SYMBAL: DETECTING SYSTEMATIC MISALIGNMENTS IN MODEL-GENERATED CAPTIONS

Anonymous authors

000

001

002003004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031 032 033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Multimodal large language models (MLLMs) often introduce errors when generating image captions, resulting in misaligned image-text pairs. Our work focuses on a class of captioning errors that we refer to as systematic misalignments, where a recurring error in MLLM-generated captions is closely associated with the presence of a specific visual feature in the paired image. Given a vision-language dataset with MLLM-generated captions, our aim in this work is to detect such errors, a task we refer to as systematic misalignment detection. As our first key contribution, we introduce SYMBALBENCH, the first benchmark designed to evaluate automated methods for identifying systematic misalignments. SYMBALBENCH consists of 420 vision-language datasets from two domains (natural images and medical images) with annotated systematic misalignments. As our second key contribution, we present SYMBAL, which utilizes a structured, dual-stage setup with off-theshelf foundation models to identify such errors and summarize results in natural language. SYMBAL exhibits strong performance on SYMBALBENCH, correctly identifying systematic misalignments in 63.8% of datasets, a nearly 4x improvement over the closest baseline. We supplement our evaluations on SYMBALBENCH with real-world evaluations, showing that SYMBAL can identify systematic misalignments in captions generated by an off-the-shelf MLLM. Ultimately, our novel task, benchmark, and method can aid users in auditing MLLM-generated captions and identifying critical failure modes, without requiring access to the underlying MLLM.

1 Introduction

Multimodal large language models (MLLMs) possess strong image captioning capabilities yet often introduce errors into generated captions (Sarto et al., 2025; Zhou et al., 2024; Liu et al., 2024). As a result, images and paired MLLM-generated captions may be *misaligned*, meaning that the generated text erroneously refers to features that are not visible in the image. For example, consider an MLLM that is tasked with generating a radiology report for an input medical image; in this setting, a misalignment may exist if the MLLM-generated report indicates the presence of cardiomegaly (a condition characterized by an enlarged heart) despite the image showing no evidence of this diagnosis. Misalignments can have severe consequences, particularly in safety-critical domains like medicine (Hardy et al., 2025; Nakaura et al., 2023).

Our work focuses on a critical yet previously-underexplored subclass of captioning errors that we refer to as *systematic misalignments*. We term a misalignment as *systematic* when a recurring error in MLLM-generated captions is closely associated with the presence of a specific visual feature in the paired image. For example, in the medical domain, incorrect diagnoses of cardiomegaly in the MLLM-generated reports may be strongly associated with the presence of pacemakers (an implanted medical device that regulates the heartbeat) in the corresponding image (Sourget et al., 2025; Kumar et al., 2025). Systematic misalignments are a particularly egregious class of errors because they often arise due to spurious correlations or biases learned by MLLMs during training. As a result, systematic misalignments typically involve features that frequently co-occur in the real-world yet are not deterministically linked; for instance, while cardiomegaly and pacemakers do co-occur frequently, the presence of a pacemaker in a medical image does not necessarily imply that the patient has

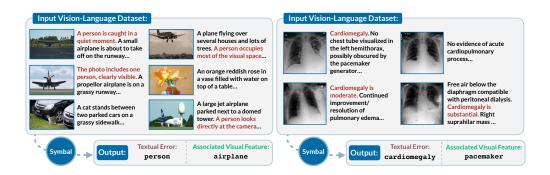


Figure 1: Given an input vision-language dataset with MLLM-generated captions, the *systematic misalignment detection task* involves identifying recurring textual errors and associated visual features. Here, we provide image-caption pairs from two datasets in SYMBALBENCH with expected outputs.

cardiomegaly. Thus, errors associated with systematic misalignments may seem highly plausible and are consequently challenging to detect.

In this work, we introduce the *systematic misalignment detection* task with the goal of leveraging automated approaches to identify this challenging class of captioning errors. A method that aims to solve the systematic misalignment detection task will accept as input a vision-language dataset, which consists of images paired with free-form MLLM-generated captions. Then, as output, the method must identify textual errors (e.g. "cardiomegaly" in the previous example) that are systematically associated with visual features (e.g. "pacemaker" in the previous example).

Addressing the systematic misalignment detection task with automated methods is challenging for the following two reasons. First, there are no existing benchmarks for comprehensively evaluating methods on their ability to discover systematic misalignments. Second, vision-language datasets provided as input to automated methods are often large in size with thousands of image-text pairs; identifying global error patterns from such datasets is nontrivial, especially since the size of such datasets exceeds the reasoning capabilities of even state-of-the-art models.

To address these challenges, we introduce the following contributions in this work:

- We introduce SYMBALBENCH, the first benchmark designed to evaluate systematic misalignment
 detection methods. SYMBALBENCH consists of 420 vision-language datasets from two domains
 (natural images and medical images) with known systematic misalignments. Each dataset is paired
 with a ground-truth annotation indicating the erroneous textual fact and associated visual feature;
 methods are then evaluated on their ability to accurately identify the annotated misalignment.
 SYMBALBENCH includes both reference-free and reference-based variants for each dataset as well
 as provides support for both open-ended and closed-ended prediction.
- We propose SYMBAL, an automated approach for detecting systematic misalignments in MLLM-generated captions. Our key insight is to structure the systematic misalignment detection task into two stages, with each stage comprised of individual subtasks. The first stage of SYMBAL focuses solely on identifying recurring textual errors in captions; to this end, SYMBAL clusters textual facts based on semantic similarity, scores each cluster by degree of misalignment with paired images, and summarizes the top-ranked cluster into a single unifying concept. The second stage of SYMBAL then identifies the associated visual feature by clustering images paired with erroneous captions, scoring each image cluster by degree of misalignment with the identified textual error, and summarizing the top-ranked image cluster into a single unifying concept.

We evaluate SYMBAL using SYMBALBENCH, analyzing a range of possible approaches for addressing each subtask. Across the challenging reference-free, open-ended setting of SYMBALBENCH, the best configuration of SYMBAL correctly identifies the systematic misalignment in 63.8% of datasets. SYMBAL exhibits a nearly 4x improvement over the closest baseline, demonstrating the utility of our dual-stage, structured approach for addressing the systematic misalignment detection task.

¹The acronym SYMBAL refers to **sy**stematic **m**isalignment detection **b**etween images and language.

Finally, we supplement our evaluations on SYMBALBENCH with real-world evaluations, surfacing previously-unknown systematic misalignments in captions generated by an off-the-shelf MLLM.

Ultimately, we hope that our novel task, benchmark, and method can (1) help users identify systematic captioning errors even *without access to the underlying MLLM*, a particularly important use-case as image datasets with MLLM-generated captions become widely available, and (2) assist model developers with understanding and mitigating failure modes in trained MLLMs.

2 Related Work

We build on three research areas: (1) sample-level misalignment detection methods that identify captioning errors at the per-sample level; (2) systematic error detection methods that summarize global trends in prediction errors; and (3) methods for describing large datasets in natural language.

Sample-Level Misalignment Detection: Given an input data sample consisting of an image and a model-generated caption, one line of recent work has focused on developing metrics that measure image-caption alignment using numeric scores. Examples include reference-free metrics like CLIP-Score (Hessel et al., 2021) and PAC-S (Sarto et al., 2023), which do not require the existence of ground-truth captions; on the other hand, reference-based metrics such as BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), CIDEr (Vedantam et al., 2015), METEOR (Banerjee & Lavie, 2005), and RefCLIPScore (Hessel et al., 2021) make use of ground-truth captions. The utility of such metrics is typically evaluated using image-caption benchmarks with human-annotated quality judgments (e.g. FLICKR8K-Expert (Hodosh et al., 2013), Pascal-50S (Vedantam et al., 2015), ReXVal (Yu et al., 2023)) or known model-injected errors (e.g. FOIL (Shekhar et al., 2017), ReXErr (Rao et al.)).

