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Abstract
We investigate the problem of generating utter-001
ances from pairs of images showing a before002
and an after state of a change in a visual scene.003
We present a transformer model with differ-004
ence attention heads that learns to attend to vi-005
sual changes in consecutive images via a differ-006
ence key. We test our approach in instruction007
generation, change captioning and difference008
spotting and compare these tasks in terms of009
their linguistic phenomena and reasoning abil-010
ities. Our model outperforms the state-of-the-011
art for instruction generation on the BLOCKS012
and difference spotting on the Spot-the-diff013
dataset and generates accurate referential and014
compositional spatial expressions. Finally, we015
identify linguistic phenomena that pose chal-016
lenges for generation in changing scenes.017

1 Introduction018

Traditionally, work on situated language generation019

had to rely on symbolic representations of visual en-020

vironments, cf. (Dale and Reiter, 1995; Chen et al.,021

2010; Dethlefs and Cuayáhuitl, 2015). Recent work022

has addressed language generation from images of023

visual scenes, e.g., in image captioning (Anderson024

et al., 2018; Cornia et al., 2020), referring expres-025

sion generation (Yu et al., 2016; Panagiaris et al.,026

2020) or visual dialogue (Suhr et al., 2019; Agrawal027

et al., 2015). In other tasks like instruction gener-028

ation, however, symbolic representations are still029

used to represent changing scenes and to model030

reasoning over sequences of states or trajectories031

in an environment (Fried et al., 2017; Köhn et al.,032

2020; Schumann and Riezler, 2021), sometimes in033

combination with images (Fried et al., 2017, 2018).034

In this paper, we investigate natural language035

generation (NLG) in changing scenes from image-036

only input. Our goal is to detect visual changes037

and express them in complex referential and com-038

positional language, without the need for elaborate039

image preprocessing or decomposition as in previ-040

ous work on change detection in computer vision041

Figure 1: Image-pairs from BLOCKS, CLEVR-
Change and Spot-the-diff (top to bottom) with descrip-
tions generated by our best model. The targets and land-
marks are manually highlighted for better view.

(Shi et al., 2020; Oluwasanmi et al., 2019a; Gilton 042

et al., 2020). Furthermore, the idea is to model in- 043

struction generation without the need for symbolic 044

specification of an action trajectory (Fried et al., 045

2018), but to learn both reasoning about changes 046

and verbalizing them from images directly. Thus, 047

we present a transformer that generates a verbaliza- 048

tion of a change given a pair of images showing a 049

“before state” and an “after state” as can be seen 050

in Figure 1. Our model has multiple difference at- 051

tention heads which learn to relate and attend to 052

relevant regions in the before and after image. 053

Image pair-based language generation is useful 054

in various tasks that involve changing scenes, such 055

as instruction giving (Rojowiec et al., 2020), dif- 056

ference spotting (Jhamtani and Berg-Kirkpatrick, 057

2018) or change captioning (Park et al., 2019). 058

Though technically similar, these tasks have been 059

neither modeled in a common framework nor com- 060

pared in terms of the involved linguistic phenomena 061

and reasoning abilities. 062

Our contributions are (i) a novel difference 063
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attention-based model designed to visually ground064

