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Abstract
We initiate the study of the submodular cover
problem in dynamic setting where the elements
of the ground set are inserted and deleted. In the
classical submodular cover problem, we are given
a monotone submodular function f : 2V → R≥0

and the goal is to obtain a set S ⊆ V that mini-
mizes the cost subject to the constraint f(S) =

f(V ). This is a classical problem in computer
science and generalizes the Set Cover problem,
2-Set Cover, and dominating set problem among
others. We consider this problem in a dynamic
setting where there are updates to our set V , in
the form of insertions and deletions of elements
from a ground set V , and the goal is to maintain
an approximately optimal solution with low query
complexity per update. For this problem, we pro-
pose a randomized algorithm that, in expectation,
obtains a (1− O(ϵ), O(ϵ−1))-bicriteria approxi-
mation using polylogarithmic query complexity
per update.

1. Introduction

Submodular optimization is a classical problem in computer
science and machine learning with applications spanning
various domains such as data summarization, active learning,
network inference, video analysis, and facility location (see
(Krause, 2013) for a survey).

The submodular cover problem, initially introduced by
(Wolsey, 1982), is a well-studied classical variant of the
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problem where the objective is to minimize the sum of
the weight of selected elements chosen from a set subject
to a submodular function constraint. Specifically, given
a set of elements V , a monotone submodular function
f : 2V → R≥0, and a weight function w : V → R≥0,
we seek to pick a set S minimizing

∑
v∈S w(v) that satis-

fies f(S) = f(V ).

This problem generalizes various noteworthy problems such
as the set cover problem, 2-set cover, dominating set, and
others. It can also be seen as a dual of the submodular
maximization problem, in which the goal is to maximize
f(S) subject to the constraint |S| ≤ k for some parameter
k.

While the submodular cover problem has been extensively
studied (see (Bar-Ilan et al., 2001) for a survey), the majority
of the algorithms in the literature predominantly depend
on having access to the entire ground set throughout their
execution, which is not a valid assumption in numerous
real-world applications dealing with ever-changing data and
makes them impractical.

Given the mentioned limitation, there has recently been
a surge of interest in reexamining classical problems un-
der a variety of massive data models such as streaming,
distributed, dynamic, and online settings. For submodu-
lar maximization, the problem has been considered in the
streaming (Badanidiyuru et al., 2014; Chakrabarti & Kale,
2015; Mirzasoleiman et al., 2018; Kazemi et al., 2019),
distributed (Mirrokni & Zadimoghaddam, 2015; Liu &
Vondrák, 2018), and dynamic (Monemizadeh, 2020; Lat-
tanzi et al., 2020; Chen & Peng, 2022; Duetting et al., 2023;
Banihashem et al., 2023a;b; 2024) settings. Similarly for
submodular cover, recent works have studied the problem
in the distributed, streaming, and scalable settings (Mirza-
soleiman et al., 2015; Norouzi-Fard et al., 2016; Chen &
Crawford, 2023; Crawford, 2023).

Motivated by these advances, we consider the submodu-
lar cover in a dynamic setting where the elements of the
ground set are inserted and deleted, and the goal is to always
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maintain an approximately optimal solution. While this can
easily be done by re-running an offline algorithm after each
update, the goal is to do this with small update time per
query. We formally define the dynamic submodular cover
problem as follows.

Definition 1.1 (Dynamic Submodular Cover problem). We
assume that f : 2V → R+ is a monotone, non-negative sub-
modular function on the ground set V = {v1, v2, . . . , vn},
and each element v in the V has a weight denoted by
w(v). For any subset S ⊆ V , COST(S) is defined to be∑

v∈S w(v). At each time t, the objective of the problem is
to choose a subset S ⊆ Vt of minimum cost whose submod-
ular value is equal to f(Vt), i.e.,

Soptt = arg min
S⊆Vt

{COST(S) : f(S) = f(Vt)} ,

where Vt denotes the set of the currently present elements af-
ter the first t updates. OPTcostt is defined to be COST(Soptt),
and f(Soptt) = f(Vt).

Note that, throughout the paper, as we consider a fixed point
of time, we drop the subscript t for simplicity.

We note that while (Gupta & Levin, 2020) also considered
the submodular cover problem in a dynamic setting, their
model is different as it assumes that the submodular function
f is changing dynamically, whereas we assume that the
ground set undergoes updates. To illustrate the difference,
consider the special case of set cover where the elements of
V correspond to sets in a set system and we define f(S) :=
| ∪S∈S S| for any S ⊆ V . In this case, the model in (Gupta
& Levin, 2020) assumes that the elements of the set system
are inserted and deleted, while our model assumes that
sets of the set system are inserted and deleted. Our model
is consistent with the models considered for the streaming
version of the problem (Norouzi-Fard et al., 2016) where the
elements are inserted one by one (but the elements are never
deleted in their setting) and dynamic setting considered
for the submodular maximization problem(Monemizadeh,
2020; Lattanzi et al., 2020; Chen & Peng, 2022; Duetting
et al., 2023; Banihashem et al., 2023a;b; 2024).

In this paper, we assume that the updates are specified by
an oblivious adversary, that is an adversary who knows are
algorithm but does not have access to the random bits we
use. This is equivalent to assuming that all of the updates
are specified before the algorithm is run and as such are not
adapted to the algorithm’s output.

1.1. Our Contribution

In this paper, we design an algorithm for the dynamic sub-
modular cover problem that maintains an approximately
optimal solution using polylogarithmic update time. As is
standard for the submodular cover problem (Norouzi-Fard
et al., 2016; Chen & Crawford, 2023), our approximation
guarantees are bicriteria given the two objectives of the prob-
lem. A set S is called a (1 − ϵ, c)-bicriteria approximate
solution if it satisfies

f(S) ≥ (1− ϵ)f(V ), and COST(S) ≤ c COST(Sopt),

where Sopt denotes the optimal solution. We say a (random)
set S is expected (1− ϵ, c)-bicriteria, if the first guarantee
holds in expectation, i.e., E [ f(S) ] ≥ (1 − ϵ)f(V ). Our
main result is stated in the following theorem.

Theorem 1.2. Define the weight ratio of V as ρ :=
maxv∈V w(v)
minv∈V w(v) , and set n := |V|. For any ϵ > 0,
there is an algorithm for the dynamic submodular cover
problem that maintains an expected (1 − O(ϵ), O(ϵ−1))-
bicriteria approximate solution with expected amortized
poly(log(n), log(ρ), ε−1) update time query complexity.

In terms of techniques, we build on and generalize the re-
cent advances for dynamic submodular maximization (Mon-
emizadeh, 2020; Lattanzi et al., 2020; Banihashem et al.,
2023a), in particular the multi-level construction proposed
by (Banihashem et al., 2023a), but require important
changes given the “two-dimensional” nature of the problem
involving both submodular value f(.) and the weights w(.).
Indeed, the underlying “static” algorithm in our approach
can be seen as a generalization of the algorithm in (Norouzi-
Fard et al., 2016) that can support arbitrary weights (as
opposed to the uniform weight setting of (Norouzi-Fard
et al., 2016)). Our bucketing structure is two-dimensional in
order to handle the effect of deletions, unlike (Banihashem
et al., 2023a). We handle our parallel runs, and solution
retrieval differently. Additionally, to simplify the analysis
of the approximation guarantee, we check the marginal den-
sity of each element in the solution at the time of forming
our solution sets, as opposed to (Banihashem et al., 2023a)
who add their elements in bulk.1 As such, we do not need
the complicated potential function analysis used in (Bani-
hashem et al., 2023a), which is crucial for simplifying the
analysis given our more involved two-dimensional setting.

1We note that the same idea is used in the corrected version of
(Lattanzi et al., 2020).
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2. Related Work

Submodular cover The offline version of submodular
cover has been extensively studied and it is well-known
that the greedy algorithm by (Wolsey, 1982) obtains a loga-
rithmic approximation ratio for the problem (see (Bar-Ilan
et al., 2001) for a survey of developments and applications).
Recently, given the emergence of Big Data algorithms, there
has been an interest in considering the problem in the stream-
ing setting. In particular, (Norouzi-Fard et al., 2016) obtain
a (1 − ϵ, O(ϵ−1))-bicriteria approximation algorithm for
the problem in the special case where the weights are uni-
form, i.e., each element has weight 1. Here, the elements
of the ground set arrive in a stream and the goal is to build
an approximately optimal solution with low-memory. As
mentioned earlier, our underlying static algorithm can be
seen as a generalization of this approach for handling ar-
bitrary weights. Subsequent works have considered the
non-monotone objective functions and designed scalable
algorithms for the problem (Crawford, 2023; Chen & Craw-
ford, 2023)

For the dynamic setting, (Gupta & Levin, 2020) consider
a different variant of the problem in which the submodular
function f changes overtime and obtain a fully dynamic
algorithm with bounded recourse. In contrast, our approach
assumes that the underlying function is fixed and the ground
set changes. This is aligned with the models considered
in the streaming setting (Norouzi-Fard et al., 2016; Craw-
ford, 2023) as well the models considered for streaming and
dynamic settings for the submodular maximization prob-
lem (Monemizadeh, 2020; Lattanzi et al., 2020).

Submodular maximization A closely related problem
to submodular cover is submodular maximization. In the
classical version of this problem, we are given a ground set
of elements V , a submodular function f : 2V → R≥0 and
a parameter k, and the goal is to maximize the function f

over all sets S of size at most k. For the offline version
of the problem, it is well-known that a standard greedy al-
gorithm that iteratively chooses a remaining element with
maximum marginal gain obtains an approximation ratio of
1− 1/e (Nemhauser et al., 1978). The approximation ratio
cannot be improved efficiently under complexity assump-
tions as shown by (Feige, 1998) via a reduction from set
cover.