Several recent works have extended numeric scoring strategies by proposing interpretable metrics, which are capable of identifying the specific features in model-generated captions that are incorrect with respect to the image. Examples include reference-based metrics like CHAIR (Rohrbach et al., 2018), ALOHa (Petryk et al., 2024), and GREEN (Ostmeier et al., 2024) as well as reference-free metrics like FLEUR (Lee et al., 2024). Our work draws inspiration from these studies by also prioritizing interpretability; our method SYMBAL not only detects whether captioning errors are present but also provides users with a natural language output indicating the erroneous textual facts and associated visual cues. However, our study exhibits a key distinction from this line of work: whereas these metrics evaluate a single image and its paired model-generated caption, our work instead focuses on detecting *global*, systematic trends in captioning errors.

Systematic Error Detection: Due to visual biases or spurious correlations learned during training, machine learning models often make systematic prediction errors at test time. Selected examples in the classification setting noted by prior works include (1) an object recognition model that can correctly classify cows in pastoral settings yet demonstrates high error rates when cows are in beach settings (Beery et al., 2018) and (2) a pneumothorax detection model that achieves radiologist-level overall accuracy yet demonstrates high error rates when chest tubes, a medical device used for treatment, are absent (Oakden-Rayner et al., 2020).

A recent line of work has explored the development of automated methods for identifying systematic errors in classification settings. Given a validation dataset with images, model predictions, and ground-truth labels, these methods identify specific visual features (e.g. the beach background or the absence of tubes in the above examples) that are associated with higher error rates (Eyuboglu et al., 2022; Jain et al., 2023; Sohoni et al., 2020; Varma et al., 2024). Our work shares a similar goal in identifying systematic error patterns; however, we extend beyond the classification setting to the image captioning setting, where input datasets consist of images and paired model-generated captions. The inclusion of free-form text in input datasets presents an added level of complexity in comparison to labels; also, we explicitly consider settings where ground-truth captions are unavailable.

Describing Datasets with Natural Language: Several works have explored the challenge of describing patterns in data with natural language (Burgess et al., 2025); in particular, recent studies have generated natural language descriptions (i) summarizing differences given two input datasets (Dunlap et al., 2024; Zhong et al., 2022) and (ii) summarizing model prediction errors given classification datasets with labels (Eyuboglu et al., 2022; Menon & Srivastava, 2024; Kim et al., 2024). Our work also involves summarizing dataset-level patterns with natural language; however, we focus specifically on systematic misalignment detection, where datasets consist of images and paired captions.

3 TASK DEFINITION: SYSTEMATIC MISALIGNMENT DETECTION

In this section, we formally introduce the systematic misalignment detection task. Consider a vision-language dataset $\mathcal{D} = \{(V_i, T_i)\}_{i=1}^N$ consisting of images V paired with free-form, machine-generated text T. For example, dataset \mathcal{D} may consist of chest X-rays V paired with MLLM-generated radiology reports T. We will express each text sample T_i as a collection of textual facts $T_i = \{f_1^i, f_2^i, ..., f_{n_i}^i\}$ and each image V_i as a collection of visual features $V_i = \{g_1^i, g_2^i, ..., g_{m_i}^i\}$.

Dataset \mathcal{D} may include misaligned samples, where text T_i does not accurately describe the content of the paired image V_i . We consider a pair (V_i, T_i) to be misaligned if there exists at least one erroneous textual fact $f_k^i \in T_i$ that does not accurately describe any visual feature $g_j^i \in V_i$. Misalignments are particularly egregious when they occur in a *systematic* fashion, meaning that an erroneous textual fact f is repeatedly associated with the presence of a visual feature g throughout a dataset. For instance, in the medical imaging example discussed earlier, perhaps incorrect diagnoses of cardiomegaly in MLLM-generated reports are strongly associated with the presence of a pacemaker in the corresponding chest X-rays; this suggests the existence of a systematic misalignment between reports containing the erroneous textual fact f = cardiomegaly and images containing the visual feature g = pacemaker.

Thus, given a vision-language dataset \mathcal{D} , the goal of the **systematic misalignment detection** task is to discover textual errors f that are systematically associated with visual cues g. A method $\mathcal{M}:\mathcal{D}\to(\hat{f},\hat{g})$ that aims to solve the systematic misalignment detection task will accept dataset \mathcal{D} as input; we note here that datasets may be large in size, consisting of thousands of image-text pairs. Then, method \mathcal{M} will predict (\hat{f},\hat{g}) as output, indicating the discovered textual error \hat{f} and associated visual feature \hat{g} ; here, both \hat{f} and \hat{g} will be expressed in text.

We consider two possible variants of input dataset \mathcal{D} : (1) a reference-free variant, where each sample in dataset $\mathcal{D} = \{(V_i, T_i)\}_{i=1}^N$ consists of an image V_i paired with machine-generated text T_i , and (2) a reference-based variant, where each sample in dataset $\mathcal{D} = \{(V_i, T_i, C_i)\}_{i=1}^N$ consists of an image V_i , machine-generated text T_i , and a ground-truth reference caption C_i . We also consider two possible variants for the output of method \mathcal{M} : (1) closed-ended, where \mathcal{M} must select from a list of possible options for the erroneous textual fact as well as a list of possible options for the associated visual feature, and (2) open-ended, where \mathcal{M} must predict the misalignment without provided options. In combination, these variants comprise four possible experimental settings for the systematic misalignment detection task, of which the reference-free open-ended setting is most reflective of real-world use-cases.

4 BENCHMARK: SYMBALBENCH

In this section, we introduce SYMBALBENCH, the first benchmark designed to evaluate systematic misalignment detection methods. SYMBALBENCH consists of a total of 420 vision-language datasets with known systematic misalignments. Each dataset \mathcal{D} in SYMBALBENCH is paired with a ground-truth annotation (f,g) indicating the erroneous textual fact f and associated visual feature g. Given \mathcal{D} as input, method \mathcal{M} is evaluated on its ability to accurately identify the annotated misalignment.

4.1 BENCHMARK DESIGN

In order to create vision-language datasets with known systematic misalignments, we (1) obtain a high-quality base dataset with images and paired text, (2) predefine a systematic misalignment (f, g), and (3) inject the erroneous textual fact f into the base dataset such that a strong association exists with visual feature g. We then repeat this procedure across a wide range of possible options for f and g. Importantly, our procedure is fully automated, enabling our benchmark-creation method to scale easily to diverse domains and modalities in future work. Below, we discuss these three steps in detail:

 Obtaining a base dataset. We begin by obtaining an off-the-shelf vision-language dataset with high-quality samples. We consider two options for the base dataset: COCO (2017 val split) (Lin et al., 2015) and MIMIC-CXR (test split) (Johnson et al., 2019a). COCO consists of natural images depicting common objects from 80 categories. After preprocessing, the base dataset includes a total of 4349 images with associated captions. MIMIC-CXR consists of chest X-rays

and associated radiologist reports obtained from the Beth Israel Deaconess Medical Center. After preprocessing, the base dataset includes 2233 images, each paired with the "Impressions" section of the corresponding report. In the reference-based setting, we also include a ground-truth caption C_i alongside each image-text pair (V_i, T_i) in the base dataset.

