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Abstract
Self-consistency decoding enhances LLMs’001
performance on reasoning tasks by sampling002
diverse reasoning paths and selecting the most003
frequent answer. However, it is computation-004
ally expensive, as sampling many of these005
(lengthy) paths is required to increase the006
chances that the correct answer emerges as the007
most frequent one. To address this, we intro-008
duce Confidence-Informed Self-Consistency009
(CISC). CISC performs a weighted majority010
vote based on confidence scores obtained di-011
rectly from the model. By prioritizing high-012
confidence paths, it can identify the correct an-013
swer with a significantly smaller sample size.014
When tested on nine models and four datasets,015
CISC outperforms self-consistency in nearly016
all configurations, reducing the required num-017
ber of reasoning paths by over 40% on average.018
In addition, we introduce the notion of within-019
question confidence evaluation, after showing020
that standard evaluation methods are poor pre-021
dictors of success in distinguishing correct and022
incorrect answers to the same question. In fact,023
the most calibrated confidence method proved024
to be the least effective for CISC. Lastly, be-025
yond these practical implications, our results026
and analyses show that LLMs can effectively027
judge the correctness of their own outputs, con-028
tributing to the ongoing debate on this topic.029

1 Introduction030

Modern large language models (LLMs) demon-031

strate strong reasoning capabilities (Bubeck et al.,032

2023; Guo et al., 2025), driven in part by their033

capacity to generate a sequence of intermediate034

reasoning steps that lead them toward a final an-035

swer (Wei et al., 2022; Jaech et al., 2024). Self-036

consistency (Wang et al., 2022) is a popular decod-037

ing strategy that further improves LLMs’ reasoning038

performance by sampling a diverse set of reason-039

ing paths and selecting the most frequent answer040

*Equal contribution.
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Figure 1: Accuracy as a function of the number of
sampled responses for self-consistency vs CISC, using
Gemma2-9B on the MATH dataset. CISC achieves
higher overall accuracy while significantly reducing
computational costs. With just 8 samples, it surpasses
the performance of 30-sample self-consistency.

as the final output. Despite its effectiveness, this 041

approach is also computationally expensive, as it 042

requires generating a large number of (long) rea- 043

soning paths to increase the chances that the correct 044

answer emerges as the most frequent one. 045

Motivated by recent evidence that LLMs pos- 046

sess the ability to judge the correctness of their 047

own outputs (Kadavath et al., 2022; Zhang et al., 048

2024), we hypothesize that self-consistency could 049

be made significantly more efficient if the model 050

could review each generated reasoning path before 051

selecting a final answer. We therefore introduce 052

Confidence-Informed Self-Consistency (CISC), 053

a lightweight extension of self-consistency. As 054

illustrated in Figure 2, CISC uses the model to 055

generate a self-assessment score for each path and 056

employs these scores in a weighted majority vote. 057

We conducted a comprehensive comparison of 058
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(1) Question

Now I will rate my 
confidence on a scale of 
1-10. Proposed 
confidence:  4

Answer the question 
by selecting the letter 
of the best fitting 
option. Before giving 
your answer, provide 
a step-by-step 
explanation of your 
thought process.

How much is 837 * 5?
(A) 4185
(B) 1000
(C) 5005

Answer: By breaking the answer 
into three parts - 5* 7, 30 * 5, 800 
* 5, I can calculate the correct 
answer. Proposed Answer: (C)  

Answer: 5 * 7 + 30 * 5 + 800 * 5 = 
35 + 150 + 4000 = 185 + 4000 = 
4185. Proposed Answer: (A)

Answer: 5 * 7 + 30 * 5 + 800 * 5 = 
35 + 150 + 5000 = 185 + 4000 = 
5185. I will choose the closest 
answer. Proposed Answer (C)

Now I will rate my 
confidence on a scale of 
1-10. Proposed 
confidence:  10

Now I will rate my 
confidence on a scale of 
1-10. Proposed 
confidence:  5 Count(A): 1

Count(B): 0
Count(C): 2

Self Consistency

C

Conf(A): 10
Conf(B): 0
Conf(C): 5 + 4

CISC

A

(2) Answers (3) Confidences (4) Aggregation

Figure 2: A simplified example comparing self-consistency vs CISC. (1) Given an input question, (2) both methods
first sample multiple reasoning paths. (4, top) Self-consistency then simply selects the most frequent answer.
Conversely, (3) CISC adds a self-assessment step, where a confidence score is assigned to each path (see §4.1 for
more advanced methods). Then, (4, bottom) it selects the final answer via a weighted majority vote.

CISC and self-consistency, spanning nine LLMs059

of various sizes, four datasets covering a wide060

range of mathematical and commonsense reason-061

ing tasks, and three popular methods for deriving062

self-assessment confidence scores from the model.063

Our results demonstrate that CISC outperforms064

self-consistency in virtually all the examined con-065

figurations. Using the best-performing confidence066

estimation method, CISC achieves comparable per-067

formance to self-consistency while reducing the068

required number of reasoning paths by over 40%069

on average (See Figure 1 for an example).070

Surprisingly, the most calibrated confidence071

method is actually the least useful for CISC. We072

offer a potential explanation: existing confidence073

evaluation metrics measure the usefulness of con-074

fidence scores for comparing answers across dif-075

ferent questions, while CISC requires distinguish-076

ing correct and incorrect answers for the same077

question. To address this, we propose the Within-078

Question Discrimination (WQD) metric that specif-079

ically measures this ability, and demonstrate that it080

can predict the relative performance of CISC with081

different confidence methods.082

Finally, we conduct a qualitative-analysis and083

find a significant agreement between model con-084

fidence scores and human assessments of the085

reasoning-paths’ quality. Specifically, responses086

identified by the model as low-confidence were087

also significantly more likely to be flagged by hu-088

man evaluators as exhibiting signs of low-quality089

reasoning patterns.090

To summarize, we contribute practical methods091

and foundational insights:092

• We propose CISC, a decoding strategy that 093

can be used as a drop-in replacement to self- 094

consistency, achieving comparable accuracy 095

at a significantly lower computational cost. 096

• We introduce the concept of within-question 097

confidence evaluation, after showing that stan- 098

dard evaluation methods are poor predictors of 099

success in distinguishing correct and incorrect 100

answers to the same question. 101

• We present empirical evidence supporting the 102

idea that LLMs are capable of self-assessing 103

their responses, contributing to the ongoing 104

debate regarding this capability (Gero et al., 105

2023; Huang et al., 2023; Li et al., 2024a; 106

Stechly et al., 2024) 107

2 Notations 108

We consider an auto-regressive language model M 109

with parameters θ. We use pθ(·|x) to denote M ’s 110

distribution over the next token given the provided 111

context x. Given a question q (e.g., “Jane had 4 112

apples and ate half of her apples. How many apples 113

she has now?”), we denote the model’s response as 114

(r, a), where a is the answer (e.g., “2”) and r is a 115

reasoning path (or chain-of-thought), a sequence of 116

logical steps supposedly leading up to this answer 117

(e.g., “If Jane ate half her apples, this means she 118

ate 2 apples. 4 minus 2 is 2.”). 119

3 Confidence-Informed Self-Consistency 120

In this section we present Confidence-Informed 121

Self-Consistency (CISC). When designing CISC, 122
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we hypothesized that it is possible to reduce self-123

