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Abstract

Large language models (LLMs) are increas-001
ingly deployed in specialized production data002
processing pipelines across diverse domains—003
such as finance, marketing, and e-commerce.004
However, when running them in production005
across many inputs, they often fail to follow006
instructions or meet developer expectations. To007
improve reliability in these applications, creat-008
ing assertions or guardrails for LLM outputs to009
run alongside the pipelines is essential. Yet, de-010
termining the right set of assertions that capture011
developer requirements for a task is challeng-012
ing. In this paper, we introduce PROMPTE-013
VALS, a dataset of 2087 LLM pipeline prompts014
with 12623 corresponding assertion criteria,015
sourced from developers using our open-source016
LLM pipeline tools. This dataset is 5× larger017
than previous collections. Using a hold-out test018
split of PROMPTEVALS as a benchmark, we019
evaluated closed- and open-source models in020
generating relevant assertions. Notably, our021
fine-tuned Mistral and Llama 3 models out-022
perform GPT-4o by 20.93% on average, of-023
fering both reduced latency and improved per-024
formance. We believe our dataset can spur fur-025
ther research in LLM reliability, alignment, and026
prompt engineering.027

1 Introduction028

Large language models (LLMs) have become in-029

creasingly popular for various data processing030

tasks. An open-source tool for building LLM031

pipelines, developed by some of the authors, now032

has over 3 million weekly downloads. Its commu-033

nity has created thousands of specialized prompts034

for diverse fields like medicine, finance, and sports,035

leveraging LLMs’ impressive zero-shot and few-036

shot performance [1, 22, 14, 45].037

A common desire for developers using LLMs038

is to meet specific constraints on outputs, such039

as adhering to a particular structure or qualita-040

tive criteria [27]. One approach to address this041

need is to collect large amounts of human pref- 042

erence data [15, 23, 49], and improve models 043

through alignment techniques like supervised fine- 044

tuning and reinforcement learning from human 045

feedback [4, 32, 44]. However, these methods 046

have a high barrier to entry, requiring dataset col- 047

lection, model fine-tuning, and serving infrastruc- 048

ture, which is more complex than simply manipu- 049

lating prompts for LLM calls. More importantly, 050

fine-tuning isn’t supervised at the constraint level— 051

meaning that even fine-tuned LLMs often fail to 052

consistently follow instructions that correspond to 053

constraints in detailed prompts [17, 33, 12]. 054

An alternative solution involves implementing 055

developer-specified assertions on LLM outputs [27, 056

37, 35]. This approach typically follows two steps: 057

first, defining binary evaluation criteria to repre- 058

sent the desired constraints; second, implementing 059

these criteria as assertions to evaluate LLM outputs 060

and resample these outputs when assertions fail. 061

However, developing effective assertion criteria is 062

challenging—primarily due to the complexity of 063

defining and conceptualizing these criteria, rather 064

than their technical implementation [21, 38]. The 065

complexity of coming up with assertions arises due 066

to multiple factors: criteria can differ significantly 067

between developers due to specific data, use cases, 068

and end-user requirements [8]; criteria must ac- 069

count for both user preferences and LLM-specific 070

failure modes [38]; and developers may need to 071

incorporate qualitative or subjective criteria that 072

require LLMs themselves to perform the evalua- 073

tion [6, 21]. 074

To improve custom and task-specific alignment 075

for LLM pipelines, we need an approach that can 076

examine developers’ prompts and identify asser- 077

tion criteria. These assertions can then be bolted 078

onto the end of the LLM pipeline, allowing for au- 079

tomatic retrying of the pipeline if assertions fail. 080

Developing such an approach requires substantial, 081

diverse data on real-world LLM applications and 082
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their associated constraints. Fortunately, our open-083

source tool provides unique access to a diverse set084

of use-cases with associated prompts.085

In this paper, we present PROMPTEVALS, a086

dataset created using our unique collection of real-087

world LLM prompts and use-cases. This dataset088

consists of 2087 human-contributed prompt tem-089

plates for custom tasks and 12623 comprehen-090

sive assertion criteria. PROMPTEVALS has a me-091

dian prompt template size of 191 tokens and is092

more than five times larger than previous collec-093

tions [34, 52]. Our dataset and corresponding094

benchmark (20% of the dataset) are hosted on Hug-095

gingFace1. Using this benchmark, we evaluate096

GPT-4o and two open-source models, Llama 3-8b097

and Mistral-7b, on generating task-specific asser-098

tion criteria, and find that GPT-4o performs reason-099

ably well out of the box, but its cost and latency to100

run for every prompt edit or pipeline update can be101

prohibitive in production environments—especially102

as prompts become increasingly complex and spe-103

cialized. To address this, for our prompt engineer-104

ing tools, we fine-tuned open-source models on105

our dataset (using Mistral-7b and Llama 3-8b ar-106

chitectures [16, 41]), and these models exceeded107

GPT-4o’s F1 performance in identifying desirable108

assertions by 20.93% on average. These fine-tuned109

models are made available to the community2, of-110

fering a faster, more cost-effective solution for gen-111

erating high-quality assertions.112

2 Related Work113

This section reviews recent developments in114

prompt engineering, LLM evaluation methods, and115

assertions for LLM outputs.116

2.1 Prompt Engineering117

Prompt engineering is essential for steering LLMs118

towards following instructions for specific tasks or119

bespoke applications of LLMs. Techniques like120

chain-of-thought and few-shot prompting improve121

model performance [46, 1]. Methods to learn good122

prompts [24, 26] or select few-shot examples [18]123

also contribute to this goal. Despite these advance-124

ments, LLMs can still hallucinate and make other125

mistakes [13, 36]. No technique ensures consis-126

tent adherence to instructions, especially in di-127

1https://huggingface.co/datasets/user104/
PromptEvals

2https://huggingface.co/user104/promptevals_
mistral and https://huggingface.co/user104/
promptevals_llama

