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ABSTRACT

In the real world, the data samples often follow a long-tailed distribution, which
poses a great challenge for Federated Learning (FL). That is, when the data is
decentralized and long-tailed, FL may produce a poorly-behaved global model
that is severely biased towards the head classes with the majority of the training
samples. To settle this issue, decoupled training has recently been introduced to FL.
Decoupled training aims to re-balance the biased classifier after the normal instance-
balanced training, and has achieved promising results in centralized long-tailed
learning. The current study directly adopts the decoupled training idea on the server
side by re-training the classifier on a set of pseudo features, due to the unavailability
of a global balanced dataset in FL. Unfortunately, this practice restricts the capacity
of decoupled training in federated long-tailed learning as the low-quality pseudo
features lead to a sub-optimal classifier. In this work, motivated by the distributed
characteristic of FL, we propose a decentralized decoupled training mechanism
by leveraging the abundant real data stored in the local. Specifically, we integrate
the local real data with the global gradient prototypes to form the local balanced
datasets, and thus re-balance the classifier during the local training. Furthermore,
we introduce a supplementary classifier in the training phase to help model the
global data distribution, which addresses the problem of contradictory optimization
goals caused by performing classifier re-balancing locally. Extensive experiments
show that our method consistently outperforms the existing state-of-the-art methods
in various settings. Our code will be released upon acceptance.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is proposed as an effective distributed learning
framework to enable local clients to train a global model collaboratively without exposing their
local private data to each other. However, the performance of FL is heavily hindered by the long-
tailed/class-imbalanced data distribution phenomenon in the real world. That is, the global data
distribution (i.e., the data distribution of the training samples merged from all clients’ local data)
usually shows a long-tailed pattern (Zhang et al., 2021; Wang et al., 2021), where head classes occupy
a much larger proportion of the training samples than tail classes. Applying FL directly on such
long-tailed data will produce a poorly performing global model that is severely biased to the head
classes (Wang et al., 2021).

Dealing with FL on the non-i.i.d. and long-tailed data is challenging in two aspects: First, as the
data samples are not identically and independently distributed (non-i.i.d.) across different clients in
FL (McMahan et al., 2017), the local data distributions (i.e., local imbalance) show inconsistent long-
tailed patterns compared to that of the global data distribution (i.e., global imbalance) (Wang et al.,
2021). Thus, tackling the local imbalance problem only (e.g., Fed-Focal Loss (Sarkar et al., 2020))
will not help to address the global imbalance problem in FL. Second, considering the data privacy
concern, it is infeasible to explicitly obtain the imbalance pattern of the global data distribution from
the local data information. This further limits the application of the global class-level re-weighting
strategy (Cui et al., 2019).1

Decoupled training is first proposed in centralized long-tailed learning (Kang et al., 2019; Zhou
et al., 2020), which disentangles the long-tailed learning into the representation learning phase

1Also, class-level re-weighting practice itself is an improper solution according to Kang et al. (2019).
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and the classifier learning phase. These works (Kang et al., 2019; Zhou et al., 2020) find that the
instance-balanced training (i.e., uniform sampling on the entire training set to make the contribution
of each sample the same) leads to well-learned representations but a biased classifier. Thus, they
propose to re-train the classifier on a small balanced dataset after the instance-balanced training and
have achieved promising results. We believe the decoupled training idea is also suitable for tackling
the class-imbalanced problem in FL, as it can adjust the biased classifier at the global level without
the necessity of obtaining the global imbalance pattern.

Nevertheless, applying decoupled training into FL faces a great challenge that there lacks a public bal-
anced dataset for re-training classifier due to the data privacy concern. A recent study CReFF (Shang
et al., 2022b) directly performs decoupled training on the server side, by re-training the classifier on a
set of pseudo features created on the server. However, we argue that adjusting the classifier in such a
centralized manner neglects the decentralized characteristic of FL, and only produces a sub-optimal
classifier caused by the poor-quality pseudo features with high similarity per class.

In this paper, we propose the decentralized decoupled training mechanism to realize the full
potential of decoupled training in federated long-tailed learning. Our main idea is to fully utilize
the abundant real data that is only stored in the clients. Therefore, we are motivated to allow clients
to re-balance the classifier during local training. Specifically, we make each client re-balance the
classifier on a local balanced dataset that is mixed with the local real data and the global gradient
prototypes of the classifier sent by the server, while the latter is supposed to address the issue of
missing classes in the local datasets. In this case, the classifier re-balancing is performed on the
client side and in a decentralized way. Moreover, we add a supplementary classifier in the training
phase to jointly model the global data distribution. This practice helps to overcome the optimization
problem brought by the practice of local classifier re-balancing. Compared with CReFF, our fully-
decentralized paradigm allows the clients to collaboratively train a balanced classifier with their
sufficient local real data during local training, which needs no extra requirements on the server and
produces an optimal classifier with better generalization ability. We conduct extensive experiments
on three popular long-tailed image classification tasks, and the results show that our method can
significantly outperform all existing federated long-tailed learning methods in various settings.

2 RELATED WORK

2.1 FEDERATED LEARNING

Federated Averaging (FedAvg) (McMahan et al., 2017) is the most widely-used FL algorithm, but it
has been shown that the performance of FedAvg drops greatly when the data is non-i.i.d. (Karimireddy
et al., 2020b). Therefore, plenty of existing FL studies (Li et al., 2018; Acar et al., 2020; Karimireddy
et al., 2020b; Hsu et al., 2019; Reddi et al., 2020; Karimireddy et al., 2020a) target on dealing with
the non-i.i.d. data partitions in FL. However, these studies neglect another realistic and important
data distribution phenomenon that the data samples usually show a long-tailed pattern.

2.2 LONG-TAILED/IMBALANCED LEARNING

In the real world, the data points usually show a long-tailed distribution pattern. Therefore, learning
good models on the long-tailed/class-imbalanced data has been widely studied (Zhang et al., 2021) in
the traditional centralized learning, and attracts more and more attention in the FL setting.

