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ABSTRACT

Federated learning (FL) has shown impressive performance in training modern
machine learning models from distributed data sources. However, the distributed
training process of FL could suffer from a non-trivial bias issue, where the trained
models are affected by the imbalanced distribution of the training data on local
clients, and eventually lead to a severe bias of the aggregated global model. In
this paper, we propose a novel fairness-aware FL training framework Worst-Fair
Domain Smoothing (WFDS) to address the bias issue of FL models from a domain-
shifting perspective. Our framework consists of two concurrent components: 1)
local worst-fair training, and 2) reference domain smoothing. The first module is
designed to train fair local models and enforces the robustness of local fairness
against domain shifts from local distribution to global distribution by performing
worst-fair training. The second module simulates a reference data domain of the
studied FL application for all clients, and implicitly reduces the domain discrepancy
of training data among different clients. With reduced domain discrepancy, the
fairness of each local model will be learned from similar training distributions
despite on different clients. As such, improved global fairness can be achieved
after aggregating the local models into the global model. Evaluation results on
multiple real-world datasets show that WFDS can achieve significant performance
gains in demographic fairness compared to state-of-the-art baselines.

1 INTRODUCTION

Federated learning (FL) has become one of the promising solutions to train modern machine learning
(ML) models without directly accessing the training data on local clients (Wang et al., 2021a;
McMahan et al., 2017). That is, at each communication round, each local client receives the global
model from a central server, and launches the training of the model using private local data to obtain
its local model. At the end of each communication round, the global model will be updated by
aggregating the local models using a secure aggregation protocol. In an FL application, the local data
privacy is preserved as there is no direct exchange of the data from the clients to the server or between
clients McMahan et al. (2017). While FL has been successfully deployed for many privacy-sensitive
applications (e.g., recidivism justice, loan approvals, and healthcare (Xu et al., 2021)), concerns about
the fairness of such FL models have been raised. For instance, Larson & Kirchner (2016); Bacchini
& Lorusso (2019); Buolamwini & Gebru (2018) have reported that ML algorithms deployed for
commercial face recognition services or recidivism prediction systems across the US are prone to
have a much higher error rate on African-Americans than Caucasians.

Recent efforts (Zhang et al., 2018; Beutel et al., 2017; Zhao et al., 2017; Kou et al., 2021; Han et al.,
2021; Hashimoto et al., 2018) have been made to mitigate the bias issue of ML models, but many of
them are tailored for the centralized learning setting, and only limited methods have been proposed to
address the bias for FL models (Zhang et al., 2020). Moreover, as argued in (Ezzeldin et al., 2021;
Cui et al., 2021), simply applying fair methods to local clients and aggregating the fair models from
local clients (i.e., local fairness) can not ensure the fair performance of the global model (i.e., global
fairness) and vice versa due to the disparity between the local and global data distributions. To
address the bias issue of the FL models, we follow the definition of the demographic bias of an FL

1



Under review as a conference paper at ICLR 2023

model as the performance discrimination of the global model against a certain population group
associated with sensitive demographic attributes (e.g., gender, race) (Ezzeldin et al., 2021)
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Figure 1: Domain shifts from local to global distributions and heterogeneity of local fairness.

In this work, we identify two core obstacles of addressing the bias issue in FL models: (1) the
vulnerability of local fairness under the distribution shift from local to global data distributions, and
(2) the discrepancy among local training data distributions, which leads to the heterogeneity of local
fairness. For a better understanding of these two obstacles, an illustrative example is given in Figure1.
In this example, the local fair model on client 1 (Figure 1a) or client 2 (Figure 1b) becomes unfair
when directly applied to the global data distribution (Figure 1c), indicating the local fairness is not
transferable due to the domain shift from the local to global data distribution. Moreover, due to the
discrepancy between local data distributions on client 1 and client 2, the fairness of local models
obtained by debiasing methods is conditioned on local data. As such, locally trained fair models
demonstrate heterogeneous behaviors over the global data distributions (as shown in Figure 1c),
which may result in an unfair global model upon aggregation (Figure 1d). Therefore, we formulate
the objective of mitigating bias in FL models as a task of learning robust local fairness against domain
shifts and reducing discrepancy across local data distributions. To this end, we propose a novel
fair FL framework called Worst-Fair Domain Smoothing (WFDS), addressing the bias issue from
domain-shifting perspective. Within WFDS, we define each local client as an independent data
domain, where the demographic composition of the local data on this specific client is different from
the demographic composition on other clients.