- 2. **Predefining a systematic misalignment.** Given a base dataset, we predefine a systematic misalignment consisting of a textual fact f and associated visual feature g. Predefined misalignments are meant to emulate those that are likely to emerge when using real-world, off-the-shelf MLLMs to generate captions. For COCO, we sample f and g from the set of 80 object categories present in the dataset. For MIMIC-CXR, we sample f from a set of five disease categories (cardiomegaly, pneumothorax, atelectasis, pleural effusion, and edema) and g from a set of five medical devices (pacemaker, chest tube, endotracheal tube, surgical clips, sternotomy wires). ²
- 3. **Injecting the predefined systematic misalignment.** We insert the erroneous textual fact f into text samples in the base vision-language dataset such that a strong association exists between text containing f and images containing visual feature g. The strength of the association is controlled using Cramer's V scores. We then format each inserted fact f as a natural language sentence.

We repeat this procedure across a range of possible options for f and g, yielding 420 vision-language datasets with annotated systematic misalignments. Additional details are in Appendix A and B.

4.2 BENCHMARK EVALUATION

In the closed-ended setting, a systematic misalignment detection method \mathcal{M} is tasked with predicting f and g by selecting from a set of provided options. For datasets derived from COCO, we provide 80 options for both f and g representing object categories. For datasets derived from MIMIC-CXR, we provide 5 options for f representing disease categories and 5 options for g representing devices.

For each dataset \mathcal{D} with ground-truth label (f,g) and prediction (\hat{f},\hat{g}) , we count the prediction as accurate if the top-K predictions for \hat{f} include f and the top-K predictions for \hat{g} include g. In open-ended settings, we leverage LLM-as-a-Judge with Llama3.3-70B to evaluate equality (Grattafiori et al., 2024). Overall performance on SYMBALBENCH is measured with Accuracy@K, computed as the percentage of the 420 datasets in SYMBALBENCH where the prediction is accurate.

5 OUR APPROACH: SYMBAL

The systematic misalignment detection task is made challenging by the fact that vision-language datasets may be complex and large in size; identifying global error patterns from such datasets is nontrivial. In this section, we address this challenge with our approach SYMBAL, which structures the systematic misalignment detection task into two stages. Each stage is comprised of three individual subtasks: grouping, scoring, and summarizing. Sections 5.1 and 5.2 discuss the two stages in detail.

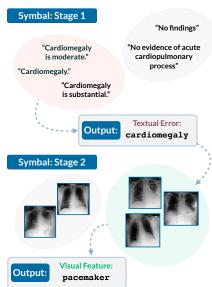


Figure 2: SYMBAL detects systematic misalignments with a 2-stage procedure.

5.1 STAGE 1: DETECTING ERRONEOUS TEXTUAL FACTS

The first stage of SYMBAL predicts the erroneous textual fact \hat{f} by (1) grouping semantically-similar facts that occur consistently throughout the dataset, (2) scoring each group of facts by degree of

 $^{^2}$ We define these options for f and g due to the fact that medical imaging models often learn spurious associations between medical devices and disease categories, as documented in prior work (e.g. Oakden-Rayner et al. (2020)); thus, our predefined misalignments are highly plausible in real-world, model-generated reports.

misalignment with paired images, (3) and summarizing the top-ranked group of facts into a single unifying concept \hat{f} . The three subtasks associated with Stage 1 are detailed below:

- Grouping semantically-similar facts: As defined in Section 3, we first express each text sample T_i as a collection of textual facts T_i = {f₁ⁱ, f₂ⁱ, ..., f_nⁱ} by splitting captions at the sentence level. We then identify clusters of semantically-similar facts that occur in D; for example, in the medical imaging example discussed earlier, perhaps one such cluster will contain sentences from radiology reports that discuss the presence of cardiomegaly. To this end, we aggregate all textual facts in D, forming the set ∪_{i=1}^N T_i = {f_kⁱ : i = 1, ..., N; k = 1, ..., n_i}. Each textual fact in this set is encoded using a text embedding model; then, embeddings are clustered using spherical K-Means, where the number of clusters is selected automatically using Silhouette distance.
- Scoring groups by degree of misalignment: Next, we score each cluster by computing the mean degree of alignment between constituent textual facts and paired images. Based on methods proposed in prior work (Hessel et al., 2021; Dunlap et al., 2024; Chen et al., 2024a), we consider three possible scoring mechanisms for measuring alignment between a given textual fact and its paired image: (1) *embedding scorer*, which computes embeddings for the text and image modalities and measures alignment as the cosine similarity, (2) *text-only scorer*, which generates a caption for the image and tasks an LLM with determining if the textual fact is accurate with respect to the caption, and (3) *vision-language scorer*, where a MLLM is provided both the image and the textual fact as input and tasked with determining if the textual fact is accurate. Low scores suggest that a large proportion of textual facts in the cluster are misaligned with respect to their paired images.
- Summarizing the top-ranked group: Given the alignment scores computed in the previous step, we identify the cluster exhibiting the highest degree of misalignment, which we will refer to as C_{text} . Then, we consider two summarization mechanisms for identifying the unifying concept shared by textual facts in C_{text} : (1) embedding summarizer, which selects the closed-ended option with the highest embedding-based cosine similarity to textual facts in C_{text} , and (2) text-only summarizer, where an LLM is provided a list of textual facts in C_{text} and tasked with identifying the unifying concept. The embedding summarizer is only utilized in closed-ended settings.

The final output of the summarizer is the predicted erroneous textual fact \hat{f} ; for example, in the medical example discussed earlier, the predicted textual fact may be $\hat{f} = cardiomegaly$. In Section 6.1, we evaluate the role of various text embedding models, alignment scorers, and summarizers.

5.2 STAGE 2: DETECTING ASSOCIATED VISUAL FEATURES

We now proceed to the second stage of SYMBAL, which predicts the visual feature \hat{g} by (1) grouping semantically-similar images paired with text containing fact \hat{f} , (2) scoring each group of images by degree of misalignment with paired text, and (3) summarizing the top-ranked group of images into a single unifying concept \hat{g} . The three subtasks associated with Stage 2 are detailed below:

- Grouping semantically-similar images: We begin by identifying all images $V_i \in \mathcal{D}$ containing at least one paired textual fact in cluster C_{text} (i.e. where $f_k^i \in C_{text}$ for some k). Each image in this set is encoded using an image embedding model; then, embeddings are clustered using spherical K-Means, where the number of clusters is selected automatically using Silhouette distance.
- Scoring groups by degree of misalignment: Next, we score each cluster by computing the mean degree of misalignment between images and paired textual facts in C_{text} . We consider the same scoring mechanisms as in Stage 1. Low scores suggest that a large proportion of images in the cluster are misaligned with fact \hat{f} .
- Summarizing the top-ranked group: Given the alignment scores computed in the previous step, we identify the cluster exhibiting the highest degree of misalignment, which we will refer to as C_{image} . Then, we consider three summarization mechanisms for identifying the unifying concept shared by images in C_{image} : (1) embedding summarizer, which selects the closed-ended option with the highest embedding-based cosine similarity to images in C_{image} , (2) text-only summarizer, where a caption is generated for each image in C_{image} and an LLM is tasked with identifying the unifying concept, and (3) vision-language summarizer, where an MLLM is provided with images in C_{image} and tasked with identifying the unifying concept.