Centralized Long-Tailed Learning The methods in the centralized long-tailed learning can be
mainly divided into three categories: (1) Class-level re-balancing methods that includes over-
sampling training samples from tail classes (Chawla et al., 2002), under-sampling data points from
head classes (Liu et al., 2008), or re-weighting the loss values or the gradients of different training
samples based on the label frequencies (Cui et al., 2019; Cao et al., 2019) or the predicted probabilities
of the model (Lin et al., 2017). (2) Augmentation-based methods aim to create more data samples
for tail classes either from the perspective of the feature space (Chu et al., 2020; Zang et al., 2021)
or the sample space (Chou et al., 2020). (3) Classifier re-balancing mechanisms are based on the
finding that the uniform sampling on the whole dataset during training benefits the representation
learning but leads to a biased classifier, so they design specific algorithms to adjust the classifier
during or after the representation learning phase (Zhou et al., 2020; Kang et al., 2019).
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Federated Long-Tailed Learning Recently, a few studies begin to focus on the class imbalance
problem in FL. Fed-Focal Loss (Sarkar et al., 2020) directly applies Focal Loss (Lin et al., 2017)
in the clients’ local training, but it neglects the fact that the local imbalance pattern is inconsistent
with the global imbalance pattern. Ratio Loss (Wang et al., 2021) utilizes an auxiliary dataset on
the server (which is usually impractical in real cases) to estimate the global data distribution, and
send the estimated information to clients to perform class-level re-weighting during local training.
CLIMB (Shen et al., 2021) is proposed as a client-level re-weighting method to give more aggregation
weights to the clients with larger local training losses. However, both Ratio Loss and CLIMB bring
negative effects to the representation learning due to the re-weighting practice (Kang et al., 2019), thus
the improvement brought by them is limited. FEDIC (Shang et al., 2022a) also needs the impractical
assumption to own an auxiliary balanced dataset and amount of unlabeled data for fine-tuning and
performing knowledge distillation on the global model on the server. Most recently, CReFF (Shang
et al., 2022b) adopts the decoupled training idea to re-train the classifier on the server by creating a
number of federated features for each class, and achieves previously state-of-the-art performance.
However, the low quality and the limited quantity of federated features restrict its potential.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

In FL, each client k (k = 1, · · · , N ) has its own local dataset Dk, and all clients form a federation to
jointly train a good global model. Then, the optimization goal of FL can be formulated as

θ∗ = argmin
θ

L(θ) = argmin
θ

N∑
k=1

|Dk|∑N
i=1 |Di|

L(θ;Dk), (1)

where |Dk| represents the sample quantity of Dk, L(·;Dk) is the local training objective in client k.

Federated Averaging (FedAvg) (McMahan et al., 2017) is the most popular FL framework to solve
the above optimization problem. Specifically, in each round, the server sends the latest global model
θt−1 to all sampled clients k ∈ Ct, and each client k performs multiple updates on θt−1 with its local
dataset Dk and gets the new model θt

k. Then it only sends the accumulated gradients gt
k = θt−1−θt

k
back to the server, which aggregates the collected gradients and updates the global model as:

θt = θt−1 − ηs
1

|Ct|
∑
k∈Ct

|Dk|∑
i∈Ct |Di|

gt
k, (2)

where ηs is the server learning rate, |Ct| is the number of clients participating in the current round.

In this paper, we study the optimization problem of FL in which the global data distribution
D =

⋃
k Dk is long-tailed. Previous studies in centralized long-tailed learning (Kang et al., 2019)

propose to decouple the training on the long-tailed classification tasks into representation learning
and classifier learning phases, and point out that performing class-level re-weighting rather than
instance-balanced training brings negative impact on the representation learning, and the imbalanced
data distribution mainly affects the classifier learning. Then they achieve significant improvement
by re-balancing the classifier on a balanced dataset after training. This finding is also verified in
federated long-tailed learning (Shang et al., 2022b). Thus, our main idea is to effectively re-balance
the classifier when dealing with the long-tailed global data in FL. However, different from the
centralized training, there is a lack of the global balanced dataset in FL for re-balancing classifier.
Then, being aware of the data-decentralized property of FL, we are motivated to make clients
re-balance the classifier locally during training by taking great advantage of their abundant
local real data.

3.2 OPTIMIZATION TARGET

We split the original model architecture/parameters θ = (P ,W ) into two parts: the representation
encoder P and the classifier W , and aim to re-balance W during the local training to make it behave
well on the class-balanced data distribution Dbal. However, re-balancing the classifier during (instead
of after) the representation learning phase leads to a contradictory optimization target Tcon:

Tcon =

{
min
P ,W

L(P ,W ;
⋃

k
Dk), s.t. L(W ;P ,Dbal) = min

WP

L(WP ;P ,Dbal)

}
, (3)
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Figure 1: Full illustration of our method. We add a new global classifier Ŵ , and perform instance-
balanced training on both the encoder and two classifiers. Additionally, we re-balance the original
classifier during local training on a balanced dataset mixed with local real data and global gradient
prototypes {gpro

W ,c}. In inference, we only keep the encoder P and the re-balanced classifier W .

where the first component before semi-colon in L(·; ·) is the variable while the latter is the
constant condition. The first part of Eq. (3) represents that based on FedAvg, the whole model is
trained under the global data distribution. As for the second part, if we want to further re-balance
the classifier W , the re-balanced classifier should also behave well on the balanced data distribution
given the encoder is fixed. However, when the global data distribution D =

⋃
k Dk is long-tailed,

the above problem faces severe optimization difficulty, as one classifier can not be trained well
to fit two different data distributions.2 To address the negative impact of performing local classifier
re-balancing, we design an architecture of the two-stream classifiers by adding a supplementary
classifier Ŵ in the training phase (refer to Figure 1), in order to help model the global data distribution
D and make re-balancing W feasible.3 We re-formulate our global optimization target as:

T =

{
min

P ,W ,Ŵ
L(P ,W , Ŵ ;

⋃
k
Dk), s.t. L(W ;P ,Dbal) = min

WP

L(WP ;P ,Dbal)

}
. (4)

By making the combination of two classifiers model the global data distribution in the first
part of Eq. (4), the problem of contradictory solutions of W is addressed. Furthermore, it makes
sure that the representation encoder is trained under the instance-balanced training paradigm, which
benefits the representation learning most. In the following, we introduce our proposed algorithm to
solve Eq. (4) from three aspects, including the local training, the server aggregation, and the inference
stages. The full illustrations of our model architecture and training process are displayed in Figure 1.

3.3 CLASSIFIER RE-BALANCING BY INTEGRATING LOCAL REAL DATA WITH GLOBAL
GRADIENT PROTOTYPES

3.3.1 LOCAL TRAINING STAGE

In the local training, according to the basic idea of FedAvg framework, each client aims to solve the
sub-problem of Eq. (4) as:

Tk =

{
min

P ,W ,Ŵ
L(P ,W , Ŵ ;Dk), s.t. L(W ;P ,Dbal) = min

WP

L(WP ;P ,Dbal)

}
. (5)

2We also consider another alternative two-stage classifier re-balancing paradigm in Appendix G, but the
results show that it is much ineffective than the following introduced joint optimization paradigm.

3We explore the necessity of introducing this supplementary classifier in Section 5.2.
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Algorithm 1 Local Training Process of RedGrape

Input: Round number t, local data Dk with local label set Lk, local model (Pk,Wk, Ŵk) initialized
as received global model (P t−1,W t−1, Ŵ t−1), global gradient prototypes {gpro

W t−2,c|c ∈ L}.

