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Abstract

‘We investigate the problem of generating utter-
ances from pairs of images showing a before
and an after state of a change in a visual scene.
We present a transformer model with differ-
ence attention heads that learns to attend to vi-
sual changes in consecutive images via a differ-
ence key. We test our approach in instruction
generation, change captioning and difference
spotting and compare these tasks in terms of
their linguistic phenomena and reasoning abil-
ities. Our model outperforms the state-of-the-
art for instruction generation on the BLOCKS
and difference spotting on the Spot-the-diff
dataset and generates accurate referential and
compositional spatial expressions. Finally, we
identify linguistic phenomena that pose chal-
lenges for generation in changing scenes.

1 Introduction

Traditionally, work on situated language generation
had to rely on symbolic representations of visual en-
vironments, cf. (Dale and Reiter, 1995; Chen et al.,
2010; Dethlefs and Cuayahuitl, 2015). Recent work
has addressed language generation from images of
visual scenes, e.g., in image captioning (Anderson
et al., 2018; Cornia et al., 2020), referring expres-
sion generation (Yu et al., 2016; Panagiaris et al.,
2020) or visual dialogue (Suhr et al., 2019; Agrawal
et al., 2015). In other tasks like instruction gener-
ation, however, symbolic representations are still
used to represent changing scenes and to model
reasoning over sequences of states or trajectories
in an environment (Fried et al., 2017; Kohn et al.,
2020; Schumann and Riezler, 2021), sometimes in
combination with images (Fried et al., 2017, 2018).

In this paper, we investigate natural language
generation (NLG) in changing scenes from image-
only input. Our goal is to detect visual changes
and express them in complex referential and com-
positional language, without the need for elaborate
image preprocessing or decomposition as in previ-
ous work on change detection in computer vision
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AFTER CAPTION

GT: Place the Heineken box so
that it touches the Burger
King box on the right side

TF-diff-8:

GT: The tiny cylinder changed
to brown

TF-diff-8:
The small purple matte
{Gylindethat i in front of
the big cyan'shiny ball
changed to brown

GT: 4 additional people are
present in the after photo
TRdiff8:

Figure 1: Image-pairs from BLOCKS, CLEVR-
Change and Spot-the-diff (top to bottom) with descrip-
tions generated by our best model. The targets and land-
marks are manually highlighted for better view.

(Shi et al., 2020; Oluwasanmi et al., 2019a; Gilton
et al., 2020). Furthermore, the idea is to model in-
struction generation without the need for symbolic
specification of an action trajectory (Fried et al.,
2018), but to learn both reasoning about changes
and verbalizing them from images directly. Thus,
we present a transformer that generates a verbaliza-
tion of a change given a pair of images showing a
“before state” and an “after state” as can be seen
in Figure 1. Our model has multiple difference at-
tention heads which learn to relate and attend to
relevant regions in the before and after image.

Image pair-based language generation is useful
in various tasks that involve changing scenes, such
as instruction giving (Rojowiec et al., 2020), dif-
ference spotting (Jhamtani and Berg-Kirkpatrick,
2018) or change captioning (Park et al., 2019).
Though technically similar, these tasks have been
neither modeled in a common framework nor com-
pared in terms of the involved linguistic phenomena
and reasoning abilities.

Our contributions are (i) a novel difference



attention-based model designed to visually ground
complex compositional referential and spatial lan-
guage in image pairs (Section 3), (ii) a system-
atic, qualitative comparison of instruction giving,
different spotting and change captioning as well
as the corresponding visual-linguistic reasoning
phenomena (Section 4), (iii) experiments on these
three tasks showing that our model achieves similar
or superior performance to related state-of-the-art
models for change detection from computer vision
(CV), see Section 5, according to evaluation with
automatic metrics, including metrics that aim at
capturing the identified reasoning abilities.

2 Related Work

Instruction Generation is a central task in situ-
ated NLG, needed in agents that support humans
in carrying out tasks in a shared environment. Pre-
vious work on instruction giving in virtual environ-
ments has developed planning-based frameworks
for verbalising state and action sequences for a
human listener, allowing for adaptive generation
at different levels of detail (Koller et al., 2010;
Dethlefs and Cuaydhuitl, 2015; Kohn et al., 2020).
Fried et al. (2017, 2018) extend this line of work
and propose a speaker model that generates text
based upon visual input and associated symbolic
action trajectories, also focussing on pragmatically
appropriate, adaptive instructions. Hu et al. (2019)
use verbal instructions as representations for ac-
tion sequences in decision making for high-level
planning. Rojowiec et al. (2020), instead, adopt a
different perspective and model instruction gener-
ation for very local changes in a scene, learning
directly from image pairs. Here, the focus is less
on pragmatics and more on the semantic and ref-
erential accuracy of the instruction, which is diffi-
cult to achieve without a symbolic representation.
Our work adopts Rojowiec et al.’s set-up, but out-
performs their model and compares it to work on
change captioning and difference spotting.