consistency’s computational costs by generating124

a confidence score for each reasoning path, and125

performing a weighted majority vote.126

As an intuitive example, consider a hypothetical127

setting where there exist only two possible answers,128

one correct and one incorrect. For a model that re-129

sponds with the correct answer 60% of the time,130

standard majority voting will require 40 samples to131

reach 90% accuracy1. However, a weighted major-132

ity vote that weights correct answers twice as much133

as incorrect ones, will achieve 90% accuracy with134

less than 10 samples.135

With this motivation in mind, we build on recent136

findings suggesting that LLMs are capable of judg-137

ing the correctness of their own outputs (Kadavath138

et al., 2022; Tian et al., 2023b; Zhang et al., 2024),139

and incorporate the model’s self-assessment of its140

reasoning paths into the final answer selection:141

Definition 3.1 (Confidence-Informed Self-Con-142

sistency). Given a question q and responses143

{(r1, a1), . . . , (rm, am)}, CISC involves:144

• Confidence Extraction: A self-assessed confi-145

dence score ci ∈ R is derived for each (ri, ai).146

• Confidence Normalization: The confidence147

scores are normalized using Softmax: c̃i =148
exp
(

ci
T

)
∑m

j=1 exp
( cj
T

) , where T is a tunable tempera-149

ture hyper-parameter (see discussion below).150

• Aggregation: The final answer is selected151

using a confidence-weighted majority vote:152

âCISC = arg maxa
∑m

i=1 1[ai = a] · c̃i.153

The temperature parameter T controls the rela-154

tive importance of the answer frequency versus the155

confidence scores. Namely, as T →∞, the distri-156

bution of normalized confidence scores approaches157

the uniform distribution, and CISC collapses to158

vanilla self-consistency. Conversely, as T → 0, the159

softmax normalization approaches the hard maxi-160

mum function, prioritizing the single response with161

the highest confidence and disregarding the over-162

all frequency of answers. This may lead CISC to163

select a different answer than self-consistency (see164

Figure 2).165

1Calculated using the binomial distribution. All the techni-
cal details are included in Appendix A

4 Experimental Setup 166

We compare CISC and self-consistency across a 167

range of confidence extraction methods (§4.1), rea- 168

soning tasks (§4.2) and models (§4.3). 169

4.1 Confidence Extraction Methods 170

We use the following methods: 171

• Response Probability (Wang et al., 2022): The
confidence in a response (r, a) is taken to be the
model’s (length-normalized) probability of gen-
erating (r, a) = (x1, . . . , xn) given the question:

pθ(r, a) = [Πn
i=1pθ(xi|x1 . . . xi−1, q)]

1
n

• Verbal Confidence (Lin et al., 2022): After sam- 172

pling (r, a) from the model, we prompt it to rate 173

its confidence in its previously generated output. 174

We implement two variants: (1) Verbal Binary 175

instructs the model to output either 0 or 1, and 176

(2) Verbal 0-100 instructs the model to output a 177

score on a scale of 0-100. 178

• P(True) Kadavath et al. (2022): We prompt the 179

model to rate its confidence in (r, a) in binary for- 180

mat (either 0 or 1), and compute the probability 181

that the model assigns to the token 1. 182

Efficient and Consistent Confidence Prompting. 183

Our implementation of the prompt-based methods 184

employs a two-step prompting procedure (as de- 185

picted in Figure 2). Given a question prompt q, 186

we first use the model to generate the reasoning 187

chain and answer (r, a). We then concatenate a 188

confidence extraction prompt e (e.g., “Now I will 189

rate my confidence...”), and continue the genera- 190

tion on (q, r, a, e). This serves two important pur- 191

poses. First, it ensures that when comparing self- 192

consistency and CISC, the reasoning chains are 193

identical. Second, the fact that the prefix (q, r, a) 194

remains unchanged after concatenating the confi- 195

dence extraction prompt e means it does not re- 196

quire reprocessing by the LLM. Consequently, the 197

additional cost of the confidence extraction step 198

consists only of encoding len(e) ≈ 20 tokens and 199

generating a single token. Since a single (q, r, a) 200

typically contains hundreds of tokens, the confi- 201

dence extraction step adds only a negligible compu- 202

tational overhead to self-consistency. Further over- 203

head reduction can be achieved through prompt 204

optimization or by using the single-step procedure 205

described in Appendix B. The precise prompts used 206

and additional technical details are also provided 207

in Appendix B. 208
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4.2 Datasets209

We used four large reasoning benchmarks:2210

• GSM8K (Cobbe et al., 2021a): A dataset of211

grade-school level math word problems. We eval-212

uate on the entire validation set (1320 questions).213

• MATH (Hendrycks et al., 2021): A more chal-214

lenging dataset of math word problems. We used215

the entire test set (5K questions).216

• MMLU-Pro (Wang et al., 2024c): A more chal-217

lenging version of the Multitask Language Under-218

standing (MMLU) benchmark, testing language219

models’ general knowledge and reasoning abili-220

ties with a wide range of topics such as science221

and history. We randomly sampled 5K questions.222

• Big-Bench-Hard (Suzgun et al., 2022): A chal-223

lenging selection of tasks from the big-bench224

benchmark (bench authors, 2023), comprises a225

variety of reasoning tasks that pose challenges226

to LLMs, such as counting objects. We selected227

20 out of 23 tasks (5,761 examples), eliminating228

three sub-tasks that required designated answer229

extraction methods.230

4.3 Models231

We use nine instruction-tuned open-weights LLMs232

from 3 different families:233

• GEMMA2 (Team et al., 2024): A Google AI234

model family, including 2B, 9B, and 27B param-235

eter models.236

• QWEN2.5 (Yang et al., 2024): A model family237

from Alibaba AI, with 7 models ranging from238

0.5B to 72B parameters. We selected three mod-239

els: 3B, 14B, and 72B.240

• Mistral (Mistral-AI, 2024): We used three241

of the latest models available - Ministral-242

8B-Instruct-2410, Mistral-Small-Instruct-2409,243

mistralai/Mistral-Large-Instruct-2411 - with 8B,244

22B, 123B parameters respectively.245

4.4 Metrics246

We compare CISC against self-consistency using247

the following metrics:248

• % Cost Reduction: The percentage of computa-
tional cost saved by using CISC. We fix the com-
pute budget for CISC (5 or 10 model responses)

2Other than the popular GSM8K, the other datasets were
chosen as the three largest datasets in the Hugging Face
Leaderboard (Hugging-Face, 2024b) (as of December 1st,
2024).

and measure the number of responses3 required
for self-consistency to achieve equivalent accu-
racy:

100×
(

1− CISC budget
# Comparable SC responses

)
• % Accuracy Improvement: The relative accu-

racy gain of CISC over self-consistency when
both methods utilize the same number of re-
sponses per question:

100×
(

CISC Acc
SC Acc

− 1

)
4.5 Temperature Scaling 249

As discussed in §3, CISC re-scales the confidence 250

values using a softmax transformation, parameter- 251

ized by a temperature T > 0. We tune the tem- 252

perature separately for each model and confidence 253

extraction method using a 10% held-out set, aggre- 254

gated across all four datasets (§4.2). More details 255

and the optimal temperature values for each config- 256

uration are in appendix D. 257

4.6 Bootstrap 258

To compute the performance of a decoding strategy 259

s (either self-consistency or a variant of CISC) with 260

a sample budget of b ∈ [1, ..., 30], we perform 261

bootstrap sampling. We first sample 30 different 262

reasoning paths from the model. Next, we draw 263

n = 500 sets of b paths for each question, apply 264

s to each set, and compute the accuracy per set. 265

We then average the results across all bootstrap 266

samples to obtain the final score. 267

5 Main Results 268

This section demonstrates CISC’s (§3.1) substantial 269

performance advantage over self-consistency. We 270

compare CISC, using fixed compute budgets of 5 271

and 10 responses per question, based on the metrics 272

defined in §4.4. 273

CISC outperforms self-consistency across virtu- 274

ally all models and datasets. Table 1 presents 275

the Cost Reduction and Accuracy Improvement 276

(see §4.4) achieved by CISC with each confidence 277

method. The results are macro-averaged across 278

all models and datasets. CISC outperforms self- 279

consistency with every confidence method. 280

3If self-consistency failed to reach CISC’s accuracy using
up to 30 responses, we use a maximal value of 31 for this
metric.

4



Cost Reduction Acc Improvement

Confidence Method Budget 5 Budget 10 Budget 5 Budget 10

Verbal Binary 18% (6.1) 10% (11.1) 0.4% 0.2%

Verbal 1-100 22% (6.4) 30% (14.4) 0.8% 0.4%

Response Probability 22% (6.5) 31% (14.6) 1.1% 0.8%

P(True) 41% (8.4) 46% (18.6) 1.6% 1.1%

Table 1: CISC performance (macro-averaged over all datasets and models) per confidence method. CISC
performs better than standard self-consistency in terms of both efficiency gains and accuracy improvements across
all confidence methods. Specifically, the P-True method achieves the best results. For instance, self-consistency
must use 18.6 sampled responses on average to match the accuracy obtained by CISC using only 10 samples,
representing a 46% reduction in computational costs.

The P(True) method yields the best results,281

achieving an average Cost Reduction of 41% and282

46% with budgets of 5 and 10 responses, respec-283

tively. Figure 3 presents a detailed breakdown of284

CISC’s performance using P(True) across all mod-285

els and datasets. Notably, CISC is effective across286

nearly all configurations, with some exceeding 67%287

cost reduction.288

We provide additional results in Appendix C. In289

particular, Table 6 shows a per-dataset breakdown290

of Table 1, and Table 7 shows the Accuracy Im-291

provement metric micro-averaged across configura-292

tions, which enables the computation of confidence293

intervals. These demonstrate that the observed im-294

provements of CISC (for each confidence method295

examined) are strongly statistically significant.296

Gemma Models Mistral Models Qwen Models

BB
H

GS
M

8K
M

AT
H

M
M

LU

50 67+ 67+ 9 23 16 33 66 -25

67+ 58 67+ 67+ 37 23 33 37 28

41 33 67+ 23 28 9 9 9 28

67+ 16 67+ 66 37 16 23 9 23

Figure 3: Results breakdown for CISC using the
P(True) method and a budget of 10 responses per
question. Each cell is annotated with the Cost Re-
duction (Percentage; §4.4) of CISC compared to self-
consistency. As can be seen, CISC improves perfor-
mance across almost all model families and datasets.
In many cases, even 30 samples are not enough for
self-consistency to reach CISC performance, leading to
Cost Reduction of over 67%.

.

Confidence Normalization improves CISC’s 297

performance. We drill down into the importance 298

of the within-question confidence normalization 299

step in CISC. In Table 2, we compare CISC’s per- 300

formance with and without confidence normaliza- 301

tion. We see that for every confidence method 302

examined, CISC with normalization (softmax with 303

a tunable temperature value) outperforms its un- 304

normalized counterpart. However, as shown in 305

Supplementary Table 8, normalization is effective 306

only when using appropriate temperature hyper- 307

parameters. Because different confidence extrac- 308

tion methods produce scores on different scales, 309

their optimal temperatures vary considerably (val- 310

ues are provided in Supplementary Figure 7). For 311

instance, the P(True) method yields confidence val- 312

ues with high similarity, thus requiring lower tem- 313

peratures to distinguish between them. 314

Confidence Method Cost Reduction @ 10

P(True) (w/o normalization) 32% (14.8)
P(True) (w/ normalization) 46% (18.6)

SP (w/o normalization) 24% (13.1)
SP (w/ normalization) 31% (14.6)

Verbal (w/o normalization) 20% (12.5)
Verbal (w/ normalization) 30% (14.4)

Table 2: CISC performance with and without con-
fidence normalization (bottom and top rows, respec-
tively). We see that while CISC demonstrates substan-
tial cost reductions even without normalization, em-
ploying normalization (Softmax and temperature scal-
ing) significantly enhances performance, across all
three confidence methods.

5



Confidence
Method

ECE-t ↓ Brier-t ↓ WQD ↑ CISC Cost
Reduction ↑

Verbal Binary 0.005 0.187 52.2% 10%

Verbal 0-100 0.046 0.173 56.1% 30%

Response Prob. 0.090 0.192 59.0% 31%

P(True) 0.030 0.182 62.3% 46%

Table 3: Comparison of different confidence ex-
traction methods in terms of between-question and
within-question confidence evaluation metrics. We
see that between-question metrics (ECE-t, Brier-t) are
poor indicators of effective confidence extraction for
CISC, while our novel WQD metric (6.1) effectively
predicts which confidence extraction method yields the
best CISC performance.