complex compositional referential and spatial lan-065

guage in image pairs (Section 3), (ii) a system-066

atic, qualitative comparison of instruction giving,067

different spotting and change captioning as well068

as the corresponding visual-linguistic reasoning069

phenomena (Section 4), (iii) experiments on these070

three tasks showing that our model achieves similar071

or superior performance to related state-of-the-art072

models for change detection from computer vision073

(CV), see Section 5, according to evaluation with074

automatic metrics, including metrics that aim at075

capturing the identified reasoning abilities.076

2 Related Work077

Instruction Generation is a central task in situ-078

ated NLG, needed in agents that support humans079

in carrying out tasks in a shared environment. Pre-080

vious work on instruction giving in virtual environ-081

ments has developed planning-based frameworks082

for verbalising state and action sequences for a083

human listener, allowing for adaptive generation084

at different levels of detail (Koller et al., 2010;085

Dethlefs and Cuayáhuitl, 2015; Köhn et al., 2020).086

Fried et al. (2017, 2018) extend this line of work087

and propose a speaker model that generates text088

based upon visual input and associated symbolic089

action trajectories, also focussing on pragmatically090

appropriate, adaptive instructions. Hu et al. (2019)091

use verbal instructions as representations for ac-092

tion sequences in decision making for high-level093

planning. Rojowiec et al. (2020), instead, adopt a094

different perspective and model instruction gener-095

ation for very local changes in a scene, learning096

directly from image pairs. Here, the focus is less097

on pragmatics and more on the semantic and ref-098

erential accuracy of the instruction, which is diffi-099

cult to achieve without a symbolic representation.100

Our work adopts Rojowiec et al.’s set-up, but out-101

performs their model and compares it to work on102

change captioning and difference spotting.103

Change Detection and Captioning Change de-104

tection and its verbalization is an important task105

in CV, e.g. in captioning surveillance videos (Oh106

et al., 2011) or remote sensing images (Liu et al.,107

2018), and builds upon captioning of single im-108

ages, one of the most well-understood tasks in lan-109

guage & vision. In image captioning, a successful110

encoding of the visual input that captures an im-111

age’s content, its objects and their spatial relations112

has proven to be central (Bernardi et al., 2016; Lu113

et al., 2017; Anderson et al., 2018; Yao et al., 2018; 114

Yang et al., 2019). A well-known attention mech- 115

anism is self-attention (Xu et al., 2015), which is 116

also part of recent image captioning transformers 117

(Herdade et al., 2019; Cornia et al., 2020). For 118

captioning changes, Park et al. (2019)’s recurrent 119

DUDA model exploits differences in latent space. 120

Shi et al. (2020) expand on this by slicing the image 121

into different patches and patch-wise-comparing 122

differences which helps in distinguishing regions 123

where changes occurred from non-changed regions. 124

Oluwasanmi et al. (2019a,b) use a siamese network 125

to encode before and after state, apply a contrastive 126

function on both and then iteratively use softmax 127

attention over the contrastive image in the decoder. 128

While these approaches rely on elaborate methods 129

for decomposing the visual input into regions of 130

relevant semantic features and recurrent neural net- 131

works for decoding, we present a relatively simple 132

encoder component as part of a transformer model 133

which is, in contrast to existing work in image cap- 134

tioning, able to encode and attend to differences 135

between a given pair of input images. 136

Visual Reasoning in L&V is often understood as 137

the task of interpreting complex compositional phe- 138

nomena like questions, comparisons, spatial expres- 139

sions, quantification or counting (Suhr et al., 2017, 140

2019; Johnson et al., 2017; Li et al., 2019; Tan and 141

Bansal, 2019; Shridhar et al., 2020; Li et al., 2020). 142

Similarly to our set-up, NLVR (Suhr et al., 2017) 143

involves determining the truth value of statements 144

about two different images. Also highly related is 145

work on instruction following (Misra et al., 2018; 146

Chen et al., 2019) where the agent needs to resolve 147

instructions to reach a goal state. In our case, the 148

current and the goal state are given and the agent 149

needs to generate a corresponding utterance. Our 150

set-up involves different phenomena of visual rea- 151

soning, described in Section 4. 152

3 Model 153

We present a transformer model that generates ut- 154

terances from a pair of images showing a before 155

state and an after state of a change in a visual scene. 156

To achieve this, we implement a difference atten- 157

tion head that computes an attention map for an 158

image based on the difference to its before image 159

(Section 3.1). We use this head to encode visual 160

changes on different levels of granularity (Section 161

3.2). This encoder is hooked up with a standard 162

transformer (Section 3.3). 163
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3.1 Difference Attention on Image-Pairs164

A core element of the standard transformer165

(Vaswani et al., 2017) is the self-attention head,166

which computes an attention map over values V167

given queries Q and keys K:168

Attention(Q,K,V) = softmax(
QKᵀ

√
dk

)V (1)169

When processing word sequences, the query, key170

and value of a self-attention head are given by the171

embedding of a word. A very simple way to pro-172

cess image pairs alike with this head, is to allocate173

two self-attention heads H = 2: one for the before174

image embedding v1 and one for the after image175

embedding v2 such that there are as many images176

as heads with Q = K = V = vi and defined as:177

hi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2)178

Now, we propose a difference attention head that179

exploits an explicit representation of the difference180

between the before and after state when computing181

the attention map. In line with Park et al. (2019),182

we simply substract the before from the after image.183

As there is no before image for v1, we obtain two184

difference attention heads for our image pair: (i) h1185

with K = c1 = 0, (ii) h2 with K = c2 = v2 − v1.186

In line with Park et al. (2019), we scale the out-187

put of the difference with a trainable parameter γ188

and sum it with the image features for that attention189

head (weights are omitted for better readability, but190

applied as in Equation 2):191

hi = γ · Attention(vi, ci, vi) + vi (3)192

This simple modification of self attention takes193

the idea of difference images from Park et al. (2019)194

and implements difference attention heads in a sim-195

ilar way as cross-modal attention in V&L trans-196

formers (Tan and Bansal, 2019; Lu et al., 2019).197

3.2 Attending to In-between Images198

We hypothesize that, to fully leverage the power199

of difference attention, more heads, i.e. a longer200

sequence of visual inputs, might be beneficial for201

grounding and generating utterances. Thus we in-202

crease the number of difference attention heads203

to H = {4, 8}, where vH is the after image, and204

we define a way to compute “in-between image205

features” for the additional heads:206

vt = v1 + ct (4)207

Figure 2: We simulate a trajectory of images with incre-
mental changes given only a before and an after image
to apply difference attention with higher granularity.