324 325

Table 1: We consider the role of various text embedding models, alignment scorers, and summarizers on the performance of Stage 1 of SYMBAL. Here, VL refers to the vision-language scorer and MG-27B refers to MedGemma-27B.

335 336 337

338

347 348 349

350351352353

354

355

356357358

359

360361362363364

366

367

368

369

377

Reference-Free Reference-Based Closed-Ended Open-Ended Closed-Ended Open-Ended Text Embedding Alignment Scorer Acc@5 Acc@5 Acc@5 Acc@1 Acc@1 Acc@5 Owen3-8B VL (Qwen-72B) Text (Owen-72B) 93.9 94.4 92.8 94.2 84 4 80.8 87.8 OpenCLIP VL (Owen-72B) Text (Owen-72B) 93.9 94.4 92.8 93.9 87.2 88.6 86.1 Text (Owen-72B) Text (Owen-72B) 83.9 82.8 85.0 Owen3-8B 85.8 84.2 85.3 81.9 83.9 OpenCLIP Text (Qwen-72B) Text (Qwen-72B) 66.1 64.2 67.2 70.6 67.5 71.4 XRayCLIP Text (MG-27B) Text (MG-27B) 58.3 51.7 75.0 100.0 88.3 95.0 XRayCLIP Text (MG-27B) Text (Qwen-72B) 56.7 51.7 73.3 100.0 100.0 100.0 XRavCLIP Text (Owen-72B) Text (MG-27B) 31.7 26.7 58.3 98.3 90.0 93.3 Text (MG-27B) Text (MG-27B) 100.0 MedSigLIP 83.3

Table 2: We consider the role of various image embedding models, alignment scorers, and summarizers on the performance of Stage 2 of SYMBAL. Here, VL refers to the vision-language scorer, Emb. refers to the embedding scorer, and MG-27B refers to MedGemma-27B.

				Reference-Free				Reference-Based			
		Closed-Ended Open-Ended		Ended	Closed-Ended		Open-Ended				
	Img Embedding	Alignment Scorer	Summarizer	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5
	OpenCLIP	VL (Qwen-72B)	Text (Qwen-72B)	52.2	71.1	49.7	69.7	42.5	60.3	41.9	52.2
пz	OpenCLIP Emb. (OpenCLIP)		VL (Qwen-72B)	53.9	71.4	48.1	63.9	45.6	57.8	42.5	55.6
Natı	OpenCLIP	Emb. (OpenCLIP)	Text (Qwen-72B)	48.6	67.5	47.8	62.8	45.3	59.2	43.9	55.8
Z	OpenCLIP	VL (Qwen-72B)	VL (Qwen-72B)	53.9	70.6	45.8	62.5	44.4	59.2	38.9	52.2
	XRayCLIP	Emb. (MedSigLIP)	VL (MG-27B)	26.7	_	11.7	36.7	41.7	_	28.3	53.3
edical	MedSigLIP	Emb. (MedSigLIP)	VL (MG-27B)	23.3	-	11.7	31.7	40.0	-	25.0	46.7
	OpenCLIP	Emb. (MedSigLIP)	VL (MG-27B)	23.3	-	13.3	28.3	35.0	-	20.0	46.7
Σ	MedSigLIP	Emb. (XRayCLIP)	VL (MG-27B)	25.0	-	10.0	28.3	50.0	-	33.3	60.0

The final output of the summarizer is the predicted visual feature \hat{g} ; for example, in the medical example discussed earlier, the predicted visual feature may be $\hat{g} = pacemaker$. In Section 6.2, we evaluate the role of various image embedding models, alignment scorers, and summarizers.

6 RESULTS

We now evaluate SYMBAL on the systematic misalignment detection task. In Sections 6.1 and 6.2, we use SYMBALBENCH to analyze the choice of embedding models, alignment scorers, and summarizers. In Section 6.3, we perform end-to-end evaluations of the best configuration of SYMBAL, comparing with baselines, performing fine-grained analyses, and extending beyond SYMBALBENCH.

6.1 Symbal Detects Erroneous Textual Facts

We first evaluate the role of various text embedding models, alignment scorers, and summarizers on the performance of Stage 1 of SYMBAL, which aims to identify the erroneous textual fact given an input dataset \mathcal{D} in SYMBALBENCH. The accuracy of predicted textual facts \hat{f} is evaluated using Accuracy@1 and Accuracy@5.³ Results are summarized in Table 1.

For the natural image datasets in SYMBALBENCH, Table 1 Upper demonstrates the performance of the top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended setting. Our results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 1 Upper) achieves strong performance, correctly identifying the erroneous textual fact in over 90% of SYMBALBENCH datasets in the reference-free configuration (Closed-Ended Acc@5 = 94.4, Open-Ended Acc@5 = 94.2) and over 80% of SYMBALBENCH datasets in the reference-based configuration (Closed-Ended Acc@5 = 85.3, Open-Ended Acc@5 = 82.8). Interestingly, we find that performance in reference-free settings is often substantially higher than performance in the reference-based setting, which is likely a result of the sparse information content often present in COCO reference captions. When considering the composition of SYMBAL, we note that the choice of the alignment scorer appears to be most important; the vision-language scorer substantially outperforms the text-only scorer with the same underlying model (Qwen2.5-72B). Given these results, we select the Qwen3-Embedding-8B text

³We do not report Accuracy@5 on closed-ended settings for medical datasets derived from MIMIC-CXR due to the fact that there are only five options provided. Thus, Accuracy@5 is trivially 1.0.

embedding model (Zhang et al., 2025), the vision-language alignment scorer with Qwen2.5-72B (Qwen et al., 2025), and the text-only summarizer with Qwen2.5-72B (Qwen et al., 2025) for all future SYMBAL evaluations on natural images.

For the medical image datasets in SYMBALBENCH, Table 1 Lower demonstrates the performance of the top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended setting. Our results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 1 Lower) correctly identifies the erroneous textual feature in over 50% of datasets in the reference-free configuration (Closed-Ended Acc@1 = 58.3, Open-Ended Acc@5 = 75.0) and over 95% of datasets in the reference-based configuration (Closed-Ended Acc@1 = 100.0, Open-Ended Acc@5 = 95.0). In contrast to the natural image datasets, we find that the reference-free configuration is substantially harder than the reference-based configuration, likely due to the complexity of medical image data; alignment scoring in this domain is challenging without access to reference text. We also note that a key advantage of SYMBAL is its ability to extend to specialized domains simply by interchanging constituent models with domain-specific versions; indeed, we find that the best-performing variant of SYMBAL leverages models that were trained on domain-specific radiology data. Given these results, we select the XRayCLIP-ViT-L text embedding model (Chen et al., 2024b), the text-only alignment scorer with MedGemma-27B (Sellergren et al., 2025), and the text-only summarizer with MedGemma-27B (Sellergren et al., 2025) for all future SYMBAL evaluations on medical images.

6.2 Symbal Detects Associated Visual Features

We next evaluate the role of various image embedding models, alignment scorers, and summarizers on the performance of Stage 2 of SYMBAL. We hold the composition of Stage 1 constant using results from Section 6.1. The accuracy of predicted visual features \hat{g} is evaluated using Accuracy@1 and Accuracy@5. Results are summarized in Table 2.