In the streaming setting, submodular maximization was
first studied by (Badanidiyuru et al., 2014) who obtained
a 1/2 − ϵ-approximation algorithm. The 1/2 bound was
later shown to by (Norouzi-Fard et al., 2018). The study

of the dynamic version of the problem was first initiated
independently by (Monemizadeh, 2020) and (Lattanzi et al.,
2020) who obtain (1/2− ϵ)-approximation algorithms with
O(k2 log2(n)ϵ−3) and O(log8(n)ϵ−6) update times respec-
tively. 2 The 1/2 approximation is essentially tight as
shown by (Chen & Peng, 2022) using a lower bound con-
struction based on the streaming version of the problem.
Recent works have generalized the dynamic results for non-
monotone objectives (Banihashem et al., 2023b), as well
as matroid constraints (Duetting et al., 2023; Banihashem
et al., 2024).

Deletion robust algorithms A closely related but distinct
area to dynamic submodular optimization is the robust sub-
modular optimization (Mirzasoleiman et al., 2017; Kazemi
et al., 2018; Duetting et al., 2022) in which the goal is to
obtain a set that is robust to deletions performed by the
adversary. The number of deletions is known upfront, is
bounded. In contrast, the dynamic model assumes that in-
sertions and deletions are performed arbitrarily and the goal
is to always maintain a good solution.

3. Preliminaries

Notation: For a natural number, the set {1, 2, . . . , x} is de-
noted as [x]. Bold letters represent random variables, while
their non-bold counterparts denote specific values. For in-
stance, a random variable is denoted as X and its value as
X . Probability and expectation of a random variable X are
represented by Pr [X ] and E [X ] respectively. The notation
Pr [A|B ] denotes the conditional probability of event A
given event B. For an event A with nonzero probability and
a discrete random variable X, the conditional expectation of
X given A is denoted as E [X|A ] =

∑
x x · Pr [X = x|A ].

Likewise, for discrete random variables X and Y, the condi-
tional expectation of X given Y is denoted as E [X|Y = y ].
The indicator function of an event E is denoted by 1 {E},
where 1 {E} is assigned one if E occurs and zero otherwise.

Submodular functions: Consider a non-negative utility
function f : 2V → R+ defined on the given ground set V =

{v1, v2, . . . , vn}. For any element v ∈ V and a set A ⊆ V ,
∆(v|A) is called marginal gain of element v with respect
to S and it is defined as ∆(v|A) := f(A ∪ {v}) − f(A).
Similarly, for any sets A,B ⊆ V , ∆(B|A) is defined as
f(A ∪B)− f(A). Function f is called submodular when

2The original version of (Lattanzi et al., 2020) had correctness
issues in the proof pointed by out (Banihashem et al., 2023a) who
provided an alternative algorithm with polylogarithmic update
time. The issues were subsequently fixed by (Lattanzi et al., 2020).
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for any A,B ⊆ V , we have f(A) + f(B) ≥ f(A ∪ B) +

f(A ∩ B) or equivalently when for any A ⊆ B ⊆ V and
element v, we have ∆(v|A) ≥ ∆(v|B). This function f

is called monotone when for any A ⊆ B ⊆ V , we have
f(A) ≤ f(B), and it is called normalized when f(∅) = 0.

Density: Given a submodular function f : 2V → R+

defined on the given ground set V = {v1, v2, . . . , vn}, and
a weight function w : V → [1, ρ], we define density of
an element v ∈ V as d(v) := f(v)

w(v) . Similarly, for any set
A ⊆ V we define marginal density of element v with respect
to A as d(v|A) := ∆(v|A)

w(v) .

Update time: We assume access to the monotone sub-
modular function f : 2V → R+ through an oracle. This
oracle supports set queries, allowing one to inquire about
the value f(A) for any subset A ⊆ V . In this paper, we
measure running time based on the total number of oracle
calls, a common practice in submodular optimization, as
the processing time of oracle calls typically dominates the
running time of other parts of the algorithm (Duetting et al.,
2023; Banihashem et al., 2024). We refer to the amortized
number of query calls as query complexity and update time.

4. Dynamic Algorithm

4.1. Setting

In the dynamic version of the problem, a sequence of up-
dates, comprising insertions and deletions of elements from
the ground set V , alters the set of the current elements de-
noted by V . Each element may undergo multiple insertions
and deletions. At each time frame, the set V ⊆ V encom-
passes all inserted elements that have not been deleted since
their last insertion. The algorithm’s objective is to maintain
a solution after each update, with its performance being
assessed by its query complexity for each update. It is as-
sumed that ϵ and ϵdel are small enough parameters satisfying
ϵ < 1/10 and ϵdel < ϵ/16. And lastly, it is also assumed
that the weight of each element in V is between 1 and the
parameter ρ.

4.2. Overview of the Algorithms

Our algorithm operates through multiple runs, each assigned
a specific threshold parameter, denoted as τ , given to them
as their input parameter. This threshold is a critical input
used to assess the usefulness of the elements and is em-
ployed as a measure to distinguish between valuable and
insignificant elements that are no longer relevant. In each
time frame, the run with threshold τ that meets some spe-

cific criteria will have the appropriate solution for that time
frame.

A pivotal aspect of our algorithm is the use of a data structure
in each run for keeping the elements, from which we can
easily retrieve its solution, and it can efficiently be updated.

The fundamental idea behind this data structure is its hierar-
chical structure. This structure comprises different levels,
where each level ℓ includes the sets Lℓ and Gℓ. The family
of sets Gℓ is used to retrieve the solution. Each of them
stores the elements that have been selected by the algorithm
up to that level, and these sets form a cumulative hierar-
chy. The set Lℓ encompasses the elements with a marginal
density of at least τ with respect to Gℓ−1.

Notably, the reconstruction of the entire data structure is a
significant operation with potential query complexity impli-
cations and one of the key design features of a leveled data
structure is its partial reconstruction capability. To further
explain, throughout the execution of the algorithm, we can
partially reconstruct the data structure starting from the level
of our choosing without affecting the previous levels. This
feature enables us to handle the insertion or deletion of an
element with minimal changes to most levels of our data
structure.

Note that even partial reconstructions are heavy operations,
and it is in our best interest to avoid them as long as possible,
which is why we utilize partial reconstruction only after
reaching a level that is heavily affected by the updates up
to that point in time and its reconstruction is necessary. To
achieve this, in addition to the sets Lℓ and Gℓ, we also
maintain a set D and extended sets Lℓ to keep track of
the inserted and deleted elements, triggering reconstruction
when deemed necessary.

To further clarify, when an element is deleted instead of
removing that element from the sets Lℓ and Gℓ, we just add
it to the set D, and when an element is inserted we add it
to the set Lℓ without changing the sets Lℓ. While iterating
through the levels to make these changes, the sets of each
level get inspected and a reconstruction starting from that
level is triggered if certain criteria are met. It should be
noted that a set Lℓ gets updated whenever and only when
its level is being reconstructed.

During the formation of levels, or to be more exact when
elements from Lℓ are being selected for inclusion in Gℓ, the
elements of Lℓ are grouped into different buckets, so the
elements from the same bucket are approximately similar in
aspects of their marginal gain, weight, and marginal density.
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Then, the largest bucket, denoted as Bℓ, is chosen, and a
suitable number mℓ for the sample size is determined based
on the chosen bucket. Consequently, a uniformly random
subset of size mℓ gets chosen from the previously mentioned
largest bucket Bℓ to form the samples Sℓ. We then form
Gℓ by adding elements of Sℓ to Gℓ−1 one by one if they
meet our marginal density requirement. We then remove all
elements e with d(e|Gℓ) ≤ τ from Lℓ to form Lℓ+1.

Now, we proceed to explain more about what we meant by
a suitable number for sample size.

Choosing a smaller sample size ensures a larger fraction
of elements from Sℓ appear in Gℓ, reducing the impact of
deletions of elements of Bℓ on the marginal gain of level ℓ,
which leads to less need in invoking reconstruction starting
from level ℓ. Conversely, a larger sample size may lead to
more substantial removals in the filtering step, impacting
the number of the levels of the data structure leading to less
query complexity for each reconstruction. This is why we
use simulation to obtain a sample size to strike a balance
and end up with a low overall query complexity.

4.3. Parallel Runs

We keep parallel runs and designate the threshold τ = (1 +

ϵ)i to the run i.

In the section B, we guarantee that at each point of time,
the output of the run with threshold τ , where τ ≤ f(V )·ϵ

OPTcost
<

(1 + ϵ)τ is an appropriate bicriteria approximation of the
solution in that time frame.

We know that τ ≤ f(V )·ϵ
OPTcost

< (1 + ϵ)τ is equivalent to

log1+ϵ (τ) ≤ log1+ϵ (
f(V )·ϵ
OPTcost

) < 1 + log1+ϵ (τ). Therefore,
it is guaranteed that the output of the instance with index⌊
log1+ϵ (

f(V )·ϵ
OPTcost

)
⌋

, has an appropriate solution.

We know that 1 ≤ OPTcost ≤ |V |ρ, so we have f(V )·ϵ
|V |ρ ≤

f(V )·ϵ
OPTcost

≤ f(V ) · ϵ, which implies log1+ϵ (
f(V )·ϵ
|V |ρ ) ≤

log1+ϵ (
f(V )·ϵ
OPTcost

) ≤ log1+ϵ (f(V ) · ϵ). Therefore, at any
time we only need to search through the instances with
index in [

⌊
log1+ϵ (

f(V )·ϵ
|V |ρ )

⌋
,
⌊
log1+ϵ (f(V ) · ϵ)

⌋
] to find

a valid solution.

It can be observed in our last argument that the guarantee
of a proper solution in the run i with τ = (1 + ϵ)i when
τ ≤ f(V )·ϵ

OPTcost
< (1 + ϵ)τ is sufficient for the correctness of

our algorithm. This means that for each run i with τ =

(1 + ϵ)i we only need to guarantee its correctness when
τ ≤ f(V )·ϵ

OPTcost
< (1 + ϵ)τ .