WFDS consists of two modules: local worst-fair training and reference domain smoothing as shown in
Figure 2. The first module, local worst-fair training, optimizes a fairness-aware loss over deliberately
crafted worst-fair training samples. This module is designed to train fair models on local clients and
enforce the robustness of local fairness against distribution shifts from local distributions to the global
distribution. To reduce the heterogeneity of local fairness and preserve the local fairness during global
model aggregation, we design a second module of our framework: reference domain smoothing. This
module simulates a data domain at the central server, which can be accessed by local clients as a
domain reference. All local data domains will be smoothed towards the simulated reference domain.
As such, domain discrepancy among local clients that leads to the heterogeneity of local fairness is
effectively reduced. Consequently, the global fairness is improved when aggregating local models
with reduced heterogeneity.

We summarize the main contributions of our works as follows1:

1. To the best of our knowledge, WFDS is the first work that addresses the bias issue of FL
models from a domain-shifting perspective. That is, each client is treated as an independent
data domain, and we aim at obtaining a fair FL model by smoothing all local domains.

2. We propose a novel worst-fair training method in WFDS to train fair local models in FL
applications. More importantly, this module enforces the robustness of local fairness against
the distribution shift from local distributions to the global distribution.

3. We propose a novel reference domain smoothing module to address the heterogeneity of
local fairness. Here, the discrepancy across local domains is implicitly reduced to improve
the compatibility of local fairness, and thereby ensure the aggregated global fairness.

1We adopt publicly available datasets and will release the implementation of WFDS upon publication.
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Figure 2: Worst-fair Domain Smoothing (WFDS), which consists of two concurrent modules: local
worst-fair training and reference domain smoothing.

4. We demonstrate the effectiveness of the proposed WFDS on multiple real-world datasets,
where WFDS consistently outperforms the state-of-the-art baselines by a significant margin.

2 RELATED WORK

Fairness of Machine Learning. A significant amount of algorithms have been proposed to increase
the fairness of ML models (Zhang et al., 2018; Beutel et al., 2017; Zhao et al., 2017; Kou et al., 2021;
Han et al., 2021; Hashimoto et al., 2018). One stream of the solutions focuses on learning fair data
representations by adopting adversarial learning (Zhang et al., 2018; Beutel et al., 2017) or fairness
regularization (Zhao et al., 2017). In comparison, Kou et al. (2021); Roh et al. (2020) directly create
fair data batches for the training process, addressing the bias issue from the data origin. Another type
of methods develop fairness-aware re-weighting strategies to modify the training distribution and
adjust the penalization on different training samples to improve model fairness (Han et al., 2021;
Hashimoto et al., 2018). These methods have been proved to be effective in addressing demographic
bias issue in ML models, but they are tailored for centralized training settings. Moreover, as argue in
Ezzeldin et al. (2021), directly applying centralized fairness algorithms in an FL application could
not necessarily guarantee the fairness of the aggregated global model.