Change Detection and Captioning Change de-
tection and its verbalization is an important task
in CV, e.g. in captioning surveillance videos (Oh
et al., 2011) or remote sensing images (Liu et al.,
2018), and builds upon captioning of single im-
ages, one of the most well-understood tasks in lan-
guage & vision. In image captioning, a successful
encoding of the visual input that captures an im-
age’s content, its objects and their spatial relations
has proven to be central (Bernardi et al., 2016; Lu

et al., 2017; Anderson et al., 2018; Yao et al., 2018;
Yang et al., 2019). A well-known attention mech-
anism is self-attention (Xu et al., 2015), which is
also part of recent image captioning transformers
(Herdade et al., 2019; Cornia et al., 2020). For
captioning changes, Park et al. (2019)’s recurrent
DUDA model exploits differences in latent space.
Shi et al. (2020) expand on this by slicing the image
into different patches and patch-wise-comparing
differences which helps in distinguishing regions
where changes occurred from non-changed regions.
Oluwasanmi et al. (2019a,b) use a siamese network
to encode before and after state, apply a contrastive
function on both and then iteratively use softmax
attention over the contrastive image in the decoder.
While these approaches rely on elaborate methods
for decomposing the visual input into regions of
relevant semantic features and recurrent neural net-
works for decoding, we present a relatively simple
encoder component as part of a transformer model
which is, in contrast to existing work in image cap-
tioning, able to encode and attend to differences
between a given pair of input images.

Visual Reasoning in L&V is often understood as
the task of interpreting complex compositional phe-
nomena like questions, comparisons, spatial expres-
sions, quantification or counting (Suhr et al., 2017,
2019; Johnson et al., 2017; Li et al., 2019; Tan and
Bansal, 2019; Shridhar et al., 2020; Li et al., 2020).
Similarly to our set-up, NLVR (Suhr et al., 2017)
involves determining the truth value of statements
about two different images. Also highly related is
work on instruction following (Misra et al., 2018;
Chen et al., 2019) where the agent needs to resolve
instructions to reach a goal state. In our case, the
current and the goal state are given and the agent
needs to generate a corresponding utterance. Our
set-up involves different phenomena of visual rea-
soning, described in Section 4.

3 Model

We present a transformer model that generates ut-
terances from a pair of images showing a before
state and an after state of a change in a visual scene.
To achieve this, we implement a difference atten-
tion head that computes an attention map for an
image based on the difference to its before image
(Section 3.1). We use this head to encode visual
changes on different levels of granularity (Section
3.2). This encoder is hooked up with a standard
transformer (Section 3.3).



3.1 Difference Attention on Image-Pairs

A core element of the standard transformer
(Vaswani et al., 2017) is the self-attention head,
which computes an attention map over values V
given queries Q and keys K:

. QKT
Attention(Q, K, V) = softmax(
vy,
When processing word sequences, the query, key
and value of a self-attention head are given by the
embedding of a word. A very simple way to pro-
cess image pairs alike with this head, is to allocate
two self-attention heads H = 2: one for the before
image embedding v; and one for the after image
embedding v2 such that there are as many images
as heads with Q = K =V = v; and defined as:

Vo (D)

hi = Attention(QWS, KWK VWY) (2

)

Now, we propose a difference attention head that
exploits an explicit representation of the difference
between the before and after state when computing
the attention map. In line with Park et al. (2019),
we simply substract the before from the after image.
As there is no before image for vy, we obtain two
difference attention heads for our image pair: (i) h1
with K = ¢; = 0, (i) ho with K = ¢5 = v9 — 0.

In line with Park et al. (2019), we scale the out-
put of the difference with a trainable parameter
and sum it with the image features for that attention
head (weights are omitted for better readability, but
applied as in Equation 2):

hi="- Attention(vi, C;, ’UZ') + v; 3)

This simple modification of self attention takes
the idea of difference images from Park et al. (2019)
and implements difference attention heads in a sim-
ilar way as cross-modal attention in V&L trans-
formers (Tan and Bansal, 2019; Lu et al., 2019).

