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Abstract

With the recent release of public beta, we took full advantage of OpenAl's Models-as-a-Service (MaaS)
offering of GPT-3 to analyze and mitigate dataset artifacts in a model that has one of the highest number
of parameters. Recent studies in dataset artifacts and adversarial attacks suggest that state of the art
(SoTA) NLP models are susceptible to spurious correlations in training datasets. We decided to
investigate GPT-3 on dataset artifacts taking advantage of its large scale and task-agnostic pre-training.
We began by verifying few-shot capabilities of GPT-3 in order to lay the groundwork for analysis.
Furthermore, we employed our approach to fine-tuning for the natural language inference (NLI) task.
Using SNLI as a baseline, we carried out several experiments with Adversarial NLI (ANLI) to evaluate
the performance and robustness of GPT-3. Our findings suggest that using adversarial datasets could
mitigate dataset artifacts in GPT-3 at a negligible overall performance cost.

1 Introduction

Until recently, the GPT-3 model has been limited
to academic researchers and a certain group of
people who were able to get the private beta
access early on. Unlike other state of the art
(SoTA) models such as BERT and ELECTRA,
GPT-3 is not available to the public for
download. In addition, it could cost up to 12
million dollars for one to train it by oneself
(Turner, 2020). Fortunately, OpenAl removed
the waitlist for GPT-3 for anyone to use on
November 18, 2021 (OpenAl, 2021).

GPT-3 is an autoregressive language model
with 175 billion parameters that greatly
improves on task-agnostic, few shot
performance (Brown et al., 2020). For most of
the tasks, GPT-3 can be applied without any
gradient updates or fine-tuning, with few-shot

demonstrations (examples) specified via text
interaction (prompt) with the model (Brown et
al., 2020).

Due to advantages in scale and task-agnostic
training, GPT-3 is less vulnerable to spurious
correlations in training data and can sometimes
be competitive with state-of -the-art fine-tuned
models even with “few-shot learning” (Brown et
al., 2020). At the same time, it’s also found that
GPT-3 can struggle at certain tasks such as
natural language inference and reading
comprehension due to its autoregressive
language modeling design (Brown et al., 2020).

With respect to dataset artifacts, GPT-3
zero/one/few-shot has the potential to avoid the
spurious correlations found in training datasets
(Brown et al., 2020). Even with traditional
fine-tuning, the greater expressiveness of the
model should improve robustness in all tasks
and be less susceptible to dataset artifacts
(Brown et al., 2020). Considering these unique



characteristics, GPT-3 is more suitable for
investigating dataset artifacts than SoTA models
where such problems have already been studied
extensively due to the ease of access.

Dataset artifacts, where statistical
irregularities allow a model to perform beyond
what should be achievable without access to the
context, is a well documented issue in most of
the NLP tasks (Poliak et al., 2018). For tasks
such as NLI, it’s possible to train a
hypothesis-only model that can outperform some
of the models trained with premise as context
(Poliak et al., 2018). More specifically, a
hypothesis-only model can achieve 67%
accuracy for SNLI due to annotication artifacts
such as lexical choice and sentence length
(Gururangan et al., 2018).

These artifacts are quite common across
various tasks and datasets. For question
answering (QA), a large language model such as
BERT and GPT can perform well on many of
the QA benchmarks without having access to
context as external knowledge (Roberts et al.,
2020). This brings into question whether these
models are simply exploiting artifacts in both
pre-training and fine-tuning datasets to answer
questions instead of retrieving information from
the provided context.

In order to mitigate such artifacts, one of the
promising approaches has been on constructing
a much harder benchmark (challenge set) that is
curated and generated adversarially where both
the model and the annotators operate in a loop.
For NLI, adversarial NLI (ANLI) uses
adversarial human-and-model-in-the-loop
procedure to construct a new dataset (Nie et al.,
2020). For QA, adversarial QA (AQA) uses
human annotation with a model in the loop
process to construct a new set (Bartolo et al.,
2020). These challenge sets have demonstrated
improvement in robustness and mitigation of
dataset artifacts while maintaining near SoTA
performance.

In the following sections, we describe our
experiment approaches in regards to few-shot
learning, fine-tuning, and dataset artifacts. Then,
we present our analysis and results on dataset
artifacts followed by discussions and a
conclusion.