Inutitively, the in-between images represent the 208

trajectory from the before to the after state, as 209

shown in Figure 2. Formally, we define ct as the 210

weighted difference features, where the weight is 211

the relative position in the trajectory between v1 212

and vH . Thus, each attention head receives im- 213

age features representing a different degree of the 214

visual change given by vH − v1: 215

ci =
i− 1

H − 1
· (vH − v1) where i ∈ [1, H] (5) 216

Finally, a single-layer feed forward network 217

maps from the high-dimensional visual image 218

space 2048× 14× 14 to the reduced visual word 219

space of 512 dimension ĥi = r(hi) and a down- 220

stream standard transformer receives the stacked 221

sequence of visual words that represent various 222

levels of change: 223

V = [ĥ1; ...; ĥH ] (6) 224

The number of attention heads H is a hyperpa- 225

rameter, which can also be interpreted as a measure 226

of granularity for the simulated visual feature trajec- 227

tory {v1, ..., vt, ..., vH} where later image features 228

contain more and more changes starting from the 229

before image v1. We report results for 2 and 8 head- 230

sto show the effects of a longer trajectories, leaving 231

further experimentation for future work. As base- 232

lines, we implement a standard transformer, TF- 233

self-att, that computes an attention map for every 234

encoded image of step i simply with self-attention 235

(see Figure 3). These are compared to TF-diff-att, 236

the transformer with difference attention. Figure 3 237

shows how self and difference attention process a 238

sequence of before, in-between and after images. 239
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IBetween IAfterIBefore

(b) Difference attention

Figure 3: Sequential self and difference attention

3.3 Overall Architecture240

We encode the before and after images with a pre-241

trained ResNet-101 architecture (He et al., 2016)242

trained on ImageNet, without any further prepro-243

cessing (like e.g. object detection). Our image pair244

encoder optionally transforms the image pair into245

a longer sequence containing in-between images.246

This trajectory is processed by a difference atten-247

tion layer and then mapped to a sequence of visual248

words as shown in Figure 2. We apply positional249

encoding to the visual words generated by the im-250

age pair encoder to introduce temporal information251

into the encoded input. These visual words are252

processed like embedded word tokens within the253

6 layers of the multi-head-attention-based trans-254

former encoder. In the transformer decoder, an255

embedding layer first maps the words to vectors256

and then applies masked-self-attention followed by257

encoder-decoder attention which relates the visual258

words to words in the caption. In this architecture,259

difference and self-attention are used consecutively260

one after the other. In future work, further combi-261

nations can be investigated.262

The recurrent DUDA model (Park et al., 2019),263

which is an important baseline in our experiments,264

uses a different way to compute attention maps265

based on image differences: first, the difference im-266

age is concatenated with the latent before and after267

image. Second, a self-attention map is computed268

over each of these and, third, another attention map269

over the attended concatenated before, after and270

difference image. Here, intuitively, the different271

visual inputs are kept separate and the model has to272

learn when to look at the before, after or difference273

image. Our approach, in contrast, incorporates dif-274

ferences as a key into the attention head. Intuitively,275

this corresponds to the idea that the difference im-276

age relates the after to the before image and that277

attention maps should capture these relations.278

4 Tasks, Environments and Phenomena 279

We investigate different tasks for generation in 280

changing scenes (Section 4.1). We describe their 281

linguistic differences (Section 4.2 and 4.3), and 282

discuss strengths and weaknesses (Section 4.4). 283

4.1 Tasks and Environments 284

Instructions BLOCKS (Bisk et al., 2016) is a 285

dataset of movement instructions for blocks on a 286

simple virtual 3D board (see Figure 1). The image 287

pairs have been generated by down-sizing MNIST 288

images, decorating the resulting blocks with digits 289

or brand logos and randomly move the block’s pix- 290

els to other positions, one at a time. This sequence 291

in reverse order corresponds to an action sequence 292

for assembling a block configuration that visually 293

represents a number. For each single action, i.e. im- 294

age pair, Bisk et al. (2016) collected 9 natural lan- 295

guage instructions from 3 different crowd-workers. 296

The workers were asked to provide instructions as 297

if they would give them to another person in or- 298

der to transform the block configuration. While 299

BLOCKS was originally designed for instruction 300

following, Rojowiec et al. (2020) analyze its use 301

for instruction giving. 302

Differences Spot-the-diff (Jhamtani and Berg- 303

Kirkpatrick, 2018) provides pairs of similar images 304

extracted from real-word surveillance videos. The 305

image pair shows a scene from the same viewpoint 306

in different, but similar states (according to L2 dis- 307

tance) resulting in very subtle differences that are 308

difficult to spot. Jhamtani and Berg-Kirkpatrick 309

(2018) collected descriptions of these pairs via 310

crowdsourcing and instructed workers to “carefully 311

study the image”, “give sufficient time as some dif- 312

ference may not be obvious" and to provide com- 313

plete English sentences for each difference. 314

Changes CLEVR-Change (Park et al., 2019) pro- 315

vides synthetic captions for images with changes in 316

a virtual 3D-scene with objects of different shapes 317
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and colors. The image pairs are generated in John-318