1: Calculate local gradient prototypes {gpro
W t,k,c|c ∈ Lk} based on Eq. (11).

2: for Local step i = 1, 2, · · · , I do
3: Update P and Ŵ based on Eq. (7).
4: Compute batch gradients for W based on Eq. (8).
5: Compute re-balancing gradients for W based on Eq. (9), Eq. (10) and Eq. (12).
6: Update W based on Eq. (13).
7: end for
8: return Local gradients (P t

k − P t−1,W t
k − W t−1, Ŵ t

k − Ŵ t−1), local gradient prototypes
{gpro

W t−1,k,c|c ∈ Lk}.

It is a constrained optimization problem that is non-trivial to solve, therefore, we manage to address it
by applying the method of Lagrange Multipliers. That is, we turn it into the following unconstrained
optimization problem by adding a penalty term on solving W :

T
′

k = min
P ,W ,Ŵ

Lk(P ,W , Ŵ )

= min
P ,W ,Ŵ

{
L(P ,W , Ŵ ;Dk) + λ

(
L(W ;P ,Dbal)−min

WP

L(WP ;P ,Dbal)

)}
.

(6)

After choosing a proper λ, all parameters can be optimized by taking the derivative of Lk over them.

An overall look. Before introducing technique details, we first give an overall look of the whole
process of local training in our method in Algorithm 1. To be brief, the encoder parameters P and
the supplementary classifier Ŵ will be trained under an instance-balanced manner (Line 3). When
updating the original classifier W , besides the gradients of the batch samples from Dk (Line 4), our
method creates a local balanced dataset Dbal

k to help re-balancing W (Line 5-6) following the second
target of Eq. (6). The detailed steps include the following parts:

Updating P and Ŵ , and calculating local batch gradients for W . In the t-th round, we perform
the batch stochastic gradient decent mechanism4 to update P and Ŵ .5 That is, for the local step
i = 1, 2, · · · , I , a random batch of examples Bi

k is sampled from Dk to perform that:

P i
k = P i−1

k − ηl∇P i−1
k

L(P i−1
k ,W i−1

k , Ŵ i−1
k ;Bi

k),

Ŵ i
k = Ŵ i−1

k − ηl∇Ŵ i−1
k

L(P i−1
k ,W i−1

k , Ŵ i−1
k ;Bi

k),
(7)

ηl is the local learning rate. One important thing is, when calculating the above loss on each sample
(x, y), the representation vector h := f(x;P ) will be first fed into both two classifiers and get
two logits W Th and Ŵ Th. Then we perform the element-wise addition to get the final logits
z = W Th + Ŵ Th, and use z for the loss calculation. Also, in the same forward and backward
propagations, we can obtain the first part of gradients for W in Eq. (6) as

glocal
W i−1

k

= ∇W i−1
k

L(P i−1
k ,W i−1

k , Ŵ i−1
k ;Bi

k). (8)

Calculating re-balancing gradients for W . For the second part of Eq. (6), it needs to calculate
the gradients of W i−1

k on a small balanced set Dbal
k , which is supposed to be created in the local.

However, there exists difficulty in constructing Dbal
k from Dk, since it is very likely that there are

some classes missing in the local label set Lk of Dk due to the non-i.i.d. data partitions. Thus, we
propose a mixed gradient re-balancing mechanism to overcome this challenge by integRating local

4Here, we take SGD as an example, but we do not have the assumption on the type of local optimizer.
5For simplicity, we omit the bias term here, while our method is still applicable when the bias term exists.
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rEal Data with Global gRAdient prototyPEs (RedGrape as our method). Specifically, for each class
c, (1) if the sample quantity of class c in Dk reaches a threshold T , we think client k has sufficient
samples of class c in its local dataset, and randomly samples T training samples of class c (which can
be different across rounds) to form Dbal

k,c for Dbal
k . Then, the gradients contributed by class c are

gbal
W i−1

k ,c
= ∇W i−1

k
L(W i−1

k ;P i−1
k , Dbal

k,c). (9)

(2) If client k does not have enough samples in class c, we choose to estimate the gradient contribution
of class c with the global gradient prototype gpro

W t−2,c of class c in the (t − 1)-th round,6 which
is the averaged gradient of training samples in class c w.r.t. W t−2 across selected clients in last
round (Shang et al., 2022b):

gpro
W t−2,c =

1

|Ct−1
c |

∑
k∈Ct−1

c

gpro
W t−2,k,c, (10)

gpro
W t−2,k,c = ∇W t−2L(W t−2;P t−2,Dk,c), (11)

where Ct−1
c represents the set of clients sampled in the (t− 1)-th round and have the training samples

of class c, and Dk,c denotes all training samples of class c in Dk. Thus, it requires each client sampled
in the previous round to first calculate the local gradient prototype of each class c ∈ Lk on the same
model (P t−2,W t−2), return {gpro

W t−2,k,c|c ∈ Lk} back to the server along with other local gradients.
The server will average and update the global gradient prototypes, and broadcast them in the current
round.7 Based on Eq. (9) and Eq. (10), the gradients for re-balancing W i−1

k are

gbal
W i−1

k

=
1

|L|
(
∑

c∈Lbal
k

gbal
W i−1

k ,c
+

∑
c∈L\Lbal

k

gpro
W t−2,c), (12)

where Lbal
k ⊂ Lk is the label set in which each class contains at least T samples and L is the entire

label set.

Updating W . According to the form of Eq. (6), the final updating rule for W i−1
k is8

W i
k = W i−1

k − ηl

[
glocal
W i−1

k

+ λgbal
W i−1

k

(∥glocal
W i−1

k

∥/∥gbal
W i−1

k

∥)
]
, (13)

In Eq. (13), we normalize the scale of gbal
W i−1

k

at each step, by making its scale consistent with the

decreasing trend of the scale of real gradients during training. The reason is, gpro
W t−2,c is a constant

used to calculate gbal
W i−1

k

and update W i−1
k , while the scale of local gradients glocal

W i−1
k

decreases
during the training, it will do harm to the training when gpro

W t−2,c becomes the dominant part on
updating the model for consecutive steps.

After training, the new model is (P t
k ,W

t
k , Ŵ

t
k), and client k sends the local gradients

(gP t−1,k, gW t−1,k, gŴ t−1,k
) = (P t

k − P t−1,W t
k − W t−1, Ŵ t

k − Ŵ t−1) along with the local
gradient prototypes {gpro

W t−1,k,c|c ∈ Lk} to the server.