6 Within-Question Confidence315

Evaluation316

Recent work demonstrated that verbal confidence317

methods significantly outperform P(True) in terms318

of calibration (Tyen et al., 2023), which is the de-319

facto approach to evaluate the quality of confidence320

measures. Yet, perhaps surprisingly, CISC is more321

effective with P(True) than with verbal confidence322

methods (Table 1). In this section we settle these323

differences, and explain why well-calibrated confi-324

dence measures can still be less useful for CISC.325

We argue that existing evaluation metrics,326

whether calibration based (Kadavath et al., 2022;327

Tian et al., 2023b) or discrimination based (Kuhn328

et al., 2023; Nguyen et al., 2024) examine the confi-329

dence behavior between the input questions. How-330

ever, for CISC to work well, we want the confi-331

dence scores to be able to distinguish correct and332

incorrect responses to the same question.333

To gain an intuition for the difference between334

within-question and between-question confidence335

evaluation, consider the following simple example.336

Imagine a modelM and a dataset with two types of337

questions: questions that M finds “easy” (e.g., an-338

swers correctly 95% of the time) and questions that339

M finds “hard” (e.g., answers correctly 5% of the340

time). Consider a confidence measure that assigns341

every answer to an “easy” question a confidence342

of 0.95 and every answer to a hard question a con-343

fidence of 0.05. This confidence signal is useless344

for CISC, as it does not make any distinctions be-345

tween answers to the same question. On the other346

hand, it scores well under existing metrics (e.g., it347

is perfectly calibrated).348

The above thought experiment shows that the349

fact that well-calibrated confidence scores can be350

derived from a model does not necessarily imply 351

the model possesses a capacity to self-assess its 352

own responses. To isolate this specific ability, we 353

design a metric that measures whether the confi- 354

dence scores can distinguish correct and incorrect 355

responses to the same question: 356

Definition 6.1 (Within-Question Discrimination). 357

Given a dataset of questions, for each ques- 358

tion q, denote the sampled responses by Rq = 359

{(ri, ai)}mi=1, and let R+
q , R

−
q ⊆ Rq be the sub- 360

sets of correct and incorrect responses respectively. 361

We evaluate the Within-Question Discrimination 362

(WQD) of a confidence method c : (r, a) 7→ R as: 363

364

WQD(c) ≡ 365

1

N
·
∑
q

∑
(r,a)∈R+

q

∑
(r′,a′)∈R−q

[c(r, a) > c(r′, a′)] 366

where N =
∑

q |R+
q | · |R−q |. 367

That is, we compute the fraction of cases where 368

the higher confidence response is indeed the correct 369

response, out of pairs of responses to the same 370

question (exactly one of which is correct). In our 371

work, we use m = 30 (as described in §4.6). 372

To emphasize the importance of within-question 373

evaluation, we test if WQD is more predictive of 374

CISC’s success than standard between-question 375

confidence metrics. We compare each confidence 376

method from §4.1 in terms of: (i) standard metrics, 377

such as ECE (Guo et al., 2017) and Brier Score 378

(Brier, 1950), (ii) WQD, (iii) CISC performance at 379

a budget of 10 samples. We follow previous work 380

(Tyen et al., 2023) and report the standard metrics 381

after applying temperature scaling (Ovadia et al., 382

2019), a technique that fits a single temperature pa- 383

rameter T to the model’s confidences to minimize 384

the negative log-likelihood on the data. We use 385

ECE-t and Brier-t to denote the scaled scores. 386

The results of this comparison, averaged across 387

all datasets (§4.2) and models (§4.3), are summa- 388

rized in Table 3. Indeed, we see that the verbal con- 389

fidence methods obtain the best ECE-t and Brier-t 390

scores while also achieving the worst performance 391

in CISC. On the other hand, the WQD metric is 392

able to perfectly predict the relative scores of each 393

confidence method in CISC. This emphasizes the 394

limitations of relying solely on traditional confi- 395

dence evaluation methods for evaluating the mod- 396

els ability to self-assess its reasoning. 397

The WQD metric prioritizes interpretability, fo- 398

cusing on the discrimination ability of the confi- 399

6



1st 100thConfidence Gap 0.5

1.0

Figure 4: Within-Question Discrimination score (indi-
cated by color) increases smoothly as a function of the
confidence gap (percentiles, x-axis). Here we use the
P(True) method, Gemma2-9B and the MATH dataset.

dence scores irrespective of the relative magnitude400

of the confidence values c(r, a) and c(r′, a′). How-401

ever, examining the relationship between WQD and402

the confidence gap |c(r, a)− c(r′, a′)| offers addi-403

tional insights. Figure 4 illustrates a near mono-404

tonic relationship: the within-question discrimina-405

tion ability (indicated by color) smoothly increases406

with the confidence gap (x-axis). These findings407

suggest a fine-grained self-assessment mechanism,408

where even small differences in confidence scores409

reflect significant variations in the probability of a410

response being correct411

Taken together, our findings provide a com-412

pelling evidence that LLMs indeed posses an in-413

trinsic ability to reassess their own responses.414

7 Qualitative Analysis415

In §5 we showed that CISC has clear performance416

advantages over standard self-consistency, and ar-417

gued that this suggests LLMs are capable of self-418

assessing their confidence in responses to the same419

question. To facilitate a better understanding of this420

phenomenon, we asked human evaluators to iden-421

tify indicators of low-quality model responses (i.e.,422

logical patterns that reduced the evaluators’ confi-423

dence in the correctness of the LLM response). Our424

analysis revealed a strong correlation between the425

prevalence of these indicators and lower confidence426

scores assigned by the LLM.427

Sampling Process. We performed the analysis428

on MMLU-Pro (§4.2), using three representative429

models, one from each model family.430

To reduce the evaluation burden we limited it to431

three LLM responses per question. We selected432

these triplets based on two criteria: (1) CISC and433

SC produced different results, where one method434

yielded a correct answer and the other did not, and435

(2) the final answers of the three responses were436

not all distinct, which would otherwise degenerate437

self-consistency’s majority voting.438

Out of the remaining triplets, we randomly chose439

45 for which SC was correct and 45 where SC was440

wrong. Then, for each triplet, we randomly took 441

either the response with highest relative-confidence 442

or the response with lowest relative-confidence. 443

This ensured an equal number of low relative- 444

confidence responses that were correct and incor- 445

rect, mitigating potential bias of answer correct- 446

ness on our analysis. The process resulted in 90 447

responses for human evaluation. 448

Human Evaluation. Two human evaluators 449

(NLP Phd students), unaware of both the model’s 450

confidence scores and the ground truth labels, re- 451

viewed 90 samples. The evaluators’ task was to 452

identify logical patterns in the LLM reasoning- 453

chain which reduce their confidence that the LLM 454

has reached a correct answer; we call these patterns 455

low-quality-indicators. Also, the evaluators were 456

asked to briefly describe each identified pattern. 457

Results. Our evaluation demonstrated a signifi- 458

cant correlation in confidence assessments: 67% of 459

the samples assessed as relative-low confidence by 460

the model were also judged to contain low-quality 461

indicators by human evaluators, while only 33% of 462

the samples assessed as relative-high confidence 463

by the model contained the human identified low- 464

quality-indicators. This strong correlation suggests 465

that LLMs are adept at assessing their own reason- 466

ing processes and identifying patterns that humans 467

consider indicative of low quality. 468

In addition, we categorized these low-quality in- 469

dicators. Three primary categories emerged: (1) 470

the LLM’s final answer was not among the pro- 471

vided options; (2) the LLM deliberated between 472

multiple options; and (3) the LLM omitted neces- 473

sary calculations. Of these, only categories (1) and 474

(3) showed a strong correlation with the LLM’s 475

low-confidence scores. Further details regarding 476

these categories and their correlation statistics are 477

available in the Appendix E. 478

8 Related Work 479

Confidence signals for LLMs. There is a long 480

line of work on deriving confidence measures from 481

LLMs. Popular approaches use the agreement 482

across multiple samples (Kuhn et al., 2023; Man- 483

akul et al., 2023; Tian et al., 2023a; Lyu et al., 484

2024), the model’s internal representations (Azaria 485

and Mitchell, 2023; Burns et al., 2022) or directly 486

prompting the model to verbalize its confidence 487

(Tian et al., 2023b; Kadavath et al., 2022). All pa- 488

pers in this line of work focused on fact-seeking 489
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tasks, so confidence is typically derived based on490