son et al. (2017)’s CLEVR framework and show319

a change affecting a property of a single object320

in the scene: (i) color, (ii) texture, (iii) location,321

(iv) object added, (v) object removed. A template-322

based generator was used to produce up to 9 differ-323

ent captions of varying length for each pair. Park324

et al. (2019)’s work is motivated by applications325

in surveillance and satellite imagery so that they326

include distractor pairs with non-semantic changes,327

i.e. change of camera angle or illumination. We328

do not include this subset in our experiments, in329

order to avoid introducing to many conceptual dif-330

ferences between our tasks (i.e. BLOCKS and331

Spot-the-diff contain semantic changes only).332

4.2 Reference333

Reference to objects in the environment is an im-334

portant phenomenon in all our tasks, though their335

referring expressions differ in complexity.336

Target object references In all our set-ups, the337

reference to a target object that changed one of its338

properties or (dis)-appeared is a key element of339

the caption. Thus, if an instruction in BLOCKS340

does not mention the correct target, a potential fol-341

lower will not be able to execute it in any way.342

Similarly, in Spot-the-diff and CLEVR-change the343

meaningfulness of the caption hinges on the men-344

tion of the proper target. In BLOCKS, there is one345

ground-truth target object for each image pair that346

is generally referred to by its identifying logo, e.g.347

the Heineken box in Figure 1. Thus, references348

to targets in BLOCKS can be detected in human349

and generated captions with a simple, rule-based350

instruction parser (Rojowiec et al., 2020). In Spot-351

the-diff, there might be several target objects and352

they are referred to by a more complex vocabulary,353

e.g. additional people in Figure 1. The dataset354

does not provide a language-external annotation355

for ground-truth target objects and they cannot be356

easily detected in an automatic way. In CLEVR-357

change, expressions referring to targets correspond358

to the templates of the generator, i.e. they consist359

of a noun for the shape of the object and optional360

adjectives referring to the size, color or texture of361

the object, e.g. the tiny cylinder in Figure 1. This362

template can be automatically detected by a parser363

reverting the generator.364

Landmark object references As the instruc-365

tions in BLOCKS require detailed descriptions of366

block configurations, they commonly contain refer- 367

ences to landmark objects, e.g. right of the Burger 368

King block in Figure 1. In contrast to the target 369

objects, there might be several landmarks produced 370

by different crowd-workers. Generating one of the 371

correct landmarks is important for the success of 372

the instruction, as the BLOCKS environments pro- 373

vides few other means of verbalizing the movement 374

and target location of the target object. A portion of 375

the captions in CLEVR-change also contains land- 376

marks as part of some of the templates of the gen- 377

erator. By qualitative inspection of Spot-the-diff, 378

we establish that landmark objects are mentioned 379

occasionally (e.g. person behind black suv, cf. p.3 380

(Jhamtani and Berg-Kirkpatrick, 2018)), but less 381

systematically as in BLOCKS and CLEVR-change. 382

4.3 Reasoning 383

Our set-ups vary further with respect to phenomena 384

related to compositional visual reasoning. 385

Compositional spatial expressions Many in- 386

structions in BLOCKS contain complex, composi- 387

tional spatial expressions with one or more embed- 388

ded prepositional and verb phrases, e.g. place it 389

lined up directly to the right of ... in Figure 1. Spot- 390

the-diff and CLEVR-change are much less complex 391

in this regard. For instance, the template for loca- 392

tion changes in CLEVR-change corresponds to the 393

simple pattern: object X has changed its location. 394

Spot-the-diff features occasional, simple spatial ex- 395

pressions, e.g. people in the middle of the court, cf. 396

p.4 (Jhamtani and Berg-Kirkpatrick, 2018). 397

Types of changes BLOCKS instructions feature 398

one type of visual change, i.e. block movement. 399

Here, CLEVR-change is the most complex dataset 400

as captions need to distinguish and refer to 5 differ- 401

ent change types. Many Spot-the-diff descriptions 402

refer to the (dis)-appearance of objects, but some 403

also describe movements. 404

Changing object properties Objects in 405

BLOCKS and Spot-the-diff do not change their 406

internal properties whereas objects in CLEVR- 407

change do change their color or texture (cf. Figure 408

1), resulting in a complex representation task 409

regarding the identity of objects. 410

4.4 Summary 411

The set-ups we investigate in this work are highly 412

similar in terms of the modeling task, i.e. gener- 413

ating an utterance given a pair of images show- 414
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ing similar states of the same scene. At the same415