verse production environments. Liu et al. iden- 128

tify constraints like output length and semantic 129

consistency that developers want enforced, which 130

can aiding robust assertion criteria [27]. As devel- 131

opers frequently iterate on prompts in integrated 132

development environments (IDEs) or utilize code- 133

completion tools, the ability to quickly generate 134

and update assertion criteria becomes crucial. The 135

computational cost and time required to use large 136

models like GPT-4 to generate assertion criteria for 137

each prompt modification can significantly slow 138

down the development process and increase opera- 139

tional costs. 140

2.2 Evaluating LLMs 141

Traditional LLM evaluation compares outputs 142

against human-generated benchmarks across tasks 143

like coding and reasoning [2, 10, 40, 5], including 144

specialized architectures like retrieval-augmented 145

generation and agentic systems [54, 3, 28]. How- 146

ever, benchmarks often miss task-specific needs, 147

such as conciseness or clarity [20]. Human pair- 148

wise comparison of LLM outputs improves align- 149

ment holistically but does not provide insight into 150

specific criteria that defines a good output [20, 50]. 151

Even with explicit instructions provided in 152

prompts, LLMs often fail to adhere to them con- 153

sistently [44, 52, 39]. Existing benchmarks that 154

evaluate the ability of LLMs to follow instructions 155

are limited in scope, typically involving a small set 156

of instructions either generated by LLMs or metic- 157

ulously curated by researchers [34, 52]. To address 158

these limitations, we introduce PROMPTEVALS, 159

a comprehensive dataset that is five times larger 160

than previous datasets. PROMPTEVALS features 161

developer-contributed real-world prompts, often 162

containing dozens of instructions, coupled with the 163

corresponding assertion criteria. 164

2.3 Assertions and LLM-based Evaluation 165

In instruction-following and constraint-following 166

evaluations, such as those presented by Zhou et 167

al. [52] and Rebedea et al. [35], assertion crite- 168

ria are typically evaluated using code-based asser- 169

tions, often implemented as functions that check 170

whether the output matches specific patterns or re- 171

quirements (e.g., using regular expressions). These 172

code-based assertions often struggle to evaluate 173

more nuanced or “fuzzy” criteria [7, 35, 37]. Re- 174

cent approaches have employed LLMs themselves 175

as judges to evaluate outputs [50, 42]. Some ap- 176

proaches even develop specialized judge LLMs 177
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Figure 1: Examples of criteria pairs and their semantic similarity scores. High-scoring pairs typically represent
constraints that are explicitly stated or logically derived from the prompt, while low-scoring pairs often include
vague, generic, or difficult-to-measure constraints.

that are fine-tuned on human preference data [51,178

43, 53, 25, 20]. LLM-based validators can be pro-179

ductionized as assertions in addition to code-based180

guardrails [37, 38, 27, 21].181

While LLMs as judges offer scalable evalua-182

tion, they struggle to align with human preferences183

across diverse tasks [47]. Developing domain-184

specific assertions and guardrails (e.g., for educa-185

tion [30] or medicine [9]) is one approach, but it186

does not scale easily across thousands of domains187

and applications. Even within domains, criteria188

may vary; for instance, judging code conciseness189

differs between educational and professional set-190

tings. In another related research effort, Kim et al.191

developed LLM-generated evaluation criteria and192

fine-tuned a judge LLM [19, 20], but their approach193

focuses on general (e.g., “humorous”, “inspiring”)194

rather than task-specific criteria. Our work comple-195

ments this by providing assertion criteria grounded196

in real-world prompts and constraints, essential for197

production environments [27].198

3 PROMPTEVALS Dataset199

This section describes the PROMPTEVALS dataset,200

its construction process, and its characteristics. We201

begin by discussing the relevant background, then202

detail the dataset’s composition and the process for203

generating ground-truth assertion criteria for each204

prompt template in our dataset.205

3.1 Background: LLM Pipelines and 206

Assertions 207

An LLM pipeline typically consists of three main 208

components: a prompt template, input data, and 209

the LLM itself. A prompt template is a string that 210

includes instructions for the LLM to perform a 211

specific task, as well as placeholders for the input 212

data—which will be provided at runtime. For ex- 213

ample, a template for a basic summarization task 214

might look like this: “Summarize the following text 215

in three sentences: {text_to _summarize}”. Here, 216

“{text_to_summarize}” is a placeholder that will 217

be replaced with actual text when the pipeline is 218

run. LLM pipelines are designed to be flexible and 219

reusable, capable of handling a variety of different 220

inputs for the same type of task. 221

An assertion, in the context of LLM pipelines, 222

is a programmatic check or evaluation criterion 223

applied to the LLM’s output. For example, an as- 224

sertion criterion for the summarization task might 225

verify that the output indeed contains exactly three 226

sentences, as specified in the prompt. This asser- 227

tion could be implemented as a function that counts 228

the number of sentences in the LLM’s response and 229

returns true if the count is three (false otherwise). 230

Developers implementing LLM pipelines care 231

about a wide variety of assertions, depending on 232

their specific use cases and requirements. Some 233

examples of good and bad assertion criteria for 234

a prompt template are shown in Table 1. To bet- 235

ter understand developers’ needs, a recent study 236
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Prompt Template (Domain: financial analysis)
You are a financial analyst and you are required to summarize the key insights of given numerical tables. {table} Please list
important, but no more than five, highlights in the given table. Please write in a professional and business-neutral tone. The

summary should only be based on the information presented in the table.

Criteria Good/Bad Explanation

Response Length: The response should not list
more than five highlights as requested.

Good Mentioned in the prompt, and easy to measure.

Professional Tone: The response should maintain a
professional and business-neutral tone throughout.

Good Mentioned in the prompt template as a rule that the
output should follow.

No Repetition: The response should avoid repeating
the same highlight or presenting the same informa-
tion in different ways.

Good While the criterion was not explicitly mentioned in
the prompt, it can be tied back to the prompt.

Specificity: The highlights should be specific and
not overly broad or generic.

Bad Vague, and difficult to measure.

Grammar and Spelling: The response should be
free from grammatical errors and spelling mistakes.

Bad Not uniquely relevant to the task or prompt.