3.3.2 SERVER AGGREGATION STAGE

The server first aggregates the gradients and updates the global model as

(P t,W t, Ŵ t) = (P t−1,W t−1, Ŵ t−1)− ηs
∑
k∈Ct

|Dk|∑
i∈Ct |Di|

(gP t−1,k, gW t−1,k, gŴ t−1,k
). (14)

Also, the server needs to update the global gradient prototypes as

gpro
W t−1,c =


1

|Ct
c|

∑
k∈Ct

c

gpro
W t−1,k,c, Ct

c ̸= ∅,

gpro
W t−2,c, Ct

c = ∅,
(15)

6We discuss about the impact of utilizing previous gradients information in current round in Appendix A.
7We discuss about the limitation of extra communication cost caused by transmitting global gradient

prototypes in Appendix B, and a privacy-preserving manner to transmit them in the Ethics Statement Section.
8minWP L(WP ;P ,Dbal) is a constant when taking derivatives over W .
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in which the second case represents that all clients in Ct in current round do not contain samples of
class c. In this case, we re-use the global gradient prototype of class c from the previous round. The
updated global model and global gradient prototypes are sent to the sampled clients in the next round.

3.4 INFERENCE STAGE

After federated training, we only keep the re-balanced classifier W and abandon Ŵ during inference:

ypred = argmax
i

[W T f(x;P )]. (16)

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETTINGS

Datasets and Models We conduct experiments on three popular image classification benchmarks:
MNIST (LeCun et al., 1998), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). We follow
existing studies (Cao et al., 2019; Shang et al., 2022b) to create the long-tailed versions of training
sets of above three datasets (i.e., MNIST-LT, CIFAR-10/100-LT), and keep the test sets as balanced.
We first define the term Imbalance Ratio: IR = maxc{nc}

minc{nc} , which is the ratio between the maximum
sample number across all classes and the minimum sample number across all classes, to reflect the
imbalance degree of the global data distribution. Then, the training sample quantity of each class
follows an exponential decay. We choose IR = 10, 50, 100 in our main experiments. We also conduct
experiments in another binary class imbalance setting (Shen et al., 2021), the details and results are
in Appendix E. Furthermore, we follow the existing studies (Reddi et al., 2020; Shang et al., 2022b)
to adopt the Dirichlet distribution Dir(α) for the non-i.i.d. data partitioning, in which α controls
the non-i.i.d. degree. We set α = 1.0 in our main experiments, and put the results on other αs in
Appendix F. We use the convolutional neural network (CNN) (McMahan et al., 2017) for MNIST-LT,
and use ResNet-56 (He et al., 2016) for CIFAR-10/100-LT. More details are in Appendix C.1.

Baseline Methods We mainly compare our method with the existing federated long-tailed learning
algorithms, including FedAvg with the CrossEntropy Loss (FedAvg+CE) applied in the local train-
ing (McMahan et al., 2017), Fed-Focal Loss (Sarkar et al., 2020), Ratio Loss (Wang et al., 2021),
CLIMB (Shen et al., 2021), and the state-of-the-art method CReFF (Shang et al., 2022b). Also, we
conduct extra experiments to compare with other FL methods that are only designed for tackling the
non-i.i.d. data issue (i.e., FedProx (Li et al., 2018), FedAvgM (Hsu et al., 2019) and FedAdam (Reddi
et al., 2020)), the results are in Appendix H.

Training Details We conduct experiments in two popular FL settings based on the ratio of clients
participating in each round: (1) Full client participation setting: all clients participate in updating
the global model in each round, and the total number of clients is 10; (2) Partial client participation
setting: the total number of clients is 50 but only 10 clients are randomly sampled in each round. We
also conduct experiments with a larger number of total clients (i.e., 100), the results are in Appendix I.
We adopt SGDM as the optimizer for local training. The local learning rate is 0.01 for MNIST-LT
and 0.1 for CIFAR-10/100-LT. The number of local epochs is 5 for all datasets. As for our method,
the re-balance factor λ is fixed as 0.1 in all experiments, and we explore the effect of different values
of λ in Appendix J. The quantity threshold T for each class to create the local balanced dataset is set
as 8 for MNIST-LT and CIFAR-10-LT, and 2 for CIFAR-100-LT, and we put further discussion in
Section 5.1. Each experiment is run on 3 random seeds. Complete training details (e.g., the number of
communication rounds in each setting, detailed hyper-parameters of baselines) are in Appendix C.2.

4.2 MAIN RESULTS

In the main paper, we report the averaged accuracy over the last 10 rounds (with standard deviation)
on the balanced testing set in each experiment following Reddi et al. (2020). We also display the
averaged test accuracy on tail classes in each setting in Appendix D to show that our method
can significantly bring improvement to the model’s performance on tail classes. The overall
results on the balanced testing sets under full client participation setting are in Table 1, and Table 2
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Table 1: Results under the full client participation setting. We report the overall test accuracy and
standard deviation on the balanced testing set of each dataset.

Method
MNIST-LT CIFAR-10-LT CIFAR-100-LT

IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100

FedAvg+CE 97.99(± 0.02) 95.98(± 0.03) 92.71(± 0.50) 76.21(± 0.76) 68.41(± 0.54) 59.83(± 0.52) 49.08(± 0.22) 36.47(± 0.56) 33.28(± 0.28)
Fed-Focal Loss 97.90(± 0.03) 96.14(± 0.08) 92.97(± 0.64) 77.92(± 0.60) 61.21(± 1.91) 59.86(± 0.49) 48.14(± 0.26) 35.51(± 0.70) 30.05(± 0.81)
Ratio Loss 97.96(± 0.04) 96.20(± 0.04) 92.99(± 0.36) 78.58(± 0.42) 68.01(± 0.48) 59.27(± 0.47) 48.30(± 0.16) 37.62(± 0.30) 31.92(± 0.38)
CLIMB 97.89(± 0.03) 95.87(± 0.06) 92.71(± 0.47) 78.95(± 0.48) 66.25(± 0.57) 57.67(± 1.06) 49.27(± 0.13) 36.13(± 0.24) 32.18(± 0.35)
CReFF 97.68(± 0.03) 96.49(± 0.03) 93.85(± 0.35) 83.18(± 0.27) 73.46(± 0.36) 69.36(± 0.32) 46.58(± 0.42) 35.82(± 0.67) 33.46(± 0.26)

Ours 98.34(± 0.02) 97.06(± 0.03) 95.73(± 0.46) 83.74(± 0.20) 74.01(± 0.31) 71.04(± 0.46) 51.09(± 0.13) 38.49(± 0.34) 34.63(± 0.29)

Table 2: Results under the partial client participation setting. We report the overall test accuracy
and standard deviation on the balanced testing set of each dataset.