3.2 Attending to In-between Images

We hypothesize that, to fully leverage the power
of difference attention, more heads, i.e. a longer
sequence of visual inputs, might be beneficial for
grounding and generating utterances. Thus we in-
crease the number of difference attention heads
to H = {4,8}, where vy is the after image, and
we define a way to compute “in-between image
features” for the additional heads:
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Figure 2: We simulate a trajectory of images with incre-
mental changes given only a before and an after image
to apply difference attention with higher granularity.

Inutitively, the in-between images represent the
trajectory from the before to the after state, as
shown in Figure 2. Formally, we define c; as the
weighted difference features, where the weight is
the relative position in the trajectory between v
and vg. Thus, each attention head receives im-
age features representing a different degree of the
visual change given by vy — v1:

i—1
H-1

Finally, a single-layer feed forward network
maps from the high-dimensional visual image
space 2048 x 14 x 14 to the reduced visual word
space of 512 dimension h; = r(h;) and a down-
stream standard transformer receives the stacked
sequence of visual words that represent various
levels of change:

- (vg —wvi) wherei € [1,H| (5)

C; =

V = [h1;...; hg] (6)

The number of attention heads H is a hyperpa-
rameter, which can also be interpreted as a measure
of granularity for the simulated visual feature trajec-
tory {v1, ..., v, ..., g7 } where later image features
contain more and more changes starting from the
before image v;. We report results for 2 and 8 head-
sto show the effects of a longer trajectories, leaving
further experimentation for future work. As base-
lines, we implement a standard transformer, TF-
self-att, that computes an attention map for every
encoded image of step ¢ simply with self-attention
(see Figure 3). These are compared to TF-diff-att,
the transformer with difference attention. Figure 3
shows how self and difference attention process a
sequence of before, in-between and after images.
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Figure 3: Sequential self and difference attention

3.3 Overall Architecture

We encode the before and after images with a pre-
trained ResNet-101 architecture (He et al., 2016)
trained on ImageNet, without any further prepro-
cessing (like e.g. object detection). Our image pair
encoder optionally transforms the image pair into
a longer sequence containing in-between images.
This trajectory is processed by a difference atten-
tion layer and then mapped to a sequence of visual
words as shown in Figure 2. We apply positional
encoding to the visual words generated by the im-
age pair encoder to introduce temporal information
into the encoded input. These visual words are
processed like embedded word tokens within the
6 layers of the multi-head-attention-based trans-
former encoder. In the transformer decoder, an
embedding layer first maps the words to vectors
and then applies masked-self-attention followed by
encoder-decoder attention which relates the visual
words to words in the caption. In this architecture,
difference and self-attention are used consecutively
one after the other. In future work, further combi-
nations can be investigated.

The recurrent DUDA model (Park et al., 2019),
which is an important baseline in our experiments,
uses a different way to compute attention maps
based on image differences: first, the difference im-
age is concatenated with the latent before and after
image. Second, a self-attention map is computed
over each of these and, third, another attention map
over the attended concatenated before, after and
difference image. Here, intuitively, the different
visual inputs are kept separate and the model has to
learn when to look at the before, after or difference
image. Our approach, in contrast, incorporates dif-
ferences as a key into the attention head. Intuitively,
this corresponds to the idea that the difference im-
age relates the after to the before image and that
attention maps should capture these relations.

4 Tasks, Environments and Phenomena

We investigate different tasks for generation in
changing scenes (Section 4.1). We describe their
linguistic differences (Section 4.2 and 4.3), and
discuss strengths and weaknesses (Section 4.4).

4.1 Tasks and Environments

Instructions BLOCKS (Bisk et al., 2016) is a
dataset of movement instructions for blocks on a
simple virtual 3D board (see Figure 1). The image
pairs have been generated by down-sizing MNIST
images, decorating the resulting blocks with digits
or brand logos and randomly move the block’s pix-
els to other positions, one at a time. This sequence
in reverse order corresponds to an action sequence
for assembling a block configuration that visually
represents a number. For each single action, i.e. im-
age pair, Bisk et al. (2016) collected 9 natural lan-
guage instructions from 3 different crowd-workers.
The workers were asked to provide instructions as
if they would give them to another person in or-
der to transform the block configuration. While
BLOCKS was originally designed for instruction
following, Rojowiec et al. (2020) analyze its use
for instruction giving.

Differences Spot-the-diff (Jhamtani and Berg-
Kirkpatrick, 2018) provides pairs of similar images
extracted from real-word surveillance videos. The
image pair shows a scene from the same viewpoint
in different, but similar states (according to Lo dis-
tance) resulting in very subtle differences that are
difficult to spot. Jhamtani and Berg-Kirkpatrick
(2018) collected descriptions of these pairs via
crowdsourcing and instructed workers to “carefully
study the image”, “give sufficient time as some dif-
ference may not be obvious" and to provide com-
plete English sentences for each difference.