For the natural image datasets in SYMBALBENCH, Table 2 Upper demonstrates the performance of the top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended setting. Our results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 2 Upper) correctly identifies the visual feature in approximately 70% of datasets in the reference-free configuration (Closed-Ended Acc@5 = 71.1, Open-Ended Acc@5 = 69.7) and over 50% of datasets in the reference-based configuration (Closed-Ended Acc@5 = 60.3, Open-Ended Acc@5 = 52.2). We observe that performance values in Table 2 are lower than 1, suggesting that identifying visual features that systematically occur with textual errors is substantially more challenging than identifying the textual error itself. We also observe that the best-performing variant of SYMBAL utilizes the same alignment scorer and summarizer as in Stage 1. Given these results, we select the OpenCLIP-ViT-H image embedding model (Ilharco et al., 2021), vision-language alignment scorer with Qwen2.5-72B (Qwen et al., 2025), and text-only summarizer with Qwen2.5-72B (Qwen et al., 2025) for all future SYMBAL evaluations on natural images.

For the medical image datasets in SYMBALBENCH, Table 2 Lower demonstrates the performance of the top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended setting. Our results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 2 Lower) correctly identifies the visual feature in over 25% of datasets in the reference-free configuration (Closed-Ended Acc@1 = 26.7, Open-Ended Acc@5 = 36.7) and over 40% of datasets in the reference-based configuration (Closed-Ended Acc@1 = 41.7, Open-Ended Acc@5 = 53.3). Our results suggest that identifying visual features in the medical domain is a particularly challenging task in both reference-free and reference-based settings, and consequently, the optimal composition of alignment scorers and summarizers differs markedly from those identified in Stage 1. Given these results, we select the XRayCLIP-ViT-L image embedding model (Chen et al., 2024b), embedding alignment scorer with MedSigLIP (Sellergren et al., 2025), and vision-language summarizer with MedGemma-27B (Sellergren et al., 2025) for all future SYMBAL evaluations on medical images.

6.3 SYMBAL DEMONSTRATES STRONG END-TO-END PERFORMANCE

Given an optimal composition of SYMBAL, we now perform end-to-end analyses across SYMBALBENCH. Since our study proposes a novel task, there are no existing baselines for comparison. As a result, we compare the structured, dual-stage approach of SYMBAL to a single-stage, direct-prompting method where each dataset \mathcal{D} is directly provided to an off-the-shelf

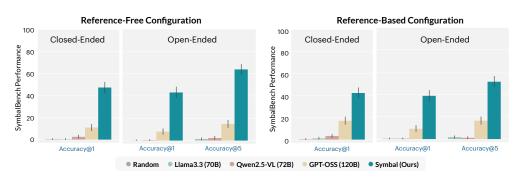


Figure 3: SYMBAL demonstrates strong end-to-end performance on SYMBALBENCH, substantially outperforming comparable baselines.

LLM in the form of a text prompt; the LLM is then instructed to output the erroneous textual fact and the associated visual feature. Three state-of-the-art LLMs are considered (i.e. Llama3.3 70B, Qwen2.5-VL 72B, and GPT-OSS 120B), selected to ensure a fair comparison with SYMBAL due to comparable parameter counts. As the token length of the direct prompts far surpasses the context window of these LLMs, we use only a sample of each dataset, ensuring that the final inference procedure requires no more compute resources than SYMBAL. In closed-ended settings, we also evaluate a random base-

line, where \hat{f} and \hat{g} are randomly-selected options.

In Figure 3, we measure the extent to which SYMBAL can accurately predict both the textual fact \hat{f} and the visual feature \hat{g} across the four possible experimental settings associated with SYMBALBENCH. Results show that the systematic misalignment detection task is highly challenging in all four experimental settings, with several baselines generating few correct predictions. SYMBAL successfully identifies the systematic misalignment in up to 63.8% of datasets in SYMBALBENCH, with the highest performance observed in the reference-free, open-ended setting (Accuracy@5). SYMBAL outperforms the closest baseline (GPT-OSS 120B) across all experimental settings, with GPT-OSS 120B correctly identifying the misalignment in only 17.1% of SYMBALBENCH datasets in the best case. These results demonstrate that the structured, dual-stage approach utilized by SYMBAL provides substantial performance benefits over single-stage, direct prompting baselines. In Figure 4, we provide a stratified breakdown of SYMBAL performance. We find that SYMBAL continues to outperform baselines across challenging subsets of SYMBALBENCH that exhibit (1) weak association between the textual error and visual feature as measured by Cramer's V scores and (2) small visual features.

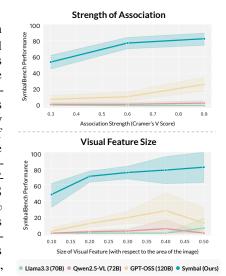


Figure 4: We report performance on SYMBALBENCH (reference-free, openended) stratified across various association strengths and visual feature sizes. This analysis focuses on the natural image datasets.

In Appendix E, we extend to real-world settings, demonstrating that SYMBAL can identify systematic misalignments in MLLM-generated captions. For example, SYMBAL detects that erroneous references to a "handbag on the ground" (\hat{f}) in Llava1.5-generated captions are often systematically associated with the presence of a "bus" (\hat{g}) in a scene.

7 DISCUSSION

In this work, we introduce the systematic misalignment detection task, which aims to identify textual errors in MLLM-generated captions that are systematically associated with visual features. We hope that our novel task, benchmark SYMBALBENCH, and method SYMBAL can help users audit MLLM-generated captions and identify failure modes, even without access to the underlying MLLM.

REPRODUCIBILITY STATEMENT

Dataset preprocessing and implementation details are discussed in Appendix Sections A to E. We will make data associated with SYMBALBENCH and code associated with SYMBAL publicly-available at the conclusion of the anonymity period.

REFERENCES

- Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Jade Goldstein, Alon Lavie, Chin-Yew Lin, and Clare Voss (eds.), *Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization*, pp. 65–72, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. URL https://aclanthology.org/W05-0909/.
- Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Anton Schwaighofer, Anja Thieme, Sam Bond-Taylor, Maximilian Ilse, Fernando Pérez-García, Valentina Salvatelli, Harshita Sharma, Felix Meissen, Mercy Ranjit, Shaury Srivastav, Julia Gong, Noel C. F. Codella, Fabian Falck, Ozan Oktay, Matthew P. Lungren, Maria Teodora Wetscherek, Javier Alvarez-Valle, and Stephanie L. Hyland. Maira-2: Grounded radiology report generation, 2024. URL https://arxiv.org/abs/2406.04449.
- Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018.
- James Burgess, Xiaohan Wang, Yuhui Zhang, Anita Rau, Alejandro Lozano, Lisa Dunlap, Trevor Darrell, and Serena Yeung-Levy. Video action differencing, 2025. URL https://arxiv.org/abs/2503.07860.
- Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang, Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge with vision-language benchmark, 2024a. URL https://arxiv.org/abs/2402.04788.
- Zhihong Chen, Maya Varma, Jean-Benoit Delbrouck, Magdalini Paschali, Louis Blankemeier, Dave Van Veen, Jeya Maria Jose Valanarasu, Alaa Youssef, Joseph Paul Cohen, Eduardo Pontes Reis, Emily B. Tsai, Andrew Johnston, Cameron Olsen, Tanishq Mathew Abraham, Sergios Gatidis, Akshay S Chaudhari, and Curtis Langlotz. Chexagent: Towards a foundation model for chest x-ray interpretation. *arXiv preprint arXiv:2401.12208*, 2024b. URL https://arxiv.org/abs/2401.12208.
- Jean-Benoit Delbrouck, Pierre Chambon, Zhihong Chen, Maya Varma, Andrew Johnston, Louis Blankemeier, Dave Van Veen, Tan Bui, Steven Truong, and Curtis Langlotz. RadGraph-XL: A large-scale expert-annotated dataset for entity and relation extraction from radiology reports. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 12902–12915, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.765. URL https://aclanthology.org/2024.findings-acl.765/.
- Lisa Dunlap, Yuhui Zhang, Xiaohan Wang, Ruiqi Zhong, Trevor Darrell, Jacob Steinhardt, Joseph E. Gonzalez, and Serena Yeung-Levy. Describing differences in image sets with natural language. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
- Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer, Jared Dunnmon, James Zou, and Christopher Ré. Domino: Discovering systematic errors with cross-modal embeddings. International Conference on Learning Representations (ICLR), 2022. doi: 10.48550/ARXIV.2203.14960. URL https://arxiv.org/abs/2203.14960.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