Table 1: Examples of Good and Bad Assertion Criteria

by Liu et al. [27] interviewed 51 developers about237

their desired output constraints for LLMs. Based238

on their findings, they developed a taxonomy that239

includes six categories of output constraints: low-240

level constraints that include structured output, mul-241

tiple choice and length constraints, and high level242

constraints that include semantic constraints, stylis-243

tic constraints, and hallucination prevention. The244

complete taxonomy is presented in Table 3. We245

employ this taxonomy in our dataset construction246

process to ensure the quality and relevance of our247

assertions. A distribution of the criteria types gen-248

erated by GPT-4o is in Figure 4.249

3.2 Dataset Composition250

The PROMPTEVALS dataset is derived from251

[REDACTED], a publicly available, dynamic col-252

lection of prompt templates shared by members253

of our developer community. Developers can add254

a prompt to the public collection via our Python255

package, knowing that their prompts can be run or256

modified by others, and browse the collection on257

our website. We froze a snapshot of the prompt tem-258

plates in May 2024 to create the PROMPTEVALS259

dataset: we selected prompt templates that could260

have one or more assertion criteria (i.e., they were261

not empty or trivial strings; they actually described262

a task and included some placeholders for data).263

An example of a prompt template that we omitted264

from PROMPTEVALS is: System Message: You are265

a helpful assistant. Human Message: {input}.266

PROMPTEVALS includes 2087 prompt templates,267

their corresponding domains, and assertion criteria.268

The prompt templates span a wide range of fields,269

including IT and programming, finance, healthcare, 270

and education. To organize the prompt templates, 271

we implemented a hierarchical categorization pro- 272

cess assisted by GPT-4o, resulting in a three-level 273

categorization system. Appendix A.1 describes 274

this categorization process in more detail. Table 2 275

shows the overall distribution of the highest level 276

domains, including the domain name, number of 277

prompt templates with that domain, and the per- 278

centage of prompts with this domain. The top 279

three domains represented are “general-purpose 280

chatbots”, “question-answering”, and “workflow 281

automation”—the last of which assists in automat- 282

ing or improving processes based on a user’s input. 283

For instance, one prompt in this domain is “Create 284

a sequential workflow based on the users query. 285

Create a plan represented in JSON by only using 286

the tools listed below. The workflow should be a 287

JSON array containing only the sequence index, 288

function name and input... Tools: {tools} Only 289

answer with the specified JSON.”. 290

3.3 Assertion Criteria Construction Process 291

For each prompt template in PROMPTEVALS, 292

we generated a set of ground truth criteria— 293

representing assertion criteria that developers 294

would care about, specific to the LLM pipeline. 295

Generating ground truth criteria followed a three- 296

step process: a first step to generate initial criteria, 297

a second pass to add any criteria that might have 298

been omitted in the first step, and a third pass to 299

remove any criteria that were incorrect, redundant, 300

irrelevant, or difficult to validate. 301

1. Generate Initial Criteria: We used GPT-4o, 302
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a state-of-the-art LLM, to generate an initial303

list of assertion criteria for each prompt tem-304

plate. Our prompt consisted of the following305

instructions: (a) We provided GPT-4o with306

the prompt template to be analyzed. (b) We307

also gave GPT-4o the taxonomy of LLM out-308

put constraints defined by Liu et al. [27] (see309

Section 3.1), explaining each constraint type.310

(c) We then instructed GPT-4o to generate as-311

sertion criteria relevant to the given prompt312

template, ensuring each criterion aligned with313

one of the constraint types from the taxonomy.314

GPT-4o output these criteria in a JSON list315

format, with each assertion tagged with its316

corresponding constraint type. This approach317

ensured that the criteria were both relevant to318

the specific prompt template and grounded in319

a structured framework of output constraints320

that developers typically care about. We call321

this the initial criteria.322

2. Add Missing Criteria: Our manual review323

of the initial criteria list revealed that some324

criteria evident in the prompt templates were325

missed by GPT-4o: we found an average of326

1.35 missing criteria per prompt. To address327

this, we implemented a second step where we328

instructed GPT-4o to carefully examine the329

prompt template and add any criteria explic-330

itly mentioned but not included in the initial331

output.332

3. Refine Criteria: In the final step, we333

prompted GPT-4o to refine the list by remov-334

ing any criteria that were incorrect, redundant,335

irrelevant, or difficult to validate.336

Appendix A.2 details the prompts for each step.337

Validating the Generated Assertion Criteria. To338

assess the quality of our generated assertion criteria339

for PROMPTEVALS, we manually verified a sample340

of 200 prompt templates’ generated criteria. In our341

verification process, we tracked, for each prompt342

template, how many criteria we added, and how343

many criteria we removed. We observed strong344

agreement with the LLM generated outputs, with <345

0.02 criteria added and < 0.2 criteria removed per346

list on average by the human evaluator. This 3-step347

process resulted in higher agreement, in compari-348

son to the initial criteria list, which had an average349

of 1.35 criteria added and 1.1 criteria removed per350

list for a sample of 20 prompts.351

Domain Count Percentage

General-purpose chatbots 181 8.67%
Question-answering 91 4.36%
Workflow automation 63 3.02%
Text summarization 57 2.73%
Education 40 1.92%
Prompt engineering 33 1.58%
Information retrieval 31 1.49%
Horse racing analytics 29 1.39%
Programming 20 0.96%
Customer support 18 0.86%
Database querying 18 0.86%
Journalism 17 0.81%
Task automation 15 0.72%

Table 2: Distribution of domains in the PROMPTEVALS
dataset. The top three domains are general-purpose
chatbots, question-answering, and workflow automation.
Unexpectedly, “horse racing” is in this list: we double-
checked its validity and included an example prompt
template from this category in Appendix B.1.