time, different visual environments and data col-416

lections led to substantial differences in the rea-417

soning abilities that the models will need to ac-418

count for, see Table 5 in Appendix A.1 for an419

overview. Generally, BLOCKS and Spot-the-diff420

exhibit more linguistic complexity than CLEVR-421

change: BLOCKS instructions have been collected422

in a dialogue-inspired setting and the resulting ut-423

terances are varied, goal-oriented and contain com-424

plex spatial expressions. Spot-the-diff utterances425

are more descriptive and might not naturally occur426

in situated dialogue, but they still refer to complex427

real-world scenes and draw on a natural vocabulary.428

CLEVR-change captions are synthetic and do not429

constitute natural dialogue data, but they exhibit430

greater complexity in terms of visual reasoning,431

i.e. detecting changes of different types, including432

changes of internal object properties.433

5 Experiments434

5.1 Data435

BLOCKS: We use the MNIST-logo subset with436

constellations of up to 20 cubes with distinct logos.437

It is split into 667/95/181 image pairs for train-438

ing, validation and testing and 6003/855/1629439

captions respectively (9 per image pair).440

Spot-the-Diff: We use the entire dataset of441

9524/1634/1404 image-pairs for training, valida-442

tion and testing and 17676/3310/2107 captions443

respectively. When an image-pair has less than 3444

captions, we re-sample from the given ones, so that445

during training each pair is seen 3 times per epoch.446

CLEVR-Change: We use the splits from Park447

et al. (2019), but only the semantic change subset448

with 33830/1988/3985 image-pairs for training,449

validation and testing and 250415/14651/29654450

captions, i.e. up to 9 captions per image-pair (avg.451

7.4 captions). We sample in the same way as above,452

so that each image-pair is seen 9 times per epoch.453

5.2 Training and Hyperparameters454

We encode the before and after image separately455

using a pre-trained ResNet-101 with the last layer456

cut off which results in image embeddings of size457

2048× 14× 14 by applying adaptive pooling. The458

word embedding layer in the transformer decoder459

is trained from scratch with a size d of 512. We use460

Adam optimizer with a learning rate of 10−4 and461

a batch size of 8/16 for training with 8/2 heads462

respectively. We also perform early stopping af- 463

ter 5 epochs without improvement on the valida- 464

tion set and apply Label Smoothing as proposed 465

by Vaswani et al. (2017). The training on a single 466

NVIDIA Titan X GPU took up to three days for 467

the CLEVR-Change dataset. 468

For BLOCKS, it turned out to be necessary to 469

fine-tune the image encoder to recognize the small 470

logos distinguishing the single blocks. The train- 471

ing regime on BLOCKS is a two-stage process: 472

the models (DUDA and our transformer models) 473

are first trained with a freezed, pre-trained image 474

encoder, and then trained again by allowing gradi- 475

ents in the image encoder. For Spot-the-diff and 476

CLEVR-Change, we do not fine-tune the image en- 477

coder to ensure comparability with previous work. 478

5.3 Evaluation Metrics 479

We measure the overlap of generated and human 480

captions with BLEU-4, METEOR, CIDEr and 481

SPICE, using the API of Chen et al. (2015). Fur- 482

thermore, we assess the models’ reasoning abilities 483

on BLOCKS and CLEVR-change, according to the 484

phenomena in Section 4. 485

For BLOCKS, we rely on Rojowiec et al. 486

(2020)’s parser which detects expressions (phrases) 487

referring to targets and landmarks in ground-truth 488

and generated instructions. Following Rojowiec 489

et al., we compute these word or phrase accuracies: 490

(i) target: correctly generated targets, given all 491

generated target phrases (ii) landmark: correctly 492

generated landmarks, mentioning one of the land- 493

marks logos from the set of landmarks found in 494

the ground-truth instructions (iii) spatial: correctly 495

generated words not contained in target and land- 496

mark phrases, as a simple metric for measuring 497

overlap of spatial expressions. 498

For CLEVR-change, we write a similar parser 499

that detects the template that was used to gener- 500

ate the caption. Based on the parser output, we 501

compute the following accuracies: (i) type: por- 502

tion of captions mentioning the correct change type 503

(i.e. color, texture, add, drop, move) (ii) target– 504

color, target-shape, target-material: portion of 505

correctly generated color/shape/material attributes 506

in target references (iii) landmark-color, land- 507

mark-shape, landmark-material: analogous to 508

target accuracies. 509

5.4 Results 510

Qualitative samples of generation outputs are 511

shown in Figure 1. 512
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General performance across tasks Our trans-513