Federated Learning. Federated Learning allows multiple clients to collaboratively learn a shared
machine learning model without exchanging the data of each clients (McMahan et al., 2017). The
distributed training process in FL ensures the data privacy, which is extremely important for privacy-
sensitive applications such as healthcare or criminal justice. However, FL models might suffer
from a non-trivial performance bias against underrepresented demographic groups within the entire
population, and only limited solutions have been proposed to address the bias issue in FL (Mohri
et al., 2019; Du et al., 2021; Ezzeldin et al., 2021; Zhang et al., 2020; Zeng et al., 2021b; Cui et al.,
2021). For instance, in (Mohri et al., 2019), the proposed Agnostic FL (AFL) achieves a weak
fairness notion w.r.t. a singe demographic group by optimizing the worst training loss incurred on
the protected classes (Zhang et al., 2020). Moreover, Ezzeldin et al. (2021) presents a re-weighting
strategy to enable a fair aggregation protocol, eventually leading to a fair global model. Cui et al.
(2021) formulate the fair Fl problem as a constrained multi-objective optimization problem to meet
the fairness constraints for all clients. Additionally, the optimization-based method in (Cui et al.,
2021) requires shared losses and a synchronized update of all local clients, rendering it inapplicable
for real-world FL scenarios. In contrast, our WFDS allows local clients to train the local model
asynchronously, which is more practical in real-world applications. More importantly, our scheme
improves the global fairness from a higher domain-shifting perspective by enforcing the robustness
of local fairness against domain shifts and reducing heterogeneity of local fairness.

3 PROBLEM STATEMENT

3.1 FEDERATED LEARNING

In an FL application, we assume there are a total of K local clients and each client has a local dataset
Xk of size Nk. The total number of data points from all clients is N =

∑
k Nk. For all clients,

each data point is characterized by an input feature x ∼ X , a demographic attribute a ∼ A and a
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predictive attribute (output) y ∼ Y . All clients share the same input space X , the same demographic
space A and the same output space Y . Formally, the local dataset on client k is defined as:

Xk = {(xk
1 , a

k
1 , y

k
1 ), ..., (x

k
Nk

, akNk
, ykNk

)|(xk, ak, yk) ∼ Pk}, (1)
where Pk denotes the local data distribution on client k.

The overall goal of federated learning is to collaboratively learn a global model stored in a central
server from the local data without requiring the local clients to share data with each other and the
central server. To find the optimal global model f parameterized by θ∗, the classic federated learning
model aims to minimize the training loss over the samples from all clients:

θ∗ = argmin
θ

1

N

K∑
k=1

Nk∑
i=1

l(fθ(x
k
i ), y

k
i ). (2)

To minimize Equation 2, McMahan et al. (2017) proposed an algorithm called Federated Averaging
(FedAvg). That is, at each round, the local clients firstly receive the same global model fθ from the
central server, perform local training of the model on local data separately, and obtain different local
models (fθ1

, fθ2
, ...fθK

). Then, the global model will be updated using a weighted-average of the
different local models based on the size of the local datasets. Therefore, in practice, within FedAvg,
the optimal global model θ∗ is derived via:

θ∗ =
1

N

K∑
k=1

Nk · θk, where θk = argmin
θ

1

Nk

Nk∑
i=1

l(fθ(x
k
i ), y

k
i ), k ∈ {1, ...,K}. (3)

Equation 3 is equivalent to equation 2 (McMahan et al., 2017), but after the local training, the local
models fθk

could be severely biased against a specific demographic group when the local training
data is imbalanced (Zhang et al., 2018; Beutel et al., 2017; Zhao et al., 2017; Kou et al., 2021; Han
et al., 2021; Hashimoto et al., 2018). Moreover, note that during each local training round, the local
model θk on the client k is obtained by modeling local training data distribution Pk:

θk = argmin
θ

1

Nk

Nk∑
i=1

l(fθ(x
k
i ), y

k
i ) ≈ argmin

θ
E(xk

i ,y
k
i )∼Pk

[l(fθ(x
k
i ), y

k
i )]. (4)

Since the data on each local client is collected by clients in different regions and the local populations
might have drastically different demographic compositions. The potential domain discrepancy among
P1, P2, ..., Pk and the global data distribution could lead to a frustrating consequence, where
the locally trained fair models could be aggregated into a globally unfair model (e.g., Figure 1d).
Additionally, global fairness could not automatically guarantee local fairness on different clients Cui
et al. (2021). Therefore, in this work, we propose to reduce the domain discrepancy among local data
distributions to reduce the heterogeneity of local fairness for all clients.