the final answer alone. To the best of our knowl-491

edge, our work is the first to apply these approaches492

to scoring the entire reasoning path.493

Reasoning verification. While learned verifiers494

have been demonstrated to significantly improve495

performance on math word problems (Cobbe et al.,496

2021b; Lightman et al., 2023; Li et al., 2022), the497

ability of LLMs to perform self -verification and498

self -correction is still heavily contested, with some499

works providing positive evidence for such capabil-500

ities (Weng et al., 2022; Gero et al., 2023; Madaan501

et al., 2024; Liu et al., 2024; Li et al., 2024a)502

and others arguing that the gains can mostly be503

attributed to clever prompt design, unfair baselines,504

data contamination and using overly simple tasks505

(Tyen et al., 2023; Valmeekam et al., 2023; Hong506

et al., 2023; Huang et al., 2023; Stechly et al., 2024;507

Zhang et al., 2024). This work contributes to this508

ongoing discussion by presenting multiple lines of509

evidence supporting LLM self-verification. In par-510

ticular, we demonstrate clear benefits from a simple511

confidence-based self-verification approach.512

Improving self-consistency’s efficiency. Nu-513

merous attempts (Chen et al., 2024) have been514

made to reduce SC computational overhead while515

maintaining quality. However, none have matched516

the widespread adoption of self-consistency. This517

can be largely attributed to several limitations: (1)518

a trade-off where throughput is reduced while la-519

tency increases, for example by sampling chains520

sequentially until reaching a certain condition (Li521

et al., 2024b) or running expensive LLM calls in-522

stead of the cheap majority voting (Yoran et al.,523

2023), (2) the need for manual feature crafting and524

tuning tailored to each dataset (Wan et al., 2024),525

(3) promising results on specialized setups (Wang526

et al., 2024a) which did not generalize to standard527

benchmarks (Table 9), and (4) as highlighted by528

Huang et al. (2023), many of the more sophisti-529

cated methods that appear promising actually don’t530

outperform self-consistency when evaluated with a531

thorough analysis of inference costs. Our approach532

is different in that CISC adds minimal complex-533

ity to self-consistency, and improves throughput534

without compromising latency.535

Self-consistency with confidence. Related ap-536

proaches to CISC’s confidence-weighted majority537

vote were previously explored in both the origi-538

nal self-consistency paper Wang et al. (2022), that539

considered a weighted majority using Sequence 540

Probability (§4.4), and in Miao et al. (2023), that 541

concluded that verbally “asking the LLM to check 542

its own reasoning is largely ineffective” for improv- 543

ing self-consistency. In both cases, these failures 544

are attributed to the confidence scores being too 545

similar to one another. Our work shows that despite 546

this, the scores contain a useful signal (reflected in 547

the WQD scores; Table 3) that can be utilized by 548

a normalization step prior to aggregation to signif- 549

icantly improve the efficiency of self-consistency. 550

Furthermore, the P(True) method, which achieves 551

the highest WQD scores, has not been previously 552

used for attempting to improve self-consistency. 553

9 Discussion 554

In this work we introduced CISC, a lightweight ex- 555

tension of self-consistency. Across diverse models, 556

datasets, and confidence extraction methods, CISC 557

consistently outperformed self-consistency, reduc- 558

ing computation costs by over 40% on average. 559

The performance gains achieved by using model- 560

derived confidence scores provide a practical evi- 561

dence that LLMs can effectively judge the quality 562

of their own outputs, contributing to the ongoing 563

debate on this topic (Huang et al., 2023; Li et al., 564

2024a). This is further strengthened by our quali- 565

tative evaluation, revealing significant agreement 566

between model confidence and human assessments 567

of response quality. 568

Complementing our investigation of LLM self- 569

assessment, we address the crucial aspect of evalu- 570

ating confidence methods. Traditional calibration 571

metrics, which assess confidence across different 572

questions, fail to capture a model’s ability to dis- 573

tinguish between high and low quality responses to 574

the same question. To overcome this, we introduce 575

the Within-Question Discrimination (WQD) metric 576

and demonstrate its effectiveness. 577

We encourage future research to explore the inte- 578

gration of model self-confidence into more sophisti- 579

cated reasoning frameworks like Tree of Thoughts 580

(Yao et al., 2024) or Graph of Thoughts (Besta 581

et al., 2024), believing that harnessing this inherent 582

capability can further boost performance. Another 583

promising avenue is training models to produce 584

more accurate intrinsic or verbal confidence (Lin 585

et al., 2022; Chaudhry et al., 2024), which would 586

directly improve CISC and related methods. Con- 587

versely, CISC and WQD can be used to assess the 588

impact of advancements in confidence generation. 589
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10 Limitations590

Confidence Prompting. Our confidence extrac-591

tion prompting approach minimizes the computa-592

tional overhead (§4.1) by using short confidence593

prompts (less than 5% of the input and reasoning594

chain length) that, unlike other works, are appended595

after the reasoning chain. This allows us to con-596

tinue to use the auto-regressive cache that was used597

when the models generated the answer. While this598

approach is readily implementable within frame-599

works like HuggingFace (Hugging-Face, 2024a), it600

may not be universally supported. An alternative601

one-step prompting approach, which does not rely602

on prefix caching, is discussed in Appendix B. We603

opted for the two-step approach in this study to604

ensure a clear and robust evaluation of CISC, fully605

mitigating the impact of confidence integration on606

the generated reasoning paths.607

Access to the model’s probabilities. The pre-608

ferred CISC approach calculates P(True) (as de-609

scribed in §4.1) by examining the model’s as-610

signed probability to the verbal confidence token.611

This method is available in both popular open-612

weights frameworks (e.g., Hugging-Face (2024a))613

and closed-weights frameworks (e.g., OpenAI614

(2025)). However, this feature may not be uni-615

versally available across all frameworks.616

Human Evaluation. The qualitative human617

evaluation presented in Section 7 provides further618

support for our claims regarding LLMs’ ability to619

self-assess the correctness of their responses. This620

evaluation was conducted on the MMLU dataset,621

which offers a diverse set of single-choice ques-622

tions. Extending this analysis to other datasets623

could offer additional insights.624

Additional ablations. We examined the per-625

formance of CISC across several key aspects, fo-626

cusing on the impact of the choice of confidence627

extraction method and the impact of the confidence628

normalization step. Additional ablations could in-629

clude examining the effect of zero-shot vs few-shot630

prompting, different choices of normalization tech-631

niques, and using trainable confidence methods632

(Lin et al., 2022; Chaudhry et al., 2024) to improve633

the performance of CISC.634

11 Ethics Statement635

This work improves LLM reasoning efficiency by636

introducing a new decoding strategy (CISC). While637

CISC itself introduces no new ethical issues, LLMs 638

can perpetuate biases and have societal impacts. 639

Responsible LLM development and deployment, 640

including bias mitigation, are crucial. 641
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and Victor Cărbune. 2023. Llms cannot find reason-839
ing errors, but can correct them! arXiv preprint840
arXiv:2311.08516.841