former models with difference attention, TF-diff-514

att-2 and TF-diff-att-8, outperform state-of-the-art515

models for instruction generation (see BLOCKS516

results in Table 1) and difference spotting (see Spot-517

the-diff results in Table 2) in terms of all n-gram518

overlap metrics. Our version of DUDA trained on519

BLOCKS improves considerably over the results520

by Rojowiec et al. (2020), but not over our TF-diff521

models. On Spot-the-diff, as shown in Table 2,522

existing systems (mostly developed in the CV com-523

munity) still obtain relatively low overlap scores.524

TF-diff-2 and TF-diff-8 improve over the state-of-525

the-art set by the M-VAM model on Spot-the-diff,526

with a particularly strong increase of the CIDEr527

score (0.425 and 0.843 respectively). Table 3 shows528

that the TF-diff models do not achieve state-of-529

the-art performance on CLEVR-change, but obtain530

similar SPICE scores as the DUDA model (see Ap-531

pendix for other metrics and below for further anal-532

ysis). In the majority of tasks and settings, trans-533

formers with difference attention outperform the534

standard self attention (TF-self models). This in-535

dicates that generation tasks with changing scenes536

involve complex visual and linguistic reasoning,537

which cannot be easily achieved with self attention.538

In-between images On BLOCKS, TF-diff-8539

clearly outperforms TF-diff-2, whereas on Spot-540

the-diff, TF-diff-2 outranks TF-diff-8. This sug-541

gests that difference attention on in-between im-542

ages is beneficial for visual grounding of com-543

plex spatial configurations and landmarks, which544

are not prominent in Spot-the-Diff. On CLEVR-545

change, TF-diff-2 outperforms TF-diff-8 on the546

change type ‘ADD’ subset, which is in line with the547

performance of TF-diff-2 on Spot-the-diff (where548

it is common that new objects are added/appear549

in the after image). At the same time, TF-diff-550

8 outperforms TF-diff-2 on ‘MOVE’ changes in551

CLEVR-change which is in line with our results552

on BLOCKS (where objects are moved). Thus, our553

attention mechanisms behave similarly for similar554

reasoning abilities across the different tasks.555

Reference On BLOCKS, the TF-diff-8 model556

greatly outperforms the competitive DUDA model557

in terms of accuracies on target and landmark ref-558

erence, cf. Table 1. We note that the DUDA model559

performs better in generating references to targets560

(59% target accuracy on BLOCKS, and above 90%561

on CLEVR-change) as compared to landmarks562

Model B M C Target Landm Other

LSTM+Att* 0.38 0.28 0.27 0.11 0.28 -
DUDA 0.53 0.37 0.96 0.59 0.42 0.66

TF-self-att-2 0.34 0.28 0.35 0.19 0.26 0.76
TF-self-att-8 0.44 0.32 0.66 0.37 0.45 0.72
TF-diff-att-2 0.55 0.38 1.06 0.73 0.40 0.80
TF-diff-att-8 0.68 0.43 1.52 0.86 0.73 0.83

Table 1: BLOCKS results: B(LEU-4), M(eteor),
C(ider) and word accuracies (see Section 5.3),
LSTM+Att* as reported in Rojowiec et al. (2020).

Model B M C S

DUDA* 0.081 0.115 0.34 -
FCC* 0.099 0.129 0.368 -
SDCM* 0.098 0.127 0.363 -
DDLA* 0.085 0.12 0.328 -
M-VAM + RAF* 0.111 0.129 0.425 0.171

TF-self-att-2 0.109 0.135 0.777 0.197
TF-self-att-8 0.110 0.136 0.786 0.191
TF-diff-att-2 0.117 0.137 0.843 0.205
TF-diff-att-8 0.113 0.136 0.842 0.202

Table 2: Spot-the-diff results: B(LEU-4), M(eteor),
C(IDEr), S(PICE). *Models as reported in Shi et al.
(2020)

SPICE
Model Color Texture Add Drop Move

DUDA* 0.21 0.18 0.22 0.22 0.15
M-VAM + RAF* 0.30 0.30 0.32 0.33 0.30

TF-self-att-2 0.19 0.17 0.18 0.20 0.18
TF-self-att-8 0.20 0.17 0.15 0.20 0.18
TF-diff-att-2 0.20 0.20 0.24 0.21 0.21
TF-diff-att-8 0.22 0.23 0.23 0.25 0.26

Table 3: CLEVR-change results: SPICE for test sets
split up by change types: Color(C), Texture (T), Add
(A), Drop (D), Move (M). DUDA is trained on the en-
tire CLEVR-change data, the TF and M-VAM models
on semantic changes only. *Models as reported in Shi
et al. (2020).