Because of the monotonocity of the function f , we know
that for any e ∈ V , f(e) ≤ f(V ). We also know that
d(e) ≤ f(e), which implies d(e) ≤ f(V ). We also know
that OPTcost ≤ nρ. Therefore, for any e ∈ V , we have
d(e)·ϵ
nρ ≤ f(V )·ϵ

OPTcost
. Hence, f(V )·ϵ

OPTcost
< (1+ ϵ)τ only holds when

for any e ∈ V , d(e)·ϵ
nρ < (1 + ϵ)τ , which is equivalent to

log1+ϵ (
d(e)·ϵ
nρ ) < i+ 1. This is why an element e can only

be considered in runs with i ≥ log1+ϵ (
d(e)·ϵ
nρ ).

It should also be noted that an element e with d(e) < τ will
be automatically ignored by the algorithm. So we also can
consider an element e only in the runs with log1+ϵ (d(e)) ≥
i. Therefore, to handle the update of any element e, we only
need to invoke UPDATE in instances within the specified
range.

Algorithm 1 Parallel Runs
1: for i ∈ Z do
2: Let Ii be the instance of our dynamic algorithm, for

which τ = (1 + ϵ)i.

3: function GLOBALUPDATE(e)
4: update(V )

5: for each log1+ϵ

(
d(e)·ϵ

nρ(1+ϵ)

)
≤ i ≤ log1+ϵ d(e) do

6: Invoke UPDATE(e) for instance Ii.
7: function SOLUTIONRETRIEVAL()
8: Let i∗ ∈ [

⌊
log1+ϵ (

f(V )·ϵ
|V |ρ )

⌋
,
⌊
log1+ϵ (f(V ) · ϵ)

⌋
]

be the index of the instance whose corresponding GT

meets the criteria f(GT ) ≥ (1 − O(ϵ))f(V ) and its
GT \D has the lowest cost.

9: return GT \D of Ii∗ .

4.4. Data Structure Construction

The RECONSTRUCT(i) function iteratively constructs a lev-
eled data structure built upon levels ℓ < i. It starts by
updating sets Li to include the elements inserted since its
last update that have pre-approved marginal density with
respect to Gi−1 and to exclude the elements that have been
since deleted. It also updates Li based on the current Li.

Then, a process begins, where in each step, the set G of the
current level gets selected, and then the elements get filtered
based on their marginal density with respect to the selected
G to form the set L of the subsequent level.

This process terminates when there are no elements left in
a level’s set L, which is when the algorithms sets T to the
index of the last nonempty level.

To select each Gi, the elements in Li get processed, and
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each of them gets assigned to a bucket in a two-dimensional
array based on their weight and their marginal density. Then
the largest bucket gets selected and will be named Bi. The
algorithm determines a specific threshold τi for level i and
calculates a suitable sample size mi using the CALCSAM-
PLESIZE function. It then selects a uniform subset Si from
Bi and adds them to Gi one at a time if they still meet the
marginal density condition.

Algorithm 2 Data Structure Construction
1: function INIT(V )
2: L0 ← V , G0 ← ∅, D ← ∅, L0 ← L0

3: L1 ← {e ∈ L0 : d(e|G0) ≥ τ}, L1 ← L1

4: RECONSTRUCT(1)

5: function RECONSTRUCT(i)
6: Li ← Li\D, Li ← Li

7: while Li ̸= ∅ do
8: for e ∈ Li do
9: j ←

⌊
log1+ϵ(

d(e|Gi−1)
τ )

⌋
10: k ←

⌊
log1+ϵ(w(e))

⌋
11: buckj,k ← buckj,k ∪ {e}
12: Let bi,1 and bi,2 be the indices of the largest

buck
13: Bi ← buckbi,1,bi,2 , τi ← (1 + ϵ)bi,1 · τ
14: mi ← CALCSAMPLESIZE(Bi, Gi−1, τi)

15: Si = [ei,1, . . . , ei,mi
]←Uniform subset of size

mi from Bi

16: Gi ← Gi−1

17: for e ∈ Si do
18: if d(e|Gi) ≥ τi then
19: Gi ← Gi ∪ e

20: Li+1 ← {e ∈ Li : d(e|Gi) ≥ τ}
21: Li+1 ← Li+1

22: i← i+ 1

23: T ← i− 1

4.5. Insertion

In the INSERT Function, we manage the insertion of an ele-
ment e, into our dynamic data structure. First, we remove
e from the set of deleted elements D, indicating its active
status. Next, we add e to the extended set L0. Then, we iter-
ate over the levels, starting from level 1 up to T + 1, where
T represents the index of the last nonempty level. At each
level, we check if the density of e with respect to Gi−1 is
greater than the threshold τ . If so, e is added to the extended
set Li. Otherwise, e would not be added to the extended
set Li, and we also no longer need to check the subsequent
levels, so we terminate the loop. We also monitor the size

of Li, and if |Li| exceeds 3
2 |Li|, we reconstruct the levels

starting from Level i and terminate the loop.

4.6. Deletion

The DELETE function handles the removals of the elements.
When an element e is deleted, we begin by adding e to the
set D, which keeps track of the deleted elements. Then, we
iterate over all nonempty levels. In each level, we check
if the proportion of deleted elements from the bucket Bi

used for sampling Si exceeds the threshold ϵ. If this condi-
tion holds, we trigger a reconstruction of the data structure
starting from the current level i using the RECONSTRUCT

function and then terminate the loop.

Algorithm 3 Insertion
1: function INSERT(e)
2: D ← D\{e}
3: L0 ← L0 ∪ {e}
4: for i← 1, . . . , T + 1 do
5: if d(e|Gi−1) < τ then
6: break
7: Li ← Li ∪ {e}
8: if i = T + 1 or |Li| ≥ 3

2 · |Li| then
9: RECONSTRUCT(i)

10: break

Algorithm 4 Deletion
1: function DELETE(e)
2: D ← D ∪ e

3: for i← 1, . . . , T do
4: if |D ∩Bi| ≥ ϵdel · |Bi| then
5: RECONSTRUCT(i)
6: break

4.7. Choice of Sample Size

We know that as we add elements of Si to Gi, and Gi grows
larger, the remaining elements in Si are less likely to satisfy
the marginal density requirement for being added to the Gi.
Thus, intuitively, choosing a smaller sample size ensures that
a larger fraction of the elements in Si appear in Gi. There-
fore, deleting an ϵ-fraction of Si would not drastically affect
the value of ∆(Gi|Gi−1) as opposed to the case where only
a few elements of Si appear in Gi and the deletion of those
few elements has a significant impact on the marginal value
∆(Gi|Gi−1). Therefore, having a smaller sample size leads
to less invocation of RECONSTRUCT function.

On the other hand, choosing a larger mi ensures that a
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larger number of elements will be removed in the filter-
ing step. This will reduce the number of levels of our
data structure, which decreases the query complexity of
the RECONSTRUCT function.

To balance this trade-off, we first try to find out if we process
all the elements in Bi one by one in a random order, for any
j ∈ [1, |Bi|], what is the probability of the jth element being
added to Gi and denote such probability by X∗(j). Then
we choose the largest integer m∗

i such that X∗(j) ≥ 1− ϵ

for all j ≤ m∗
i . This choice ensures that

1. In expectation, (1− ϵ)-fraction of the elements of Si

are added to Gi

2. In expectation, at least ϵ-fraction of the elements in
|Bi| have their marginal gain decreased sufficiently at
the end of this level. Formally, these elements either
do not appear in Li+1, or the index of their bucket
decreases.

Yet, since we cannot calculate the exact values of X(i), we
estimate these probabilities by simulating, and we obtain a
sample size that satisfies properties similar to properties of
m∗

i with a high probability.

Here we provide a formal definition for the notion of
suitable sample size for each level. It can be verified
that the definition is chosen such that a single run of
CALCSAMPLESIZE(L′, G′, τ ′) provides us with a suitable
sample size with respect to L′, G′, and τ ′, with a high prob-
ability. For a proofs we refer to Lemmas D.8 and D.7 in
Appendix D, which were used in both query complexity
guarantee and approximation guarantee of the algorithm.

Definition 4.1 (Suitable sample size). Given the values
L′, G′, and τ ′, consider a run of APPLYANDREVERT on
these values and let X be the |L′|+ 1 dimensional random
output. A number m∗ ≤ |L′| is called a suitable sample
size with respect to L′, G′, and τ ′ if:

E [X(r) ] ≥ 1− 2ϵ for all r ∈ [1,m∗] and

E [X(m∗ + 1) ] ≤ 1− ϵ

2
.

We use M∗
i to denote the set of suitable sample sizes for

(Bi, Gi−1, τi).

5. Theoretical Analysis

In this section, we state our main theoretical results.

Theorem 5.1. We have provided an algorithm for dynamic
submodular cover problem, where weight of each item is

Algorithm 5 CALCSAMPLESIZE

1: function CALCSAMPLESIZE(L′, G′, τ ′)
2: t←

⌈
4 1
ϵ2 log(

n12

ϵ )
⌉

3: for j ∈ [1, t] do
4: Xj ← APPLYANDREVERT(L′, G′, τ ′)

5: Let m′ be the smallest index i ∈ [1, |L′| + 1] for
which 1

t (
∑t

j=1 Xj(i)) < 1− ϵ

6: Return m′ − 1

7: function APPLYANDREVERT(L′, G′, τ ′)
8: Let [e1, . . . , e|L′|] be a random permutation of L′

9: Let X be a |L′|+ 1 dimensional vector initialized
to 0.

10: G′′ ← G′

11: for i = 1 to |L′| do
12: if d(ei|G′′) ≥ τ ′ then
13: X(i)← 1

14: G′′ ← G′′ ∪ {ei}
15: else
16: continue
17: return X

guaranteed to be in the range [1, ρ], that maintains an ex-
pected (1−O(ϵ), O(ϵ)−1)-bicriteria approximate solution
with an expected poly(log(n), log(ρ), ε−1) amortized ora-
cle queries per update.