2 Implementation
Approaches

In this paper, we employ two approaches to
evaluating GPT-3: few-shot learning and
fine-tuning. With few-shots, GPT-3 learns from
given examples with respect to the specified
format. In fine-tuning, we further train the model
parameters for a specific task. We test the
performance and robustness of GPT-3 on
question answering (QA) and natural language
inference (NLI) tasks. To better understand the
characteristics of GPT-3 in both few-shot
learning and fine-tuning, we test the general
capabilities of the model against multiple
datasets for each task.

To analyze the impact of dataset artifacts,
we tested the model against adversarially
generated datasets to test its robustness against
spurious correlations or statistical irregularities.
We then trained the models on the adversarial
sets to evaluate whether these challenge sets can
mitigate dataset artifacts found in standard
datasets.

Since there’s no available baseline
performance for most of the downstream tasks,
we explored many different datasets to
determine the viability and feasibility of each
task for GPT-3.

Once we had some understanding of GPT-3
baseline performance, we carried out a series of
experiments to determine which dataset would
be the most suitable for analyzing the impact of
dataset artifacts in the model.



Table 1: SQuAD 2.0 (dev) Benchmark

Models EM F1
GPT-3 (Zero-shot, 175B) 52.6 59.5
GPT-3 (One-shot, 175B) 60.1 65.4
GPT-3 (Few-shot, 175B) 64.9 69.8
BERT 80.005 | 83.061
XLNet 87.926 | 90.689
RoBERTa 86.820 | 89.795
DeBERTalarge 88.0 90.7

Exact match (EM) and F1 scores for GPT-3 and
SoTA models.

Table 2: ANLI Benchmark

Models R1 R2 R3

GPT-3 (Zero-shot, 175B) 346 | 354 | 345

GPT-3 (One-shot, 175B) 32.0 [ 33.9 | 35.1

GPT-3 (Few-shot, 175B) 36.8 [ 34.0 | 40.2

RoBERTa (Large) 72.4 | 49.8 | 444

XLNet (Large) 703 |1 509 | 494

GPT-3 and SoTA benchmarks for all rounds of
ANLI in place of SNLI.

We chose question answering (QA) and natural
language inference (NLI) as our main tasks to
consider for analyzing dataset artifacts. QA is
one of the well regarded and the most
application tasks in NLP and NLI is one of the
canonical tasks for natural language
understanding. Since benchmarks for fine-tuned
performance of GPT-3 are not available, we use
few-shot performance as a proxy to reason about
relative task difficulty.

Table 1 shows the comparison of the QA
performance of GPT-3 against SoOTA models. In
Table 2, we compare the NLI performance of
GPT-3 against SoTA models. The first three
rows correspond to the performance of GPT-3
with different numbers of examples (zero-shot,
one-shot and few-shot from the top,
respectively). The GPT-3 results are directly
from the GPT-3 paper (Brown et al., 2020) and
all other results are from paperswithcode.com.
The comparison of these cases indicates the
impact of few-shot learning on the performance
of GPT-3.

Furthermore, it is noteworthy that, although
the accuracy is not as high as other SoTA
models listed below the fourth item, the GPT-3
(few-shot) can show competitive performance
even without fine-tuning on task specific dataset.
On the other hand, Table 2 shows that GPT-3
(few-shot) struggles to do better than random
guesses whereas the SoTA models perform
substantially better. This suggests that the
performance of GPT-3 can vary significantly
based on the task.

2.1 Hyperparameters and
Datasets

At the time of this writing, OpenAl offers 4
different tiers (or Engines) of GPT-3 that mainly
differ in cost and performance ratio. More
details about the model can be found in Engines
- OpenAl API
(https://beta.openai.com/docs/engines).

Based on our few-shot experiments, Ada
engine was too weak for performing the
few-shot question and answering and the pricing
for Davinci engine simply felt too expensive.
For fine-tuning experiments, we exclusively use
the “Curie” engine to evaluate the general
performance of OpenAl's GPT-3.

For hyperparameters, we tried to be
consistent with the examples provided by
OpenAl since we are mostly concerned with the



datasets rather than the models. Likewise, all
fine-tuning was done with the default
hyperparameters and appropriate classification
metrics configuration for the task.

Lastly, all datasets were sourced from
HuggingFace Datasets library.
https://huggingface.co/datasets.