3.2 NOTION OF DEMOGRAPHIC FAIRNESS

In this work, we focus on addressing the demographic bias of FL models. To properly measure the
bias of the models, we adopt various notions of demographic fairness. Recall a data point x defined
in our problem contains a sensitive demographic attribute a (e.g. gender or race) and a predictive
attribute y. The first group of fairness notions include the commonly used demographic parity ϕD

Hardt et al. (2016) and equalized odds Hardt et al. (2016) ϕE . These two metrics mainly focus on the
model’s performance discrepancy on positive predictions.
Definition 3.1 (Demographic Parity ΦD (binary case)). For a given classifier fθ, demographic
parity ΦD measures the absolute error between the probability of making positive prediction for each
demographic group.

ΦD(fθ,x, a) = |p(fθ(x) = 1|a = 0)− p(fθ(x) = 1|a = 1)|. (5)
Definition 3.2 (Equalized Odds ΦE (binary case)). For a given classifier fθ, equalized odds ΦE

measures the absolute error of the true positive rates for each demographic group and the absolute
error of the false positive rates for each demographic group.

ΦE(fθ,x, a, y) = |p(fθ(x) = 1|y = 1, a = 0)− p(fθ(x) = 1|y = 1, a = 1)|
+ |p(fθ(x) = 1|y = 0, a = 0)− p(fθ(x) = 1|y = 0, a = 1)|. (6)
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In addition to positive predictions, we also use another group of fairness-aware accuracy metrics to
measure the model’s demographic fairness as in Yue et al. (2022), namely sub-group accuracy gap
and balanced accuracy.
Definition 3.3 (Sub-group Accuracy Asub). For a given classifier fθ, the sub-group accuracy
Asub measures the accuracy of the prediction within a specific demographic group characterized by
demographic attribute a and predictive attribute y.

Asub(fθ, a, y) =
E(xi,yi)∼X

[
1(fθ(xi) = y, yi = y, ai = a)

]
E(xi,yi)∼X

[
1(yi = y, ai = a)

] . (7)

Definition 3.4 (Sub-group Accuracy Gap ΦA). For a given classifier fθ, the sub-group accuracy
gap ΦA sums up the absolute error among all demographic groups.

ΦA(fθ) =
∑
a

∑
y

∑
a′

∑
y′

|Asub(a, y)−Asub(a
′, y′)| (8)

Definition 3.5 (Balanced Accuracy AB). For a given classifier fθ , the balanced accuracy computes
the averaged sub-group accuracy for all demographic groups.

AB(fθ) =

∑
a

∑
y Asub(a, y)

|A| · |Y|
. (9)

For the fairness notions introduced above, we highlight that all of these metrics are conditioned on
the model parameters. Since the model parameter is learned based on the training data distribution,
local fairness could be highly heterogeneous across different local clients due to the discrepancy
across different local data distributions.

4 ALGORITHM

Based on the detailed analysis for the classical federated learning framework and various notions
of demographic fairness, we note the major challenge of addressing bias issue in FL applications is
to overcome the distribution shift from local distribution to the global distribution and the domain
discrepancy across all local clients. To this end, we design our fairness-aware FL framework Worst-
Fair Domain Smoothing in a way such that robust local fairness is enforced against domain shift, and
the domain discrepancy between different local data distributions is implicitly reduced to boost the
compatibility of local fairness for all clients.

4.1 LOCAL WORST-FAIR TRAINING

The worst-fair training module is designed to achieve local fairness for individual clients and further
enhance the robustness of local fairness under distribution shifts. To obtain robust local fairness, this
module minimizes a fairness-aware loss over a worst-fair data distribution.

Mathematically, we define this process as a minimax game between a fairness adversary and a fairness
booster. The fairness adversary tries to generate fairness-adversarial examples by perturbing the
local training samples towards a direction of degraded fairness w.r.t. a selected fairness notion (e.g.,
demographic parity ΦD), whereas the fairness booster tries to learn a fair model even if the training
data is deliberately perturbed to be biased. The minimax game on client k is formulated as

min
θk

1

Ck

Ck∑
j=1

[
1

Mj

Mj∑
i=1

[
l(fθk

(xk
j,i + δj,i), y

k
j,i)