Changes CLEVR-Change (Park et al., 2019) pro-
vides synthetic captions for images with changes in
a virtual 3D-scene with objects of different shapes



and colors. The image pairs are generated in John-
son et al. (2017)’s CLEVR framework and show
a change affecting a property of a single object
in the scene: (i) color, (i1) texture, (iii) location,
(iv) object added, (v) object removed. A template-
based generator was used to produce up to 9 differ-
ent captions of varying length for each pair. Park
et al. (2019)’s work is motivated by applications
in surveillance and satellite imagery so that they
include distractor pairs with non-semantic changes,
i.e. change of camera angle or illumination. We
do not include this subset in our experiments, in
order to avoid introducing to many conceptual dif-
ferences between our tasks (i.e. BLOCKS and
Spot-the-diff contain semantic changes only).

4.2 Reference

Reference to objects in the environment is an im-
portant phenomenon in all our tasks, though their
referring expressions differ in complexity.

Target object references In all our set-ups, the
reference to a target object that changed one of its
properties or (dis)-appeared is a key element of
the caption. Thus, if an instruction in BLOCKS
does not mention the correct target, a potential fol-
lower will not be able to execute it in any way.
Similarly, in Spot-the-diff and CLEVR-change the
meaningfulness of the caption hinges on the men-
tion of the proper target. In BLOCKS, there is one
ground-truth target object for each image pair that
is generally referred to by its identifying logo, e.g.
the Heineken box in Figure 1. Thus, references
to targets in BLOCKS can be detected in human
and generated captions with a simple, rule-based
instruction parser (Rojowiec et al., 2020). In Spot-
the-diff, there might be several target objects and
they are referred to by a more complex vocabulary,
e.g. additional people in Figure 1. The dataset
does not provide a language-external annotation
for ground-truth target objects and they cannot be
easily detected in an automatic way. In CLEVR-
change, expressions referring to targets correspond
to the templates of the generator, i.e. they consist
of a noun for the shape of the object and optional
adjectives referring to the size, color or texture of
the object, e.g. the tiny cylinder in Figure 1. This
template can be automatically detected by a parser
reverting the generator.

Landmark object references As the instruc-
tions in BLOCKS require detailed descriptions of

block configurations, they commonly contain refer-
ences to landmark objects, e.g. right of the Burger
King block in Figure 1. In contrast to the target
objects, there might be several landmarks produced
by different crowd-workers. Generating one of the
correct landmarks is important for the success of
the instruction, as the BLOCKS environments pro-
vides few other means of verbalizing the movement
and target location of the target object. A portion of
the captions in CLEVR-change also contains land-
marks as part of some of the templates of the gen-
erator. By qualitative inspection of Spot-the-diff,
we establish that landmark objects are mentioned
occasionally (e.g. person behind black suv, cf. p.3
(Jhamtani and Berg-Kirkpatrick, 2018)), but less
systematically as in BLOCKS and CLEVR-change.

4.3 Reasoning

Our set-ups vary further with respect to phenomena
related to compositional visual reasoning.

Compositional spatial expressions Many in-
structions in BLOCKS contain complex, composi-
tional spatial expressions with one or more embed-
ded prepositional and verb phrases, e.g. place it
lined up directly to the right of ... in Figure 1. Spot-
the-diff and CLEVR-change are much less complex
in this regard. For instance, the template for loca-
tion changes in CLEVR-change corresponds to the
simple pattern: object X has changed its location.
Spot-the-diff features occasional, simple spatial ex-
pressions, e.g. people in the middle of the court, cf.
p-4 (Jhamtani and Berg-Kirkpatrick, 2018).

Types of changes BLOCKS instructions feature
one type of visual change, i.e. block movement.
Here, CLEVR-change is the most complex dataset
as captions need to distinguish and refer to 5 differ-
ent change types. Many Spot-the-diff descriptions
refer to the (dis)-appearance of objects, but some
also describe movements.

Changing object properties Objects in
BLOCKS and Spot-the-diff do not change their
internal properties whereas objects in CLEVR-
change do change their color or texture (cf. Figure
1), resulting in a complex representation task
regarding the identity of objects.