Method
MNIST-LT CIFAR-10-LT CIFAR-100-LT

IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100

FedAvg+CE 95.51(± 0.20) 91.82(± 0.17) 89.92(± 0.54) 60.38(± 0.36) 45.15(± 0.39) 40.06(± 0.96) 40.81(± 0.19) 24.62(± 0.63) 22.08(± 0.83)
Fed-Focal Loss 96.79(± 0.11) 92.59(± 0.14) 90.45(± 0.42) 61.16(± 0.34) 46.20(± 0.34) 41.10(± 0.82) 40.85(± 0.19) 24.73(± 0.46) 20.17(± 1.31)
Ratio Loss 95.17(± 0.21) 91.10(± 0.26) 89.64(± 0.51) 63.97(± 0.29) 44.22(± 0.31) 42.11(± 0.68) 40.96(± 0.36) 24.12(± 0.76) 23.06(± 0.69)
CLIMB 95.67(± 0.15) 92.24(± 0.22) 89.75(± 0.36) 61.75(± 0.31) 46.91(± 0.34) 42.02(± 1.03) 40.64(± 0.17) 23.99(± 0.85) 21.44(± 1.18)
CReFF 96.29(± 0.08) 94.16(± 0.19) 92.16(± 0.17) 69.38(± 0.24) 60.52(± 0.21) 55.63(± 0.60) 39.38(± 0.13) 25.42(± 0.24) 24.77(± 0.50)

Ours 97.54(± 0.06) 95.17(± 0.11) 93.61(± 0.15) 71.68(± 0.35) 61.42(± 0.30) 57.11(± 0.52) 42.97(± 0.11) 27.73(± 0.29) 25.64(± 0.43)

displays the results under partial client participation setting. We can draw the main conclusion from
these tables as: our method consistently outperforms the existing algorithms in all settings.

As we can see, Fed-Focal Loss underperforms FedAvg with CE loss in some settings, which validates
the claim that directly applying the centralized long-tailed learning methods can not help to address
the global class imbalance problem in FL, as it ignores the mismatch between the global and the
local imbalance patterns. Ratio Loss and CLIMB apply the class-level re-weighting and client-level
re-weighting ideas separately, and gain slight improvement over FedAvg. We analyze that the reason
for the limited improvement lies in that though the re-weighting practice helps the model to focus
more on the learning of tail classes, it is not conducive to the representation learning on the abundant
data of head classes according to Kang et al. (2019). Moreover, the assumption of obtaining a global
auxiliary dataset makes Ratio Loss impractical in real cases.

The great performance of CReFF helps to validates the effectiveness of the idea of classifier re-
balancing. However, the optimization of the federated features requires massive computations on
the server (especially when the number of classes is large), and the federated features from the
same class may converge to be similar. Thus, the re-trained classifier faces the problem that it may
overfit on the highly similar and small amount of the federated features, which is reflected in the
poorer performance under smaller IR. Our method instead takes full advantage of the local real
data supplemented by the global gradient prototypes to locally re-balance the classifier, and
consistently outperforms all baselines by a large margin. Compared with CReFF and Ratio Loss,
we do not have extra requirements except for the normal aggregations on the server, and produce a
re-balanced classifier that has better generalization ability with the help of abundant real data.

We further display the evaluation accuracy curve after each round in CIFAR-10-LT (IR = 100) under
the full client participation setting in Figure 2. As we can see, our method not only has the best
converged performance, but also achieves much faster convergence speed than all baseline
methods. That is because our method re-balances the classifier at each local training step, and this
makes it converge faster to the optimal balanced classifier.

5 FURTHER EXPLORATIONS

5.1 LOCAL REAL DATA PLAYS AN IMPORTANT ROLE IN RE-BALANCING THE CLASSIFIER

During creating the local balanced datasets, we set a threshold T to decide whether each client owns
the enough data of a specific class. Larger T decreases the number of classes in which the real data
can be used to calculate local gradient prototypes in Eq. (9), while smaller T leads to the relatively
unreliable gradients of class c. We then explore the effect of different T s on CIFAR-10-LT, and put
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Figure 2: The evaluation accuracy curve of each
method in CIFAR-10-LT. Our method achieves
faster convergence speed and better performance
than all existing baselines.
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Figure 3: The test accuracy of using different
sample quantity thresholds for each class when
creating the local balanced datasets in CIFAR-
10-LT with full client participation.
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(a) Results on CIFAR-10-LT.
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(b) Results on CIFAR-100-LT.

Figure 4: The positive effect of adding a supplementary classifier in the training phase to help model
the global data distribution when locally re-balancing the classifier by our method.

the results in Figure 3. We indeed observe a trade-off pattern as expected and find that T = 4, 8 are
generally proper choices. T = ∞ means we remove the role of local real data on the classifier re-
balancing and only use the global gradient prototypes instead, and we find the performance degrades
greatly, which verifies the large benefits of using local real data to adjust the classifier.

5.2 SUPPLEMENTARY CLASSIFIER IS CRUCIAL FOR EFFECTIVE CLASSIFIER RE-BALANCING

Here, we conduct experiments on CIFAR-10/100-LT to explore the necessity of introducing a
supplementary classifier to address the optimization difficulty caused by performing classifier re-
balancing locally. The results are displayed in Figure 4. “FedAvg+CE” is the naive baseline, which
can also be considered as an ablation situation in which we add the supplementary classifier Ŵ
but without further re-balancing on W . “Ours w/o Extra Classifier” represents the situation where
we do not add Ŵ but still re-balance W based on Eq. (13). We observe that if we do not add the
supplementary classifier in the training phase, the model will converge to a bad local optimum and
behave much worse than that if we adopt the two-stream classifier architecture. This helps to validate
our motivation and the great effectiveness of introducing a new global classifier to address the
optimization difficulty brought by the local classifier re-balancing practice.

6 CONCLUSION

In this paper, we propose a decentralized decoupling mechanism to effectively re-balance the classifier
for tackling federated long-tailed learning. Motivated by the distributed characteristic of FL, we
propose to re-balance the classifier during local training with the help of abundant local real data
supplemented by global gradient prototypes. Furthermore, in order to address the problem of
contradictory optimization goals brought by performing local classifier re-balancing, we introduce a
two-stream classifiers architecture to help model the global data distribution. Thorough experiments
verify the great effectiveness of our method over strong baselines without extra data requirements.
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ETHICS STATEMENT

Our purpose is to address the optimization problem of FL on the non-i.i.d. and long-tailed data and
help to learn a better global model that has good performance on all classes. The datasets used in
our experiments are all publicly available. Also, our method only requires the normal gradients
transmission between the server and the clients as other FL methods do, which will not expose the
local data privacy. Specifically, when uploading global gradient prototypes, we can use privacy-
preserving methods such as Homomorphic Encryption to allow the server only get the encrypted
average of global gradient prototype of each class instead of the single local gradient prototype
from each client, which further enhances the protection of the local privacy. The steps are the
following:

• Create a secret key that is only known by clients.
• Clients encrypt the gradients and the gradient prototypes with the secrete key, then upload

them to the server.
• The server only calculate the homomorphic average of the local gradients and gradient

prototypes, but can not obtain the original values of gradient information as it does not know
the secrete key. Then, the server broadcasts the updated information to the clients in the next
rounds.