Note that as mentioned in the statement of the theorem, our
algorithm and our proof use the assumption that weight of
each element is in the range [1, ρ]. However, it can easily be
verified that this theorem proves Theorem 1.2 as dividing
the weight of all element by minv∈V w(v) guarantees the
assumption while it would not change the ratio between the
cost of our proposed solution and the optimal solution.

Proof. We prove this theorem using the following theorems
5.2 and 5.3 regarding the approximation guarantees and
query complexity guarantee of the dynamic algorithm that
we proposed in section 4, respectively.

Complete and detailed proof of the next theorem and along-
side its references can be found in Appendix B.

Theorem 5.2. Our algorithm maintains an expected (1−
O(ϵ), O(ϵ)−1)-bicriteria approximation of the solution.

Proof. Consider the run whose assigned threshold parame-
ter satisfies τ ≤ f(V )·ϵ

OPTcost
< (1 + ϵ)τ . Lemma B.1 guarantees

that output of this run is an expected (1 − O(ϵ), O(ϵ)−1)-
bicriteria approximate solution. As explained in 4.3 this
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run is included in the instances with an index between⌊
log1+ϵ (

f(V )·ϵ
|V |ρ )

⌋
and

⌊
log1+ϵ (f(V ) · ϵ)

⌋
, and Lemma

B.4 ensures that GT of this run satisfies the condition of
f(GT ) ≥ (1 − ϵ)f(V ). Additionally Lemma B.5 ensures
that f(GT \D) of any run with f(GT ) ≥ (1 − ϵ)f(V )

is an expected (1 − ϵ) approximate of f(V ). Therefore,
by checking all the instances in the specified range with
f(GT ) ≥ (1 − ϵ)f(V ), and choosing the one with low-
est COST(GT \D), we are guaranteed to find an expected
(1−O(ϵ), O(ϵ)−1)-bicriteria approximate solution for the
problem.

A complete proof of the following theorem and its references
can be found in detail in Appendix C.

Theorem 5.3. The expected amortized query complexity of
our algorithm is at most poly(log(η), 1

ϵ ) per update, where
η := 1+ϵ

ϵ nρ.

Proof. We start by bounding the count of ”direct” queries,
which come from insertions and deletions. Here, we don’t
count queries made indirectly through RECONSTRUCT.
Each insertion or deletion can result in at most O(T)

queries, where T is the number of levels during the
update. According to Lemma C.8, this is capped at
poly(log(n), log(η), 1

ϵ ) because |L̂1| ≤ n.

Moving on to “indirect” queries made by RECONSTRUCT,
we charge the cost of each RECONSTRUCT(i) call to the
updates causing it. If RECONSTRUCT(i) is triggered by
an insertion, its cost is charged to Li\Li, and if by a dele-
tion, it’s charged to Bi ∩D. Each time RECONSTRUCT(i)

is called for some i, the expected number of queries is
|L̂i|poly(log(|L̂i|), log(η), 1

ϵ ). However, this cost is spread

across at least |L̂i|
poly(log(ρ),log(η), 1ε )

updates due to the recon-
struction conditions (The lower bound is chosen consid-
ering the reconstruction condition of deletion and size of
Bi and will clearly also hold if RECONSTRUCT(i) is trig-
gered by an insertion, because in that case |Li\Li| is at least
1
3 |Li| ≥ 1

3 |L̂i|). Hence, the cost of each charge is at most
poly(log(η), 1

ε ) (note that |L̂i| ≤ n, and η has both ρ and
n as factors). Now, since each update can be charged by
RECONSTRUCT(i) only once and only if when the update
happens T > i and level i gets affected, we can say each
update is charged at most poly(log(η), 1

ε ) for each of the
levels it affects. And as the expected number of levels dur-
ing the update is at most poly(log(η), 1

ε ) by Lemma C.8,
the claim follows. It’s important to note that the random
bits used to limit the expectation of T and the ones used to
limit the queries for each reconstruction are separate. Since

the value T is known at the update time, it relies on the
random bits used before the update. In contrast, the number
of queries for each RECONSTRUCT depends on random bits
used after (or at the time of) the update.

Note that the proofs of the Theorems 5.2 and 5.3 use the in-
variants introduced in Appendix A and proved in Appendix
D.

6. Conclusion

In this paper, we explored the dynamic setting of the mono-
tone submodular cover problem. Specifically, we introduced
a (1 − O(ϵ), O(ϵ−1))-bicriteria approximation algorithm
with polylogarithmic query complexity.

For future research directions, a promising avenue is to
refine the query complexity to poly(log(k), ϵ) while making
it independent of n.

Moreover, the exploration of the non-monotone version
of the submodular cover problem in the dynamic setting
remains an open challenge.
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A. Invariants

In this section, we are going to introduce the invariants, which will be used in our analysis. These invariants are guaranteed
to hold after each insertion or deletion throughout the execution of the algorithm.

We define the function FILTER as follows:

FILTER(L,G, τ) := { e ∈ L : d(e|G) ≥ τ } .

Note that we use L̂i to denote Li\D. Also recall that we use bold letters to denote random variables while non-bold letters
are used to denote the value of variables during the execution.

Level invariants

• Filter invariant: L̂i = FILTER(L̂i−1, Gi−1, τ) for all i ∈ [T + 1].

• Subset invariant: Li ⊆ Li−1 for all i ∈ [T + 1].

• Deviation invariant: |Bi ∩D| ≤ ϵdel|Bi| and |Li| ≤ 3
2 |Li| for all i ∈ [T ].

• Stopping invariant: L̂T+1 = LT+1 = LT+1 = ∅ and L̂i, Li, Li ̸= ∅ for any i ∈ [T ].

Before continuing with the rest of the invariants, we provide a few more definitions.

Definition A.1. We define the pre-sample history of Level i as

Hi := (L0, L1, . . . , Li, L0, L1, . . . , Li, G1, . . . , Gi−1,mi). (1)

Intuitively, Hi captures the state, or “history”, of Algorithm 2 before Si is sampled.

Similarly, we define the pre-size history of Level i to be its pre-sample history minus mi, i.e.,

Hpre
i = (L0, L1, . . . , Li, L0, L1, . . . , Li, G1, . . . , Gi−1). (2)

We analogously use Hℓ and Hpre
ℓ to denote the random variables corresponding to these quantities.

Now we introduce the random invariants of our algorithm.

Sampling invariants

• Sample uniformity invariant: Conditioned on the pre-sample history of Level i, the sample set Si is a uniformly
random subset of size mi from Bi.

Formally, for any i ≥ 1, and any Hi such that Pr [T ≥ i,Hi = Hi ] > 0,

Pr [Si = S|T ≥ i,Hi = Hi ] =
1

|Xi|
1 {S ∈ Xi}, (3)

where |Xi| denotes all sequences of length mi in Bi.

• Sample size invariant: Conditioned on the pre-size history of Level i, mi is a suitable sample size with a high
probability. Formally, for all Hpre

i such that Pr
[
T ≥ i,Hpre

i = Hpre
i

]
> 0,

Pr
[
mi ∈M∗

i |T ≥ i,Hpre
i = Hpre

i

]
≥ 1− ϵ

n10
.

We note that while the above two invariants are intuitively evident for a single execution of Algorithm 2 (see Claim D.6),
the dynamic algorithm has the potential to modify both Si and Hi during update processing. Therefore, the result is not
immediately clear and needs to be formally proved. Indeed, the proof heavily relies on the fact that the decision to invoke
RECONSTRUCT(i) in INSERT and DELETE procedures are based only on Hpre

i and not on Si.

We refer to Appendix D for proofs of these invariants.
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B. Approximation guarantee

Lemma B.1. Assuming that τ ≤ f(V )·ϵ
OPTcost

< (1 + ϵ)τ , the output (i.e., GT \D) is an expected (1−O(ϵ), O(ϵ)−1)-bicriteria
approximation of the solution.

Proof. We prove this lemma by the combination of the following Lemmas B.2 and B.3.

Lemma B.2. Assuming that τ ≤ f(V )·ϵ
OPTcost

< (1 + ϵ)τ , the following holds:

COST(GT \D) < (
1 + ϵ

ϵ
)OPTcost.

Proof. Let’s use e1, e2, . . . , e|GT | to denote the elements in GT based on the order they were added to the solution sets.

For any level 1 ≤ ℓ ≤ T , we know that τℓ ≥ τ , and the marginal density of any element in GT must have been
greater than some τℓ at the time of it was added to the solution sets. Therefore, for any 1 ≤ i ≤ |GT |, we know that
d(ei|{e1, . . . , ei−1}) = ∆(ei|{e1,...,ei−1})

w(ei)
≥ τ , or equivalently w(ei) ≤ ∆(ei|{e1,...,ei−1})

τ . The submodularity of the
function f ensures that ∆(ei|{e1, . . . , ei−1}) ≤ ∆(ei|{e1, . . . , ei−1}\D). Hence, for any 1 ≤ i ≤ |GT |, we have w(ei) ≤
∆(ei|{e1,...,ei−1}\D)

τ . Therefore, COST(GT \D) =
∑

e∈GT \D w(e) ≤ f(GT \D)
τ . We have assumed that 1

(1+ϵ)τ < OPTcost
f(V )·ϵ ,

which implies 1
τ < (1+ϵ)OPTcost

f(V )·ϵ . Therefore, we have COST(GT \D) < (1+ϵ)OPTcost
ϵ ( f(GT \D))

f(V ) ) ≤ (1+ϵ)OPTcost
ϵ , where the

second inequality follows from the monotonocity of the function f and the fact that (GT \D) ⊆ V .

Lemma B.3. Assuming that τ ≤ f(V )·ϵ
OPTcost

< (1 + ϵ)τ , the following holds:

E [ f(GT\D) ] ≥ (1−O(ϵ))f(V ).