4 PROMPTEVALS Benchmark 352

We split PROMPTEVALS into three categories: 60% 353

of the tasks (1252 prompts) for our training set, 354

20% (418 prompts) for our validation set, and 20% 355

(419 prompts) for our test set. The PROMPTE- 356

VALS benchmark evaluates an LLM’s effectiveness 357

at generating accurate assertion criteria given a 358

prompt template, using four key metrics defined 359

below. The benchmark can be run by following the 360

instructions in our Github repository 3. 361

4.1 Benchmark Metrics 362

To evaluate LLM-generated assertion criteria, we 363

developed metrics to assess the relevance and speci- 364

ficity of the criteria, inspired by the approach used 365

in BERTScore [48]. We describe two metrics: Se- 366

mantic F1 and the number of criteria. 367

Semantic F1. The primary metric we use ad- 368

dresses a challenge in evaluating generated crite- 369

ria: the fact that semantically equivalent assertions 370

can be expressed in various ways. For example, 371

“The response should be concise” and “The output 372

should be brief” convey essentially the same con- 373

straint but use different words. The Semantic F1 374

score overcomes this limitation by measuring the 375

semantic similarity between predicted and ground 376

truth criteria. 377

To compute the Semantic F1 score, we first trans- 378

form each criterion (both predicted and ground 379

truth) into vector representations using OpenAI’s 380

text-embedding-3-large model. We then calculate 381

3https://anonymous.4open.science/r/promptevals
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recall and precision scores based on the cosine sim-382

ilarity between these embedding vectors.383

The recall score quantifies how well the pre-384

dicted criteria cover the semantic content of the385

ground truth criteria. It is computed as follows:386

sem_recall =
1

N

N∑
i=1

max
j

cos(zi, ẑj) (1)387

where N is the number of predicted criteria, zi is388

the embedding of the i-th ground truth criterion, ẑj389

is the embedding of the j-th predicted criterion, and390

cos(zi, ẑj) denotes the cosine similarity between391

these embeddings.392

The max operation in this formula finds the most393

similar predicted criterion for each ground truth394

criterion—allowing each ground truth criterion to395

be “matched” with its best corresponding predicted396

criterion, even if they are not expressed identically.397

The average of these maximum similarities then398

gives us a measure of how well the predicted set399

covers the ground truth set.400

The precision score measures how accurately the401

predicted criteria align with the ground truth:402

sem_precision =
1

M

M∑
j=1

max
i

cos(zi, ẑj) (2)403

where M is the number of ground truth crite-404

ria. Here, the max operation performs the reverse405

matching: for each predicted criterion, it finds the406

most similar ground-truth criterion. This helps us407

assess whether the predicted criteria are meaning-408

ful, without extraneous or irrelevant assertions.409

These scores are then combined into the F1410

score:411

sem_F1 = 2× sem_precision × sem_recall
sem_precision + sem_recall

(3)412

Figure 1 shows examples of criteria pairs with413

varying degrees of semantic similarity.414

Number of criteria. A secondary metric that415

we evaluate is the number of criteria generated per416

prompt template. We calculate the average, median,417

and 75th percentile values for the number of crite-418

ria generated by each model. These statistics are419

compared against the ground truth values, as shown420

in Table 6. Ground truth values are italicized, and421

the closest model-generated values are bolded for422

comparison. For reference, the distribution of the 423

number of ground truth criteria can be found in 424

Table 6. 425

5 Benchmarking LLMs for Assertion 426

Generation 427

In this section, we present our methodology for 428

evaluating LLMs with the PROMPTEVALS bench- 429

mark. We assess the performance of baseline and 430

fine-tuned models. 431

5.1 Methodology 432

We establish baselines for our evaluation using 433

three models: GPT-4o [31], Llama-3-8b [41], and 434

Mistral-7b [16]. We selected Llama-3-8b and 435

Mistral-7b as our open-source baseline models due 436

to their relatively compact size (8 billion and 7.3 437

billion parameters, respectively)—which leads to 438

faster inference times. For each model, we gener- 439

ate assertion criteria based on the prompt templates 440

in our test set and evaluate them against the ground 441

truth criteria using the metrics described in Sec- 442

tion 4.1: Semantic F1 and number of criteria. We 443

compare results on the PROMPTEVALS test set. 444

5.1.1 Fine-tuning Process 445

Initial results revealed suboptimal performance 446

from baseline models (we will describe this more 447

in Section 5.2). To address this, we fine-tuned the 448

same Mistral and Llama base model architectures 449

on a dataset comprising of LLM pipeline prompts 450

as reference inputs and ground truth criteria as ref- 451

erence outputs. The dataset is derived from the 452

train split of the PROMPTEVALS dataset, where 453

the ground truth assertions are the result of the 3- 454

step labeling workflow defined in Section 3.3. An 455

input and output is demonstrated as follows: 456

Input: [INST] Here is the prompt template {sam- 457
ple_prompt_template} Based on the prompt tem- 458
plate, I want to write assertions for my LLM 459
pipeline to run on all pipeline responses. Give me 460
a list of concepts to check for in LLM responses. 461
This should be formatted as a comma-separated 462
list, surrounded in brackets, and each item in the 463
list should contain a string description of a con- 464
cept to check for. This list should contain as many 465
assertion concepts as you can think of, as long 466
are specific and reasonable. [/INST] 467

Output: ["constraint": "Answer should be con- 468
cise and limited to three sentences.", "cate- 469
gory": "length_constraints", "constraint": "An- 470
swer should stay truthful and indicate ’I don’t 471
know’ if the answer is not in the context.", 472
"category": "preventing_hallucination (staying 473
grounded and truthful)"] 474
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Category Description

Low-level constraints
Structured Output Adhere to specific formats (e.g., markdown, HTML, DSL); Ensure valid data structures (e.g.,

JSON with custom schema)
Multiple Choice Select response from a predefined list of options
Length Constraints Specify target length for output (e.g., character count, word count, number of items in a list)

High-level constraints
Semantic Constraints Control content by excluding/including specific terms; Maintain topic relevance; Adhere to

specified grammar or linguistic context
Stylistic Constraints Maintain consistent style, tone, or persona in the output
Prevent Hallucination Ensure factual accuracy and truthfulness; adhere to instructions (without improvising unre-

quested actions)

Table 3: Taxonomy for Assertion Criteria [27], used to create assertions for LLM pipelines in PROMPTEVALS.