4.4 Summary

The set-ups we investigate in this work are highly
similar in terms of the modeling task, i.e. gener-
ating an utterance given a pair of images show-



ing similar states of the same scene. At the same
time, different visual environments and data col-
lections led to substantial differences in the rea-
soning abilities that the models will need to ac-
count for, see Table 5 in Appendix A.l for an
overview. Generally, BLOCKS and Spot-the-diff
exhibit more linguistic complexity than CLEVR-
change: BLOCKS instructions have been collected
in a dialogue-inspired setting and the resulting ut-
terances are varied, goal-oriented and contain com-
plex spatial expressions. Spot-the-diff utterances
are more descriptive and might not naturally occur
in situated dialogue, but they still refer to complex
real-world scenes and draw on a natural vocabulary.
CLEVR-change captions are synthetic and do not
constitute natural dialogue data, but they exhibit
greater complexity in terms of visual reasoning,
i.e. detecting changes of different types, including
changes of internal object properties.

5 Experiments

5.1 Data

BLOCKS: We use the MNIST-logo subset with
constellations of up to 20 cubes with distinct logos.
It is split into 667/95/181 image pairs for train-
ing, validation and testing and 6003/855/1629
captions respectively (9 per image pair).

Spot-the-Diff: We use the entire dataset of
9524/1634/1404 image-pairs for training, valida-
tion and testing and 17676/3310/2107 captions
respectively. When an image-pair has less than 3
captions, we re-sample from the given ones, so that
during training each pair is seen 3 times per epoch.

CLEVR-Change: We use the splits from Park
et al. (2019), but only the semantic change subset
with 33830/1988/3985 image-pairs for training,
validation and testing and 250415/14651/29654
captions, i.e. up to 9 captions per image-pair (avg.
7.4 captions). We sample in the same way as above,
so that each image-pair is seen 9 times per epoch.

5.2 Training and Hyperparameters

We encode the before and after image separately
using a pre-trained ResNet-101 with the last layer
cut off which results in image embeddings of size
2048 x 14 x 14 by applying adaptive pooling. The
word embedding layer in the transformer decoder
is trained from scratch with a size d of 512. We use
Adam optimizer with a learning rate of 10~* and
a batch size of 8/16 for training with 8/2 heads

respectively. We also perform early stopping af-
ter 5 epochs without improvement on the valida-
tion set and apply Label Smoothing as proposed
by Vaswani et al. (2017). The training on a single
NVIDIA Titan X GPU took up to three days for
the CLEVR-Change dataset.

For BLOCKS, it turned out to be necessary to
fine-tune the image encoder to recognize the small
logos distinguishing the single blocks. The train-
ing regime on BLOCKS is a two-stage process:
the models (DUDA and our transformer models)
are first trained with a freezed, pre-trained image
encoder, and then trained again by allowing gradi-
ents in the image encoder. For Spot-the-diff and
CLEVR-Change, we do not fine-tune the image en-
coder to ensure comparability with previous work.

5.3 Evaluation Metrics

We measure the overlap of generated and human
captions with BLEU-4, METEOR, CIDEr and
SPICE, using the API of Chen et al. (2015). Fur-
thermore, we assess the models’ reasoning abilities
on BLOCKS and CLEVR-change, according to the
phenomena in Section 4.

For BLOCKS, we rely on Rojowiec et al.
(2020)’s parser which detects expressions (phrases)
referring to targets and landmarks in ground-truth
and generated instructions. Following Rojowiec
et al., we compute these word or phrase accuracies:
(i) target: correctly generated targets, given all
generated target phrases (ii) landmark: correctly
generated landmarks, mentioning one of the land-
marks logos from the set of landmarks found in
the ground-truth instructions (iii) spatial: correctly
generated words not contained in target and land-
mark phrases, as a simple metric for measuring
overlap of spatial expressions.

For CLEVR-change, we write a similar parser
that detects the template that was used to gener-
ate the caption. Based on the parser output, we
compute the following accuracies: (i) type: por-
tion of captions mentioning the correct change type
(i.e. color, texture, add, drop, move) (ii) target—
color, target-shape, target-material: portion of
correctly generated color/shape/material attributes
in target references (iii) landmark-color, land-
mark-shape, landmark-material: analogous to
target accuracies.

5.4 Results

Qualitative samples of generation outputs are
shown in Figure 1.