Proof. To prove this theorem, we ignore the deletions at the begining, and investigate the approximations of GT even though
it might include some deleted elements. We provide an upper bound on f(GT ) in Lemma B.4, and then we factor in the
removal of deleted elements by bounding the effect of the deleted elements on the value of the function in Lemma B.5.

Lemma B.4. Assuming that τ ≤ f(V )·ϵ
OPTcost

< (1 + ϵ)τ , we have f(GT ) ≥ (1− ϵ)f(V ).

Proof. The statement of the Lemma trivially holds if f(GT ) ≥ f(V ). Thus, we assume that f(GT ) < f(V ). Recall that
f(V ) = f(Sopt). By the monotonicity property of function f , we have f(Sopt ∪GT ) ≥ f(V ). Let’s denote Sopt\GT by
the set {u1, u2, . . . , ud} for some 0 < d ≤ |V |. For each u ∈ Sopt\GT , we know that u ∈ V = L̂0 and u /∈ L̂T+1 = ∅ by
stopping invariant (Lemma D.4). Therefore, there exists a level ℓ such that e ∈ L̂ℓ but e /∈ L̂ℓ+1. By the filter invariant
(Lemma D.1) we know that e /∈ filter(L̂ℓ, Gℓ). Therefore, we know that d(e|Gℓ) < τ . The former inequality and the
submodularity of the function f alongside with the fact that Gℓ ⊆ GT implies that d(e|GT ) < τ . Hence, for any i ∈ [d], we
have∆(ui|GT )

w(ui)
< τ . By the submodular property of f , we have:

f(Sopt ∪GT )− f(GT ) ≤
d∑

i=1

∆(ui|GT ).

Therefore, we have:

f(Sopt ∪GT )− f(GT ) ≤
d∑

i=1

τ · w(ui) = τ

d∑
i=1

w(ui) = τ · COST(Sopt\GT ).

We know that COST(Sopt\GT ) ≤ COST(Sopt) = OPTcost. So

f(Sopt ∪GT )− f(GT ) ≤ τ · OPTcost ≤
f(V ) · ϵ
OPTcost

· OPTcost = f(V ) · ϵ,

12
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where the second inequality holds because of the assumption of the Lemma. Previous equation yields that f(GT ) ≥
f(Sopt ∪GT )− (f(V ) · ϵ) ≥ f(V )− (f(V ) · ϵ) = (1− ϵ)f(V ).

Now, in the following lemma, we give an upper bound on the effect of the deleted elements and thus prove an expected
lower bound for f(GT\D).

Lemma B.5. E [ f(GT\D) ] ≥ (1−O(ϵ))E [ f(GT) ]

Proof. Define the variables gℓ and lℓ to denote the gain and loss of each level ℓ ≤ T as:

gℓ := ∆((Gℓ\Gℓ−1)|Gℓ−1), lℓ := ∆(((Gℓ\Gℓ−1) ∩D)|Gℓ−1).

For ℓ ≥ T + 1, define gℓ = lℓ = 0.

we need to show that

E

[ ∞∑
ℓ=1

(gℓ − lℓ)

]
≥ (1−O(ϵ))E

[ ∞∑
ℓ=1

gℓ

]
.

Note that the summation is over all ℓ ≥ 1 and gℓ = lℓ = 0 for ℓ > T . The above inequality is equivalent to

E

[ ∞∑
ℓ=1

lℓ

]
≤ O(ϵ)E

[ ∞∑
ℓ=1

gℓ

]
(4)

We will show that E [ lℓ ] ≤ O(ϵ)E [gℓ ] holds for all ℓ ≥ 1. Summing over ℓ, we obtain the equation (4) by linearity of
expectation.

By the law of total expectation, it suffices to prove

E
[
lℓ|Hpre

ℓ = Hpre
ℓ

]
≤ O(ϵ)E

[
gℓ|Hpre

ℓ = Hpre
ℓ

]
, (5)

for all Hpre
ℓ such that Pr

[
Hpre

ℓ = Hpre
ℓ

]
> 0. To do this, we will first show that the claim holds if mℓ ∈ M∗

ℓ . Given the
Sample size invariant (Lemma D.8), mℓ ∈M∗

ℓ holds with high probability, which will later allow us to prove Equation (5).

Consider any value mℓ ∈M∗
ℓ and define Hℓ as (Hpre

ℓ ,mℓ). Assuming that Hℓ is such that Pr [T ≥ ℓ,Hℓ = Hℓ ] > 0, we
can claim that

E [ lℓ|Hℓ = Hℓ ] ≤ O(ϵ)E [gℓ|Hℓ = Hℓ ]. (6)

To prove this, we first note that we are taking mℓ samples from Bℓ, and the weight of all the elements in Bℓ is in range
[(1 + ϵ)k, (1 + ϵ)k+1) for some integer 0 ≤ k ≤

⌊
log1+ϵ(ρ)

⌋
.

To prove this, we first note that we are taking mℓ samples from Bℓ, and the weight of all the elements in Bℓ is in range
[(1 + ϵ)k, (1 + ϵ)k+1) for some integer 0 ≤ k ≤

⌊
log1+ϵ(ρ)

⌋
.

Lemma B.6 implies that

E [gℓ|Hℓ = Hℓ ] ≥ (1− 2ϵ) ·mℓ · τℓ · (1 + ϵ)k. (7)

Furthermore, considering deviation invariant (Lemma D.3), |D ∩Bℓ| ≤ ϵ · |Bℓ|, and given the sample uniformity invariant
(Lemma D.5), which states Sℓ is a uniformly random subset of |Bℓ| of size mℓ, we have:

E [ |D ∩ Sℓ| | Hℓ = Hℓ ] ≤ ϵ ·mℓ.

Since Gℓ\Gℓ−1 is a subset of Sℓ, we also have E [ |D ∩ (Gℓ\Gℓ−1)| ] ≤ ϵ ·mℓ. Since marginal density of each element in
Gℓ\Gℓ−1 is at most τℓ · (1 + ϵ), which implies marginal value of each element is at most τℓ · (1 + ϵ) · (1 + ϵ)k+1, we have

E [ lℓ|Hℓ = Hℓ ] ≤ ϵ(1 + ϵ) ·mℓ · τℓ · (1 + ϵ)k+1,

13
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which together with Equation (7), proves Equation (6). Equation (6) and law of total expectation imply that

E
[
lℓ|Hpre

ℓ = Hpre
ℓ ,m ∈M∗

ℓ

]
≤ O(ϵ)E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,m ∈M∗

ℓ

]
. (8)

We have:

E
[
gℓ|Hpre

ℓ = Hpre
ℓ

]
≥ Pr

[
mℓ ∈M∗

ℓ |H
pre
ℓ = Hpre

ℓ

]
· E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ ∈M∗

ℓ

]
(9)

≥ (1−O(ϵ)) · E
[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ ∈M∗

ℓ

]
(10)

≥ 1

2
E
[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ ∈M∗

ℓ

]
(11)

On the other hand, we have:

E
[
lℓ|Hpre

ℓ = Hpre
ℓ

]
= Pr

[
mℓ ∈M∗

ℓ |H
pre
ℓ = Hpre

ℓ

]
· E

[
lℓ|Hpre

ℓ = Hpre
ℓ ,mℓ ∈M∗

ℓ

]
+ Pr

[
mℓ /∈M∗

ℓ |H
pre
ℓ = Hpre

ℓ

]
· E

[
lℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
≤ 1 · E

[
lℓ|Hpre

ℓ = Hpre
ℓ ,mℓ ∈M∗

ℓ

]
+O(

ϵ

n10
) · E

[
lℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
≤ O(ϵ)E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ ∈M∗

ℓ

]
+O(

ϵ

n10
) · E

[
lℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
≤ O(ϵ)E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ ∈M∗

ℓ

]
+O(

ϵ

n10
)E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
,

where the first inequality comes from sample size invariant, the second equality comes Equation (8), and the third one comes
from the fact that lℓ ≤ gℓ.

The previous equation and the Equation (11) imply that

E
[
lℓ|Hpre

ℓ = Hpre
ℓ

]
≤ O(ϵ)E

[
gℓ|Hpre

ℓ = Hpre
ℓ

]
+O(

ϵ

n10
)E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
. (12)

From the definition, we know that E
[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
≤mℓ ·maxe∈Bℓ

{∆(e|Gℓ−1)}. Also, mℓ clearly is not
greater than n. Hence, E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
≤ n ·maxe∈Bℓ

{∆(e|Gℓ−1)}.

Additionally, we know that the first sampled element from Bℓ always gets added to Gℓ as it definitely meets the threshold
requirement. Therefore, we know that E

[
gℓ|Hpre

ℓ = Hpre
ℓ

]
is at least equal to the expected marginal gain of a random

element in Bℓ, which is definitely at least 1
|Bℓ| (maxe∈Bℓ

{∆(e|Gℓ−1)}). |Bℓ| is also at most n, so maxe∈Bℓ
{∆(e|Gℓ−1)} ≤

n · E
[
gℓ|Hpre

ℓ = Hpre
ℓ

]
. Therefore, we have E

[
gℓ|Hpre

ℓ = Hpre
ℓ ,mℓ /∈M∗

ℓ

]
≤ n2 · E

[
gℓ|Hpre

ℓ = Hpre
ℓ

]
. This last

inequality and Equation (12) prove Equation (5) and our proof is complete.

Lemma B.6. Consider a value of Hℓ for the history up to cache ℓ such that Pr [Hℓ = Hℓ ] > 0, and define g(A) as
f(A|Gℓ−1).Assume that the weights of all the elements in Bℓ are in range [(1 + ϵ)k, (1 + ϵ)k+1). If mℓ ∈M∗

ℓ , then

E [g(Gℓ\Gℓ−1)|Hℓ = Hℓ ] ≥ (1− 2ϵ) · τℓ ·mℓ.