Model Type Target Landmark
S C T S C T

DUDA 0.79 0.95 0.99 0.88 0.38 0.24 0.24
TF-self-2 0.41 0.64 0.63 0.65 0.29 0.29 0.21
TF-self-8 0.42 0.65 0.61 0.63 0.36 0.31 0.25
TF-diff-2 0.45 0.70 0.67 0.68 0.34 0.28 0.23
TF-diff-8 0.47 0.74 0.72 0.72 0.32 0.31 0.24

Table 4: CLEVR-change: accuracies for change
types (type) and word accuracies for S(hape), C(olor),
T(exture) in target/landmark references. DUDA is
trained on the entire CLEVR-change data, the TF mod-
els on semantic changes only.
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(42% landmark accuracy on BLOCKS, and below563

40% on CLEVR-change). This pattern has, to the564

best of our knowledge, not been observed in previ-565

ous work (Park et al., 2019; Shi et al., 2020). On566

BLOCKS, our TF-diff-2 model clearly improves567

DUDA’s target accuracy (73% acc. for TF-diff-568

2), but performs similarly on the landmarks (40%569

acc. for TF-diff-2). The TF-diff-8 model gives570

further improvement on target objects (86%) and571

a great improvement on landmarks (73%). This572

shows that the in-between images combined with573

difference attention heads allow the transformer574

model to not only attend to target objects but also575

to “close-by” landmark objects, i.e. relating the576

before to the after image. These relations do not577

seem to be captured well in DUDA’s dual attention.578

This is further illustrated by the example attention579

maps for TF-diff-att-8 in Figure 5 and DUDA in580

Figure 6 in Appendix A.2. While the DUDA map581

is rather fuzzy, the attention of TF-diff-att-8 model582

is located rather precisely on the target block, its583

target location and nearby landmarks. Similar ten-584

dencies for target and landmarks can be found in585

CLEVR-change, i.e. DUDA performs much worse586

on landmarks than on targets. Here, however, our587

transformers are clearly below DUDA’s target accu-588

racy. As we discuss below, this seems to result from589

the fact that the transformers do not learn certain590

other visual reasoning abilities on that dataset.591

Change types and changing objects The eval-592

uation on CLEVR-change in Table 6 shows an593

important limitation of our transformers: while594

DUDA accurately distinguishes between types of595

changes (e.g. color, add or move changes), all596

transformers tend to confuse them, e.g. TF-diff-8597

achieves 47% and DUDA 79% acc. on change598

type detection. The confusion matrix in Table 8599

(Appendix A.3) shows that the TF-diff-8 model of-600

ten confuses changes of internal objects properties601

(color or texture) with moving and (dis)-appearing602

objects. This also explains why the TF-models per-603

form below state-of-the-art models on this dataset.604

The example attention maps for TF-diff-att-8 in Fig-605

ure 4 in Appendix A.2 further illustrates that our606

transformer does not seem to learn how to exploit607

the sequential difference attention for reasoning608

in CLEVR-change. Here, DUDA’s dual attention609

(see Section 3.3) that treats the difference image610

as a parallel input modality (concatenated with the611

before and after state) seems to be a more adequate612

way of representing different visual states.613

5.5 Summary and discussion 614

Our experiments show that instruction generation, 615

change description and difference spotting accom- 616

modate different requirements for reasoning and 617

generation in changing scenes. Our transformers 618

achieve state-of-the performance on tasks that fo- 619

cus on linguistically complex, human-like descrip- 620

tions of visual changes that involve moving or dis- 621

appearing objects, i.e. instructions in BLOCKS 622

and difference descriptions in Spot-the-diff. More 623

work is needed to extend our approach with more 624

flexible difference attention to be able to capture 625

visual changes that affect internal object properties, 626

i.e. as in CLEVR-change captions. More generally, 627

we believe that analyzing the linguistic phenomena 628

underlying these and other generation tasks and 629

creating datasets that combine them in a systematic 630

way is a highly fruitful direction for future work. 631

Two phenomena that stand out in our experiments 632

are (i) target-landmark configurations, which have 633

received a lot of interest in traditional NLG (Clarke 634

et al., 2013) and are relevant in, e.g., navigation 635

(Schumann and Riezler, 2021) (ii) changing object 636

properties, which might be highly relevant in com- 637

plex real-world domains like, e.g. cooking (Yang 638

et al., 2016). Another direction for future work is 639

reliable set-ups for human evaluation, a vital topic 640

in current NLG research (Howcroft et al., 2020; 641

Belz et al., 2020). We believe that the tasks inves- 642

tigated here will pose their own challenges as, for 643

instance, the difference between two images can be 644

difficult to spot even for humans. 645

6 Conclusion 646

We have investigated language generation in chang- 647

ing scenes. We proposed a simple difference atten- 648

tion head that relates consecutive images in an input 649

trajectory via a difference key. Our method sets a 650

new state-of-the-art on BLOCKS (Bisk et al., 2016) 651

and Spot-the-diff (Jhamtani and Berg-Kirkpatrick, 652

2018). We have shown that it is important to disen- 653

tangle reasoning abilities resulting from differences 654

in environments and data collections for change- 655

related generation tasks. We conclude that our ap- 656

proach is able to model situated instruction giving 657

for local changes on controlled visual inputs, while 658

more work is needed to scale it to more realistic 659

inputs and to longer sequences of states that are 660

often looked at in situated interaction with sym- 661

bolic representations like (Dethlefs and Cuayáhuitl, 662

2015; Fried et al., 2018; Köhn et al., 2020). 663
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A Appendix 918

