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ABSTRACT

We present the first large-scale open-set benchmark for multilingual audio-video
deepfake detection. Our dataset comprises over 300 hours of real and fake videos
across eight languages, with 58% of data being generated. For each language,
the fake videos are generated with several distinct audio and video deepfake
generation models, selected based on the quality of the generated content. We
organize the training, validation and test splits such that only a subset of the chosen
generative models and languages are available during training, thus creating several
challenging open-set evaluation setups. We perform experiments with various
pre-trained and fine-tuned deepfake detectors proposed in recent literature. Our
results show that state-of-the-art detectors are not currently able to maintain their
performance levels when tested in our open-set scenarios. We publicly release our
data and code at: https://anonymous.4open.science/r/MAVOS-DD.

1 INTRODUCTION

The rapid progress in image, audio and video synthesis technologies has enabled the creation of
realistic visual content from textual descriptions (Croitoru et al., 2023; Ramesh et al., 2022; Saharia
et al., 2022; Rombach et al., 2022; Nichol et al., 2022), as well as the convincing manipulation
of people’s identities (Li et al., 2020a; Chen et al., 2020; Joo et al., 2021; Nirkin et al., 2019) and
expressions (Wang et al., 2024; Zheng et al., 2022; Hong et al., 2022; Chen et al., 2024a; Xu et al.,
2024a;b; Tian et al., 2024). This has led to a surge of innovative applications across various industries,
including marketing and film making. However, these breakthroughs have also fueled the rise of
malicious uses, particularly in generating deceptive synthetic audio-visual content, commonly known
as deepfakes (Croitoru et al., 2024). Alarmingly, a recent report shows that the incidence of deepfake-
related fraud increased by a factor of 10 between 2022 and 20231. In this landscape, the ability to
reliably identify forged video material is more crucial than ever.
A significant body of research has emerged in response to the rising number of deepfake-related
manipulation and fraud cases, aiming to detect manipulated content using advanced deep learning
techniques, such as convolutional neural networks (Raza & Malik, 2023; Cozzolino et al., 2023;
Kihal & Hamza, 2023; Ciamarra et al., 2024; Lanzino et al., 2024; Ba et al., 2024), transformers
(Zhou & Lim, 2021; Oorloff et al., 2024; Salvi et al., 2023; Ilyas et al., 2023; Zhang et al., 2024;
Nie et al., 2024), and hybrid approaches (Bonettini et al., 2021; Wang & Chow, 2023; Coccomini
et al., 2022; Guan et al., 2022; Zheng et al., 2021; Choi et al., 2024). These methods have achieved
remarkable results, often surpassing 99% accuracy on existing benchmarks (Croitoru et al., 2024),
such as Celeb-DF (Li et al., 2020b) and FaceForensics++ (Rossler et al., 2019). Nevertheless, most
evaluations are carried out in controlled environments where the synthetic and authentic samples in
training and testing originate from the same video manipulation tools. This in-domain evaluation
setup significantly inflates detection performance and fails to represent real-world conditions, where
neither the manipulated technique nor the subject is known in advance.
To address this gap, we propose a new benchmark for evaluating audio-video deepfake detection
models in a multilingual open-world setup. Our benchmark, MAVOS-DD, comprises over 40K
fake and 35K real videos, totaling over 300 hours of video across eight languages: Arabic, English,
German, Hindi, Mandarin, Romanian, Russian and Spanish. The fake samples are generated by
several state-of-the-art deepfake generation methods based on different approaches: talking head
(EchoMimic (Chen et al., 2024a), Memo (Zheng et al., 2024), Sonic (Ji et al., 2025)), portrait
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Figure 1: In MAVOS-DD, the training set and in-domain test set contain real and fake videos sampled
from the same distribution, comprising six languages and six generative approaches. The open-set
model test set extends the in-domain test set with fake samples generated by unseen models (Sonic,
HifiFace, Roop, VC2 and Sonic+VC2). The open-set language test set extends the in-domain test
set with samples in unseen languages (German and Hindi). The open-set full test set adds samples
generated by unseen models in unseen languages. One fake sample from each data distribution is
shown on the right-hand side. Groups of voice conversion methods (VC1 and VC2) are disjoint
across all languages. Best viewed in color.