General performance across tasks Our trans-
former models with difference attention, TF-dift-
att-2 and TF-diff-att-8, outperform state-of-the-art
models for instruction generation (see BLOCKS
results in Table 1) and difference spotting (see Spot-
the-diff results in Table 2) in terms of all n-gram
overlap metrics. Our version of DUDA trained on
BLOCKS improves considerably over the results
by Rojowiec et al. (2020), but not over our TF-diff
models. On Spot-the-diff, as shown in Table 2,
existing systems (mostly developed in the CV com-
munity) still obtain relatively low overlap scores.
TF-diff-2 and TF-diff-8 improve over the state-of-
the-art set by the M-VAM model on Spot-the-diff,
with a particularly strong increase of the CIDEr
score (0.425 and 0.843 respectively). Table 3 shows
that the TF-diff models do not achieve state-of-
the-art performance on CLEVR-change, but obtain
similar SPICE scores as the DUDA model (see Ap-
pendix for other metrics and below for further anal-
ysis). In the majority of tasks and settings, trans-
formers with difference attention outperform the
standard self attention (TF-self models). This in-
dicates that generation tasks with changing scenes
involve complex visual and linguistic reasoning,
which cannot be easily achieved with self attention.

In-between images On BLOCKS, TF-diff-8
clearly outperforms TF-diff-2, whereas on Spot-
the-diff, TF-diff-2 outranks TF-diff-8. This sug-
gests that difference attention on in-between im-
ages is beneficial for visual grounding of com-
plex spatial configurations and landmarks, which
are not prominent in Spot-the-Diff. On CLEVR-
change, TF-diff-2 outperforms TF-diff-8 on the
change type ‘ADD’ subset, which is in line with the
performance of TF-diff-2 on Spot-the-diff (where
it is common that new objects are added/appear
in the after image). At the same time, TF-diff-
8 outperforms TF-diff-2 on ‘MOVE’ changes in
CLEVR-change which is in line with our results
on BLOCKS (where objects are moved). Thus, our
attention mechanisms behave similarly for similar
reasoning abilities across the different tasks.

Reference On BLOCKS, the TF-diff-8 model
greatly outperforms the competitive DUDA model
in terms of accuracies on target and landmark ref-
erence, cf. Table 1. We note that the DUDA model
performs better in generating references to targets
(59% target accuracy on BLOCKS, and above 90%
on CLEVR-change) as compared to landmarks

Model ‘ B M C ‘Target Landm Other
LSTM+Att* |0.38 0.28 0.27| 0.11  0.28 -

DUDA 0.53 037 096| 0.59 042 0.66
TF-self-att-2 [0.34 0.28 0.35| 0.19 026 0.76
TF-self-att-8 [0.44 0.32 0.66| 037 045 0.72
TF-diff-att-2 {0.55 0.38 1.06| 0.73 040 0.80
TF-diff-att-8 | 0.68 0.43 1.52| 0.86 0.73 0.83

Table 1: BLOCKS results: B(LEU-4), M(eteor),
C(ider) and word accuracies (see Section 5.3),
LSTM+Att* as reported in Rojowiec et al. (2020).

Model B M C S
DUDA* 0.081 0.115 0.34 -
FCC* 0.099 0.129 0.368 -
SDCM* 0.098 0.127 0.363 -
DDLA* 0.085 0.12 0.328

M-VAM + RAF*|0.111 0.129 0.425 0.171

TF-self-att-2 0.109 0.135 0.777 0.197
TF-self-att-8 0.110 0.136 0.786 0.191
TF-diff-att-2 0.117 0.137 0.843 0.205
TF-diff-att-8 0.113 0.136 0.842 0.202

Table 2: Spot-the-diff results: B(LEU-4), M(eteor),
C(IDEr), S(PICE). *Models as reported in Shi et al.
(2020)

SPICE
Model Color Texture Add Drop Move
DUDA* 021 0.18 0.22 022 0.15
M-VAM + RAF*| 0.30  0.30 0.32 0.33 0.30
TF-self-att-2 0.19 0.17 0.18 020 0.18
TF-self-att-8 020 0.17 0.15 020 0.18
TF-diff-att-2 020 020 024 021 021
TF-diff-att-8 022 023 023 025 026

Table 3: CLEVR-change results: SPICE for test sets
split up by change types: Color(C), Texture (T), Add
(A), Drop (D), Move (M). DUDA is trained on the en-
tire CLEVR-change data, the TF and M-VAM models
on semantic changes only. *Models as reported in Shi
et al. (2020).

Model Type Target Landmark
S cC T S cC T
DUDA |0.79 [0.95 0.99 0.88]0.38 0.24 0.24

TF-self-2 | 0.41
TF-self-8 | 0.42
TF-diff-2 | 0.45
TF-diff-8 | 0.47

0.64 0.63 0.65(0.29 0.29 0.21
0.65 0.61 0.63(0.36 0.31 0.25
0.70 0.67 0.68(0.34 0.28 0.23
0.74 0.72 0.72]0.32 0.31 0.24

Table 4: CLEVR-change: accuracies for change
types (type) and word accuracies for S(hape), C(olor),
T(exture) in target/landmark references. DUDA is
trained on the entire CLEVR-change data, the TF mod-
els on semantic changes only.