For fine-tuning Mistral-7b and Llama3-8b, we475

used a sequence length of 4096 and trained for 4476

epochs with a batch size of 8, AdamW [29] opti-477

mizer, learning rate of 0.0001, and a cosine learn-478

ing rate scheduler. We used Low-Rank Adaptation479

(LoRA) [11], with a rank of 16, alpha of 32, and480

dropout of 0.05. The training process for each481

model was completed in under one hour with two482

80GB A100 GPUs, and we did not employ any483

hyperparameter search. Our fine-tuned models can484

be found on HuggingFace4.485

5.2 Results486

Fine-tuning our models on PROMPTEVALS re-487

sulted in substantial improvements in the quality488

of generated assertion criteria, as evidenced by489

higher semantic F1 and precision scores in Table 5.490

The fine-tuned Mistral model achieved an aver-491

age semantic F1 score of 0.8199, which is 20.43%492

higher than the single-step GPT-4o’s average score493

of 68.08%, and 100.32% higher than its base model494

(without any fine-tuning). Similarly, the fine-tuned495

Llama3 model achieved a semantic F1 score of496

0.8240—outperforming GPT-4o by 21.03% and its497

base model by 128.42%.498

Non-Finetuned Models Yield Poorly-Structured499

Assertion Criteria. The base Llama and Mistral500

models exhibited significant issues in output qual-501

ity and structure. Mistral outputs often contained502

extraneous characters, incorrect formatting, and503

occasionally irrelevant content. Llama3 outputs504

frequently exceeded token limits, resulting in trun-505

cated sentences, and often failed to adhere to the506

requested format, including irrelevant information.507

For example, one output from Llama included “I508

4https://huggingface.co/user104/promptevals_
mistral and https://huggingface.co/user104/
promptevals_llama

hope this helps!”, and one output from Mistral 509

ended with “"Grammar and Spelling": Check if”, 510

with an incomplete sentence and no closing bracket. 511

As such, it is not surprising that fine-tuning models 512

dramatically improved performance by more than 513

2× of the respective baselines. 514

Non-Finetuned Models Generate Too Many As- 515

sertion Criteria. As shown in Table 6, fine-tuned 516

models produced a number of criteria more closely 517

aligned with the ground truth. On average, there 518

were about 6 assertions per prompt template in 519

the PROMPTEVALS test set. The base Mistral gen- 520

erated an average of 14.5 assertions per prompt 521

template, while the base Llama model generated 522

nearly double that—28.24 assertions per prompt 523

template, on average. GPT-4o was much more 524

aligned with the ground truth number of assertions, 525

generating 7.59 assertions on average. Both our 526

fine-tuned Mistral and Llama models generated an 527

average number of assertions closer to the ground 528

truth, with the fine-tuned Mistral model producing 529

the closest match at 6.29 assertions per prompt. 530

We also observed a significant reduction in la- 531

tency for criteria generation with our fine-tuned 532

models, and plotted the latencies in Table 4. The av- 533

erage time to generate individual criteria decreased, 534

with fine-tuned models outperforming GPT-4o in 535

terms of generation speed (most likely due to a 536

smaller model size). The fine-tuned models were 537

served on two A100 GPUs. 538

5.3 Discussion and Implications 539

Our smaller, fine-tuned models achieve assertions 540

comparable to the three-phase GPT-4o process (de- 541

tailed in Section 3.3), while significantly outper- 542

forming single-phase GPT-4o. This is a meaningful 543

finding for several reasons. First, it demonstrates 544

that carefully curated datasets and targeted fine- 545
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Mistral (FT) Llama (FT) GPT-4o

p25 1.8717 2.3962 6.5596
p50 2.3106 3.0748 8.2542
Mean 2.5915 3.6057 8.7041
p75 2.9839 4.2716 10.1905

Table 4: Latency for criteria generation. We compared
the runtimes for all 3 models (in seconds) and included
the 25th, 50th, and 75th percentile along with the mean.
We found that our fine-tuned Mistral model had the
lowest runtime for all metrics.

tuning can enable smaller models to match or ex-546

ceed the performance of much larger models in547

specific tasks. Second, it underscores the impor-548

tance of multi-step refinement when using state-549

of-the-art general-purpose LLMs for generating550

assertion criteria, as evidenced by the low single-551

step GPT-4o performance. This refinement process,552

while effective, can lead to increased latency in non-553

interactive settings. Our approach offers a more554

resource-efficient solution for assertion generation555

without compromising on quality.556

The ability to generate high-quality assertion cri-557

teria quickly and cost-effectively has significant558

implications for LLM pipeline development and559

deployment: it enables more frequent iterations,560

faster debugging, and more robust quality assur-561

ance processes without incurring prohibitive costs562

or delays. This is particularly valuable as prompts563

become longer and more complex, making the use564

of GPT-4o to generate assertions for every itera-565

tion on a prompt increasingly impractical. We are566

integrating these fine-tuned assertion generation567

models into our LLM pipeline development tools,568

particularly focusing on evaluation and monitoring569

capabilities. This will allow developers to automat-570

ically generate task-specific assertion criteria for571

any given prompt or pipeline, continuously moni-572

tor the quality of outputs in live deployments, and573

receive real-time feedback on output quality, all574

while maintaining efficiency and scalability in pro-575

duction environments.576

While our fine-tuned models show significant im-577

provements, we observed occasional generation of578

vague or redundant criteria. For example, criteria579

like “Output must avoid any ambiguity or confu-580

sion” and “Output must use clear and unambiguous581

language” could be consolidated. One idea is to582

directly incorporate a notion of criteria uniqueness583

into the training process—e.g., penalize models if,584

Base Mistral Mistral (FT) Base Llama Llama (FT) GPT-4o

p25 0.3608 0.7919 0.3211 0.7922 0.6296
p50 0.4100 0.8231 0.3577 0.8233 0.6830
Mean 0.4093 0.8199 0.3607 0.8240 0.6808
p75 0.4561 0.8553 0.3978 0.8554 0.7351

Table 5: Semantic F1 scores for generated assertion
criteria. Percentiles and mean values are shown for base
models, fine-tuned (FT) versions, and GPT-4o. Bold
indicates highest scores.