animation (LivePortrait (Guo et al., 2024)), face swap (Inswapper2, HifiFace (Wang et al., 2021c),
Roop3), and voice conversion (FreeVC (Li et al., 2022), KNN-VC (Baas et al., 2023), OpenVoice (Qin
et al., 2024), XTTSv2 (Casanova et al., 2024), YourTTS (Casanova et al., 2022)). As shown in Figure
1, we create a multi-perspective open-set benchmark that comprises video, audio and audio-video
manipulations. For audio manipulation, multiple voice conversion (VC) methods are required to
cover all languages. We group VC methods in two groups, VC1 and VC2, such that methods in each
group as disjoint for every language. The training set comprises audio-video samples in six languages
(excluding German and Hindi), where the fake samples are generated via six approaches (excluding
Sonic, HifiFace, Roop, VC2 and Sonic+VC2). We prepare an in-domain (closed) test set that is
sampled from the same distribution as the training data. In addition, we create three open-set test sets:
(i) open-set model extends the in-domain test set with fake samples generated by unseen models; (ii)
open-set language adds German and Hindi samples to the in-domain test data; (iii) open-set full adds
samples generated by unseen models in German and Hindi.
We perform extensive experiments using both pre-trained and fine-tuned deep fake detectors (Oorloff
et al., 2024; Zou et al., 2024; Xu et al., 2023), analyzing their performance on both in-domain and
open-set scenarios. While these models work well under in-domain conditions, one of them reaching
an accuracy threshold of 89%, their effectiveness drops significantly in the open-set setups. The
reported performance gaps highlight a critical limitation of current deepfake detection models, namely
the poor generalization across deepfake generation models and languages.
In summary, our contribution is twofold:

• We present MAVOS-DD, a comprehensive multilingual open-set benchmark for audio-video
deepfake detection, encompassing over 300 hours of authentic and synthetic videos across
eight languages.

• We conduct a thorough evaluation of state-of-the-art deepfake detectors, uncovering sub-
stantial performance degradation when models are tested in open-world setups, thereby
emphasizing the need for more robust and generalizable detection techniques.

2 RELATED WORK

The field of deepfake generation has seen significant advancements in recent years (Croitoru et al.,
2024), particularly with the rise of diffusion models (Croitoru et al., 2023; Ho et al., 2020; Rombach

2https://github.com/deepinsight/insightface
3https://github.com/s0md3v/roop
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Table 1: Comparison between MAVOS-DD and other video and audio-video (multimodal) datasets.
MAVOS-DD is the largest dataset from multilingual audio-video open-set deepfake detection.

Dataset
File count Length (h)

#L
an

gu
ag

es

O
pe

n-
se

t

M
ul

tim
od

al

#Generative
methods#Real #Fake Real Fake Total

FaceForensics++ (Rossler et al., 2019) 1,000 4,000 4.7 17.0 21.7 4 0 ✗ ✗
DFDC (Dolhansky et al., 2020) 23,654 104,500 64.4 288.9 353.3 5 0 ✗ ✗
DeeperForensics (Jiang et al., 2020) 50,000 10,000 46.3 116.7 163.0 1 0 ✗ ✗
ForgeryNet (He et al., 2021) 99,630 121,617 13.3 13.5 26.8 15 0 ✗ ✗
Celeb-DF (Li et al., 2020b) 590 5,639 2.1 20.4 22.5 1 0 ✗ ✗
WildDeepfake (Zi et al., 2020) 3,805 3,509 - - 10.9 - 0 ✗ ✗
FakeAVCeleb (Khalid et al., 2021) 500 19,500 1.1 41.2 42.3 3 1 ✗ ✓
DeepSpeak (Barrington et al., 2024) 6,226 6,799 17.0 26.0 44.0 10 1 ✗ ✓
Deepfake-Eval-2024 (Chandra et al., 2025) 1,072 964 28.9 16.2 45.1 - 49 ✗ ✓
PolyGlotFake (Hou et al., 2024) 766 14,472 2.6 48.3 50.9 10 7 ✗ ✓