2.2 Few-shot Learning

GPT-3 is well known for zero/one/few-shot
learning. It can learn on the spot from zero to
few examples and perform surprisingly well. On
the other hand, it can also behave quite
unpredictably at times due to the nature of text
generation. For instance, it can hallucinate some
information it learned during pre-training, which
makes it difficult to trust whether the model is
actually performing the task without bias. Also,
it can sometimes decide not to follow the
example at all and go on its merry way of
composing examples without labels.

Question Answering

In this section, we consider one of the most well
regarded NLP tasks, the question answering
(QA) and explore the following datasets:

- SQuAD 1.1 (Rajpurkar et al., 2016)

- SQuAD 2.0 (Rajpurkar et al., 2018)

- Adversarial QA (AQA) (Bartolo et al.,

2020)
These datasets are chosen for their popularity
and the subtle differences to understand the
general capabilities of GPT-3 in QA.

For implementation, we followed the
approach described in the GPT-3 paper (Brown
et al., 2020) and some of the examples available
on the OpenAl API website
(https://beta.openai.com/examples/). We started
off with the prompt from OpenAI’s QA example
shown on the website. Then, we experimented
with different formats such as question only
prompt. Since Table 1 showed competency of

GPT-3 on the QA task, we started with zero-shot
learning first.

In zero-shot learning, GPT-3 was not able to
produce any meaningful results for any of the
datasets. Even with a well engineered prompt,
the model failed (or refused) to generate a valid
text. In few-shot learning, GPT-3 performed well
in many different scenarios. While it was able to
generate correct answers even without the
context, we noticed that the generated text
varied significantly from the gold label in most
cases. This meant that the exact match (EM)
metric was going to be an unreliable signal in
analyzing dataset artifacts.

Furthermore, the model failed to generate
text when we structured the prompt in a way that
can be used to compare the standard (SQuAD)
and adversarial datasets (AQA). In order for us
to use adversarial examples against the standard
test set, we need to structure the prompt with
multiple contexts rather than a single context
with multiple questions. The change in prompt
structure rendered the model incapable of
generating a valid text. Due to aforementioned
reasons, we decided to focus on the other task,
natural language inference (NLI).

Natural Language Inference

In this section, we consider one of the hardest
NLP tasks for GPT-3, the natural language
inference (NLI) where we explore the following
datasets:

- SNLI (Bowman et al., 2015)

- ANLI (Nie et al., 2020)

Stanford Natural Language Inference (SNLI)
dataset is one of the most well known NLI
dataset and Adversarial NLI (ANLI) is an
improvement on top of SNLI with increased
difficulty and complexity.

For implementation, we drew K examples
from the training set as conditioning, delimited
by 1 or 2 newlines depending on the task as
outlined in the GPT-3 paper (Brown et al.,
2020). We also explored different prompt



engineering techniques similar to question
answering and OpenAl tweet sentiment
classifier
(https://beta.openai.com/examples/default-adv-t
weet-classifier.).

Only with the few-shot learning, we were
not able to make the model to generate a valid
text (one of Entailment, Neutral, or
Contradiction) regardless of how many
examples we threw at it. This further motivated
us to employ fine-tuning to lay a solid
foundation for investigating dataset artifacts.

2.3 Fine-tuning

On the other hand, fine-tuning GPT-3 allowed
GPT-3 to perform the tasks where the few-shot
learning had failed. With fine-tuning, we were
able to verify the feasibility of using GPT-3 on
the SNLI dataset. We found that the default
number of four epochs was more than enough to
consistently reach the training token accuracy of
100. However, some degree of prompt
engineering such as adding the newline end
token was required to reliably get a high score
on training sequence accuracy.
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Figure 1: FI and accuracy for SNLI and ANLI

With SNLI, we fine-tuned only 10% of the
training dataset (55K) due to the imposed token
limit. As shown in Figure 1, the reported
validation F1 score was 88.974. The F1 score
and accuracy for the test set was 91.33 and 91.30

respectively. With ANLI, we fine-tuned only on
the Round 1 dataset in order to stay under the
token limit. As shown in Figure 1, the reported
validation F1 score was 55.0766 and test F1
score was 56.398, which is considerably higher
than the published GPT-3 (few-shot) round 1 F1
score of 36.8.