• After receiving the encrypted global information from the server, the clients decrypt the
information in the local with the key, and use it to perform the local training.

REPRODUCIBILITY STATEMENT

We include all the details for reproducing the results in this work in both the main paper and the
appendix. We present the code source and the infrastructure used in our experiments at the end of
Appendix C.2. We introduce all necessary experimental settings (such as datasets, models, baseline
methods, hyper-parameters for each method, all training details) in Section 4.1 and Appendix C. All
datasets used in our experiments all publicly available. We will release the code upon acceptance.
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A THE IMPACT OF UTILIZING PREVIOUS GRADIENT INFORMATION ON
RE-BALANCING CURRENT CLASSIFIER

In our proposed method, it requires to use the global gradient prototypes calculated on the previous
classifier W t−2 to help re-balancing current classifier W t−1. This may cause some inconsistency
with the ideal solution that calculates the global gradient prototypes w.r.t. W t−1. However, due to
the constraint in FL that the client can only get the information from last round at the beginning of
current round, it is unavoidable to use previous gradient prototypes in current round, thus we make
this adjustment to make classifier re-balancing feasible. Furthermore, using gradient information
from previous rounds to help current round’s model training is widely adopted in previous
studies (Karimireddy et al., 2020b; Shang et al., 2022b) with both theoretical and great empirical
guarantees. Our experimental results also validate the empirical effectiveness of this approach.

B THE EXTRA COMMUNICATION COST CAUSED BY TRANSMITTING GRADIENT
PROTOTYPES BETWEEN THE SERVER AND CLIENTS

In our method, besides uploading the normal gradient of the local model, each selected client also
needs to upload the additional local gradient prototypes w.r.t. the classifier W and the gradient w.r.t.
the additional classifier Ŵ to the server. Also, the server will then broadcast the aggregated global
gradient prototypes to the clients in the following rounds. This will cause extra communication costs
between the server and clients compared with some baselines such as Ratio Loss and CLIMB, which
we admit is the potential limitation of our method. However, we think the extra communication
cost and storage memory of the supplementary classifier and global gradient prototypes are
the necessary costs to effectively improve global model’s performance on long-tailed global
data. Previous FL studies (Karimireddy et al., 2020b; Shang et al., 2022b; Karimireddy et al., 2020a)
have proven that introducing extra gradient information in the local training can bring significant
improvement, thus the achievement gained by these advanced methods is also caused by adding
extra gradients and parameters. For instance, SCAFFOLD (Karimireddy et al., 2020b) requires
an additional transmission of the local control variate for each client that has the same number of
parameters of the original model. Furthermore, compared with previous state-of-the-art method
CReFF (Shang et al., 2022b), our method does not introduce extra parameters/gradients, while
consistently achieves better performance. Finally, the total number of these newly introduced
parameters is acceptable compared with the original model/gradient parameters. Take CIFAR-100
with 100 classes for example, the number of newly introduced gradient parameters is about 2× 106,
which is comparable with the original based model CIFAR-56 with 6× 105 parameters, and is much
smaller than CIFAR-50 with 2 × 107 parameters. All in all, the extra communication costs are
worthwhile for improving model’s performance.

C DETAILED EXPERIMENTAL SETTINGS

C.1 DATASETS AND MODELS

Here, we introduce the datasets and the backbone models we used in our experiments. We choose
three classical image classification tasks, including MNIST9 (LeCun et al., 1998), CIFAR-10 and
CIFAR-10010 (Krizhevsky et al., 2009). We then follow existing centralized and federated long-tailed
learning studies (Cao et al., 2019; Shang et al., 2022b) to create the long-tailed versions of the training
sets of above datasets (i.e., MNIST-LT, CIFAR-10/100-LT). Specifically, the long-tailed degree is
controlled by a ratio called the Imbalance Ratio: IR=maxc{nc}

minc{nc} , where nc represents the sample
quantity of class c (0-indexed). Then, we manage to make the sample quantity of each class follow
an exponential decay trend:

nc = n0 ×
(

1

IR

) c
C−1

, c = 0, · · · , C − 1. (17)

9Can be downloaded from http://yann.lecun.com/exdb/mnist/.
10Can be downloaded from https://www.cs.toronto.edu/ kriz/cifar.html.
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As for the non-i.i.d. data partitioning, we follow existing studies (Reddi et al., 2020; Shang et al.,
2022b) to adopt the Dirichlet distribution Dir(α). Smaller α means the heavier non-i.i.d. degree. We
choose α = 1.0 in our main paper, and we also put the results on different αs in Appendix F.

We use the same convolutional neural network (CNN) used in McMahan et al. (2017) for experiments
on MNIST-LT, and adopt ResNet-56 (He et al., 2016) as the backbone model for CIFAR-10/100-LT.

C.2 COMPLETE TRAINING DETAILS

LOCAL TRAINING SETTINGS

We utilize SGDM as the local optimizer in all experiments. The search grid for server learning rate is
[0.5, 1.0, 2.0, 3.0] , and the search grid for local learning rate is [0.01, 0.05, 0.1, 0.5]. The final local
learning rate is 0.01 for MNIST-LT, and 0.1 for CIFAR-10/100-LT. The tuned server learning rate is
1.0 for all settings. For all three datasets, the batch size for local training is 64, and the number of
local training epochs is 5. As mentioned in main paper, we perform experiments in both full client
participation and partial client participation settings. We set different total communication rounds in
different setting considering the different convergence speeds of the global models: (1) In the full
client participation setting, the number of communication rounds is 200 for MNIST-LT, and 500 for
CIFAR-10/100-LT. (2) In the partial client participation setting, the number of communication rounds
is 500 and 1000 for MNIST-LT and CIFAR-10/100-LT separately.

SERVER AGGREGATION SETTINGS

During server aggregation, we follow the same procedure as that in FedAvg to aggregate the collected
local gradients in the current round, and update the global model with the averaged gradients. The
server learning rate is tuned as 1.0 for all experiments. Furthermore, as for CReFF and our method,
the server needs to update the global gradient prototypes (refer to Section 3.3 in our main paper)
by averaging local gradient prototypes. However, different from CReFF, we do not have extra
requirements on the server to make it perform further optimization and training process.