MAVOS-DD (ours) 35,557 40,742 127.9 175.7 303.6 11 8 ✓ ✓

et al., 2022; Saharia et al., 2022; Song & Ermon, 2019). In parallel, considerable research has been
devoted to developing effective detection techniques (Croitoru et al., 2024; Oorloff et al., 2024; Zou
et al., 2024; Xu et al., 2023) to counter the negative effects of deepfake media. In addition, substantial
efforts have been made to construct datasets for deepfake detection (Rossler et al., 2019; Dolhansky
et al., 2020; Jiang et al., 2020; Li et al., 2020b; Khalid et al., 2021), thereby facilitating research in
this domain.
Audio-visual deepfake detection. Traditional deepfake detection methods are unimodal, focusing
solely on either visual artifacts, e.g. abnormal facial textures (Lanzino et al., 2024; Kingra et al.,
2022; Fang et al., 2025) and inconsistent lighting (Gerstner & Farid, 2022), or audio inconsistencies,
e.g. speech prosody (Blue et al., 2022; Wang et al., 2023; Attorresi et al., 2023), frequency patterns
(Sriskandaraja et al., 2016; Yang et al., 2020; Fan et al., 2023; Xue et al., 2022), and voice cloning
artifacts (Martín-Doñas & Álvarez, 2023; Gao et al., 2021). With generation methods becoming more
capable, it is essential to leverage both visual and auditory modalities to improve the robustness and
reliability of the forgery detection models (Oorloff et al., 2024; Zou et al., 2024; Xu et al., 2023).
Aside from unimodal cues, utilizing multimodal (audio-visual) information can naturally capitalize
on the misalignment between the two modalities by examining if the audio and video signals are
coherent and temporally aligned, e.g. in terms of lip movements (Agarwal et al., 2020; Zhou & Lim,
2021) or facial expressions (Haliassos et al., 2022).
Early works on audio-visual deepfake detection used convolutional architectures (Raza & Malik,
2023; Cozzolino et al., 2023; Kihal & Hamza, 2023). For example, Multimodaltrace (Raza & Malik,
2023) extracts separate features from audio and video with residual blocks, fuses the resulting
representations and further processes them to make the final prediction. Kihal & Hamza (2023) also
employ individual CNN-based feature extractors, but use a Random Forest model to predict the final
label. Recent works opted for architectures that leverage transformers, not only because of their
higher performance, but also because of the inherent mechanism that enables fusing the information
from two modalities using cross-attention modules (Zhou & Lim, 2021; Oorloff et al., 2024; Salvi
et al., 2023; Ilyas et al., 2023; Zhang et al., 2024; Nie et al., 2024). Zhou & Lim (2021) detect
inconsistencies between the two modalities (focusing on lip movements and speech) by aligning
their low-level latent representations and fusing them through a cross-modal attention mechanism.
Nie et al. (2024) employ two pre-trained frozen ViTs (Dosovitskiy et al., 2021) to extract features,
with only the [CLS] tokens being used for classification. To bridge the gap between modalities, the
audio information is integrated into the visual tokens using an audio-distilled cross-modal interaction
module. Furthermore, the authors try to detect high-frequency forgery artifacts by biasing the queries,
keys, and values with learnable parameters.
Audio-visual deepfake datasets. While the advancement of deepfake generation methods has led to
the development of detection methods to defend against deepfakes, it has also driven the need for
extensive datasets. In the beginning, datasets comprising data from a single modality were created for
both visual (image and video) data (Dang et al., 2020; Dolhansky et al., 2020; He et al., 2021; Chen
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Figure 2: Distribution of videos per language and per generative method. MAVOS-DD comprises
videos in eight languages, generated with various methods. The languages are coded as follows:
Arabic (AR), English (EN), German (DE), Hindi (HI), Mandarin (MD), Romanian (RO), Russian
(RU) and Spanish (ES).

et al., 2024b; Rossler et al., 2019; Li et al., 2020a;b; Zi et al., 2020) and audio data (Wang et al., 2020;
Liu et al., 2023). Nevertheless, with the rise of multimodal models, the availability of audio-visual
datasets (Korshunov & Marcel, 2018; Khalid et al., 2021; Chandra et al., 2025; Barrington et al.,
2024) has become essential.
We present a comprehensive comparison of MAVOS-DD with other video and multimodal datasets in
Table 1. DFDC (Dolhansky et al., 2020) is among the largest video dataset for deepfake detection.
However, multimodal datasets, such as FakeAVCeleb (Khalid et al., 2021) and Deepfake-Eval-2024
(Chandra et al., 2025) are not as large. FakeAVCeleb (Khalid et al., 2021) is based on two face
swapping methods and a facial reenactment method for their synthetic English-speaking videos.
While DeepSpeak (Barrington et al., 2024) tries to excel by employing 10 generative methods,
Deepfake-Eval-2024 (Chandra et al., 2025) stands out by having videos in 49 languages, although
80% is English.
One of the main limitations of the deepfake detection methods is their ability to generalize to
synthetic samples generated with different methods. To this end, MAVOD-DD contains samples
obtained with a variety of generative methods to facilitate training robust detection models, but also to
thoroughly evaluate their ability to generalize to unseen methods. Moreover, with only two exceptions
(Chandra et al., 2025; Hou et al., 2024) from concurrent literature, existing datasets do not focus
on the multilingual aspect of audio-visual content. Chandra et al. (2025) collect the dataset from
the web, so there is no control over the generative methods and languages. In contrast, our dataset
enables an open-set evaluation in terms of both generative models and languages. Furthermore,
our dataset comprises 11× more deepfake content (176 hours vs. 16 hours), which enables the
training of very deep models with higher generalization capacity. Although their videos span 49
languages, 80% of all videos are in English (each other language representing less than 0.5% of
the dataset). In this regard, MAVOS-DD provides a more even distribution across languages (see
Fig. 2a). PolyGlotFake (Hou et al., 2024) contains 766 real and 14,472 fake videos, resulting in an
imbalance ratio of approximately 1:18.5. In contrast, MAVOS-DD yields a more balanced ratio of
roughly 1:1.3. Moreover, PolyGlotFake employs only two video manipulation methods, with the most
recent being VideoRetalking (Cheng et al., 2022). In MAVOS-DD, we incorporate more recent and
diverse manipulation techniques, including Sonic (Ji et al., 2025) and LivePortrait (Guo et al., 2024),
offering a more up-to-date and challenging benchmark. Overall, the comparison in Table 1 shows
that MAVOS-DD is the largest dataset from multilingual audio-video open-set deepfake detection.