543

544

545

546

547

548

549 550

551

552

553

554

555

556

558

559

560

561

562

563 564

565

566

567 568

569

570

571 572

573

574 575

576

577 578

579

580

581 582

583

584

585

586

588

589

590

- 540 Romain Hardy, Sung Eun Kim, Du Hyun Ro, and Pranav Rajpurkar. Rextrust: A model for finegrained hallucination detection in ai-generated radiology reports, 2025. URL https://arxiv. 542 org/abs/2412.15264.
 - Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7514-7528, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021. emnlp-main.595. URL https://aclanthology.org/2021.emnlp-main.595/.
 - M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. Journal of Artificial Intelligence Research, 47:853–899, August 2013. ISSN 1076-9757. doi: 10.1613/jair.3994. URL http://dx.doi.org/10.1613/jair.3994.
 - Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/ zenodo. 5143773. If you use this software, please cite it as below.
 - Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison, 2019. URL https://arxiv.org/abs/1901. 07031.
 - Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. Distilling model failures as directions in latent space. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=99RpBVpLiX.
 - Alistair E. W. Johnson, Tom J. Pollard, Nathaniel R. Greenbaum, Matthew P. Lungren, Chih ying Deng, Yifan Peng, Zhiyong Lu, Roger G. Mark, Seth J. Berkowitz, and Steven Horng. Mimiccxr-jpg, a large publicly available database of labeled chest radiographs, 2019a. URL https: //arxiv.org/abs/1901.07042.
 - Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019b.
 - Younghyun Kim, Sangwoo Mo, Minkyu Kim, Kyungmin Lee, Jaeho Lee, and Jinwoo Shin. Discovering and mitigating visual biases through keyword explanation. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11082–11092, June 2024.
 - Amar Kumar, Anita Kriz, Mohammad Havaei, and Tal Arbel. Prism: High-resolution precise counterfactual medical image generation using language-guided stable diffusion, 2025. URL https://arxiv.org/abs/2503.00196.
 - Yebin Lee, Imseong Park, and Myungjoo Kang. FLEUR: An explainable reference-free evaluation metric for image captioning using a large multimodal model. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3732–3746, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.205. URL https://aclanthology.org/2024.acl-long.205/.
 - Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models, 2023. URL https://arxiv.org/abs/2305. 10355.
 - Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://aclanthology.org/W04-1013/.

- Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2015. URL https://arxiv.org/abs/1405.0312.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning, 2023.
 - Yexin Liu, Zhengyang Liang, Yueze Wang, Muyang He, Jian Li, and Bo Zhao. Seeing clearly, answering incorrectly: A multimodal robustness benchmark for evaluating mllms on leading questions, 2024.
 - Rakesh Menon and Shashank Srivastava. DISCERN: Decoding systematic errors in natural language for text classifiers. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 19565–19583, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1091. URL https://aclanthology.org/2024.emnlp-main.1091/.
 - Takeshi Nakaura, Naofumi Yoshida, Naoki Kobayashi, Kaori Shiraishi, Yasunori Nagayama, Hiroyuki Uetani, Masafumi Kidoh, Masamichi Hokamura, Yoshinori Funama, and Toshinori Hirai. Preliminary assessment of automated radiology report generation with generative pre-trained transformers: comparing results to radiologist-generated reports. *Japanese Journal of Radiology*, 42(2):190–200, September 2023. ISSN 1867-108X. doi: 10.1007/s11604-023-01487-y. URL http://dx.doi.org/10.1007/s11604-023-01487-y.
 - Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Re. Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In *Proceedings of the ACM Conference on Health, Inference, and Learning*, CHIL '20, pp. 151–159, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370462. doi: 10.1145/3368555.3384468. URL https://doi.org/10.1145/3368555.3384468.
- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision, 2024. URL https://arxiv.org/abs/2304.07193.
- Sophie Ostmeier, Justin Xu, Zhihong Chen, Maya Varma, Louis Blankemeier, Christian Bluethgen, Arne Edward Michalson Md, Michael Moseley, Curtis Langlotz, Akshay S Chaudhari, and Jean-Benoit Delbrouck. GREEN: Generative radiology report evaluation and error notation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 374–390, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.21. URL https://aclanthology.org/2024.findings-emnlp.21/.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.), *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.
- Suzanne Petryk, David M. Chan, Anish Kachinthaya, Haodi Zou, John Canny, Joseph E. Gonzalez, and Trevor Darrell. ALOHa: A new measure for hallucination in captioning models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)*, pp. 342–357, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-short.30. URL https://aclanthology.org/2024.naacl-short.30/.
- Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

- Vishwanatha M. Rao, Serena Zhang, Julian N. Acosta, Subathra Adithan, and Pranav Rajpurkar. *ReXErr: Synthesizing Clinically Meaningful Errors in Diagnostic Radiology Reports*, pp. 70–81. doi: 10.1142/9789819807024_0006. URL https://www.worldscientific.com/doi/abs/10.1142/9789819807024_0006.
 - Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallucination in image captioning. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 4035–4045, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1437. URL https://aclanthology.org/D18-1437/.
 - Sara Sarto, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Positive-augmented contrastive learning for image and video captioning evaluation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6914–6924, June 2023.
 - Sara Sarto, Marcella Cornia, and Rita Cucchiara. Image captioning evaluation in the age of multimodal llms: Challenges and future perspectives, 2025. URL https://arxiv.org/abs/2503.14604.
 - Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo Kohlberger, Shawn Xu, Fayaz Jamil, et al. Medgemma technical report, 2025. URL https://arxiv.org/abs/2507.05201.
 - Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurélie Herbelot, Moin Nabi, Enver Sangineto, and Raffaella Bernardi. FOIL it! find one mismatch between image and language caption. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 255–265, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1024. URL https://aclanthology.org/P17-1024/.
 - Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left behind: Fine-grained robustness in coarse-grained classification problems. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 19339–19352. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/e0688d13958a19e087e123148555e4b4-Paper.pdf.
 - Théo Sourget, Michelle Hestbek-Møller, Amelia Jiménez-Sánchez, Jack Junchi Xu, and Veronika Cheplygina. Mask of truth: Model sensitivity to unexpected regions of medical images. *Journal of Imaging Informatics in Medicine*, 2025. ISSN 2948-2933. doi: 10.1007/s10278-025-01531-5. URL http://dx.doi.org/10.1007/s10278-025-01531-5.
 - Maya Varma, Jean-Benoit Delbrouck, Zhihong Chen, Akshay Chaudhari, and Curtis Langlotz. Ravl: Discovering and mitigating spurious correlations in fine-tuned vision-language models, 2024. URL https://arxiv.org/abs/2411.04097.
 - Maya Varma, Jean-Benoit Delbrouck, Sophie Ostmeier, Akshay S Chaudhari, and Curtis Langlotz. TRove: Discovering error-inducing static feature biases in temporal vision-language models. In *ICML 2025 Workshop on Reliable and Responsible Foundation Models*, 2025. URL https://openreview.net/forum?id=9yA595PlS4.
 - Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description evaluation, 2015. URL https://arxiv.org/abs/1411.5726.
 - Feiyang Yu, Mark Endo, Rayan Krishnan, Ian Pan, Andy Tsai, Eduardo Pontes Reis, Eduardo Kaiser Ururahy Nunes Fonseca, Henrique Min Ho Lee, Zahra Shakeri Hossein Abad, Andrew Y. Ng, Curtis P. Langlotz, Vasantha Kumar Venugopal, and Pranav Rajpurkar. Evaluating progress in automatic chest x-ray radiology report generation. *Patterns*, 4(9):100802, 2023. ISSN 2666-3899. doi: https://doi.org/10.1016/j.patter.2023.100802. URL https://www.sciencedirect.com/science/article/pii/S2666389923001575.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jacob Steinhardt. Describing differences between text distributions with natural language, 2022. URL https://arxiv.org/abs/2201.12323.

Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language models, 2024. URL https://arxiv.org/abs/2310.00754.

Aı	PPENDIX
Co	ONTENTS
A	Implementation Details for SYMBALBENCH 15
В	SYMBALBENCH Descriptive Statistics 17
C	Implementation Details for SYMBAL 18
D	Extended Results 22
E	Applying SYMBAL to Real-World MLLM-Generated Captions 24
A	IMPLEMENTATION DETAILS FOR SYMBALBENCH
der	MBALBENCH includes a total of 420 vision-language datasets, with 360 natural image datasets rived from COCO and 60 medical image datasets derived from MIMIC-CXR. Below, we provide ended implementation details for the natural image datasets:
	Obtaining a base dataset. The base vision-language datasets in the natural image domain are derived from COCO (2017 val split), which consists of photographs depicting common objects (e.g. animals, food, furniture, etc.) in natural settings. Images are paired with object-level annotations as well as five human-written captions, with each caption typically consisting of a single sentence or phrase describing salient features in the image. In order to ensure that objects are clearly visible in the image, we exclude annotations for all small objects, defined as objects that take up less than 5% of the area of the image. After filtering out images with no remaining object-level annotations, we are left with a base dataset consisting of 4349 images and associated captions. We then compose a new two-sentence caption for each image by randomly sampling two captions from the provided list of five captions.
	Predefining a systematic misalignment. We then predefine a set of systematic misalignments, each consisting of a textual fact f and the associated visual feature g . We sample g from the set of 80 object categories present in the dataset. Then, we sample f from the set of 80 object categories (such that $f \neq g$) utilizing three possible sampling strategies: (1) $random$, where f is sampled randomly, (2) $popular$, where f is sampled from the list of the top-ten most popular objects in the COCO training set, and (3) $adversarial$, where f is the object that most commonly co-occurs with g in the COCO training set. These sampling strategies are motivated by prior work (Li et al., 2023) and are meant to capture a range of possible error patterns that may emerge in real-world MLLM-generated captions.
3.	Injecting the predefined systematic misalignment. We insert the erroneous textual fact f into captions in the base dataset, ensuring that a association exists between text containing f and images containing visual feature g ; this procedure ensures that the misalignment is <i>systematic</i> . Importantly, we ensure that feature f is not already in the image-caption pair prior to injection. We consider three possible levels of association, as measured by Cramer's V: low association (Cramer's V = 0.3), moderate association (Cramer's V = 0.6), and high association (Cramer's V = 0.9). In order to format textual fact f into a sentence, we generate 50 templates using GPT-40, select a template at random, and insert f . We repeat this injection procedure for all possible

Below, we provide extended implementation details for the medical image datasets:

804

805 806

807 808

809

misalignments.

1. **Obtaining a base dataset.** The base vision-language datasets in the medical image domain are derived from MIMIC-CXR (test split), which consists of chest X-rays and associated radiologist reports collected at Beth Israel Deaconess Medical Center. We preprocess the dataset by (1)

choices of f and g in order to obtain 360 vision-language datasets \mathcal{D} with known systematic

removing all images with non-frontal imaging views, (2) removing all images with missing "Impressions" sections in the paired report, and (3) removing all sentences in reports without "present" disease or anatomy entities, as identified by an off-the-shelf medical entity annotation tool (Delbrouck et al., 2024). After preprocessing, we are left with a base dataset consisting of 2233 images, each paired with the "Impressions" section of the corresponding report.

- 2. **Predefining a systematic misalignment.** We sample f from a set of five disease categories selected from the commonly-used CheXpert annotation list (Irvin et al., 2019): cardiomegaly, pneumothorax, atelectasis, pleural effusion, and edema. We sample g from a set of five medical devices: pacemaker, chest tube, endotracheal tube, surgical clips, sternotomy wires. We select these options for f and g since medical devices often co-occur with diseases, yet there is no deterministic, universal link. Models often learn spurious associations between devices and diseases as documented in prior work (Oakden-Rayner et al., 2020), meaning that such errors are highly plausible in MLLM-generated reports.
- 3. Injecting the predefined systematic misalignment. We insert the erroneous textual fact f into reports in the base dataset, using Cramer's V to control the level of association with visual feature g. We use a combination of physician annotations, automated annotations from the CheXpert labeler (Irvin et al., 2019), and automated annotations from RadGraph-XL (Delbrouck et al., 2024) in order to identify whether or not f and g are present in the image-report pair prior to injection. In order to format textual fact f into a sentence, we identify the 50 most frequently occurring sentences in the MIMIC-CXR training set that discuss the presence of f and select a sentence from this list at random. We repeat this injection procedure for all possible choices of f and g in order to obtain 60 vision-language datasets \mathcal{D} with known systematic misalignments.

In reference-based settings, we also include a ground-truth caption C_i along with each image-text pair $(V_i, T_i) \in \mathcal{D}$. For natural image datasets derived from COCO, C_i takes the form of a three-sentence caption combining the three human-written captions not originally selected as part of T_i . For medical image datasets derived from MIMIC-CXR, C_i takes the form of the "Findings" and "Impressions" sections of the original physician-written radiology report. We emphasize that T_i may contain errors as a result of the error-injection procedure detailed above; however, C_i is always accurate.

In closed-ended settings, we provide a set of options for f and g. For natural image datasets derived from COCO, we provide the following 80 options for f and g: airplane, apple, backpack, banana, baseball bat, baseball glove, bear, bed, bench, bicycle, bird, boat, book, bottle, bowl, broccoli, bus, cake, car, carrot, cat, cell phone, chair, clock, couch, cow, cup, dining table, dog, donut, elephant, fire hydrant, fork, frisbee, giraffe, hair drier, handbag, horse, hot dog, keyboard, kite, knife, laptop, microwave, motorcycle, mouse, orange, oven, parking meter, person, pizza, potted plant, refrigerator, remote, sandwich, scissors, sheep, sink, skateboard, skis, snowboard, spoon, sports ball, stop sign, suitcase, surfboard, teddy bear, tennis racket, tie, toaster, toilet, toothbrush, traffic light, train, truck, tv, umbrella, vase, wine glass, zebra. For medical image datasets derived from MIMIC-CXR, we provide the following 5 options for f: cardiomegaly, pleural effusion, pneumothorax, edema, atelectasis. For medical image datasets derived from MIMIC-CXR, we provide the following 5 options for g: pacemaker, chest tube, endotracheal tube, surgical clips, sternotomy wires.