]]
s.t. δj,i = argmax

δ
Φ̂∗(fθk

), ∥δj,i∥ ≤ ϵ,

(10)

where Ck denotes the total number of demographic groups within the local data on client k and Mj

denotes the number of training samples of the j-th demographic group. δj,i is the bias perturbation
deliberately crafted by the fairness adversary to bias the training sample xk

j,i. Φ̂∗ is the differentiable
version of any fairness notion (ΦD, ΦE or ΦA) introduced in Section 3.
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The minimization in Equation 10 suggests that the fairness booster obtains local fairness by mini-
mizing a fairness-aware training loss. Herein, the fairness-awareness of the training loss is enabled
by re-weighting each training sample inversely proportional to the data frequency (IDF) of the
demographic group which this training sample belongs to (Han et al., 2021). That is, the empirical
risk is averaged within each demographic group, then the group-level risk is further averaged over
the number of demographic groups. Moreover, note that the fairness-aware loss is evaluated over
the perturbed training samples xk

j,i + δj,i. Given the fact that the perturbation δj,i is generated in a
way such that the selected fairness notion would be maximized, optimizing the fairness-aware loss
over the fairness-adversarial examples is essentially performing worst-fair training. This worst-fair
training can achieve both local fairness and robustness of the local fairness against domain shift.

In comparison, the maximization in Equation 10 specifies the goal of the fairness adversary is to
generate the worst-fair training samples with a specific budget ϵ. The budget ϵ limits the perturbation
radius and avoids infinity solutions to the maximization problem. To obtain δj,i, the maximization is
solved using projected gradient descent (PGD) Wang et al. (2021b); Shafahi et al. (2019); Madry
et al. (2017); Zeng et al. (2021a); Zhang et al. (2019). Regarding the computation of the gradients
for the perturbations, we highlight that Φ̂∗ is differentiable, whereas the original ΦD, ΦE or ΦA is
not necessarily differentiable. When computing ΦD, ΦE or ΦA with Equation 5, Equation 6 and
Equation 8, the argmax operation will be applied to the output logits returned by the classifiers to
produce the final discrete predictions, which makes ΦD, ΦE or ΦA non-differentiable. Therefore, in
our implementation, we compute soft scores for these metrics by plugging in the normalized output
logits instead of the predictions to enable the PGD.

4.2 REFERENCE DOMAIN SMOOTHING

As motivated in Section 3, another challenge in obtaining a fair global model is due to the domain
discrepancy among the local data distributions. Therefore, after obtaining the local fair models
using local worst-fair training, in this section, we describe how we obtain a global fair model by
transforming the aggregation of local fair models to a problem of reducing domain discrepancy of
training data distributions across local clients.

To formally define reference domain smoothing, we firstly re-write Equation 10 to be an empirical
training loss over a modified fair training distribution P ′

k by absorbing the instance re-weighting from
IDF and fairness-adversarial examples into the original local distribution Pk:

Lfair(fθk
) =

1

Ck

Ck∑
j=1

[
1

Mj

Mj∑
i=1

[
l(fθk

(xk
j,i + δj,i), y

k
j,i)

]]

:≈ E(x
′k
i ,yk

i )∼P′
k

[
l(fθk

(x
′k
i ), yki )

]
,

(11)

where x
′k represents the data points sampled from the modified local data distribution P ′

k of client
k (namely x

′k = xk + δ). The modification stems from two aspects. On one hand, the IDF re-
weighting modifies the importance weights of training loss on individual training samples from i.i.d.
to be non-i.i.d. and fairness-aware. Moreover, the worst-fair perturbations generated using fθk

also
change the original data distribution Pk, making P ′

k a function of fθk
. Note that since minimizing

Equation 11 will lead to a fair model, we define the modified training distribution P ′
k as a fair training

distribution on client k.