Proof. By definition of suitable sample size, we know that for all i ∈ [mℓ], E [X(i) ] ≥ 1− 2ϵ. So for each i ∈ [mℓ], the
ith element of Sℓ is added to the Gℓ with a probability of at least 1− 2ϵ. We also know that each element is added only if its
marginal density is at least τℓ, which means its marginal value is at least τℓ(1 + ϵ)k, and increases the value of f(Gℓ) by at
least τℓ(1 + ϵ)k. Therefore,

E [g(Gℓ\Gℓ−1)|Hℓ = Hℓ ] ≥ (1− 2ϵ) · τℓ ·mℓ · (1 + ϵ)k

as claimed.
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B.1. Proof of Theorem 5.2

Consider the run whose assigned threshold parameter satisfies τ ≤ f(V )·ϵ
OPTcost

< (1 + ϵ)τ . Lemma B.1 guarantees that output
of this run is an expected (1−O(ϵ), O(ϵ)−1)-bicriteria approximate solution. As explained in 4.3 this run is included in
the instances with an index between

⌊
log1+ϵ (

f(V )·ϵ
|V |ρ )

⌋
and

⌊
log1+ϵ (f(V ) · ϵ)

⌋
, and Lemma B.4 ensures that GT of this

run satisfies the condition of f(GT ) ≥ (1 − ϵ)f(V ). Additionally Lemma B.5 ensures that f(GT \D) of any run with
f(GT ) ≥ (1− ϵ)f(V ) is an expected (1− ϵ) approximate of f(V ). Therefore, by checking all the instances in the specified
range with f(GT ) ≥ (1− ϵ)f(V ), and choosing the one with lowest COST(GT \D), we are guaranteed to find an expected
(1−O(ϵ), O(ϵ)−1)-bicriteria approximate solution for the problem.

C. Query complexity

In this section, we provide an analysis of the query complexity for our algorithm. The proofs in this section follow the
framework of (Banihashem et al., 2023a) and are provided for completeness.

Throughout the section, we set η := 1+ϵ
ϵ nρ. We also use the shorthand σi and σpre

i to denote the events (T ≥ i ∧Hi = Hi )

and
(
T ≥ i ∧Hpre

i = Hpre
i

)
respectively.

We begin with the following definition.

Definition C.1 (Potential). For any i ≥ 1 and any element e ∈ L̂i, potential of e in level i, is defined as the number P (e, i)

satisfying d(e|Gi−1)
τ ∈ [(1 + ϵ)P (e,i)−1, (1 + ϵ)P (e,i)). For elements e /∈ L̂i, we define P (e, i) = 0. We define the potential

of level i as Pi :=
∑

e∈V P (e, i) =
∑

e∈L̂i
P (e, i) for i ≤ T + 1 and Pi = 0 for i > T + 1.

Lemma C.2. For any e and i the following hold:

1. P (e, i) ∈ [1, O(log1+ϵ(η))].

2. |L̂i| ≤ Pi ≤ O(log1+ϵ(η))|L̂i|

3. PT+1 = 0 and Pi > 0 for i ≤ T .

Proof. For the first result, note that since e ∈ L̂i, given Lemma D.1, we have e ∈ FILTER(L̂i−1, Gi−1, τ), which implies
d(e|Gi−1) ≥ τ . Therefore, P (e, i) ≥ 1. On the other hand, based on Line 5, we only add elements that satisfy d(e) ≤ ητ .
By submodularity, this implies that d(e|Gi−1) ≤ ητ , thus proving the claim. The second result follows from the first one
since P (e, i) = 0 for e /∈ L̂i and the third result follows from the second one and Lemma D.4.

Lemma C.3. For any i ∈ [1, T ] and any e ∈ V , the following inequalities hold: P (e, i) ≥ P (e, i+ 1) and, consequently,
Pi ≥ Pi+1.

Proof. If e /∈ L̂i+1, the claim holds trivially because the right-hand side equals zero. Otherwise, since L̂i+1 ⊆ L̂i by
Lemma D.1, and e ∈ L̂i, the claim follows from the fact that Gi ⊆ Gi+1.

Lemma C.4. Assume we are given sets Lj , Gj−1 satisfying FILTER(Lj , Gj−1, τ) = Lj , and we invoke RECONSTRUCT(j)

obtaining the (random) values T,Sj , . . .ST,Lj+1, . . .LT+1. Then, for each i ≥ j,

E
[
Pi −Pi+1

∣∣T ≥ i,Hpre
i = Hpre

i

]
≥ Ω(ϵ) · |Bi|

for all Hpre
i such that Pr [T ≥ i,Hpre

i = Hpre
i ] > 0, where Hpre

i is defined as in (2).

Proof. We first observe that since we are considering these values right after we invoke RECONSTRUCT(j), we have
L̂i = Li. We first give a sketch of the proof. For each i ≥ j, by Lemma D.7, mi ∈ M∗

i with probability at least
1−O(ϵ/n10). By definition of M∗

i , mi ∈M∗
i means that in expectation, at least ϵ/2 fraction of the elements in Bi satisfy

Pi+1(b, e) ≤ Pi(b, e)− 1. As for the case mi /∈M∗
i , since this only happens with low probability, we can handle it using

the bound Pi+1 ≤ Pi.
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Formally, using the shorthand σpre
i instead of T ≥ i,Hpre

i = Hpre
i ,

E
[
Pi −Pi+1

∣∣σpre
i

]
= Pr

[
mi ∈M∗

i |σ
pre
i

]
· E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
+ Pr

[
mi /∈M∗

i |σ
pre
i

]
· E

[
Pi −Pi+1

∣∣σpre
i ,mi /∈M∗

i

]
≥ Pr

[
mi ∈M∗

i |σ
pre
i

]
· E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
where the inequality follows from the fact that Pi − Pi+1 is always non-negative given Lemma C.3. By Lemma D.7, we can
further bound this as

E
[
Pi −Pi+1

∣∣σpre
i

]
≥ Pr

[
mi ∈M∗

i |σ
pre
i

]
· E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
≥ (1−O(

ϵ

n10
)) · E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
≥ 1

2
· E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
=

1

2
· Emi∼mi|σpre

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σpre
i ,mi = mi

]]
(13)

Finally, as L̂i = Li, we observe that

Pi − Pi+1 =
∑
e∈Li

P (e, i)−
∑

e∈Li+1

P (e, i+ 1) =
∑
e∈Li

P (e, i)−
∑
e∈Li

P (e, i+ 1)

=
∑
e∈Bi

(P (e, i)− P (e, i+ 1) ) +
∑

e∈Li\Bi

(P (e, i)− P (e, i+ 1) )

(a)

≥
∑
e∈Bi

(P (e, i)− P (e, i+ 1) )

≥
∑
e∈Bi

1 {P (e, i)− P (e, i+ 1) ≥ 1}

(b)
=

∑
e∈Bi

1 {d(e|Gi) < τi}

(c)
= |Bi| − |FILTER(Bi, Gi, τi)|

In the above derivation, inequality (a) follows from Lemma C.3, (b) follows from the fact that if d(e|Gi) < τi then
P (e, i+ 1) < P (e, i) will hold for e ∈ Bi since d(e|Gi−1) ≥ τi for these elements. Finally, (c) follows from the definition
of FILTER.

Therefore,

E
[
Pi −Pi+1

∣∣σpre
i

]
≥ 1

2
· Emi∼mi|σpre

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σpre
i ,mi = mi

]]
≥ 1

2
· ϵ
2
|Bi|

where the first inequality follows from (13) and the final inequality follows from Definition 4.1.

Next, we state the following inequality and refer to (Banihashem et al., 2024) for a proof.

Lemma C.5 (Lemma 25 in (Banihashem et al., 2024)). Let X0,X1, . . . ,Xn be a sequence of integer positive variables
such that Xi ≤ Xi−1 and

E [Xi | X1 = X1, . . . ,Xi−1 = Xi−1 ] ≤ (1− ε′)Xi−1.

Let T denote the first index i such that XT = 0 and assume that X0 = N for some fixed integer N . Then E [T ] ≤ log(N)+1
poly(ε′) .
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Lemma C.6. Assume we are given sets Lj , Gj−1 satisfying FILTER(Lj , Gj−1, τ) = Lj and Lj = L̂j . Let
T,Sj , . . .ST ,Lj+1, . . .LT+1 denote the values after invoking RECONSTRUCT(j), the expected value of T− j is bounded
by poly(log(|Lj |), log(η), 1

ε ).

Proof. By Lemma C.2

|Li| ≤ Pi ≤ |Li| · log1+ϵ(η)

Given Lemma C.4, for i ≥ j,

E
[
Pi −Pi+1|σpre

i

]
≥ Ω(ϵ) · |Bi|

(a)

≥ Ω(
ϵ

log1+ϵ(η) log1+ϵ(ρ)
) · |Li|

(b)

≥ Ω(
ϵ

log21+ϵ(η) log1+ϵ(ρ)
) · |Pi|

(c)

≥ Ω(
ϵ4

log3(η)
)Pi

where for (a), we have used the fact that |Bi| was the largest bucket, for (b) we have used Lemma C.2, and for (c), we have
used the inequality log(1 + x) ≥ x

4 for x < 1. Therefore, for some ε′ = Ω( ϵ4

log3(η)
), we have

E
[
Pi+1|σpre

i

]
≤ (1− ε′) · Pi,

Since the values P1, . . . ,Pi are deterministic conditioned on σpre
i , this further implies

E [Pi+1|Pi = Pi, . . . ,P1 = P1 ] ≤ (1− ε′) · Pi. (14)

Formally, since when Pi ̸= 0, we have T ≥ i given Lemma C.2, and followed by iterated expectation, we will have

E [Pi+1|Pi = Pi, . . . ,P1 = P1 ] = E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i ]

= E [E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i,Hi = Hi ] ]

= E [E [Pi+1|T ≥ i,Hi = Hi ] ]

≤ (1− ε′)Pi

where the third equality follows from the fact that P1, . . . ,Pi is deterministic conditioned on {T ≥ i,Hi = Hi }. If
Pi = 0, then (14) holds trivially because Pi+1 ≤ Pi = 0. The claim now follows from Lemma C.5 and the fact that
Pj ≤ |Lj |O(log(η)/ϵ)

Lemma C.7. The expected number of queries made by calling RECONSTRUCT(i) is |L̂i| · poly(log(|L̂i|), log(η), 1
ε ), where

|L̂i| refers to the size of L̂i after the update.