3 DATASET

Overview. Our main contribution is MAVOS-DD, a large-scale deepfake dataset consisting of 76,299
real and synthetic videos, totaling 303 hours of content across eight different languages. The synthetic
content is generated using seven video methods (EchoMimic (Chen et al., 2024a), Memo Zheng
et al. (2024), Sonic (Ji et al., 2025), LivePortrait (Guo et al., 2024), Inswapper, HifiFace (Wang
et al., 2021c), and Roop) and five audio methods (FreeVC (Li et al., 2022), KNN-VC (Baas et al.,
2023), OpenVoice (Qin et al., 2024), XTTSv2 (Casanova et al., 2024), YourTTS (Casanova et al.,
2022)). The VC methods are divided into two groups, denoted as VC1 (FreeVC, XTTSv2) and
VC2 (OpenVoice, YourTTS, KNN-VC). The deepfake methods cover five key generative tasks:
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Table 2: Number of real and fake videos included in the training, validation and test splits of MAVOS-
DD. The test data is divided into four subsets, which generate an in-domain evaluation scenario and
three open-set evaluation scenarios. The core set includes six languages (Arabic, English, Mandarin,
Romanian, Russian, Spanish) and four methods (EchoMimic, Memo, LivePortrait, Inswapper). The
extra languages are German and Hindi. The extra models are Sonic, HifiFace and Roop. The length
(in hours) of the real and fake content in each split is reported in the last column.

Split Video File count Total Total

type Core Extra Extra Extra models count length
set languages models & languages (h)

Train Real 10,297 0 0 0 10,297 38.5
Fake 11,073 0 0 0 11,073 49.1

Validation Real 1,715 0 0 0 1,715 6.4
Fake 2,180 0 0 0 2,180 9.5

Test

In-domain Real 5,185 0 0 0 5,185 19.3
Fake 5,347 0 0 0 5,347 25.0

Open-set language Real 5,185 7,998 0 0 13,183 46.4
Fake 5,347 4,708 0 0 10,055 49.3

Open-set model Real 5,185 0 10,362 0 15,547 56.1
Fake 5,347 0 15,086 0 20,433 78.2

Open-set full Real 5,185 7,998 10,362 0 23,545 83.1
Fake 5,347 4,708 15,086 2,348 27,489 117.1

talking-head generation (EchoMimic, Memo, Sonic), facial expression transfer (LivePortrait), face
swapping (Inswapper, HifiFace, Roop), voice conversion (FreeVC, KNN-VC, OpenVoice, XTTSv2,
YourTTS), and joint talking-head and voice conversion (Memo+VC1, Sonic+VC2). This coverage
ensures a diverse and realistic set of generated videos, comprising three kinds of deepfakes: video,
audio, and multimodal (audio-video). The main reason for using recent generative methods is to
create a challenging dataset. Yet, another level of complexity is added through the fact that the
audio-video samples cover eight languages: Arabic (AR), English (EN), German (DE), Hindi (HI),
Mandarin (MD), Romanian (RO), Russian (RU) and Spanish (ES). We present the video distribution
per language and per generative method in Figure 2a and Figure 2b, respectively. Note that real
videos are naturally included in the distribution of videos per language, but not in the distribution
of videos per generative method. The distribution per language is influenced by the number of real
videos that we were able to collect for each language, while the distribution per method is influenced
by the speed of each generative method. The total time required to generate all videos included in
MAVOS-DD amounts to roughly 92 days (time measured on a computer with an Intel i9-14900K
CPU with 192 GB of RAM and an Nvidia RTX 4090 GPU with 24 GB of VRAM).
We define official training, validation, and test splits for various evaluation scenarios, as illustrated in
Figure 1. The first scenario, referred to as in-domain evaluation, uses a test set comprising the same
languages and generative methods as the training set. The second and third scenarios, namely open-set
model and open-set language, expand the in-domain test set to include samples generated by unseen
models or unseen languages, respectively. The final scenario, called open-set full, includes samples
generated by unseen models in unseen languages, presenting the most challenging evaluation setting.
We present detailed statistics about MAVOS-DD and its splits in Table 2. The training and validation
splits do not include videos in German or Hindi, as these languages are reserved exclusively for the
test set to support open-set evaluation. Overall, the number of real and fake samples is relatively
balanced. However, the open-set model and open-set full splits contain a slightly larger number of
fake samples, as they comprise synthesized videos from three additional generative methods that are
not present in the training set, as illustrated in Figure 1.
Real videos. We collect real videos from YouTube, primarily sourcing content from popular news
channels or street interviews in each target language (such as EasyLanguages4) Additionally, we
include videos from well-known channels specific to each country and language, although these are
not our primary focus, as they tend to lack the diversity of speaker identities found in news broadcasts.
After downloading, we apply the TalkNet active speaker detection model (Tao et al., 2021) to segment