(42% landmark accuracy on BLOCKS, and below
40% on CLEVR-change). This pattern has, to the
best of our knowledge, not been observed in previ-
ous work (Park et al., 2019; Shi et al., 2020). On
BLOCKS, our TF-diff-2 model clearly improves
DUDA’s target accuracy (73% acc. for TF-diff-
2), but performs similarly on the landmarks (40%
acc. for TF-diff-2). The TF-diff-8 model gives
further improvement on target objects (86%) and
a great improvement on landmarks (73%). This
shows that the in-between images combined with
difference attention heads allow the transformer
model to not only attend to target objects but also
to “close-by” landmark objects, i.e. relating the
before to the after image. These relations do not
seem to be captured well in DUDA’s dual attention.
This is further illustrated by the example attention
maps for TF-diff-att-8 in Figure 5 and DUDA in
Figure 6 in Appendix A.2. While the DUDA map
is rather fuzzy, the attention of TF-diff-att-8 model
is located rather precisely on the target block, its
target location and nearby landmarks. Similar ten-
dencies for target and landmarks can be found in
CLEVR-change, i.e. DUDA performs much worse
on landmarks than on targets. Here, however, our
transformers are clearly below DUDA’s target accu-
racy. As we discuss below, this seems to result from
the fact that the transformers do not learn certain
other visual reasoning abilities on that dataset.

Change types and changing objects The eval-
uation on CLEVR-change in Table 6 shows an
important limitation of our transformers: while
DUDA accurately distinguishes between types of
changes (e.g. color, add or move changes), all
transformers tend to confuse them, e.g. TF-diff-8
achieves 47% and DUDA 79% acc. on change
type detection. The confusion matrix in Table 8
(Appendix A.3) shows that the TF-diff-8 model of-
ten confuses changes of internal objects properties
(color or texture) with moving and (dis)-appearing
objects. This also explains why the TF-models per-
form below state-of-the-art models on this dataset.
The example attention maps for TF-diff-att-8 in Fig-
ure 4 in Appendix A.2 further illustrates that our
transformer does not seem to learn how to exploit
the sequential difference attention for reasoning
in CLEVR-change. Here, DUDA’s dual attention
(see Section 3.3) that treats the difference image
as a parallel input modality (concatenated with the
before and after state) seems to be a more adequate
way of representing different visual states.

5.5 Summary and discussion

Our experiments show that instruction generation,
change description and difference spotting accom-
modate different requirements for reasoning and
generation in changing scenes. Our transformers
achieve state-of-the performance on tasks that fo-
cus on linguistically complex, human-like descrip-
tions of visual changes that involve moving or dis-
appearing objects, i.e. instructions in BLOCKS
and difference descriptions in Spot-the-diff. More
work is needed to extend our approach with more
flexible difference attention to be able to capture
visual changes that affect internal object properties,
i.e. as in CLEVR-change captions. More generally,
we believe that analyzing the linguistic phenomena
underlying these and other generation tasks and
creating datasets that combine them in a systematic
way is a highly fruitful direction for future work.
Two phenomena that stand out in our experiments
are (i) target-landmark configurations, which have
received a lot of interest in traditional NLG (Clarke
et al., 2013) and are relevant in, e.g., navigation
(Schumann and Riezler, 2021) (ii) changing object
properties, which might be highly relevant in com-
plex real-world domains like, e.g. cooking (Yang
et al., 2016). Another direction for future work is
reliable set-ups for human evaluation, a vital topic
in current NLG research (Howcroft et al., 2020;
Belz et al., 2020). We believe that the tasks inves-
tigated here will pose their own challenges as, for
instance, the difference between two images can be
difficult to spot even for humans.

6 Conclusion

We have investigated language generation in chang-
ing scenes. We proposed a simple difference atten-
tion head that relates consecutive images in an input
trajectory via a difference key. Our method sets a
new state-of-the-art on BLOCKS (Bisk et al., 2016)
and Spot-the-diff (Jhamtani and Berg-Kirkpatrick,
2018). We have shown that it is important to disen-
tangle reasoning abilities resulting from differences
in environments and data collections for change-
related generation tasks. We conclude that our ap-
proach is able to model situated instruction giving
for local changes on controlled visual inputs, while
more work is needed to scale it to more realistic
inputs and to longer sequences of states that are
often looked at in situated interaction with sym-
bolic representations like (Dethlefs and Cuayahuitl,
2015; Fried et al., 2018; Kohn et al., 2020).
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A Appendix

A.1 Dataset overview

Table 5 shows a tabular overview of the tasks, en-
vironments and datasets used in this work. The
Table summarizes the descriptions and discussion
in Section 4.