Proof. By Lemma D.7, and the fact that FILTER and bucketing make at most O(|L̂i|) queries, each iteration the while-loop
in algorithm 2 makes at most O((|L̂i|) · poly(log(η), 1

ϵ )) queries. By Lemma C.6, in expectation, the while-loop is executed
at most poly(log(|L̂i|), log(η), 1

ε ) times, which proves the claim.

Lemma C.8. At any point in the stream, the expected number of levels E [T ] is at most poly(log(n), log(η), 1
ε ).

Proof. We note that this lemma is different from Lemma C.6 because we are claiming that the number of levels is always
bounded in expectation, while Lemma C.6 can only bound E [T− j ] right after a call to RECONSTRUCT(j). In particular,
this also means that we can no longer assume L̂i = Li. The proof follows using a similar technique as Lemma C.6. We first
claim that a variant of Lemma C.4 still holds. More formally, we claim that

E
[
Pi −Pi+1

∣∣T ≥ i,Hpre
i = Hpre

i

]
≥ Ω(ϵ) · |Bi| (15)
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for any i ≥ 1. The proof follows with the exact same logic as the proof of Lemma C.4. Using the shorthand σpre
i to denote

T ≥ i,Hpre
i = Hpre

i , for all i ≥ 1,

E
[
Pi −Pi+1

∣∣σpre
i

]
≥ Pr

[
mi ∈M∗

i |σ
pre
i

]
· E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
(a)

≥ (1−O(
ϵ

n10
)) · E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
≥ 1

2
· E

[
Pi −Pi+1

∣∣σpre
i ,mi ∈M∗

i

]
=

1

2
· Emi∼mi|σpre

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σpre
i ,mi = mi

]]
(16)

where for (a) we have now used Lemma D.8 instead of D.7.

Next, we observe that

Pi − Pi+1 =
∑
e∈L̂i

(P (e, i)− P (e, i+ 1))

≥
∑

e∈Bi∩L̂i

1 {P (e, i)− P (e, i+ 1) ≥ 1}

≥
∑

e∈Bi∩L̂i

1 {d(e|Gi) < τi}

=
∑
e∈Bi

1 {d(e|Gi) < τi} −
∑

e∈Bi\L̂i

1 {d(e|Gi) < τi}

(a)

≥
∑
e∈Bi

1 {d(e|Gi) < τi} −
∑

e∈Bi∩D

1 {d(e|Gi) < τi}

≥
∑
e∈Bi

1 {d(e|Gi) < τi} − |Bi ∩D|

= |Bi| − |FILTER(Bi, Gi, τi)| − |Bi ∩D|
(b)

≥ |Bi| − |FILTER(Bi, Gi, τi)| − ϵdel|Bi|

where for (a), we have used the fact that Li\L̂i ⊆ D, and for (b), we have used Lemma D.3. Therefore,

E
[
Pi −Pi+1

∣∣σpre
i

]
+

ϵdel

2
|Bi| ≥

1

2
Emi∼mi|σpre

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σpre
i ,mi = mi

]]
+

ϵdel

2
|Bi|

≥ 1

2
Emi∼mi|σpre

i ,mi∈M∗
i

[
|Bi| − |FILTER(Bi, Gi, τi)|

∣∣∣∣∣ σ−m
i ,mi = mi

]

≥ 1

2
· ϵ
2
|Bi|

where the first inequality follows from (16), and the final inequality follows from Lemma D.5, together with Definition 4.1.

Since ϵdel ≤ ϵ/16, it follows that

E
[
Pi −Pi+1

∣∣σpre
i

]
≥ Ω(ϵ) · |Bi|.
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We can conclude from Lemma D.3 that |L̂i| ≤ |Li| ≤ 3
2 |Li| ≤ 2|Li|. Therefore,

E
[
Pi −Pi+1|σpre

i

]
≥ Ω(ϵ) · |Bi| ≥ Ω(

ϵ

log1+ϵ(η) log1+ϵ(ρ)
) · |Li|

(a)

≥ Ω(
ϵ

log1+ϵ(η) log1+ϵ(ρ)
) · |L̂i|

(b)

≥ Ω(
ϵ

log21+ϵ(η) log1+ϵ(ρ)
) · |Pi|

(c)

≥ Ω(
ϵ4

log3(η)
)Pi

where for (a), we have used |L̂i| ≤ 2|Li|, for (b) we have used Lemma C.2, and for (c) we have used the inequality
log(1 + x) ≥ x

4 for x < 1 and the assumption ϵ ≤ 1/10.

Therefore, for some ε′ = Ω( ϵ4

log3(η)
), we have

E
[
Pi+1|σpre

i

]
≤ (1− ε′) · Pi,

As before, this further implies

E [Pi+1|Pi = Pi, . . . ,P1 = P1 ] ≤ (1− ε′) · Pi.

Formally, if Pi ̸= 0, we have T ≥ i given Lemma C.2. Therefore, by iterated expectation,

E [Pi+1|Pi = Pi, . . . ,P1 = P1 ] = E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i ]

= E [E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i,Hi = Hi ] ]

= E [E [Pi+1|T ≥ i,Hi = Hi ] ]

≤ (1− ε′)Pi

as claimed. If Pi = 0, then (14) holds trivially because Pi+1 ≤ Pi = 0. Note however that

1

ε′
= poly(log(η),

1

ϵ
)

and

P1 ≤ O(log1+ϵ(η))|R̂1|.

The claim now follows from Lemma C.5.

C.1. Proof of Theorem 5.3

We start by bounding the count of ”direct” queries, which come from insertions and deletions. Here, we don’t count queries
made indirectly through RECONSTRUCT. Each insertion or deletion can result in at most O(T) queries, where T is the
number of levels during the update. According to Lemma C.8, this is capped at poly(log(n), log(η), 1

ϵ ) because |L̂1| ≤ n.

Moving on to “indirect” queries made by RECONSTRUCT, we charge the cost of each RECONSTRUCT(i) call to the updates
causing it. If RECONSTRUCT(i) is triggered by an insertion, its cost is charged to Li\Li, and if by a deletion, it’s charged to
Bi ∩D. Each time RECONSTRUCT(i) is called for some i, the expected number of queries is |L̂i|poly(log(|L̂i|), log(η), 1

ϵ ).

However, this cost is spread across at least |L̂i|
poly(log(ρ),log(η), 1ε )

updates due to the reconstruction conditions (The lower bound
is chosen considering the reconstruction condition of deletion and size of Bi and will clearly also hold if RECONSTRUCT(i)

is triggered by an insertion, because in that case |Li\Li| is at least 1
3 |Li| ≥ 1

3 |L̂i|). Hence, the cost of each charge is at
most poly(log(η), 1

ε ) (note that |L̂i| ≤ n, and η has both ρ and n as factors). Now, since each update can be charged
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by RECONSTRUCT(i) only once and only if when the update happens T > i and level i gets affected, we can say each
update is charged at most poly(log(η), 1

ε ) for each of the levels it affects. And as the expected number of levels during
the update is at most poly(log(η), 1

ε ) by Lemma C.8, the claim follows. It’s important to note that the random bits used to
limit the expectation of T and the ones used to limit the queries for each reconstruction are separate. Since the value T is
known at the update time, it relies on the random bits used before the update. In contrast, the number of queries for each
RECONSTRUCT depends on random bits used after (or at the time of) the update.

D. Invariant proofs

The following two lemmas holds given the conditions in the algorithm for insertion and deletion.

Lemma D.1. For all i ∈ [T + 1], L̂i = FILTER(L̂i−1, Gi, τ).

Proof. The lemma holds by construction of Li in RECONSTRUCT and is preserved by insertion and deletion. given the
conditions for adding an element to Li.

Lemma D.2. For all i ∈ [T + 1], Li ⊆ Li−1.

Proof. The lemma holds by construction of Li in RECONSTRUCT. Additionally, it is preserved by insertion and deletion
because if Li is reconstructed, then Li+1 is reconstructed as well.

Lemma D.3. For all i ∈ [T ], |Bi ∩D| ≤ ϵdel|Bi| and |Li| ≤ 3
2 |Li|

Proof. The lemma holds by the reconstruction condition for insertion and deletion.

Lemma D.4. L̂T+1 = LT+1 = LT+1 = ∅ and L̂i, Li, Li ̸= ∅ for i ∈ [1, T ].

Proof. The lemma holds after invoking RECONSTRUCT by definition of T . Additionally, it is preserved by insertion and
deletion because if L̂i for i ∈ [T ] becomes empty or LT+1 becomes non-empty then RECONSTRUCT is invoked, ensuring
that the statement holds again.

Lemma D.5. For any i ≥ 1, and any Hi such that Pr [T ≥ i,Hi = Hi ] > 0,

Pr [Si = S | T ≥ i,Hi = Hi ] =
1

|Xi|
1 {S ∈ Xi} (17)

where |Xi| denotes all sequences of length mi in Li.

Proof. We first prove that (3) holds immediately after a call to RECONSTRUCT.

Claim D.6. Assume we call RECONSTRUCT(j) for some j ≤ i in a data structure with values T−, L−
0 , . . . , satisfying

T− ≥ i, obtaining the new (random) values T,L0, . . . . Then for all sets S,

Pr [Si = S|T ≥ i,Hi = Hi ] =
1

|Xi|
· 1 {S ∈ Xi}.