4https://www.easy-languages.org/
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the videos into shorter clips, each featuring a single speaking individual. As the process to acquire
the videos and split them into smaller videos is automatic, there are some instances where the videos
do not contain any humans, i.e. faces. In order to filter these out, for each video, we apply a face
detector (Jocher et al., 2023) on individual frames (using a step of 15 frames) and eliminate those
videos that do not have a face for more than half of the evaluated frames. The final dataset comprises
35,557 high-quality videos, with resolutions ranging from 256× 256 to 1920× 1080, amounting to
a total of 128 hours of real content.
Deepfake videos. Deepfake generation typically involves a source identity image, representing the
face that is manipulated by the generative model. We take these identities from multiple sources in
our experiments. The first source is a set of 500 portraits generated by us using FLUX5. We use the
simple text prompt “A portrait of a man/woman”, as it consistently produces high-quality images
without compromising output diversity. For the diffusion process, we set the number of denoising
steps to 50 and use a guidance scale of 3.5. Additionally, we supplement the generated portraits
with real identities from well-established face datasets, specifically FFHQ (Karras et al., 2021) and
CelebAMask-HQ (Lee et al., 2020), along with identities found in our real videos. These datasets
have disproportional dimensions, but we sample subsets from each to ensure an almost uniform
distribution across datasets.
The talking-head generation is performed with EchoMimic, Memo and Sonic. We provide these
models with a portrait image, sampled from the previously described set, and an audio signal
containing a person speaking. The audio also originates from the real video set described earlier. The
result is a video in which the person from the portrait image utters the speech from the audio file.
We emphasize that the models not only manage lip synchronization, but also effectively generate
head movements and facial expressions required for this task. Furthermore, we observe that Memo
and Sonic perform consistently well across multiple languages, while EchoMimic struggles with
languages other than English and Mandarin. For this reason, we individually fine-tune EchoMimic on
additional languages, such as Romanian and Arabic, before using it for generation. We use 1,000 real
videos for each language and trained the model for 10 epochs. Finally, we synthesize over 10,000
videos using talking-head generation methods, resulting in more than 65 hours of fake content. All
videos are generated at a consistent resolution of 512× 512 pixels.
For facial expression manipulation, we employ LivePortrait (Guo et al., 2024). This model can
transfer facial movements (eyes, lips, and expressions) from a driving video to a source image or
video. However, we observe a noticeable drop in quality when the person in the driving video is not
directly facing the camera. Additionally, while lip synchronization is handled effectively, the transfer
of eye movements and facial expressions is less effective. To address these limitations, we restrict
our use to front-facing driving videos and focus only on lip synchronization. As a result, only the
movements of the lips are synthesized in the generated samples, while all other facial attributes in the
source video remain unchanged. The audio of the resulting video is taken from the driving video, to
ensure alignment between the lips and the information spoken in the audio. We select front-facing
driving videos from the set generated using talking-head synthesis, as these are primarily created
from portrait images, and verified for the front-facing property. The source videos are represented by
the real videos collected from YouTube. We generate over 2,900 videos using this method, resulting
in more than 14 hours of fake content. The generated videos inherit the resolution of the source (real)
videos, as the only changed aspect is the movement of the lips.
The face swapping is performed with Inswapper, HifiFace and Roop. Face swapping works by pasting
the identity from a source image to a target video, while keeping the attributes that are not specific to
the identity (facial expression, lip movement) unchanged. For the source images, we use portraits
from the previously described dataset, which includes both synthetic and real identities. The target
videos are selected from the collected set of real YouTube videos. Following face swapping, we
apply GFPGAN (Wang et al., 2021b) for face restoration to enhance visual quality. We generate over
22,000 videos using this deepfake method, totaling 81 hours of fake content. The resolution of the
resulting videos matches that of the target (real) videos.
We generate over 5,500 samples to cover both (fake audio, real video) and (fake audio, fake video)
pairs. To create (fake audio, real video) samples, we apply several VC models to some of the collected
real videos. The samples produced by models from VC2 are reserved exclusively for our open-set
model evaluation, and are not included in the training or validation subsets. The reference voices used
for the VC models are sourced from Common Voice (Ardila et al., 2020), M-AILABS (Solak, 2019),

5https://github.com/black-forest-labs/flux
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EchoMimic Memo LivePortrait Inswapper Sonic HifiFace Roop

Figure 3: Fake video frames generated by several deepfake generation methods. Best viewed in color.

and VoxPopuli (Wang et al., 2021a). To create the (fake audio, fake video) samples, we generate
talking-head videos using Sonic and Memo, while providing fake audio samples as input.
In Figure 3, we present synthetic video frames produced by some of the deepfake methods. The
samples are diverse and have a high degree of realism, confirming that MAVOS-DD represents a
challenging dataset for existing deepfake detectors. For both real and generated videos, we highlight
that the number of frames per second (FPS) ranges from 23 to 60. The audio bitrate varies between 88
and 140 kbps, with the audio sample rate spanning from 16 to 44.1 kHz. The video bitrate ranges
from 40 to over 10, 000 kbps.