Average Median 75th percentile 90th percentile

Base Mistral 14.5012 14 18.5 23
Mistral (FT) 6.28640 5 8 10
Base Llama 28.2458 26 33.5 46
Llama (FT) 5.47255 5 6 9
GPT-4o 7.59189 6 10 14.2
Ground Truth 5.98568 5 7 10

Table 6: Number of Criteria Generated by Models. Met-
rics show average, median, and percentile values. Bold
indicates closest to ground truth.

for an output, they generate two or more criteria 585

with high semantic similarity. Another idea is to 586

collect more data to supplement PROMPTEVALS. 587

Future work will focus on refining the model to 588

produce more concise and non-overlapping criteria, 589

and generally improve the semantic F1 score. We 590

also intend to explore the capabilities of smaller 591

models to determine if we can reduce latency fur- 592

ther, while still retaining good accuracy and align- 593

ment with developers’ intents. 594

6 Conclusion 595

This study introduces PROMPTEVALS, a new 596

benchmark comprising over 2,000 human- 597

contributed prompt templates and 12,000 assertion 598

criteria. PROMPTEVALS is more than five times 599

larger than previous prompt collections [34, 52]. 600

This diverse dataset represents a significant 601

contribution to the field of LLM pipeline devel- 602

opment, offering a robust tool for evaluating and 603

improving task-specific output constraints. Using 604

PROMPTEVALS, we benchmarked several models, 605

including GPT-4o, and additionally fine-tuned 606

open-source models for assertion generation. 607

Our experiments demonstrate PROMPTEVALS’ 608

utility in assessing and comparing performance 609

across different approaches to generating relevant 610

assertions. By making PROMPTEVALS and our 611

fine-tuned models publicly available, our goal is 612

to encourage the development of more reliable 613

and task-specific LLM applications across various 614

domains. 615
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7 Limitations616

We describe a few limitations in this section:617

First, benchmark scores rely on OpenAI’s text-618

embedding-3-large model, released on January 25,619

2024, introducing a risk of inconsistency in results620

over time due to potential model updates. Estab-621

lishing a versioning system or exploring alternative622

and more stable embedding methods could miti-623

gate this issue. Moreover, currently, the benchmark624

is restricted to textual prompts, excluding other625

modalities such as images and audio. Expanding626

the dataset to incorporate multi-modal inputs would627

increase its applicability and better reflect the di-628

verse range of real-world LLM tasks.629

Finally, it’s important to note that while our cri-630

teria are grounded in a taxonomy derived from631

developer preferences, they are ultimately gener-632

ated by an LLM. This approach, while efficient,633

may not capture the full nuance of developer inten-634

tions for every specific use case. Ideally, criteria635

would be developed through directly collaborating636

with developers for each prompt template, ensuring637

maximum relevance and accuracy.638

8 Ethics639

PROMPTEVALS is open-source and is intended640

to be used as a dataset and benchmark to eval-641

uate models’ ability to identify and generate as-642

sertion criteria for prompts. However, because643

it is open-source, it may be used in pre-training644

models, which can impact the effectiveness of645

the benchmark. PROMPTEVALS data and deriva-646

tives of this data should not be used outside of647

research or prompt engineering contexts. Addition-648

ally, PROMPTEVALS uses prompts contributed by649

a variety of developers. We did not collect any650

personal identifiable information (PII) on the devel-651

opers, and we looked through the data to confirm652

that developers did not submit PII in their prompts.653

Since we did not control the developer population654

we sampled prompts from, prompts may not repre-655

sent all domains equally. However, we believe that656

despite this, our benchmark still provides value and657

can be useful in evaluating models on generating658

assertion criteria.659
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In this appendix, we include additional information on our work. This includes the prompts used in 1198

generating the dataset, distributions of domains and assertion criteria categories, example prompts in our 1199

dataset, a datasheet, and model cards. 1200

A Prompt Template Analysis 1201

In this section, we describe the prompts we used to identify the domain for each prompt template, the 1202

prompts used to generate the assertion criteria for each step of our workflow, and the distributions of our 1203

LLM-generated assertion criteria. 1204

A.1 Prompts and Analysis for Domain Categorization 1205

To categorize the prompt templates in PROMPTEVALS, we used the following prompts for querying 1206

GPT-4o. First, DOMAIN_CATEGORIZE_1 was applied to each prompt template in parallel to generate 1207

fine-grained level 1 categories, resulting in 974 unique domains. Next, GPT-4o was queried once to 1208

consolidate these into 50 aggregate level 2 categories, which were sanity-checked for accuracy. Then, 1209

DOMAIN_CATEGORIZE_2 was used to map each prompt template to one of the 50 predefined level 2 1210

categories. We queried GPT-4o once more to come up with a set of level 3 categories (the highest level), 1211

and we manually assigned each level 2 category to a good level 3 category. 1212

DOMAIN_CATEGORIZE_1

Here is my prompt template for a specialized task:

```json
{prompt_template}
```

What domain does this prompt template pertain to? Limit your response to a single word or phrase, and be as specific
and fine-grained as possible. Avoid generic domains like ‘natural language processing‘ and ‘artificial intelligence.‘
Return your response as a JSON object in “‘json “‘ markers, with the key “field” and the value being the word or phrase.

1213

DOMAIN_CATEGORIZE_2

Here is my prompt template for a specialized task:

```json
{prompt_template}
```

The domain of this prompt template is:

{field}

Given the following higher level domains: General-Purpose Chatbots, Workflow and Task Automation, Question-
Answering Systems, Education and Academic Assistance, Content Summarization and Extraction, Information Retrieval
and Management, Programming and Software Development, Customer Support and Service, Data Analysis and Visu-
alization, Content Creation and Writing, Project Management, Psychotherapy and Mental Health, Entertainment and
Gaming, Healthcare and Medicine, Financial Services and Analysis, E-Commerce and Retail, Legal and Compliance,
Marketing and Sales, Coaching and Personal Development, AI Evaluation and Optimization, Translation and Multilin-
gual Services, Creative Arts and Media, Data Management and Databases, Text Analysis and Processing, Customer
Experience and Feedback, Technology and IT Support, Evaluation and Quality Assurance, Real Estate and Property
Management, Research and Information Synthesis, Insurance and Risk Management, Interactive Assistance and Support,
Business Intelligence and Strategy, Human Resources and Recruitment, Knowledge and Information Synthesis, Task
Execution and Management, Evaluation of AI Systems, Data Visualization and Reporting, Entertainment and Interactive
Systems, Question Generation and Optimization, Automation and Orchestration, Translation and Language Services,
Digital Marketing and SEO, Financial Services and Advising, Programming and Development Assistance, Creative
and Content Writing, Healthcare and Medical Services, Customer Experience and Support, Business and Strategy
Development, Evaluation and Quality Assurance, Human Resources and Recruitment
What higher level domain does this prompt template pertain to? You must pick one from the list above. Return only a
JSON object in “‘json “‘ markers, with the key “domain” and the value being the word or phrase from the list above.

