer can be the top instead of the bottom layer in
SPADE. From Figure 6, we see that model performance drops significantly. This is because
as a global information extractor, the global layer encodes positional information, on which
the local attention modules rely. Therefore, using the global layer as the top layer is akin
to using Transformer models without positional encoding, which will yield unsatisfactory
performance.

6.4 Different Configurations

We examine how performance changes when the sequence length and window size change.

From Figure 7 (left), we see that when we increase the sequence length from 512 to 3k,
performance of Transformer with full attention increases. However, when we further
increase the sequence length to 4k, model performance drastically drops. This is because in
long sequences, the signal-to-noise ratio is low, such that the full attention may easily fit
to the noise. From Figure 7 (right), we see that performance of Transformer with window
attention increases when we increase the window size. Moreover, model performance
is better with shorter sequences for the same window size. Such findings indicate that
performance of window attention depends on the proportion of information within its
perception.

From Table 5, we see that for the same sequence length, performance of SPADE increases
when we increase the window size. Also, we see that performance of SPADE marginally
decreases when we increase the sequence length from 4k to 6k. Recall from Figure 7 (left) that
performance of Transformer with full attention drastically deteriorates when we increase
the length from 3k to 4k. Such a result indicates that the proposed model is more suitable to
model long sequences.

7 Conclusion and Discussion

We propose SPADE, a state space augmented Transformer model that targets long sequence
modeling. SPADE is a multi-layer Transformer model, where the bottom layer is a global
layer and the rest are local layers. In the global layer, we use a SSM to augment coarse
global information, which are subsequently refined by the following local layers. SPADE
is flexible to accommodate different SSMs such as S4 and S4 as the global information
extractor. We instantiate the local layers with off-the-shelf efficient attention methods,
such as sliding-window attention. The proposed model has near linear time and space
complexity, facilitating it to handle long sequences. We conduct extensive experiments on
the Long Range Arena (LRA) benchmark and language modeling datasets to demonstrate
the effectiveness and efficiency of SPADE. We also pre-train encoder-decoder models to
demonstrate the scalability of SPADE, and we perform fine-tuning experiments on natural
language understanding (GLUE) and natural language generation (summarization) tasks.
In all the experiments, SPADE exhibits superior performance.
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dreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
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A Related Works

In Eq. 1, we have Q, K, V ∈ RL×d, such that computing the attention Attn(X) introduces
O(L2) time and space costs. Such quadratic costs are prohibitive when the sequence length
L is large. There are various attempts to reduce the quadratic time and space complexity of
the vanilla attention.

One approach is to employ sparse attention. That is, each token only attends to a subset of all
the tokens according to pre-defined patterns, e.g., neighboring tokens within a fixed size
window. Some examples include Sparse Transformer (Child et al., 2019), BlockBERT (Qiu
et al., 2020), Longformer (Beltagy et al., 2020), ETC (Ainslie et al., 2020), BigBird (Zaheer
et al., 2020), HEPOS (Huang et al., 2021), and Poolingformer (Zhang et al., 2021).

Another approach is to use low-rank projection. For example, in Linformer (Wang et al.,
2020b), the attention mechanism in Eq. 1 becomes Attn(X) = softmax(Q(EK)⊤/

√
d)(FV).

Here, the two additional parameters satisfy E, F ∈ Rr×L, where r is the projection rank such
that r ≪ L. Similar methods include Nyströmformer (Xiong et al., 2021), Synthesizer (Tay
et al., 2021a), Transformer-LS (Zhu et al., 2021a), and Luna (Ma et al., 2021). However, these
approaches face difficulty when handling causal tasks, such as auto-regressive language
modeling. Specifically, in Eq. 1, we mask out the upper triangular part in the attention score
matrix A ∈ RL×L such that each token can only attend to its previous tokens. However, this
is implausible in Linformer since we project the L × L matrix to a L × r matrix.

Kernel-based approaches can be used to approximate the full attention Attn(X). In these
approaches, the quadratic-time softmax attention is replaced by fast linear-time kernel
approximations (e.g., Gaussian and arc-cosine kernel). Some examples include Linear
Transformer (Katharopoulos et al., 2020), Performer (Choromanski et al., 2021), Random
Feature Attention (Peng et al., 2021), and FMMformer (Nguyen et al., 2021). Both low-rank
projection and kernel-based approaches approximate the full attention, and thus, they often
suffer from non-negligible approximation error.