4 EXPERIMENTS

Baselines and hyperparameters. We conduct experiments using three state-of-the-art deepfake
detectors. Two of them, namely AVFF (Oorloff et al., 2024) and MRDF (Zou et al., 2024), are
multimodal, while the third one, TALL (Xu et al., 2023), analyzes only the video input. AVFF
employs two unimodal encoders based on transformer blocks, each of them being trained to predict
features of the opposite modality. The outputs from both encoders are concatenated and passed to
a binary classifier for deepfake detection. Similarly, MRDF uses two encoders to extract features
from each modality. The two encoders are based on ResNet-18 (He et al., 2016). Their output is
concatenated and further processed by an audio-visual transformer module for deepfake detection.
TALL is a spatio-temporal modeling method that captures both spatial and temporal inconsistencies.
The method is applicable to multiple architectures. In our work, we use TALL-Swin, which is based
on Swin Transformer (Liu et al., 2021). We conduct the experiments using both pre-trained and
fine-tuned versions of each model. We fine-tune MRDF for 5 epochs, TALL for 15 epochs and
AVFF for 10 epochs on MAVOS-DD. The number of epochs are established based on early stopping.
To optimize the models, we employ Adam (Kingma & Ba, 2015) with a learning rate of 10−3 for
MRDF, 2 · 10−5 for TALL, and 10−5 for AVFF, respectively. We keep the default values for the other
hyperparameters of Adam. We set the batch size to 4 for AVFF and MRDF, and 32 for TALL. All the
experiments are carried out on a computer with an Intel i9-14900K CPU with 192 GB of RAM and
an Nvidia RTX 4090 GPU with 24 GB of VRAM.
Results. In Table 3, we report the results for the three baseline models across three evaluation metrics:
mean average precision (mAP), area under the ROC curve (AUC), and accuracy (acc). We report
these values on all four test sets: in-domain, open-set model, open-set language and open-set full.
The results demonstrate that MAVOS-DD is a difficult data set for existing deepfake detection
methods, since all the employed and publicly available pre-trained models perform close to random
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Table 3: Results obtained by pre-trained and fine-tuned versions of AVFF (Oorloff et al., 2024),
MRDF (Zou et al., 2024) and TALL (Xu et al., 2023) on the MAVOS-DD official test sets: in-domain,
open-set model, open-set language and open-set full. The best and second-best results on each column
are highlighted in bold blue and orange, respectively. According to McNemar’s statistical testing, all
fine-tuned models are significantly better than their pre-trained counterparts (p-value < 0.001).

Method
Fi

ne
-t

un
ed In-domain Open-set model Open-set language Open-set full

mAP AUC acc mAP AUC acc mAP AUC acc mAP AUC acc

AVFF ✗ 0.53 0.54 49.23 0.54 0.56 56.78 0.53 0.52 56.73 0.53 0.55 53.85
MRDF ✗ 0.58 0.58 54.81 0.59 0.60 49.57 0.57 0.58 55.71 0.59 0.59 53.33
TALL ✗ 0.50 0.50 49.94 0.47 0.45 43.60 0.48 0.48 49.70 0.47 0.46 46.38

AVFF ✓ 0.96 0.96 89.05 0.91 0.92 81.74 0.91 0.91 85.13 0.90 0.91 81.64
MRDF ✓ 0.90 0.91 83.25 0.76 0.81 76.42 0.88 0.89 82.57 0.80 0.83 78.36
TALL ✓ 0.85 0.85 76.63 0.74 0.76 66.91 0.78 0.79 72.27 0.74 0.75 67.62