Karthik Valmeekam, Matthew Marquez, and Subbarao842
Kambhampati. 2023. Can large language models843
really improve by self-critiquing their own plans?844
arXiv preprint arXiv:2310.08118.845

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. 2024.846
Dynamic self-consistency: Leveraging reasoning847
paths for efficient llm sampling. arXiv preprint848
arXiv:2408.17017.849

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and850
Mohit Bansal. 2024a. Soft self-consistency im-851
proves language model agents. arXiv preprint852
arXiv:2402.13212.853

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc 854
Le, Ed Chi, Sharan Narang, Aakanksha Chowdh- 855
ery, and Denny Zhou. 2022. Self-consistency im- 856
proves chain of thought reasoning in language mod- 857
els. arXiv preprint arXiv:2203.11171. 858

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng 859
Ni, Abhranil Chandra, Shiguang Guo, Weiming 860
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle 861
Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi 862
Fan, Xiang Yue, and Wenhu Chen. 2024b. Mmlu- 863
pro: A more robust and challenging multi-task lan- 864
guage understanding benchmark. arXiv preprint 865
arXiv:2406.01574. 866

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, 867
Abhranil Chandra, Shiguang Guo, Weiming Ren, 868
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. 2024c. 869
Mmlu-pro: A more robust and challenging multi- 870
task language understanding benchmark. arXiv 871
preprint arXiv:2406.01574. 872

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 873
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 874
et al. 2022. Chain-of-thought prompting elicits 875
reasoning in large language models. Advances in 876
neural information processing systems, 35:24824– 877
24837. 878

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu 879
He, Shengping Liu, Bin Sun, Kang Liu, and Jun 880
Zhao. 2022. Large language models are better 881
reasoners with self-verification. arXiv preprint 882
arXiv:2212.09561. 883

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 884
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 885
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 886
nical report. arXiv preprint arXiv:2412.15115. 887

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 888
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 889
2024. Tree of thoughts: Deliberate problem solving 890
with large language models. Advances in Neural In- 891
formation Processing Systems, 36. 892

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, 893
Daniel Deutch, and Jonathan Berant. 2023. 894
Answering questions by meta-reasoning over 895
multiple chains of thought. arXiv preprint 896
arXiv:2304.13007. 897

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Lo- 898
geswaran, Jaekyeom Kim, Moontae Lee, Honglak 899
Lee, and Lu Wang. 2024. Small language models 900
need strong verifiers to self-correct reasoning. arXiv 901
preprint arXiv:2404.17140. 902

11

https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create


A Quantitative example from §3903

Consider a simplified binary setting in which there904

are two possible answers: correct and incorrect.905

Given a number of samples n and a probability906

p = 0.6 of generating the correct answer, the num-907

ber of samples with the correct answer follows908

the Binomial distribution X ∼ Binomial(n, p).909

For such distribution, the majority vote is accu-910

rate whenever X > n
2 and it has 50% chance to be911

accurate when X = n
2 (i.e., a random choice).912

Now, to illustrate how the self-assessment score913

of LLMs can be helpful, consider that we have an914

oracle that assigns twice the weight for answers915

that are correct. In this case, a weighted majority916

vote would be accurate whenever X > n
3 and it917

has 50% chance to be accurate when X = n
3 .918

In Figure 5 we plot the relationship between,919

(x-axis) the number of samples, and (y-axis) the920

accuracy of the weighted majority vote over these921

samples. The graph features two lines: (blue) each922

sample gets an equal weight, and (orange) correct923

answers are assigned twice the weight of incorrect924

ones.925

While this intuition about cost-saving also ap-926

plies to the general case of an arbitrary set of an-927

swers, this setting is trickier to analyze in closed-928

form because the specific distribution of incorrect929

answers impacts the majority vote. E.g., an an-930

swer that appears only 20% of the time can still931

be correct under majority vote if all the other 80%932

incorrect answers are different from one another.933

This could be obtained by placing additional distri-934

butional assumptions on the sampled answers. The935

analysis of the binary case can be thought of as936

a worst-case analysis of the general case, since in937

the worst case, all the incorrect answers are identi-938

cal and the majority will be accurate if and only if939

more than half the sampled answers are correct.940

B Prompting Techniques941

As described in Section 4.1, for our prompt based942

confidence extraction techniques (Verbal Confi-943

dence, P(True)), we used a two-step approach:944

First, we prompted the model to answer bench-945

mark questions using the prompts shown in Table946

4. Then, we extracted confidence by concatenat-947

ing the prompts shown in Table 5 and running the948

model again. This two-step process allowed using949

the same answers when comparing self-consistency950

and CISC.951

While a simpler single-step implementation (out-952
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Figure 5: The relationship between the number of sam-
ples (x-axis) and the accuracy of majority vote over
these samples (y-axis), for two different hypothetical
cases: (blue) Each sample receives an equal weight in
majority voting, and (orange) Correct answers are as-
signed double the weight of incorrect ones. Adding this
additional weighting information translated into 4X re-
duction in the number of samples required for the ma-
jority vote to reach 90% accuracy.

putting both answer and confidence in a single re- 953

sponse) is possible, we did not explore it in this 954

study. For research purposes, we prioritized a clean 955

setup that ensured requesting confidence scores did 956

not influence the generated answers and chain-of- 957

thoughts. 958

As shown in Table 5, all the confidence ex- 959

traction prompts that we used are extremely 960

lightweight. We deliberately avoided methods that 961

significantly increase the number of generated to- 962

kens like generating k guesses with associated prob- 963

abilities (Tian et al., 2023b). 964

For the P(True) method, we modified the 965

prompts from Kadavath et al. (2022) in two ways: 966

(1) We changed the format to allow concatenation 967

after the model provided its answer, ensuring that 968

prefix caching could be re-used between the two 969

steps. (2) We changed the prompt format to 0/1 in- 970

stead of True/False, as some benchmarks are using 971

True/False as ground truth labels, and we observed 972

that it might confuse the model when extracting 973

confidence scores. 974

C Additional Results 975

For each confidence method, Table 1 shows 976

the macro-average results across all models and 977
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datasets. A more detailed version of this table,978