A.1 Dataset overview 919

Table 5 shows a tabular overview of the tasks, en- 920

vironments and datasets used in this work. The 921

Table summarizes the descriptions and discussion 922

in Section 4. 923

A.2 Attention maps 924

Figure 4 and 5 show attention maps for the TF-diff- 925

att-8 model on CLEVR-change and BLOCKS. The 926

attention map for BLOCKS suggests that the model 927

was able to precisely locate target and landmark ob- 928

jects, whereas the map on CLEVR-change does not 929

indicates that the model detected a color change. 930

Figure 7 shows an example of a very accurate at- 931

tention map computed by the TF-diff-att-2 model 932

on Spot-the-diff. Figure 6 shows an attention map 933

of the DUDA model on BLOCKS, for the same 934

scene shown in Figure 5. This example clearly il- 935

lustrates that DUDA’s dual attention mechanism 936

exploits difference images in a very different way 937

than our transformer, i.e. the attention map is much 938

less focused on particular image regions. 939

A.3 Additional results on CLEVR-change 940

Table 6 shows CIDEr, METEOR and SPICE scores 941

for our transformer models and three baselines on 942

CLEVR-change. Overall, the transformer mod- 943

els are below the state-of-the-art set by the M- 944

VAM+RAF model from Shi et al. (2020), as dis- 945

cussed in Section 5. Generally we believe that the 946

most informative metrics on CLEVR-change are 947

the accuracies reported in Table 4 as the captions 948

in CLEVR-change are synthetic and use a rather 949

small vocabulary. 950

Figure 8 shows the confusion matrix for change 951

types: we identified the detected change types in 952

generated captions using the caption parser and 953

compare them to the ground-truth type. 954
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BLOCKS Spot-the-diff CLEVR-change
task instruction giving difference spotting change captioning
language human human synthetic
objects virtual blocks (logos) real objects virtual objects (color, shape, texture)
changes moves moves, (dis-)appearance color, texture, moves, (dis)-

appearance
phenomena logo identification, landmarks, spa-

tial expressions
hardly visible changes, real-world
target/landmark objects

landmarks, change types, changing
object properties

Table 5: Overview of datasets summarizing Section 4

Figure 4: TF-diff-att-8 attention
map on CLEVR-Change for the
example from Fig. 1

Figure 5: TF-diff-att-8: exam-
ple caption and attention map on
BLOCKS

Figure 6: DUDA: example atten-
tion map on BLOCKS for the
same example as in Figure 5

CIDEr METEOR SPICE
Model C T A D M C T A D M C T A D M

DUDA (with distractors)* 1.20 0.87 1.08 1.03 0.56 0.33 0.27 0.33 0.31 0.24 0.21 0.18 0.22 0.22 0.15
M-VAM + RAF (with distractors)* 1.22 0.98 1.26 1.16 0.82 0.36 0.32 0.38 0.36 0.28 0.28 0.27 0.31 0.32 0.23
M-VAM + RAF (w/o distractors)* 1.35 1.08 1.30 1.13 1.07 0.38 0.36 0.38 0.37 0.36 0.30 0.30 0.32 0.33 0.30

TF-self-att-2 0.69 0.44 0.56 0.47 0.43 0.27 0.25 0.27 0.27 0.26 0.19 0.17 0.18 0.20 0.18
TF-self-att-8 0.77 0.57 0.27 0.60 0.45 0.29 0.27 0.22 0.29 0.26 0.20 0.17 0.15 0.20 0.18
TF-diff-att-2 0.62 0.49 0.77 0.45 0.57 0.29 0.28 0.32 0.28 0.28 0.20 0.20 0.24 0.21 0.21
TF-diff-att-8 0.68 0.58 0.60 0.62 0.80 0.30 0.30 0.29 0.31 0.32 0.22 0.23 0.23 0.25 0.26

Table 6: Detailed breakdown of results on the CLEVR-Change Data set by change types: Color(C), Texture (T),
Add (A), Drop (D), Move (M). Our models have only been trained on the semantic change set. *We report the
results as provided by the authors in Shi et al. (2020)

Figure 7: TF-diff-att-2 attention map on Spot-the-diff
for the example from Fig. 1

Figure 8: Confusion of change types in TF-diff-att-8
captions for CLEVR-change, change types in ground
truth and generated captions are automatically recog-
nized with a rule-based parser
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