chance, regardless of the test set. We can attribute the performance gap of pre-trained models to the
fact that MAVOS-DD typically contains examples that are more challenging to detect, since they are
generated with models that exhibit a high degree of realism. The fine-tuned versions perform much
better, especially in the in-domain scenario. With respect to the in-domain scenario, their performance
levels decline in open-set setups, indicating that further developments are needed to improve the
generalization of state-of-the-art detectors. As expected, the most significant performance drop
is observed in the open-set model setup. This drop indicates that detectors still fail to generalize
from a set of deepfake methods to another. The performance drop is lower in the open-set language
case. However, when we examine the number of samples incorrectly predicted by the fine-tuned
TALL model across in-domain and open-set language scenarios, we observe a difference of 4,597
samples, increasing from 2,457 to 7,054. This suggests that a significant portion of misclassified
samples are likely mislabeled because the model only considers the video modality, thus disregarding
language features. Another important observation is the noticeable performance gap between the
unimodal TALL method and the two multimodal approaches (AVFF and MRDF), suggesting that
jointly analyzing visual and audio modalities provides a significant advantage on MAVOS-DD.
We report the confusion matrices obtained by AVFF, MRDF and TALL, for each of the four test
scenarios in Figure 4. In the open-set scenarios, AVFF shows a significant drop in its ability to detect
fake videos. The same observation applies to MRDF, although the number of false negatives with
respect to the in-domain test case increases by less than 6%. TALL exhibits a poor ability to detect
deepfakes, regardless of the target test set. These observations strengthen the claim that MAVOS-DD
represents a challenging deepfake benchmark for modern deepfake detectors. Finally, to attest the
usefulness of the provided training data, we compute McNemar’s statistical test between pre-trained
and fine-tuned versions of each model, obtaining a p-value lower than 0.001 in all cases.
Error analysis. We investigate which of the deepfake generative methods poses the greatest challenge
for MRDF in terms of detection accuracy. We find that samples generated by LivePortrait and Roop
are the most difficult, with 80% of the samples being labeled as real. Roop is one of the methods
included in the test set only, and we believe that this explains the poor performance of MRDF in
identifying samples generated by Roop. In contrast, LivePortrait is part of the in-domain set, but the
poor performance of the detector on this method can be attributed to the fact that we only synchronize
the lips, leaving everything else as in the original video. In Figure 5, we illustrate such a scenario
where we show, side-by-side, frames from a real video and its corresponding fake video modified
with LivePortrait. In the illustrated video, MRDF fails to detect the fake, misclassifying it as real.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced MAVOS-DD, a large-scale open-set benchmark for multilingual audio-
video deepfake detection, comprising over 300 hours of real and generated videos. We further
proposed a test split that creates four different evaluation scenarios: in-domain, open-set model,
open-set language and open-set full. The resulting scenarios are aimed to assess the performance
and robustness of deepfake detectors in challenging situations. We evaluated three different state-of-
the-art deepfake detectors on the newly proposed benchmark, and observed significant performance
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AV
FF

(a) In-domain. (b) Open-set language. (c) Open-set model. (d) Open-set full.
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(e) In-domain set. (f) Open-set language. (g) Open-set model. (h) Open-set full.

TA
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L

(i) In-domain. (j) Open-set language. (k) Open-set model. (l) Open-set full.

Figure 4: Confusion matrices obtained by AVFF, MRDF and TALL after fine-tuning them on
MAVOS-DD.

Real

Fake

Figure 5: A real video and its corresponding fake sample generated using LivePortrait. The MRDF
detector incorrectly classifies the fake sample as real. Best viewed in color.

drops across all four evaluation setups. The empirical results highlight the need to develop more
robust deepfake detectors for practical scenarios.
In future work, we aim to continuously update the dataset by adding deepfake samples generated
with models that are going to be released after our first release date. Thus, MAVOS-DD will keep
up with the development pace of generative models, so that it will stay relevant for a long period of
time. Additionally, we target the development of novel deepfake detectors that specifically address
the challenges of the proposed open-set setups, which closely resemble real-world scenarios.
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Table 4: We report language-level results with AVFF under three scenarios. In the first scenario,
videos contain the original audio. In the second scenario, audio is removed by replacing it with zero
values. In the third scenario, audio is randomly replaced with that of another video.

Language Correct Audio Missing Audio Mismatched Audio
mAP AUC acc mAP AUC acc mAP AUC acc

Arabic 0.98 0.98 94.01 0.69 0.69 37.81 0.75 0.77 64.97
English 0.93 0.93 83.31 0.61 0.62 48.56 0.64 0.66 61.53
Mandarin 0.92 0.94 86.70 0.70 0.74 67.26 0.69 0.74 69.94
Romanian 0.99 0.99 97.55 0.63 0.64 44.52 0.81 0.82 70.90
Russian 0.86 0.94 87.07 0.69 0.80 78.06 0.65 0.77 74.14
Spanish 0.89 0.92 83.77 0.67 0.70 63.25 0.67 0.72 68.49

German 0.92 0.92 87.24 0.68 0.67 39.65 0.72 0.73 62.71
Hindi 0.76 0.75 74.81 0.59 0.57 33.61 0.59 0.62 56.13
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A QUALITATIVE ANALYSIS

To clarify the individual importance of audio and language features, we report language-level results.
For a better assessment, we conduct two experiments. In the first setting, we remove the audio during
inference by setting the audio features to zero. However, since this introduces a distribution shift
between training and testing, we implement a second setting in which the audio for each video is
randomly replaced with that of another video. This approach maintains a similar distribution of audio
features and provides a more reliable assessment of the role played by the audio modality. We report
the results for both experimental settings, along with the standard setup (where the correct audio is
present) in Table 4. All experiments are conducted using the open-set language setting.

The results reported in Table 4 emphasize the impact of the audio signal on the performance of AVFF.
Moreover, proper synchronization between audio and video is essential, as demonstrated by the
second experimental setting, where randomly replacing the audio results in a significant performance
drop. If the model was not leveraging the interaction between audio and video, we would expect little
to no impact from audio replacement. However, the observed decline in performance clearly indicates
that the model does rely on the audio-video cues, underscoring the importance of the audio modality.