2.4 Dataset Artifacts

With the fine-tuned model as a baseline, we
were able to replicate the dataset artifacts
mentioned by Gururangan et al., Nie et al., and
Poliak et al. We experimented with the common
strategy of removing gender or number
information, introducing negation, and adding a
purpose clause in the hypothesis (Gururangan et
al., 2018). We also took an adversarial approach
to replacing certain words to fool the model to
generate a wrong label (Nie et al., 2020). All of
these approaches to analyze the dataset artifacts
were successful to a certain degree, but the
results varied significantly between datasets and
the manual process of trial-error by hand was
quite exhausting.

To further analyze the impact of dataset
artifacts in GPT-3, we fine-tuned additional
models on SNLI and SNLI+ANLI training sets.
Then, we evaluated each model on SNLI-only,
ANLI-only, and SNLI+ANLI test sets to analyze
and compare model performance against the
adversarial set.

For the SNLI+ANLI model, we fine-tuned
GPT-3 on both SNLI and ANLI (Round 1). We
used the entire ANLI (Round 1) training and
downsample (25K) SNLI training set due to the
token limit. For the SNLI-only model, we
fine-tuned GPT-3 on only the SNLI but with a
larger training set to get the same training set
size (41,946). In both models, the training set for
the SNLI portion were identical and were
shuffled beforehand to ensure a random sample
distribution. Same hyperparameters were used



and same prompt structures were used to isolate
any possible external variables.

For ANLI, only Round 1 was used. For
SNLI, a downsampled (1K) test set was used to
match the number of rows in the ANLI (Round
1) test set.

3 Results and Analysis

With few-shot learning only, we were unable to
get any meaningful results due to several issues
in both QA and NLI. In QA, few-shot
performance looked promising at first with the
example prompt from OpenAl. However, the
performance quickly degraded with a different
prompt structure, which was required in order to
analyze the dataset artifacts. In NLI, GPT-3
failed to perform on few-shot learning despite
our best attempts to make it work by trying
many different prompt engineering techniques
and best practices. Thus, the analysis of datasets

artifacts only on few-shot GPT-3 is inconclusive.
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Figure 2: F1 and accuracy for hypothesis only
SNLI

As shown in Figure 2, our result from the
hypothesis-only experiment suggests that
statistical irregularities and dataset artifacts in
SNLI seem to allow GPT-3 to achieve
suspiciously high performance without having
access to the premise. Furthermore, we observed
numerous instances of annotation artifacts such
as lexical choice and negation that were

presented by Gururangan et al. In Table 3, the
first row demonstrates one of many instances of
entailed hypothesis with a generic word
“animal”. The second row demonstrates an
instance of simple negation “not” with a
contradicted hypothesis.

Table 3: Annotation Artifacts in SNLI

Premise: A white duck expanding its wings in
the water.

Hypothesis: There is one animal in this
picture.

Label: Entailment

SNLI-only: Entailment

SNLI+ANLI: Entailment

Premise: Two men working on the roof of an
apartment building with a nice looking skyline
behind them.

Hypothesis: Two men not working on the
roof of an apartment building

Label: Contradiction

SNLI-only: Contradiction

SNLI+ANLI: Contradiction

Table 4: F1 score on SNLI or ANLI test set

Training Data SNLI (1K) ANLI (1K)
SNLI (55K) 91.330 36.317
ANLI (17K) 70.006 56.398
SNLI (42K) 89.350 33.502
SNLI (25K) + 88.926 58.647
ANLI ( 17K)

The left rows are the training sets that were used for
fine-tuning and the top columns are the test sets that

were used to evaluate the fine-tuned models.

With fine-tuning the few-shot learning, we found
that augmenting the adversarial datasets did

improve the test score on the adversarial set, but

did not improve the test score on the standard
set. However, the test score on the standard set



only dropped by 0.42 whereas the test score on
the adversarial set increased by 25.15 [Table 4].
This trade off seemed favorable considering that
the SNLI-only model was not doing much better
than random guesses.

In order to further investigate the results, we
took the first 100 examples which were
categorized incorrectly with SNLI but were
improved by ANLI [Figure 3]. Especially, ANLI
contributed to the improvement of lexical
inference and number reasoning cases. Among
these 100 examples selected for the analysis, 13
cases were related to lexical inference and 21
cases involved numerical reasoning.