Remark 1. On the local client k, since P ′
k is a function of the local model fθk

, and the local model
fθk

is trained to fit P ′
k, fθk

is also a function of P ′
k. Therefore, the local fairness Φk

∗ is a function of
fθk

and P ′
k:

P ′
k := P ′

k(fθk
), fθk

:= fθk
(P ′

k), Φk
∗ = Φk

∗(fθk
(P ′

k)). (12)

We note that according to Equation 12, the local models are now trained based on modified fair
training distribution P ′

k. The discrepancy among P ′
ks is defined as the heterogeneity of local fairness

across different clients. Therefore, we propose to reduce the heterogeneity of the fairness across
different local models by reducing the domain discrepancy of P ′

ks among all local clients. However,
due to data privacy constraints in the FL setting, it is infeasible to directly measure the domain
discrepancy of training data across different clients.
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To overcome these challenges, we propose reference domain smoothing, where a reference domain
Q will be simulated for all clients as a domain reference. All data domain on local clients will
be smoothed towards the simulated reference domain, so that the domain discrepancy among the
modified local data domain P ′

k across clients will be reduced. We aim at reducing the domain
discrepancy between Q and P ′

k rather than Pk, because with Equation 12, the local models are now
trained over P ′

k instead of Pk. Within reference domain smoothing, we use the maximum mean
discrepancy (MMD) distance to quantify the domain distance between the simulated distribution Q
of the reference domain and P ′

k on local clients. In our implementation of computing MMD, we only
use fairness-adversarial examples to approximate P ′

k.

MMD estimates the domain distance between two data distributions using samples drawn from them
(Gretton et al., 2012). In our problem, given the modified fair local data distribution P ′

k on client k
and the simulated global distribution Q, the MMD distance DMMD is defined as:

DMMD(P ′
k,Q) = sup

K∈H

(
Ex∼P′

k
[K(x)]− Ex∼Q[K(x)]

)
, (13)

where K is a function (kernel) in reproducing the kernel Hilbert space H. In practice, we implement
the supremum of the expectation in Equation 13 by using the output logits of the samples from two
different data domains as in Long et al. (2015); Yue et al. (2021). As for the kernel function, we use
Gaussian kernel i.e., K(xi,xj) = exp(−∥xi−xj∥2

σ ). Using the kernel trick, the squared formulation
of MMD distance LMMD between the P ′

k and Q could be simplified as:

LMMD(fθk
,x

′k) =
1

|Xk||Xk|

|Xk|∑
i=1

|Xk|∑
j=1

K(fθk
(x

′k
i ), fθk

(x
′k
j ))

+
1

|XQ||XQ|

|XQ|∑
i=1

|XQ|∑
j=1

K(fθk
(xQ

i ), fθk
(xQ

j ))

− 2

|Xk||XQ|

|Xk|∑
i=1

|XQ|∑
j=1

K(fθk
(x

′k
i )), fθk

(xQ
j )),

(14)

where XQ is a set of training data points xQ sampled from the simulated reference domain Q,
and x

′k represents the worst-fair training samples defined in Equation 10. Finally, regarding Q,
we explicitly choose a multivariate Gaussian distribution as the simulated distribution, so that the
optimization of the MMD loss could be stabilized. Both the mean vector µQ and the covariance
matrix ΣQ of Q are derived using the weighted sum of the mean and the covariance from local data
with a secure aggregation scheme (McMahan et al., 2017).

By minimizing Equation 14 on all local clients, each local domain is smoothed towards the simulated
reference domain Q. In this way, the domain discrepancy across all local clients will be implicitly
reduced as well, indicating that the fair local distributions P ′

ks become more similar to each other, and
thereby improving the compatibility of local fairness. Eventually, we could reduce the heterogeneity
of local fairness across different local clients despite the difference among local training distributions.

4.3 OVERALL FRAMEWORK

The overall structure of WFDS consists of two modules introduced above. The local worst-fair
training and the reference domain smoothing are optimized simultaneously to obtain robust local
fairness and reduce the heterogeneity of local fairness:

θk = argmin
θk

[
1

Ck

Ck∑
j=1

[ 1

Mj

Mj∑
i=1

[
l(fθk

(x
′k
j,i), y

k
j,i)

]]
+ λ · LMMD(fθk

,x
′k)

]
s.t. x

′k = xk + δ, δ = argmax
δ

Φ̂∗(fθk
), ∥δ∥ ≤ ϵ, xk ∈ Xk k ∈ {1, ...,K}.