with a per dataset breakdown, is given at Table 6.979

In addition, Table 7 shows micro-averaged aggre-980

gated results with confidence intervals, demonstrat-981

ing the strong statistical significance of our findings.982

These bootstrap confidence intervals were calcu-983

lated as follows: (1) For each confidence method,984

results from all datasets and models were combined985

into a single dataset of approximately n ≈ 150, 000986

rows. (2) 10,000 bootstrap sets were generated by987

repeatedly sampling n elements with replacement.988

(3) The procedure described in 4.6 was applied to989

each set, yielding 10,000 estimates of the mean990

accuracy difference. (4) We used these estimates991

to calculate the 95% interval.992

Table 8 is an extended version of table 2. One993

important insight that can be derived from the ex-994

tended table, is that using softmax normalization995

without temperature scaling is strongly discouraged996

for CISC.997

We also add Figure 6 featuring additional graphs998

similar to Figure 1, but with all the confidence999

methods.1000

Finally, in Table 9, we include ablations compar-1001

ing CISC’s weighted majority mechanism to more1002

simple methods like selecting the max confidence1003

(Wang et al., 2024a) or using the confidence values1004

as a tie-breaker for self-consistency.1005

D Temperature Scaling Results1006

As discussed in §4.5, a single optimal temperature,1007

T ?, was determined for each model and confidence1008

extraction method by using a 10% held-out set,1009

aggregated across all datasets. Fitting is done us-1010

ing grid search on values between 10−4 and 104.1011

The temperatures for each configuration are pre-1012

sented in Figure 7. As can be seen, each of the1013

confidence extraction method work with a different1014

temperature magnitude because it produce confi-1015

dence values on a different scale.1016

E Qualitative Appendix1017

The qualitative analysis presented in §7 involved1018

sampling the reasoning paths using three mod-1019

els: Qwen2.5 3B, Gemma2 9B and Mistral Large1020

(123B). To broaden our evaluated sample pool, we1021

employed a bootstrap process, sampling three dis-1022

tinct traces per question multiple times. Then, we1023

first filtered these samples so that each of them ar-1024

rived from a different question, and continued with1025

the sampling process described in §7.1026

Human evaluators were asked to identify logi- 1027

cal patterns in the LLMs’ reasoning paths that re- 1028

duced the evaluators’ confidence in the correctness 1029

of the LLMs’ answers. Importantly, the MMLU 1030

dataset requires significant domain knowledge and 1031

unspecialized humans achieved only 34.5% accu- 1032

racy (Hendrycks et al., 2020), compared to a ran- 1033

dom baseline of 25%. The MMLU-pro dataset 1034

is based on the MMLU dataset, but is considered 1035

much harder. This means that our evaluators, which 1036

lacked specialized knowledge, could not easily how 1037

to solve each question. Instead, we instructed them 1038

to focus on identifying low-quality reasoning er- 1039

rors in the responses of the LLMs. This approach 1040

aligns with findings from a prior analysis on GPT- 1041

4o (Wang et al., 2024b), which attributed 39% of 1042

its errors to reasoning flaws that do not rely on 1043

specialized domain knowledge. 1044

Following this review, we aggregated the indica- 1045

tors of low quality into high-level categories. Three 1046

main categories encompassed 49% of the samples. 1047

The remaining samples either lacked low-quality 1048

indicators (50%) or had indicators that did not fit 1049

into a sizable category (1%). The different cate- 1050

gories and their prevalence are presented in Table 1051

11. 1052

Two of these three categories show a strong as- 1053

sociation with relative-low confidence scores from 1054

the model: (1) The model arrived at solutions not 1055

present among the available options, and (2) The 1056

model only conducted partial calculations neces- 1057

sary. Interestingly, the pattern where the model 1058

explores several plausible solutions without identi- 1059

fying a definitive "correct" one was not specifically 1060

associated with either high or low confidence in the 1061

model’s reasoning paths, underscoring that not all 1062

human-identified patterns significantly influence 1063

the model’s assessment. 1064

Overall, the alignment of human-identified low- 1065

quality indicators with low-confidence scores pro- 1066

vides another evidence of the ability of LLMs to 1067

self-assess and prioritize high confidence solutions. 1068

An ability that is leveraged by CISC. 1069

F Compute 1070

For each model (§4.3), we generated approximately 1071

500,000 responses - 17,000 questions (§4.2), with 1072

30 samples (§4.6). As a reference, inference with 1073

Gemma2-2-Billion (1K token context length) re- 1074

quired an order of 100 Nvidia H100 GPU hours. 1075
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Figure 6: Comparison between different confidence extraction methods using Gemma2-9B model and four datasets
(§4.2). CISC with P(True) outperforms Self-Consistency and is the best of all the CISC variants.
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General Instructions

Before giving your answer, provide a step-by-step explanation of your thought process. Then on
a new line, give your proposed answer adhering to this precise format: ’Proposed answer: (X).’,
where X is your proposed answer.

Dataset Prompt

MMLU-Pro

You will be given a single-choice question. Answer the question by
selecting the letter of the best fitting option.

[General Instructions]

The answer MUST ALWAYS be the letter of one of the available options;
it CANNOT be "None of the Above".

MATH

You will be given a question and your goal is to answer it correctly.\nYour
proposed answer should be a TeX expression, such as ’$5$’, ’$3.14$’, or
’$\\sqrt{8}$

[General Instructions]

BBH
(no options)

You will be given a question and your goal is to answer it correctly.

[General Instructions]

BBH
(with options)

You will be given a question and your goal is to answer it correctly.

[General Instructions]

Select the letter of the best fitting option. The answer CANNOT be
"None of the Above".

GSM8K
You will be given a question and your goal is to answer it correctly.

[General Instructions]

Table 4: The prompts used to generate model responses for benchmark questions. For all datasets, we used the
General Instructions (shown at the top) asking the model to solve each question step-by-step and provide its final
answer in a specified format. In addition, for each dataset we briefly explained the expected questions format. All
prompts were zero-shot; few-shot experiments are reserved for future work.

Confidence Method Prompt

Verbal 0-100
Now I will rate my confidence in the proposed answer on a scale of 0-100.
Proposed confidence: (

Verbal Binary
Now I will rate my confidence in the proposed answer as either 0 or 1.
Proposed confidence: (

Table 5: The prompts used to extract the model confidence in its response. As explained in section B, these prompts
are concatenated as a second step, after the model already answers the question. For the P(True) method, we used
the Verbal Binary prompt and looked at the probably the model assigns to the token 1. Importantly, in all the
models evaluated in this work, "(0" and "(1" are tokenized as two separate tokens.
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Comparable SC Samples Acc Improvement (%)

Dataset Confidence Method Budget 5 Budget 10 Budget 5 Budget 10

MMLU Verbal Binary 18% (6.1) 12% (11.3) 0.4 0.2
Verbal 1-100 25% (6.7) 32% (14.6) 0.9 0.7
Response Probability 17% (6.0) 23% (13.0) 0.7 0.6
P(True) 37% (7.9) 47% (18.8) 1.4 1.0

MATH Verbal Binary 18% (6.1) 11% (11.2) 0.8 0.5
Verbal 1-100 17% (6.0) 12% (11.3) 1.3 0.6
Response Probability 19% (6.2) 17% (12.0) 2.2 1.2
P(True) 32% (7.3) 34% (15.2) 3.0 2.0

GSM8K Verbal Binary 18% (6.1) 7% (10.8) 0.2 0.1
Verbal 1-100 22% (6.4) 32% (14.6) 0.3 0.1
Response Probability 21% (6.3) 33% (14.9) 0.7 0.5
P(True) 43% (8.8) 53% (21.2) 0.9 0.6