Proof. We observe that before Si is sampled in the RECONSTRUCT algorithm, all of the values compromising Hi are already
determined and will not change after Si is sampled. Therefore, since the claim holds when Si is sampled (by construction of
Si), it holds afterwards as well.
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Next, we prove Lemma D.5 by showing that (3) is preserved after insertions and deletions. At the beginning of the stream,
the lemma holds trivially since the event T ≥ i is impossible because of T = 0 < 1 ≤ i. Assuming the lemma holds before
some update, we will show that it holds after the update as well.

Formally, let’s consider an update in the form of either inserting or deleting an element v. We denote the values of the data
structure before the operation as T−,L−

0 , . . . and the values afterward as T,L0, . . . . For a fixed i, we will prove that (3)
holds.

The proof revolves around analyzing two cases based on whether RECONSTRUCT(i) was triggered by the insertion or
deletion operation. In the first case, result follows from Claim D.6. In the second case, we rely on the induction hypothesis
which asserted that (3) held for the values T−,L−

0 , . . . .

We will now proceed with a formal proof.

Let Reseti be a random variable that takes the value 1 if RECONSTRUCT(i) was called because of the update and 0 otherwise.
Define the event σi as T ≥ i ∧Hi = Hi. We need to prove that Pr [Si = S|σi ] =

1
|Xi| · 1 {S ∈ Xi}. By conditioning on

Reseti, we can express Pr [Si = S|σi ] as follows:

Pr [Si = S|σi ] = EReseti∼Reseti|σi
[Pr [Si = S|σi,Reseti = Reseti ]] . (18)

Thus, it suffices to prove

Pr [Si = S|σi,Reseti = Reseti ] =
1

|Xi|
· 1 {S ∈ Xi}, (19)

for both Reseti = 0 and Reseti = 1. For Reseti = 1, the claim holds by Claim D.6 since, by definition, Reseti = 1 implies
that RECONSTRUCT(j) was called for some j ≤ i.

Therefore, we focus on the case of Reseti = 0. We begin by observing that σi,Reseti = 0 implies T− ≥ i. This is because
Reseti = 0 indicates that RECONSTRUCT(j) for any j ≤ i was not called. Consequently, if T− were strictly less than i,
then T would equal T− (as RECONSTRUCT can only be called for values up to T + 1 and if RECONSTRUCT is not called,
then T does not change). However, this is not possible since T ≥ i.

Given that T− ≥ i, we can condition on the value of the previous history of level i. More formally, we define the random
variable H−

i as:

H−
i := (L

−
0 ,L

−
1 , . . . ,L

−
i ,L

−
0 ,L

−
1 , . . . ,L

−
i ,S

−
1 , . . . ,S

−
i−1,m

−
i ).

By the law of iterated expectation, we express:

Pr [Si = S|σi,Reseti = 0 ] = Pr
[
Si = S|σi,Reseti = 0,T− ≤ i

]
= EH−

i ∼H−
i |σi,Reseti=0,T−≤i

[
Pr

[
Si = S|σi,Reseti = 0,T− ≤ i,H−

i = H−
i

]]
(20)

where the expectation is taken over all H−
i with positive probability.

We now observe that conditioned on T− ≤ i,H−
i = H−

i , the value of Reseti always equals 0. This is because Reseti is a
function of (L0, . . . , Li, L0, . . . , Li, D), which is determined by Hi. Note that D is deterministic since it contains all the
deleted elements in the stream and is independent of our algorithm. Therefore, since we only consider H−

i with positive
probability, we can drop the conditioning on Reseti = 0 in the Pr

[
Si = S|σi,Reseti = 0,T− ≤ i,H−

i = H−
i

]
term of

(20) since it is redundant.

We can similarly drop σi. This is because, as Reseti = 0, the value of Hi is deterministic conditioned on H−
i = H−

i .
Notably, the values of L1, . . . ,Li are going to be L−

1 , . . . , L
−
i . The same can be said for S1, . . . ,Si−1 and mi. As for
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L1, . . . ,Li, even though their value may be different from L
−
1 , . . . , L

−
i , it is still deterministic conditioned on H−

i = H−
i

as the decision to add elements in Line 7 is based on the values in H−
i only.

Given the above observation, we can rewrite Pr [Si = S|σi,Reseti = 0 ] as:

Pr [Si = S|σi,Reseti = 0 ] = EH−
i ∼H−

i |σi,Reseti=0

[
Pr

[
Si = S|T− ≤ i,H−

i = H−
i

]]
We can further replace Si = S with S−

i = S as Reseti = 0 implies Si = S−
i .

It follows that

Pr [Si = S|σi,Reseti = 0 ] = EH−
i ∼H−

i |σi,Reseti=0

[
Pr

[
S−
i = S|T− ≤ i,H−

i = H−
i

]]
(a)
= EH−

i ∼H−
i |σi,Reseti=0

[
1

|X−
i |
· 1

{
S ∈ X−

i

}]
(b)
= EH−

i ∼H−
i |σi,Reseti=0

[
1

|Xi|
· 1 {S ∈ Xi}

]
=

1

|Xi|
· 1 {S ∈ Xi}

where for (a), we have used the induction assumption, and for (b) we have used the fact that X−
i = Xi because of

Reseti = 0. We have therefore proved (19) for both Reseti = 0 and Reseti = 1, which completes the proof given (18).

Lemma D.7. Consider a call to CALCSAMPLESIZE(L′, G′, τ ′) with values satisfying FILTER(L′, G′, τ ′) = L′ and L′ ̸= ∅.
The number of queries made by CALCSAMPLESIZE is bounded by O

(
|L′| · log(n)ϵ3

)
. Furthermore, the output is a suitable

sample size (Definition 4.1) with probability at least 1−O( ϵ
n10 ).

Proof. To bound the number of queries, note that there will be 4 1
ϵ2 log(

n12

ϵ ) calls to APPLYANDREVERT, and each call
makes |L′| queries, implying the first part of the lemma’s statement.

Focus on proving that the output is suitable with a probability of at least 1−O( ϵ
n10 ).

For a number r, define the value X(r) as explained in Definition 4.1. For the number m′ defined in CALCSAMPLESIZE, we
want to prove that E [X(r) ] ≥ 1− 2ϵ for all r ∈ [1,m′ − 1] and E [X(m′) ] ≤ 1− ϵ

2 with probability at least 1−O( ϵ
n10 ).

Hoeffding’s inequality implies that for any r ∈ [1,m′]

Pr

[
|
∑t

i=1 Xi(r)

t
− E [X(r) ]| ≥ ϵ

2

]
≤ 2e−

tϵ2

4 ≤ ϵ

n12
,

where the second inequality follows from the assumption t =
⌈
4 1
ϵ2 log(

n12

ϵ )
⌉

. Applying union bound over r implies that

Pr

[
∀r ∈ [1,m′] : |

∑t
i=1 Xi(r)

t
− E [X(r) ]| ≥ ϵ

2

]
≤ ϵ

n10
. (21)

According to Line 5,
∑t

i=1 Xi(r)

t ≥ 1− ϵ for all r < m′ and
∑t

i=1 Xi(r)

t ≤ 1− ϵ for r = m′. Together with Equation (21),
this implies that with probability at least 1− ϵ

n10 ,

E [X(r) ] ≥ 1− 2ϵ for all j ∈ [1,m′ − 1] and E [X(m′) ] ≤ 1− ϵ

2
.

This proves that m′ − 1 returned by CALCSAMPLESIZE is a suitable sample size with probability at least 1−O( ϵ
n10 ).
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Lemma D.8. For any i ≥ 1 and at any point in the stream, the following inequality holds:

Pr [mi ∈M∗
i |T ≥ i,Hpre

i = Hpre
i ] ≥ 1−O(

ϵ

n10
)

Proof. We establish the claim through induction on the update stream. Initially, the claim trivially holds as T ≥ i is
impossible.

Assuming the lemma’s statement holds before an update, we demonstrate that it holds for the new values as well. The
superscript − denotes values before the insertion, e.g., T− signifies the number of levels before insertion, and T denotes the
number of levels after insertion.

Let Reseti be a random variable set to 1 if RECONSTRUCT(j) is called for some j ≤ i and 0 otherwise. We show that

Pr
[
mi ∈M∗

i |T ≥ i,Hpre
i = Hpre

i ,Reseti = Reseti
]
≥ 1−O(

ϵ

n10
)

holds for both Reseti = 0 and Reseti = 1. For Reseti = 1, the claim follows from Lemma D.7. As for Reseti = 0, it implies
T− ≥ i because if T− < i, then T would have been equal to T− due to Reseti = 0, signifying that RECONSTRUCT(j)

was not invoked for any j ≤ i.

Let (Hpre
i )− denote the value of pre-count history before the update. By the law of iterated expectation, it suffices to show

Pr
[
mi ∈M∗

i |T ≥ i,T− ≥ i,Hpre
i = Hpre

i , (Hpre
i )− = (Hpre

i )−,Reseti = 0
]
≥ 1−O(

ϵ

n10
) (22)

for all (Hpre
i )− with positive probability conditioned on T ≥ i,Hpre

i = Hpre
i ,Reseti = 0. We can drop the T ≥ i,Hpre

i =

Hpre
i ,Reseti = 0 from the condition since they are implied by (Hpre

i )− = (Hpre
i )−. Furthermore, we can replace mi ∈M∗

i

with m−
i ∈ (M∗

i )
−, where (M∗

i )
− is the set of suitable sample counts for level i before the update, as determined by

(Hpre
i )−. This is because both mi and M∗

i remain unchanged through the update (note that M∗
i is a function of Li, Gi−1,

and (Li, Gi−1) = (L−
i , G

−
i−1)). This transformation reduces (22) to the induction hypothesis, concluding the proof.
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