We can also adopt clustering-based approaches, where we divide Q or K into several clusters,
and only perform inter-cluster attention. Such methods include Reformer (Kitaev et al.,
2020), Clusterformer (Wang et al., 2020a), Sinkhorn Transformer (Tay et al., 2020), Fast
Transformer (Vyas et al., 2020), Routing Transformer (Roy et al., 2021), and FLASH (Hua
et al., 2022).

B Dataset Details

Long Range Arena. We evaluate the effectiveness of the proposed model on Long Range
Arena (LRA, Tay et al. 2021b), which is a benchmark tailored for evaluating models’ ability
in modeling long sequences. The benchmark contains six tasks: ListOps, which tests the
capability of modeling hierarchically structured data (Nangia & Bowman, 2018); byte-level
text classification on the IMDB movie review dataset (Text, Maas et al. 2011); byte-level
document retrieval on the ACL anthology network (Retrieval, Radev et al. 2013); pixel-level
image classification on CIFAR-10 (Image, Krizhevsky et al. 2009); Pathfinder, which tests
the capability in modeling spatial dependency (Linsley et al., 2018); and a longer version of
Pathfinder (Path-X, Tay et al. 2021b).

GLUE. For natural language understanding, we fine-tune the pre-trained models on the
General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), which
is a collection of natural language understanding tasks. The benchmark includes two single-
sentence classification tasks: CoLA (Warstadt et al., 2019) is a linguistic acceptability task;
and SST-2 (Socher et al., 2013) is a binary classification task that classifies movie reviews
to positive or negative. The benchmark also contains three similarity and paraphrase
tasks: STS-B (Cer et al., 2017) is a text similarity task; MRPC (Dolan & Brockett, 2005) is
a paraphrase detection task; and QQP is a duplication detection task. Additionally, there
are natural language inference tasks: MNLI (Williams et al., 2018); QNLI (Rajpurkar et al.,
2016); RTE (Dagan et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009). Statistics of the GLUE benchmark is summarized in Table 7.

17



Published as a conference paper at COLM 2024

Summarization. For natural language generation, we fine-tune the pre-trained models on
several abstractive summarization datasets. The sources and statistics are summarized in
Table 6.

Table 6: Statistics and sources of abstractive summarization datasets.

# Train # Validation # Test Mean Median Max 90th percentile

arXiv (Cohan et al., 2018) 203,037 6,436 6,440 10,720 8,519 378,825 20,170
CNN/DailyMail (Nallapati et al., 2016) 287,113 13,368 11,490 982 894 5,268 1,659
MediaSum (Zhu et al., 2021b) 443,596 10,000 10,000 2,302 1,748 125,974 4,128
MultiNews (Fabbri et al., 2019) 44,972 5,622 5,622 2,594 1,902.5 683,544 4,853

Table 7: Statistics of the GLUE benchmark.

Corpus Task # Train # Dev # Test # Labels Metrics

Single-Sentence Classification
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

C Training Details

C.1 Language Model Pre-Training and Fine-Tuning

For language model pre-training, we consider two pre-training settings:

⋄ SPADEbase: We follow the pre-training settings in BERT (Devlin et al., 2019). Specif-
ically, we train the model on Wikipedia (Devlin et al., 2019) and BookCorpus (Zhu
et al., 2015).

⋄ SPADEbase++: We follow the pre-training settings in RoBERTa (Liu et al., 2019b).
Specifically, we train the model on Wikipedia (Devlin et al., 2019), BookCorpus
(Zhu et al., 2015), STORIES (Trinh & Le, 2018), CC-News (Liu et al., 2019b), and
OpenWebText (Gokaslan et al., 2019).

For language model pre-training and fine-tuning experiments, we use Adam (Kingma &
Ba, 2015) as the optimizer. Hyper-parameters for pre-training are detailed in Table 8; and
hyper-parameters for fine-tuning are detailed in Table 9.

C.2 Long Range Arena

We follow the model architecture settings in Ma et al. 2022. In all the experiments, we use
Adam (Kingma & Ba, 2015) as the optimizer. We use a linear decay learning rate schedule.
The rest of the hyper-parameters are detailed in Table 10.

Table 11 shows additional experimental results, where we compare SPADE with existing
efficient Transformer models.
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Table 8: Hyper-parameters for pre-training.