1214

While our dataset in HuggingFace https://huggingface.co/datasets/user104/PromptHub in- 1215

cludes the finest-grained level 1 domains for each prompt template, Figure 2 shows the distribution of 1216

level 2 and level 3 domains across the dataset. Most prompt templates relate to AI systems and automation, 1217

as they are mainly prompt templates that generically evaluate or grade the quality of other LLM outputs, 1218
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Figure 2: Distribution of Domains and Subdomains of Tasks Represented in PROMPTEVALS.

or they generically improve prompts to be more clear. The largest application of prompt templates is1219

in content management (e.g., text summarization, creative writing), followed by data and information1220

management (e.g., text to SQL).1221

A.2 Prompts for LLM-Generated Criteria1222

For each prompt template in the PROMPTEVALS, we use GPT-4o to generate a set of custom criteria that1223

each LLM output should follow, or assertion criteria. Note that we use the term “constraints” here to1224

match the terminology in Liu et al. [27]. We refer the reader to their paper to read detailed descriptions of1225

each constraint type.1226

Our prompt to generate the criteria is as follows:1227
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Prompt for Generating Custom Criteria

Here is my prompt template for a specialized task:

```json
{prompt_template}
```

I want to write assertions for my LLM pipeline to run on all pipeline outputs. Here are some categories of constraints I
may want the outputs to follow:
- **Structured Output**: Is there a requirement for the output to follow a standardized or custom format, such as
markdown, HTML, or a JSON object? - **Multiple Choice**: Does the output need to select from a predefined list
of options? - **Length Constraints**: Are there instructions regarding the targeted length of the output, such as the
number of characters, words, or items in a list? - **Semantic Constraints**: - **Excluding specific terms, items, or
actions**: Are there terms, items, or actions that should be excluded from the output? - **Including or echoing specific
terms or content**: Are there specific terms or content that should be included or echoed in the output? - **Covering or
staying on a certain topic or domain**: Should the output cover or stay on a specific topic or domain? - **Following
certain (code) grammar / dialect / context**: Are there requirements to follow certain (code) grammar, dialect, or
context in the output? - **Stylistic Constraints**: Are there requirements for the output to follow a certain style, tone,
or persona? - **Preventing Hallucination (Staying grounded and truthful)**: Should the output stay grounded and
truthful, avoiding opinions, beliefs, or hallucinated outputs? - **Preventing Hallucination (Adhering to Instructions
without improvising unrequested actions)**: Should the output strictly adhere to any specific instructions provided,
without including content that is not explicitly requested?
{step}
Return only your answer as a numbered list of strings.

1228

We updated the “step” input with a different prompt for each step of the workflow. 1229

For step 1 (Generate initial criteria), the input was: Give me a list of constraints to implement for 1230

verifying the quality of my LLM output. Each item in the list should contain a string description of a 1231

constraint to check for and its corresponding type. Type names are: structured_output, multiple_choice, 1232

length_constraints, exclude_terms, include_terms, stay_on_topic, follow_grammar, stylistic_constraints, 1233

stay_truthful, adhere_instructions. 1234

For step 2 (Add missing criteria), the input was: 1235

Here are some assertion constraints I want the outputs to follow: {constraints} 1236

Add assertion constraints to the provided list. Add constraints that are stated in the prompt template and 1237

not already covered by an existing constraint. Return the combined list. Make sure the constraints are 1238

also followed by their corresponding categories. 1239

Where “constraints” was the output from the previous step. 1240

For step 3 (Refine criteria), the input was: 1241

Here are some assertion constraints I want the outputs to follow: {constraints} 1242

Remove any assertion constraints that are incorrect, redundant (or already covered by another constraint), 1243

not relevant to the prompt template, or difficult to validate. Make sure the constraints are also followed by 1244

their corresponding categories. 1245

Where “constraints” was the output from the previous step. 1246

A.3 Analysis of LLM-Generated Criteria 1247

We report distributions of the constraint types identified by GPT-4o in Figure 4, using the 1248

taxonomy from Liu et al. [27]. Figure 4 shows the distribution of constraints across differ- 1249

ent categories, illustrating the prevalence of structured_output type constraints. Addition- 1250

ally, Figure 3 shows a constraint type co-occurrence matrix. The top 5 co-occurring types 1251

are: structured_output and adhere_instructions, structured_output and stay_on_topic, 1252

adhere_instructions and stay_on_topic, structured_output and include_terms, and 1253

stay_truthful and adhere_instructions. 1254

B Example Prompt Templates 1255

B.1 Horse Racing Analytics 1256

Prompt Template: “SystemMessagePromptTemplate 1257

ROLE: You are a horse race analytic agent that explain a race detail with data and insight. You will receive 1258
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Figure 3: Constraint Type Co-Occurrence Matrix

user’s question about a few horses’ data, normally in numeric form. You have to first distinguish each1259

horse’s data, then answer user’s question with the input and some professional’s comments, your final1260

output should be a decision of which horse is performing good or bad.1261

CONCEPTS: You have to note these custom attributes before answering the question: "Reborn" means1262

that the horse has an insignificant drop in win odds, indicating that there are investment towards this horse1263

when the win odds is not favourable. Showing that there are great increase in bettor’s bet and confidence1264

on this horse. "SpeedPro" means the attribute given from a rating system on the horse’s past running1265

strategy. "Cold Door" means the comment rating on the horse from professional horse race commentor.1266