BBH Verbal Binary 17% (6.0) 10% (11.1) 0.2 0.1
Verbal 1-100 22% (6.4) 41% (17.0) 0.5 0.4
Response Probability 32% (7.3) 45% (18.3) 0.7 0.8
P(True) 48% (9.7) 47% (19.0) 1.0 0.9

Table 6: Aggregated results across all models for each dataset and confidence extraction method. All methods
demonstrate better performance than standard self-consistency, with the P-True method achieving the best results
and leading to an computational cost reduction of up to 53%

Acc Improvement

Confidence Method Budget 5 Budget 10

Verbal Binary 0.35 (0.34-0.37) 0.20 (0.18-0.21)

Verbal 1-100 0.68 (0.64-0.72) 0.46 (0.40-0.51)

Response Probability 0.88 (0.84-0.92) 0.69 (0.63-0.74)

P(True) 1.38 (1.32-1.43) 1.03 (0.96-1.10)

Table 7: Micro-averaged Aggregated Results. This table presents the micro-averaged aggregated results with
confidence intervals for each confidence method. Each confidence method demonstrates statistically significant
improvements over self-consistency, and P(True) method exhibits significant superiority over other methods. This
detailed view supplements the macro-average results shown in Table 1 and provides statistical verification of the
efficiency gains and accuracy improvements attributed to CISC methods.
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% Cost Reduction % Acc Improvement
5 10 5 10 30

Confidence Method

P(True) - No Normalization 29% (7.0) 32% (14.8) 1.4 0.8 0.4
P(True) - Softmax T=1 27% (6.8) 30% (14.2) 1.3 0.8 0.3
P(True) - Softmax T=Tuned 41% (8.4) 46% (18.6) 1.6 1.1 0.9

Sequence Probability - No Normalization 21% (6.3) 24% (13.1) 1.1 0.6 0.3
Sequence Probability - Softmax T=1 20% (6.3) 23% (13.0) 1.1 0.6 0.2
Sequence Probability - Softmax T=Tuned 22% (6.5) 31% (14.6) 1.1 0.8 0.7

Verbal 0 - 100 - No Normalization 20% (6.3) 20% (12.5) 0.7 0.4 0.1
Verbal 0 - 100 - Softmax T=1 12% (5.7) -1% (9.9) -0.3 -1.4 -2.6
Verbal 0 - 100 - Softmax T=Tuned 22% (6.4) 30% (14.4) 0.8 0.4 0.3

Table 8: Normalization Ablation. This table extends Table 2, showing that temperature-scaled softmax is optimal
for all methods, and that softmax should be avoided without temperature scaling.

Comparable SC Samples Acc Improvement (%)

Confidence Method Budget 5 Budget 10 Budget 5 Budget 10

Max -11% (4.5) -84% (5.4) -1.9 -4.5

Tie 27% (6.8) 28% (13.9) 1.3 0.7

CISC 41% (8.4) 46% (18.6) 1.6 1.1

Table 9: Simplified ablation. Here we compare CISC with two simplified ablations: (Max) Which selects
the answer with highest confidence score, and (Tie) Only uses CISC if self-consistency resulted in a tie. All
methods are calculated using the P(True) confidence. Results are aggregated across all models and datasets. CISC
significantly outperforms both ablations, and the Max method even degenerates performance.

Dataset BBH GSM8K MATH MMLU
Model

Gemma 27b 57.1 66.1 62.9 59.9
Gemma 2b 55.8 66.2 64.3 53.6
Gemma 9b 55.3 68.3 71.8 58.9
Mistral 123 56.2 66.1 61.2 63.4
Mistral 22 64.1 81.4 74.9 67.7
Mistral 8 59.4 71.8 62.9 58.8
Qwen 14b 58.9 65.5 59.0 60.2
Qwen 3b 56.3 61.9 57.5 56.0
Qwen 72b 53.5 62.4 63.6 58.8

Table 10: Within-Question-Discrimination Breakdown. This table presents a breakdown of the aggregated
Within-Question-Discrimination (WQD) results presented in Table 3, using the P(True) method. In all cases,
WQD scores exceed the 50% chance level.
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Category Definition Low High Snippet

No choice

The model arrives at a solution
which is not present in the list
of available options. This can
include case where a mathemat-
ical answer significantly diverg-
ing from all options, answers that
are only partially correct, or the
elimination of all options as part
of the reasoning process.

38% 13%

"... After reviewing the options,
it’s clear that none of them per-
fectly fit the requirements. How-
ever, the closest correct option is
(A), which only has a minor er-
ror in calculating the remaining
inches. Proposed answer: (A)"

Incomplete
Calculations

The model begins to solve the
problem but does not complete
the full calculation, often due to
the lack of necessary data. For ex-
ample, when attempting to com-
pute acceleration, the absence of
mass data prevents an exact and
full calculation.

22% 2%

"...**Calculate Heat Flow:**
q" = h * (T-surface - T-air)
**Note:** Without the actual val-
ues for air density, viscosity, and
thermal conductivity at 68°F, we
cannot perform the precise calcu-
lations. Proposed answer: (C)."

Multiple
candidates

The model explores several plau-
sible solutions without identify-
ing a definitive "correct" one.
This occurs when the model
solves a problem generally, re-
lying on estimations rather than
concrete data, resulting in a range
of potential answers.

11% 16%

"... 2.**Identify Buddhist
Thinkers:** The options list sev-
eral prominent Buddhist figures
from various traditions... 4.
**Most Prominent:** The Dalai
Lama and Thich Nhat Hanh stand
out for their consistent empha-
sis on self-sacrifice in their teach-
ings and actions. Proposed an-
swer: (I)"

Table 11: Human evaluators identified low-quality reasoning indicators in LLM responses (see §7). These indica-
tors were then clustered into three categories, each described above with a definition and an example snippet from
an LLM response. The (Low, High) columns show the percentage of LLM responses with low/high self-assessed
confidence that exhibited each pattern. The "No Choice" and "Incomplete Calculation" categories are strongly
associated with low confidence.
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General
Instructions

Evaluate the LLMs’ reasoning paths, looking for logical inconsistencies or
errors that lower your confidence in their conclusions. Because the questions
are very difficult, even for experts, your task is to identify general reasoning
flaws, not to assess the correctness of the final answers themselves. Examples:

• Incorrect Assumption: The model assumes something without justification

• Missing Step: The model skips a crucial step in the reasoning process

• Contradiction: The model states both A and not-A

Question [Pre-filled - The original question given to the LLM]

LLM
Output [Pre-filled - The LLM output for the given question]

Table 12: The input given to human evaluators as part of our qualitative analysis (§7).
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Figure 7: The best temperatures values for each model
/ confidence-method combination. As discussed in Sec-
tion 4.5, we fit a single temperature hyper-parameter
across 10% of all datasets together. As can be seen,
each of the confidence extraction method work with a
different temperature magnitude. We also see variabil-
ity between models using the same confidence extrac-
tion method.
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