Parameters Base Base++

Peak Learning Rate 4e-4 2e-4
Batch Size 2,048 2,048
Warmup Steps 10,000 10,000
Total Steps 125,000 2,000,000
Sequence Length 1024 1024
Relative Position Encoding Buckets 32 32
Relative Position Encoding Max Distance 128 128
Adam ϵ 1e-6 1e-6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Clip Norm – 1.0
Dropout 0.1 0.1
Weight Decay 0.01 0.01

Table 9: Hyper-parameters for fine-tuning.

Parameters Range

Learning Rate {2e-5, 4e-5, 5e-5, 1e-4}
Batch Size {16, 32}
Maximum Training Epochs {3, 5, 10}
Dropout 0.1
Warmup Step Rate 0.1
Weight Decay 0.1

C.3 Language Modeling

We follow the settings in Baevski & Auli 2019, including model architecture and hyper-
parameters. For the efficient Transformer variants, we set the window size to 512 when
using window attention, and we set the chunk size to 512 when using chunk attention.
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Table 10: Hyper-parameters for training on LRA.

Task Batch Size Learning Rate Weight Decay Dropout Clip Norm Chunk Size

Listops 64 0.0015 0.0 0.2 1.0 128
Text 100 0.01 0.01 0.2 1.0 128
Retrieval 128 0.004 0.03 0.1 1.0 128
Image 100 0.01 0.02 0.0 1.0 128
Pathfinder 128 0.01 0.01 0.0 1.0 128
Path-X 16 0.01 0.01 0.0 1.0 1024

Table 11: Experimental results on Long Range Arena (LRA). Path-X uses 16k as the input
sequence length, and “✗” indicates unavailable results due to computational constraints.
All the baseline results, except for MEGA-chunk, are from Gu et al. (2022b). MEGA-chunk
results are from Ma et al. (2022).

Dataset Listops Text Retrieval Image Pathfinder Path-X Avg.

Sequence length 2k 4k 8k 1k 1k 16k —

Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67
Transformer (full) (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 ✗ 53.66
Transformer (window) 15.82 52.98 53.39 41.46 66.63 ✗ 46.71
Sparse Trans. (Child et al., 2019) 17.07 63.58 59.59 44.24 71.71 ✗ 51.03
Longformer (Beltagy et al., 2020) 35.63 62.85 56.89 42.22 69.71 ✗ 52.88
Linformer (Wang et al., 2020b) 35.70 53.94 52.27 38.56 76.34 ✗ 51.14
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 ✗ 50.56
Sinkhorn Trans. (Tay et al., 2020) 33.67 61.20 53.83 41.23 67.45 ✗ 51.23
Synthesizer (Tay et al., 2021a) 36.99 61.68 54.67 41.61 69.45 ✗ 52.40
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 ✗ 54.17
Linear Trans. (Katharopoulos et al., 2020) 16.13 65.90 53.09 42.34 75.30 ✗ 50.46
Performer (Choromanski et al., 2021) 18.01 65.40 53.82 42.77 77.05 ✗ 51.18
FNet (Lee-Thorp et al., 2022) 35.33 65.11 59.61 38.67 77.80 ✗ 54.42
Nystromformer (Xiong et al., 2021) 37.15 65.52 79.56 41.58 70.94 ✗ 57.46
Luna-256 (Ma et al., 2021) 37.25 64.57 79.29 47.38 77.72 ✗ 59.37
FMMformer (Nguyen et al., 2021) 36.74 67.84 81.88 45.10 72.12 ✗ 60.74
S4 (Gu et al., 2022b) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
MEGA-chunk (Ma et al., 2022) 58.76 90.19 90.97 85.80 94.41 93.81 85.66

SPADE (window) 59.70 87.55 90.13 89.11 96.42 94.22 86.19
SPADE (chunk) 60.50 90.69 91.17 88.22 96.23 97.60 87.40

20


	Introduction
	Background
	Attention Mechanism
	State Space Models

	Method
	Attention vs. State Space Models
	SPADE: State Space Augmented Transformer

	Experiments
	Long Range Arena
	Language Modeling

	Language Model Pre-Training
	Pre-Training Details
	Natural Language Understanding
	Natural Language Generation

	Analysis
	Effectiveness of Global Information Extractors
	Efficiency Comparison
	Location and Number of Global Layers
	Different Configurations

	Conclusion and Discussion
	Related Works
	Dataset Details
	Training Details
	Language Model Pre-Training and Fine-Tuning
	Long Range Arena
	Language Modeling