ACTION: You have to analyze the separate horses and compare them with the data provided only, show1267

which horse has the highest confidence with explanation.1268

HumanMessagePromptTemplate1269

I have a horse race with three horses participating, they has the record with : {question}. Now with the1270

data supplied, summarize their potential performance.”1271

C Datasheet1272

1. Why was the dataset created? (e.g., was there a specific intended task gap that needed to be filled?)1273

The dataset was created to be used in training or fine-tuning models in generating higher quality1274

assertion criteria.1275

2. Who funded the creation of the dataset?1276

Lab sponsors (redacted).1277

3. What preprocessing/cleaning was done? (e.g., discretization or bucketing, tokenization, part-of-1278

speech tagging, SIFT feature extraction, removal of instances)1279

The prompt template was extracted from the metadata and was added to the dataset. We removed1280

any rows that resulted in 0 assertion criteria after the first step of our 3 step workflow.1281

4. If it relates to people, were they told what the dataset would be used for and did they consent? If so,1282

how? Were they provided with any mechanism to revoke their consent in the future or for certain1283
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Figure 4: Distribution of Ground Truth Criteria by Type

uses? 1284

Yes, the prompts are all from developers who consented to make their prompts public via a form. 1285

They can delete their prompts by submitting a delete request. We will semi-regularly update the 1286

Prompt Evals dataset to support the delete requests. 1287

5. Will the dataset be updated? How often, by whom? 1288

We plan to update the dataset yearly. 1289

D Model Cards 1290

D.1 Fine-tuned Mistral 1291

1. Model Details. Basic information about the model. 1292

– Person or organization developing model: MistralAI, and fine-tuned by [Redacted for submission] 1293

– Model date: Base model released in September 2023, fine-tuned in July 2023 1294

– Model version: version 3 1295

– Model type: decoder-only Transformer 1296

– Information about training algorithms, parameters, fairness constraints or other applied approaches, 1297

and features: 7.3 billion parameters, fine-tuned by us using Axolotl (https://github.com/axolotl-ai- 1298

cloud/axolotl) 1299

– Paper or other resource for more information: https://arxiv.org/abs/2310.06825 1300

– Citation details: Redacted for submission – License: Apache 2.0 license – Where to send questions 1301

or comments about the model: [Redacted for submission] 1302

2. Intended Use. Use cases that were envisioned during development. (Primary intended uses, Primary 1303

intended users, Out-of-scope use cases) 1304

Intended to be used by developers to generate high quality assertion criteria for LLM outputs, or to 1305

benchmark the ability of LLMs in generating these assertion criteria. 1306

3. Factors. Factors could include demographic or phenotypic groups, environmental conditions, techni- 1307

cal attributes, or others listed in Section 4.3. 1308

We don’t collect any demographic, phenotypic, or others listed in Section 4.3, data in our dataset. 1309

19



4. Metrics. Metrics should be chosen to reflect potential realworld impacts of the model. (Model1310

performance measures, Decision thresholds, Variation approaches)1311

Metrics are defined in Section 4.11312

5. Evaluation Data: Evaluated on PROMPTEVALS test set1313

6. Training Data: Fine-tuned on PROMPTEVALS train set1314

7. Quantitative Analyses (Unitary results, Intersectional results): See Table 71315

Domain Similarity Precision Recall

General-Purpose Chatbots 0.8171 0.8023 0.8338
Question-Answering 0.8216 0.8183 0.8255
Text Summarization 0.8785 0.8863 0.8725
Database Querying 0.8312 0.8400 0.8234
Education 0.8599 0.8636 0.8564
Content Creation 0.8184 0.8176 0.8205
Workflow Automation 0.8304 0.8258 0.8351
Horse Racing Analytics 0.8216 0.8109 0.8336
Data Analysis 0.7865 0.7793 0.7952
Prompt Engineering 0.8534 0.8330 0.8755

Table 7: Fine-Tuned Mistral Score Averages per Domain (for the 10 most represented domains in our test set)

1316

8. Ethical Considerations: See Section 81317

9. Caveats and Recommendations: None1318

D.2 Fine-tuned Llama1319

1. Model Details. Basic information about the model.1320

– Person or organization developing model: Meta, and fine-tuned by [Redacted for submission]1321

– Model date: Base model was released in April 18 2024, and fine-tuned in July 20241322

– Model version: 3.11323

– Model type: decoder-only Transformer1324

– Information about training algorithms, parameters, fairness constraints or other applied approaches,1325

and features: 8 billion parameters, fine-tuned by us using Axolotl (https://github.com/axolotl-ai-1326

cloud/axolotl)1327

– Paper or other resource for more information: https://arxiv.org/abs/2310.068251328

– Citation details: Redacted for submission1329

– License: Meta Llama 3 Community License1330

– Where to send questions or comments about the model: [Redacted for submission]1331

2. Intended Use. Use cases that were envisioned during development. (Primary intended uses, Primary1332

intended users, Out-of-scope use cases)1333

Intended to be used by developers to generate high quality assertion criteria for LLM outputs, or to1334

benchmark the ability of LLMs in generating these assertion criteria.1335

3. Factors. Factors could include demographic or phenotypic groups, environmental conditions, techni-1336

cal attributes, or others listed in Section 4.3.1337

We don’t collect any demographic, phenotypic, or others listed in Section 4.3, data in our dataset.1338

4. Metrics. Metrics should be chosen to reflect potential realworld impacts of the model. (Model1339

performance measures, Decision thresholds, Variation approaches) Metrics are defined in Section 4.11340

5. Evaluation Data: Evaluated on PROMPTEVALS test set1341
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6. Training Data: Fine-tuned on PROMPTEVALS train set 1342

7. Quantitative Analyses (Unitary results, Intersectional results): See Table 7 1343

Domain Similarity Precision Recall

General-Purpose Chatbots 0.8140 0.8070 0.8221
Question-Answering 0.8104 0.8018 0.8199
Text Summarization 0.8601 0.8733 0.8479
Database Querying 0.8362 0.8509 0.8228
Education 0.8388 0.8498 0.8282
Content Creation 0.8417 0.8480 0.8358
Workflow Automation 0.8389 0.8477 0.8304
Horse Racing Analytics 0.8249 0.8259 0.8245
Data Analysis 0.7881 0.7940 0.7851
Prompt Engineering 0.8441 0.8387 0.8496

Table 8: Fine-Tuned Llama Score Averages per Domain (for the 10 most represented domains in our test set)

1344

8. Ethical Considerations: See Section 8 1345

9. Caveats and Recommendations: None 1346
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