A.2 Attention maps

Figure 4 and 5 show attention maps for the TF-diff-
att-8 model on CLEVR-change and BLOCKS. The
attention map for BLOCKS suggests that the model
was able to precisely locate target and landmark ob-
jects, whereas the map on CLEVR-change does not
indicates that the model detected a color change.
Figure 7 shows an example of a very accurate at-
tention map computed by the TF-diff-att-2 model
on Spot-the-diff. Figure 6 shows an attention map
of the DUDA model on BLOCKS, for the same
scene shown in Figure 5. This example clearly il-
lustrates that DUDA’s dual attention mechanism
exploits difference images in a very different way
than our transformer, i.e. the attention map is much
less focused on particular image regions.

A.3 Additional results on CLEVR-change

Table 6 shows CIDEr, METEOR and SPICE scores
for our transformer models and three baselines on
CLEVR-change. Overall, the transformer mod-
els are below the state-of-the-art set by the M-
VAM+RAF model from Shi et al. (2020), as dis-
cussed in Section 5. Generally we believe that the
most informative metrics on CLEVR-change are
the accuracies reported in Table 4 as the captions
in CLEVR-change are synthetic and use a rather
small vocabulary.

Figure 8 shows the confusion matrix for change
types: we identified the detected change types in
generated captions using the caption parser and
compare them to the ground-truth type.



BLOCKS

Spot-the-diff

CLEVR-change

task instruction giving
language  human

objects virtual blocks (logos)
changes moves

phenomena logo identification, landmarks, spa- hardly visible changes, real-world

tial expressions

difference spotting
human
real objects
moves, (dis-)appearance

target/landmark objects

change captioning

synthetic

virtual objects (color, shape, texture)
color,
appearance

texture,

object properties

moves,

(dis)-

landmarks, change types, changing

Table 5: Overview of datasets summarizing Section 4

the tiny cylinder
changed to brown"

BEFORE

AFTER

CAPTION

,,put the bmw logo
under the adidas logo™"

H-OH ERED

B

BEFORE

AFTER

Figure 4: TF-diff-att-8 attention Figure 5: TF-diff-att-8: exam- Figure 6: DUDA: example atten-
map on CLEVR-Change for the ple caption and attention map on tion map on BLOCKS for the
example from Fig. 1 BLOCKS same example as in Figure 5
CIDEr METEOR SPICE

Model C T A D M| C T A D M| C T A D M
DUDA (with distractors)* 1.20 0.87 1.08 1.03 0.56|0.33 0.27 0.33 0.31 0.24|0.21 0.18 0.22 0.22 0.15
M-VAM + RAF (with distractors)* | .22 0.98 1.26 1.16 0.82]0.36 0.32 0.38 0.36 0.28|0.28 0.27 0.31 0.32 0.23
M-VAM + RAF (w/o distractors)* |1.35 1.08 1.30 1.13 1.07|0.38 0.36 0.38 0.37 0.36|0.30 0.30 0.32 0.33 0.30
TF-self-att-2 0.69 0.44 0.56 0.47 0.43]0.27 0.25 0.27 0.27 0.26|0.19 0.17 0.18 0.20 0.18
TF-self-att-8 0.77 0.57 0.27 0.60 0.45]0.29 0.27 0.22 0.29 0.26]/0.20 0.17 0.15 0.20 0.18
TF-diff-att-2 0.62 049 0.77 0.45 0.57]0.29 0.28 0.32 0.28 0.28|0.20 0.20 0.24 0.21 0.21
TF-diff-att-8 0.68 0.58 0.60 0.62 0.80]0.30 0.30 0.29 0.31 0.32]0.22 0.23 0.23 0.25 0.26

Table 6: Detailed breakdown of results on the CLEVR-Change Data set by change types: Color(C), Texture (T),
Add (A), Drop (D), Move (M). Our models have only been trained on the semantic change set. *We report the
results as provided by the authors in Shi et al. (2020)

,,4 additional people
are present in after
photo”

BEFORE AFTER

Figure 7: TF-diff-att-2 attention map on Spot-the-diff

for the example from Fig. 1

Tue label

500

add 5
400

color 9
drop B 300
lac 11 200

material q B
100

none 4 0O o 0 0 0 ]

T T T T T T 0
add color drop lac material none

Predicted label

Figure 8: Confusion of change types in TF-diff-att-8
captions for CLEVR-change, change types in ground
truth and generated captions are automatically recog-
nized with a rule-based parser
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