Numerical

Others Lexical

Geological

Gender

Figure 3: Categorization of improved examples
with ANLI

Table 5 shows a few examples where fine-tuning
with ANLI have resulted in improved robustness
over the SNLI-only model. The first row
demonstrates an instance of lexical inference for
generic words and the second row demonstrates
an instance of numerical reasoning. In the
lexical inference example, SNLI-only fails to
recognize that “individuals” and “men” are
synonymous. In the numerical reasoning
example, SNLI-only fails to recognize that
“twenty-four unarmed Union soldiers”
contradicts “25 Union soldiers”. Geological
inference and gender inference are also detected
as a part of the improvement.

Table 5: Improvements of SNLI+ANLI over
SNLI-only

Premise: Two individuals dressed up like
animals are posing for the camera.
Hypothesis: Two men dressed as basketball
players are running.

Label: Contradiction

SNLI-only: Neutral

SNLI+ANLI: Contradiction

Premise: The Centralia Massacre was an
incident during the American Civil War in
which twenty-four unarmed Union soldiers
were captured and executed at Centralia,
Missouri on September 27, 1864 by the
pro-Confederate guerrilla leader William T.
Anderson. Future outlaw Jesse James was
among the guerrillas.

Hypothesis: The Centralia Massacre was the
execution of 25 Union soldiers during the
American Civil War.

Label: Contradiction

SNLI-only: Entailment

SNLI+ANLI: Contradiction

Apart from performance of ANLI (17K) on
SNLI, the benchmark results matched our
expectations [Table 4]. We expected ANLI
(17K) to perform relatively well on the SNLI
test set since the ANLI training set was an
improvement over the SNLI training set. While
the lower number of rows in ANLI training set
seemed to be the likely cause at first, the
relatively high performance on the ANLI test set
suggested that the GPT-3 model was still picking
up on certain dataset artifacts in ANLI.

Out of all of the fine-tuned models, SNLI (55K)
performed the best on the SNLI test set due to
having a relatively large training set [Table 4].
Both SNLI (55K) and SNLI (42K) performed
close to chance on the ANLI test set due to the
difficulty of the challenge set. This suggests that
the model relied heavily on dataset artifacts in
SNLI rather than learning the task via NLU.



4 Discussion

4.1 Few-shot Learning

For QA, the prompt engineering had a notable
impact on the text generation results. We found
that adding more examples didn’t necessarily
help with the text generation. On the contrary,
naively selecting examples introduced the
possibility of the model cheating based on one
of the examples the example question was
similar to the query question. The presence of
similar questions in many of the QA dataset
posed an additional difficulty in accurately
evaluating few-shot performance of GPT-3.

The NLI task requires re-reading or
carefully considering a long passage and then
generating a very short answer (Brown et al.,
2020). This was something GPT-3 is quite poor
due to lack of bidirectionality. Despite the
inherent difficulty of the NLI task for GPT-3, it
seems quite problematic that the model could
not generate any relevant text.

4.2 Fine-tuning

Certain aspects of a prompt such as tasks
descriptions and examples weren’t necessary,
but having a basic prompt structure remained
crucial in making the model perform. More
specifically, adding in an end token such as a
newline ("\n") or triple hashtags ("###") was
necessary for the text generation to stop after the
label was generated. Otherwise, the model
continued generating non-label text such as the
“Premise:” and “Hypothesis:”.

4.3 Dataset Artifacts

Despite our best efforts to isolate external
variables in our experiments, we suspect that
some of the results are biased due to unequal
distribution of the number of tokens in the

hypothesis between SNLI and ANLI. Sentence
length is one of the common annotation artifacts
(Gururangan et al., 2018) and premises in ANLI
dataset had a consistently higher number of
tokens per each dataset. This may explain why
the ANLI (17K) model performed significantly
worse on the SNLI test set despite ANLI
training set being more “data-efficient” (Nie et
al., 2020).

5 Conclusion

In this paper, we leveraged OpenAl’s GPT-3 to
investigate dataset artifacts in one of the largest
NLP models currently available to the public.
First, we started experiments with the few-shot
performance of GPT-3 and the effects of prompt
engineering in regards to dataset artifacts. To
have a solid foundation for the performance
analysis regarding text interaction and
generation, we decided to analyze dataset
artifacts in fine-tuned GPT-3 models. Our results
suggest that GPT-3 is vulnerable to common
dataset artifacts despite its large number of
parameters and ability to generalize better. We
found that fine-tuning GPT-3 with adversarial
dataset in addition to the standard dataset helps
with mitigating dataset artifacts and improving
robustness of the model.
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