HYPER-PARAMETERS OF EACH METHOD

Here, we introduce the choices of hyper-parameters used in each method in detail.

Fed-Focal Loss: Fed-Focal Loss (Sarkar et al., 2020) directly applies Focal Loss (Lin et al., 2017)
to the local training. The form of Focal Loss is

Lfocal = −(1− pT )
γ log(pT ), (18)

where pT is the predicted probability of the sample corresponding to the ground truth class. We set
γ = 2 in our experiments.

Ratio Loss: Ratio Loss (Wang et al., 2021) applies the class-level re-weighting practice by first
estimating the global imbalance pattern on the server with an auxiliary balanced dataset. Its form can
be written as

Lratio = (α+ βR)LCE , (19)

where LCE is the traditional CrossEntropy Loss, R is the ratio vector that contains the relatively
estimated sample quantity of each class on the server, α and β are two hyper-parameters. Thus, we
follow the original study (Wang et al., 2021) to set the sample number of each class on the auxiliary
balanced dataset to be 32, α = 1.0, β = 0.1.

CLIMB: CLIMB (Shen et al., 2021) aims to perform the client-level re-weighting to up-weight
the aggregation weights for the local gradients with larger local training losses, as the global model
behaves poorly on these clients’ local data. The hyper-parameters in CLIMB include a tolerance
constant ϵ and a dual step size ηD. In our experiments, we follow the original setting to set ϵ = 0.01
for MNIST-LT and ϵ = 0.1 for CIFAR-10/100-LT, set η as 2.0 and 0.1 for MNIST-LT and CIFAR-
10/100-LT separately.
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Table 3: Averaged evaluation accuracy on the tail classes under the full client participation setting
in main experiments.

Method
MNIST-LT CIFAR-10-LT CIFAR-100-LT

IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100

FedAvg+CE 96.05 90.23 82.21 67.87 55.26 29.24 36.25 13.37 8.50
Fed-Focal Loss 95.84 90.47 82.62 74.94 47.37 33.86 34.40 12.53 6.49
Ratio Loss 96.04 90.76 83.01 71.27 55.79 33.28 34.55 15.35 7.98
CLIMB 95.70 89.93 82.01 73.68 55.86 30.95 35.81 13.31 8.65
CReFF 95.98 91.98 86.62 82.87 66.10 57.03 38.18 22.77 18.98

Ours 96.78 92.97 89.59 83.86 69.74 60.41 40.11 20.19 15.58

Table 4: Averaged evaluation accuracy on the tail classes under the partial client participation
setting in main experiments.

Method
MNIST-LT CIFAR-10-LT CIFAR-100-LT

IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100 IR = 10 IR = 50 IR = 100

FedAvg+CE 89.75 80.05 74.35 51.99 24.03 2.64 29.65 8.55 5.74
Fed-Focal Loss 92.65 82.43 75.46 49.78 27.43 5.68 29.51 8.89 4.08
Ratio Loss 89.83 77.93 73.35 55.54 23.81 4.87 29.28 8.36 5.86
CLIMB 90.09 81.49 74.58 54.45 23.90 4.14 29.85 8.37 4.97
CReFF 92.87 88.94 83.75 74.81 62.67 45.30 34.38 17.46 16.58

Ours 94.82 90.06 86.38 75.71 63.58 43.92 35.34 17.91 13.39

CReFF: CReFF (Shang et al., 2022b) needs to create a set of federated features on the server,
of which the number per class is 100. Following the original setting, the optimization steps on the
federated features is 100, the classifier re-training steps is 300. Further, the learning rate of optimizing
the federated features is 0.1 for all datasets, and the learning rate of classifier re-training is kept as the
same as that used in the local training on that dataset.

RedGrape (Ours): Our method introduces two hyper-parameters: λ for the classifier re-balancing
strength, and T for the sample quantity threshold of each class on creating local balanced datasets. We
put the detailed discussions about these two hyper-parameters in our main paper. The recommended
search grids for λ are {1.0, 0.1, 0.01}, and {2, 4, 8} for T .

CODE AND INFRASTRUCTURE

Our code is implemented based on the open-sourced FL platform FedML (He et al., 2020). We will
release our code upon acceptance. Our experiments are conducted on 8 * GeForce RTX 2080 Ti.

D RESULTS ON THE TAIL CLASSES IN MAIN EXPERIMENTS

In our main paper, we put the results of the overall accuracy on the balanced testing sets of each
method, and we have that our method consistently outperform all other methods in all settings.
Here, we put the averaged accuracy on the tail classes of each method. Specifically, we define the tail
classes as the last 30% classes with the minimum sample quantity.

The results on the tail classes are in Table 3 and Table 4. As we can see, our method brings
significant improvement on the tail classes in most cases. Also, we find that CReFF tends to
achieve better performance on the tail classes when the imbalance degree is larger. However, the
performance of CReFF on the overall testing sets is worse than our method according to the results in
our main paper. This validates our analysis that, re-training the classifier on a set number of federated
features on the server can indeed re-balance the classifier to some extent, but it is likely to produce a
sub-optimal classifier that overfits on these limited number of pseudo features.
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Table 5: The overall evaluation accuracy in the binary class imbalance setting. IR = 100 and the
randomly chosen tail classes are 0, 7 and 8.

Method
Full Participation Partial Participation

MNIST CIFAR-10 MNIST CIFAR-10

FedAvg+CE 93.91 70.91 91.97 61.27
Fed-Focal Loss 93.53 70.77 91.77 59.18
Ratio Loss 94.23 73.22 92.32 62.86
CLIMB 93.89 72.04 92.11 63.18
CReFF 96.70 78.98 96.01 71.41

Ours 96.86 79.88 96.43 73.31

Table 6: The overall accuracy on the balanced testing sets under different non-i.i.d. degrees. Our
method consistently outperforms all baselines.

Method
MNIST-LT CIFAR-10-LT CIFAR-100-LT

α = 0.1 α = 1.0 α = 10.0 α = 0.1 α = 1.0 α = 10.0 α = 0.1 α = 1.0 α = 10.0

FedAvg+CE 93.42 92.71 94.09 59.46 59.83 63.01 31.18 33.28 31.74
Fed-Focal Loss 94.16 92.97 94.21 53.47 59.86 61.06 31.72 30.05 30.18
Ratio Loss 93.50 92.99 94.34 59.30 59.27 61.82 32.60 31.92 31.93
CLIMB 93.80 92.71 94.23 61.10 57.67 61.46 31.64 32.18 32.45
CReFF 93.94 93.85 94.76 63.25 69.36 70.30 32.20 33.46 31.60

Ours 95.34 95.73 95.93 64.30 71.04 71.82 32.86 34.63 34.42

E RESULTS IN ANOTHER CLASS IMBALANCE SETTING

We also conduct experiments in a binary class imbalance setting in FL (Shen et al., 2021), in which
three classes are randomly chosen as the tail classes, and they are assigned with 1/IR number of
sampled compared with other normal/head classes. The experiments are conducted on MNIST-LT
and CIFAR-10-LT datasets with IR = 100, and other experimental settings are kept as the same as
that in our main experiments. The results of the overall evaluation accuracy are in Table 5. The
conclusion remains the same that, our method achieves the best performance in all cases.