(15)

Note that in Equation 15, a non-negative scalar λ is tuned to control the strength of reference domain
smoothing. In our experiments, we conducted systematic robustness study to investigate the relation
between the efficacy of WFDS and λ. As for the final global aggregation step, it could be any existing
FL aggregation protocol. We use FedAvg in our implementation.
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Table 1: Main results for improving demographic fairness of FL models with different schemes.

Dataset Method AB ↑ Asub ↓ ΦD ↓ ΦE ↓

Income

FedAvg 0.759 ± 0.002 1.034 ± 0.019 0.313 ± 0.005 0.513 ± 0.011
AFL 0.786 ± 0.003 0.759 ± 0.047 0.289 ± 0.008 0.379 ± 0.024

FairBatch 0.757 ± 0.003 1.032 ± 0.026 0.293 ± 0.004 0.468 ± 0.011
FairFed 0.760 ± 0.002 1.010 ± 0.018 0.308 ± 0.004 0.498 ± 0.013

WFDS-KL 0.811 ± 0.003 0.283 ± 0.048 0.218 ± 0.012 0.130 ± 0.019
WFDS-MMD 0.819 ± 0.002 0.172 ± 0.021 0.193 ± 0.010 0.096 ± 0.006

COMPAS

FedAvg 0.580 ± 0.004 1.970 ± 0.028 0.384 ± 0.036 0.769 ± 0.071
AFL 0.652 ± 0.011 0.856 ± 0.124 0.208 ± 0.017 0.347 ± 0.044

FairBatch 0.644 ± 0.009 0.944 ± 0.134 0.183 ± 0.037 0.301 ± 0.075
FairFed 0.647 ± 0.009 0.945 ± 0.140 0.202 ± 0.038 0.335 ± 0.079

WFSD-KL 0.666 ± 0.004 0.315 ± 0.059 0.119 ± 0.014 0.158 ± 0.029
WFDS-MMD 0.668 ± 0.004 0.192 ± 0.058 0.082 ± 0.009 0.077 ± 0.019

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets In our experiments, we use two real-world datsaets. (1) UCI Census Income dataset
(Kohavi, 1996): the task of this dataset is to predict whether the annual income of a person can
exceed 50K $ given her/his profile. For this dataset, we select gender as the demographic attribute,
and we distribute the training data over 10 different local clients. (2) COMPAS Recidivism Racial
Bias dataset (ProPublica, 2022): the desired output for this dataset is the prediction of “recidivism”
(positive class) or not given a person’s profile. For this dataset, we select race as the demographic
attribute (one selected race v.s. all remaining races), and we distribute the training data over 5
different local clients due to data scarcity.

Evaluation Metrics and Baselines To evaluate the fairness of the FL models, we use all fairness
notions defined in Section 3. Demographic parity ΦD and Equalized odds ΦE are commonly used
fairness metrics as in Zhang et al. (2018); Beutel et al. (2017); Zhao et al. (2017); Kou et al. (2021).
Inspired by Yue et al. (2022), we also incorporate the evaluation of the models’ performance on
negative predictions by computing the balanced accuracy AB and the sub-group accuracy gap ΦA.
Considering the code availability and whether the experimental setting is comparable with ours,
we select FedAvg (McMahan et al., 2017), AFL (Mohri et al., 2019), FairBatch (Roh et al., 2020),
and FairFed (Ezzeldin et al., 2021) as the baseline algorithms for comparison. Moreover, we use
multi-layer perceptron (MLP) as the model architecture for all experiments. Finally, all experiments
are repeated for 10 times.