The model was not exposed to Hindi and German during training, and its lowest performance is
observed on Hindi. Given the importance of the audio modality exposed in the above experiment, its
low performance on Hindi may be attributed to unique language-specific audio characteristics that
the model had not previously encountered.

In addition to the above analysis, we observed no significant performance difference for the unseen
languages when comparing the results on the open-set full setting to the open-set language setting.
As a reminder, the key distinction between these two settings lies in the presence of fake samples
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Table 5: Results for German and Hindi under open-set full and open-set language settings.

Language Open-set language Open-set full
mAP AUC Acc mAP AUC Acc

German 0.92 0.92 87.24 0.92 0.93 86.95
Hindi 0.76 0.75 74.81 0.76 0.76 73.12

Table 6: List of YouTube channels from which we downloaded the videos that we included in the
dataset.

Language Channel List

Arabic @aljazeera, @alhiwarchannel, @Al-Baghdadia
English @TED, @ABCNews, @CNN, @aljazeeraenglish, @FoxNews
German @zdfmagazinroyale, @ZDFheute, @n-tv, @tagesschau, @WELTVideoTV
Hindi @timesnownavbharat, @DoordarshanNational, @ABPNews, @aupmanyu
Mandarin @EasyMandarin, @setnews, @LINETODAYWORLD, @FTV_News
Romanian @StirileProTV, @Antena3CNN, @digi24hd56, @catalinmoise, @StareaNatiei
Russian @InRussianFromAfar, @EasyRussianVideos, @tvrain, @vvhelp
Spanish @HolaSpanish, @EasySpanish, @dwespanol, @rtvenoticias

generated using unseen generative models in the open-set full scenario. The similar performance
across both settings for the unseen languages suggests that the primary challenge stems from the
language-specific characteristics themselves, rather than from the generative methods. The detailed
results are presented in Table 5.

Given the previously highlighted importance of the audio modality, the lower performance on unseen
languages (German and Hindi) can be partially attributed to language-specific audio characteristics.
However, visual cues may also contribute to the performance drop. This is visible from the results
reported for TALL in the main paper. Its performance in the open-set language setting is significantly
lower than on the in-domain set. Since TALL relies solely on visual information, this suggests
that differences in visual features, such as mouth movements or scene variations, also play a role.
Therefore, the reduced performance on unseen languages likely stems from a combination of factors,
including visual, audio, and cross-modal (audio-visual) discrepancies.

B DATA SOURCE

In Table 6, we list the YouTube channels from which we downloaded our real videos. The list
demonstrates that the real videos are collected from a variety of different sources.

C ETHICAL STATEMENT

We share MAVOS-DD under the International Attribution Non-Commercial Share-Alike 4.0 (CC
BY-NC-SA 4.0) license, aiming for open and responsible research on deepfake detection. All real
data samples are collected from public YouTube videos. Since the videos are gathered from a public
website, we adhere to the European regulations6 allowing researchers to use and store data from
the public web domain for non-commercial research purposes. Moreover, we respect the individual
privacy rights, including the right to be forgotten. If any individual identifies themselves in the dataset
and wishes to have their data removed, they can contact us and we will promptly address the request
by removing the respective video(s), in compliance with data protection principles.

D BROADER IMPACT AND LIMITATIONS

The advancements of deepfake generation models have significant implications for society, as it
facilitates the widespread of misinformation. As synthetic media becomes increasingly realistic and

6https://eur-lex.europa.eu/eli/dir/2019/790/oj
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accessible, the risk of misuse continues to grow. To fight against this, not only more competent
models are required, but also varied datasets, as robust detection systems heavily depend on the
utilized training data. Our research fosters the development of such models, as it addresses some
of the limitations of previous datasets: a wide range of generation methods, multiple languages,
and a meticulously designed split that translates into challenging open-set evaluation scenarios.
Robust deepfake detection models may be beneficial for journalists, social media platforms and
even governmental agencies. It could also help to protect individuals from having their reputation
damaged.
Nevertheless, we also acknowledge that the development of detection methods can also lead to more
sophisticated generative models, the research in the generative AI domain being restless. Still, we are
convinced that MAVOS-DD will continue to be very useful, as we aim to continuously update it with
state-of-the-art generative models.
A potential limitation of our benchmark consists of the hardware requirements to carry out experiments
on it. Some minimum resources, e.g. CPU for loading the videos and GPU for deep learning models,
must be utilized for training and evaluating on such a dataset. Another possible limitation is
represented by the fact that the dataset inadvertently has a demographic bias, corresponding to the set
of eight languages, which could result in reduced performance between different populations. This
requires a continued evaluation of fairness and increased responsibility when deploying deepfake
models trained on our dataset.
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