F EXPERIMENTS UNDER DIFFERENT NON-I.I.D. DEGREES

In our main experiments, we fix the non-i.i.d. degree α = 1.0, in order to mainly explore the effects
of different imbalance degrees. Here, we conduct extra experiments with α = 0.1 and α = 10.0, and
fix the imbalance ratio IR = 100. We conduct experiment on MNIST-LT and CIFAR-10 under the
full client participation setting, and other experimental settings are kept as the same as that in our
main experiments. We put the results of the overall evaluation accuracy on the balanced testing sets
in Table 6. We can draw the main conclusion from the table that, our method can achieve the best
performance under different non-i.i.d. degrees.

G THE COMPARISON BETWEEN THE JOINT OPTIMIZATION PARADIGM AND
THE TWO-STAGE OPTIMIZATION PARADIGM

In our proposed method, we choose to re-balance the classifier during the local training. That is, the
representation learning and the classifier re-balancing are performed jointly, which is different from
the decoupled training method (Kang et al., 2019) in the centralized setting. The reason is, unlike
the centralized setting, the data is only kept in the local clients in FL. Thus, in practical, there is no
global balanced dataset on the server to perform the two-stage training by re-training the classifier
after representation learning. CReFF (Shang et al., 2022b) then creates some pseudo features in the
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Table 7: The comparison between the joint optimization paradigm adopted in our main paper and an
alternative two-stage optimization paradigm. IR = 100.

Method
Full Participation Partial Participation

CIFAR-10-LT CIFAR-100-LT CIFAR-10-LT CIFAR-100-LT

Two-Stage Optimization 65.74 32.38 52.28 21.85
Joint Optimization (in paper) 71.04 34.63 57.11 25.64

Table 8: The overall evaluation accuracy of more FL baselines on MNIST-LT and CIFAR-10-LT with
IR = 100 under full client participation setting.

Method MNIST-LT CIFAR-10-LT

FedAvg+CE 92.71 59.83
FedProx 92.43 60.79
FedAvgM 94.51 57.81
FedAdam 95.06 58.45

Fed-Focal Loss 92.97 59.86
Ratio Loss 92.99 59.27
CLIMB 92.71 57.67
CReFF 93.85 69.36

Ours 95.73 71.04

server for re-training the classifier after each round’s aggregation. However, we point out that the low
quality and limited number of pseudo features only produce a sub-optimal classifier. Therefore, we
are encouraged to put the classifier re-balancing along with the local training by fully utilizing
the local real data, and propose such a joint optimization paradigm.

Also, there exists another solution to locally re-balance the classifier: train the entire model using
standard FedAvg for sufficient rounds, then freeze the encoder and only re-train the classifier
under FedAvg framework. Therefore, we conduct extra experiments with this choice by freezing
the encoder trained by the baseline FedAvg and further re-training a new balanced classifier following
our RedGrape mechanism with extra 200 rounds until converged. The results in Table 7 suggest that
this two-stage training choice with more communication costs still underperforms the joint
optimization paradigm adopted in our main paper, validating the effectiveness of our original
motivation. We think the reason is, Eq. (6) formulates an integrated optimization target that requires
synchronous updates for all parameters, while this separate two-stage training practice will lead to
a sub-optimal solution. Moreover, above practice will take more communication rounds for extra
classifier re-training, which will cause an unfair comparison with other baselines.

H RESULTS ON FL METHODS ONLY DESIGNED FOR NON-I.I.D. DATA ISSUE

In our main experiments, we choose the methods that are specifically designed for tackling long-tailed
global data distribution as baselines. Here, we make a further comparison between our method
with popular FL methods that are designed only for the non-i.i.d. data issue, including FedProx (Li
et al., 2018), FedAvgM (Hsu et al., 2019) and FedAdam (FedOpt) (Reddi et al., 2020). We perform
experiments on MNIST-LT and CIFAR-10-LT with IR = 100 under the full client participation
setting. The results are in Table 8. As we can see, these heterogeneous data-oriented methods
consistently underperform our method, due to the reason that they do not take the long-tailed
data issue into consideration and will also produce bad global models that are biased to the
head classes.
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Table 9: The overall evaluation accuracy on MNIST-LT and CIFAR-10-LT with IR = 100 under
full client participation setting, where the total number of clients is 100 and the number of clients
sampled in each round is 10.

Method MNIST-LT CIFAR-10-LT

FedAvg+CE 87.06 32.68
Fed-Focal Loss 87.56 33.04
Ratio Loss 87.70 33.60
CLIMB 87.46 34.38
CReFF 90.56 42.25

Ours 92.03 43.78
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Figure 5: The test accuracy of using different re-balance factor λ in CIFAR-10-LT. Smaller λ leads to
slower convergence speed but relatively better generalization ability.

I EXPERIMENTAL RESULTS WITH 100 CLIENTS

In the partial client participation setting in the main paper, the total number of clients is set as 50. In
this section, we perform experiments with larger number of total clients. Specifically, we set the total
number of clients as 100 and the number of clients sampled in each round is 10. The total number
of communication rounds is 500 for MNIST-LT and 1000 for CIFAR-10-LT. The results displayed
in Table 9 show that our method can still achieve significant improvement when the number of
clients is larger.

J RE-BALANCING STRENGTH DECIDES ON THE CONVERGENCE TRADE-OFF

In order to solve the optimization target of Eq. (5), we consider to turn Eq. (5) into an unconstrained
optimization problem by adding a penalty term on the local objective function as Eq. (6) and update
W as Eq. (13), where a re-balance factor λ is used to control the re-balancing strength. Here, we
conduct experiments to explore the effect of different λs on the model’s performance, and the results
are shown in Figure 5. We find that the smaller λ results in slower convergence speed but obtains
relatively better performance of the converged model. We analyze the reason lies in that, the
gbal
W i−1

k

contains a part of global gradient prototypes calculated in the previous round and is a constant
when updating W . It will adversely affect the model’s convergence in the late stage of the training
when we are still using a large λ to re-balance the classifier. An interesting direction to improve our
method is designing an adaptive λ that decays along with the training, which we leave to future work.
When λ = 0.0, the addition of two classifiers equals to one normal classifier used in FedAvg, so
FedAvg is a special case of our method in this case.
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