5.2 EXPERIMENTAL RESULTS

Efficiency Evaluation In the first set of experiments, we compare our WFDS scheme with the
baselines methods and present evaluation results for all datasets in Table 1. Each row of Table 1
represents an FL training scheme, and each column includes metric scores with mean and standard
deviation. We report balanced accuracy AB , sub-group accuracy gap Asub, demographic parity ΦD

and equalized odds ΦD. The best results are marked in bold. We observe: (1) the proposed WFDS
framework significantly reduces the demographic bias of the classifiers in FL applications, while
outperforming all baseline methodds. For instance, on Income dataset, Asub, ΦD and ϕD of the
trained FL model using WFDS-MMD are reduced to 0.172, 0.193, 0.096 from 1.034, 0.313, 0.513
of the FedAvg. (2) In addition, WFDS also achieves a higher balanced accuracy AB compared to
other methods. For instance, on Income dataset, WFDS-MMD achieves a balanced accuracy of 0.819,
whereas AB of all other methods including FedAvg is lower than 0.8. (3) Finally, on both datasets,
WFDS-MMD consistently outperforms WFDS-KL on all evaluation metrics, indicating that MMD
is indeed the best scheme in terms of reducing the domain discrepancy between local training data
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distributions and mitigating the heterogeneity of local fairness across all clients. Similar trend is also
observed for demographic parity and equalized odds.

Robustness Study We study the robustness of WFDS-MMD w.r.t. the hyperparameter λ. In
particular, we vary the λ but fix other configuration of our framework for the robustness study. The
results on Income dataset are reported in Table 2. We observe that in general with larger λ, the FL
model becomes more fair in terms of the sub-group accuracy gap Asub, demographic parity ΦD and
equalized odds ΦE . Regarding the balanced accuracy, WFDS becomes less sensitive to λ. Due to
space limit, additional results on COMPAS dataset are in Appendix A.

Table 2: Robustness study for WFDS with different global domain smoothing strength on Income.

Dataset λ AB ↑ Asub ↓ ΦD ↓ ΦE ↓

Income

0.1 0.817 ± 0.003 0.207 ± 0.045 0.201 ± 0.011 0.107 ± 0.020
0.3 0.816 ± 0.002 0.191 ± 0.035 0.197 ± 0.011 0.100 ± 0.014
0.5 0.818 ± 0.004 0.181 ± 0.031 0.194 ± 0.011 0.098 ± 0.010
0.7 0.818 ± 0.003 0.174 ± 0.031 0.191 ± 0.012 0.099 ± 0.009
0.9 0.819 ± 0.002 0.172 ± 0.021 0.193 ± 0.010 0.096 ± 0.006

Ablation Study We evaluate the contribution of the worst-fair training module and the reference
domain smoothing module by comparing our results from WFDS-MMD to the results trained without
worst-fair training and reference domain smoothing. The results on Income dataset are reported in
Table 3. Note that removing the worst-fair training module only masks out the worst-fair training
samples but preserves the inversely proportional frequency loss during the training. In comparison,
removing the reference domain smoothing module implies that the global fairness is achieved only
with robust local fairness. As expected, we observe that the model’s performance in regards to all
evaluation metrics becomes worse by removing either module in the WFDS framework. For instance,
the sub-group accuracy gap increases by 151.7% and 26.7% when removing the worst-fair training
module and the reference domain smoothing module. Similarly, Asub, ΦD and ΦE becomes larger
when removing either module. Due to space limit, additional results on COMPAS dataset are reported
in Appendix A.

Table 3: Ablation study of WFDS on Income.

Income AB ↑ Asub ↓ ΦD ↓ ΦE ↓
WFDS-MMD 0.819 ± 0.002 0.172 ± 0.021 0.193 ± 0.010 0.096 ± 0.006
w/o Worst-Fair Training 0.805 ± 0.002 0.433 ± 0.032 0.247 ± 0.009 0.217 ± 0.016
w/o Ref. Domain Smoothing 0.817 ± 0.003 0.218 ± 0.055 0.204 ± 0.013 0.114 ± 0.024

6 CONCLUSION

In this paper, we propose a novel worst-fair domain smoothing framework for addressing demographic
bias issue in federated learning applications. We design our framework by jointly considering the
robustness of local fairness and the domain discrepancy among the training data across all local
clients. To the best of our knowledge, WFDS is the first work that addresses the demographic bias
issue of FL models from a domain-shifting perspective. Experimental results on real-world datasets
demonstrate that our method significantly improves the fairness of FL models by outperforming
state-of-the-art baseline methods.
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