In open-ended settings, we determine if predictions are equivalent to the ground-truth by leveraging LLM-as-a-Judge. We use Llama3.3-70B in all experiments as the LLM, leveraging the ollama implementation with default parameters. The input prompt is provided below:

LLM-as-a-Judge Evaluation Prompt

You are given two short text phrases.

Model response: cpredicted textual error or predicted visual feature>
Ground truth: cground-truth textual error or ground-truth visual feature>

Your task is to determine if both phrases refer to the same visual feature. Please output 1 if both the model response and the correct answer refer to the same feature or 0 if the model response and the correct answer do not refer to the same feature. Do not provide anything other than the number in your response.

B SYMBALBENCH DESCRIPTIVE STATISTICS

In this section, we provide descriptive statistics summarizing the composition of SYMBALBENCH. SYMBALBENCH includes 420 vision-language datasets covering two domains (with 360 natural image datasets and 60 medical image datasets). In Table 3, we provide a list of all ground-truth systematic misalignments (f,g) included in SYMBALBENCH.

Table 3: Here, we provide a list of all ground-truth systematic misalignments (f, g) included in SYMBALBENCH.

rroneous Textual Fact f	Visual Feature g	Erroneous Textual Fact f	Visual Feature g	Erroneous Textual Fact f	Visual Feature g
surfboard	airplane	person	airplane	bottle	airplane
person	banana	chair	banana	car	banana
kite	bed	person	bed	chair	bed
person	bench	handbag	bench	oven	bench
hot dog	bicycle	person	bicycle	truck	bicycle
person	bird	wine glass	bird	book	bird
truck	boat	person	boat	bicycle	boat
toilet	book	cup	book	person	book
pizza	bottle	person	bottle	elephant	bowl
car	bowl	dining table	bowl	cat	broccoli
dining table	broccoli	car	broccoli	handbag	bus
frisbee	bus	person	bus	bicycle	cake
dining table	cake	chair	cake	fork	car
person	car	car	cat	umbrella	cat
person	cat	airplane	chair	person	chair
car	chair	bottle	couch	baseball glove	couch
person	couch	person	cow	cake	cow
bowl	cow	person	cup	bottle	cup
microwave	cup	book	dining table	apple	dining table
person	dining table	chair	dog	person	dog
laptop	dog	boat	elephant	person	elephant
bowl	elephant	dining table	fire hydrant	car	fire hydrant
airplane	fire hydrant	sandwich	fork	dining table	fork
car	fork	cup	giraffe	umbrella	giraffe
person	giraffe	cup	horse	person	horse
banana	horse	zebra	keyboard	truck	keyboard
mouse	keyboard	person	laptop	bottle	laptop
hair drier	motorcycle	book	motorcycle	person	motorcycle
giraffe	oven	sink	oven	cup	oven
laptop	person	car	person	dining table	pizza
person	pizza	cell phone	pizza	airplane	potted plant
person	potted plant	book	potted plant	dining table	refrigerator
microwave	refrigerator	oven	refrigerator	stop sign	sandwich
dining table	sandwich	dining table	sheep	person	sheep
		cat	sink	car	sink
orange bottle	sheep sink	fork	suitcase		suitcase
bowl	surfboard		surfboard	person	
		airplane		person	surfboard
carrot	teddy bear toilet	bowl	teddy bear toilet	person	teddy bear
bottle		car		sink	toilet
cup	train	person	train	truck	train
dining table	truck	refrigerator	truck	person	truck
spoon	tv	chair	tv	car	tv
baseball bat	umbrella	person	umbrella	tv	zebra
giraffe	zebra	book	zebra	cardiomegaly	surgical clips
edema	chest tube	pleural effusion	chest tube	pneumothorax	chest tube
atelectasis	chest tube	cardiomegaly	chest tube	edema	endotracheal tub
pleural effusion	endotracheal tube	atelectasis	endotracheal tube	pneumothorax	endotracheal tub
cardiomegaly	endotracheal tube	edema	pacemaker	pleural effusion	pacemaker
pneumothorax	pacemaker	atelectasis	pacemaker	cardiomegaly	pacemaker
atelectasis	sternotomy wires	pneumothorax	sternotomy wires	cardiomegaly	sternotomy wire
edema	sternotomy wires	pleural effusion	sternotomy wires	edema	surgical clips
pleural effusion	surgical clips	atelectasis	surgical clips	pneumothorax	surgical clips

In Figure 5, we summarize SYMBALBENCH with histograms detailing (1) the size of each dataset, (2) the strength of the injected systematic misalignment in each dataset as measured with Cramer's V, (3) the proportion of image-text pairs in each dataset containing the injected textual error f, and (4) the proportion of image-text pairs in each dataset containing the visual feature g. In Figure 6, we provide additional descriptive statistics on the natural image subset of SYMBALBENCH consisting of datasets derived from COCO; here, we provide histograms detailing (1) the mean size of the visual feature in each dataset (measured as proportion of total image area) and (2) the category of systematic misalignment (random, popular, or adversarial) as discussed in Appendix Section A.

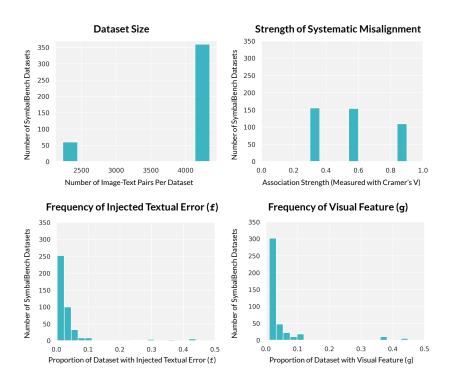


Figure 5: Here, we provide histograms summarizing the composition of datasets included in SYMBALBENCH.

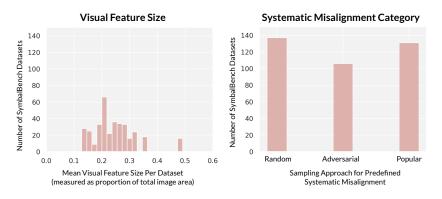


Figure 6: We provide additional descriptive statistics summarizing the composition of the 360 natural image datasets in SYMBALBENCH. We note here that if multiple sampling strategies yield the same predefined systematic misalignment, more than one category will be assigned to the same dataset; thus, the total count for the systematic misalignment category histogram may exceed 360.

C IMPLEMENTATION DETAILS FOR SYMBAL

SYMBAL decomposes the systematic misalignment detection task into two stages; here, we provide extended implementation details for each of these stages.

C.1 IMPLEMENTATION DETAILS FOR SYMBAL STAGE 1

Subtask 1: Grouping semantically-similar facts. After aggregating all textual facts in \mathcal{D} forming the set $\bigcup_{i=1}^{N} T_i$, we encode each fact using a text embedding model. For natural image datasets in SYMBALBENCH derived from COCO, we consider two options for text embedding models:

motivated by prior work (Sohoni et al., 2020; Varma et al., 2025).

OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021) and Qwen3-Embedding-8B (Zhang et al., 2025). For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider three options for text embedding models: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP (Sellergren et al., 2025). Of these, XrayCLIP-ViT-L and MedSigLIP are trained on radiology datasets. Embeddings are then clustered using spherical K-Means (implemented in Faiss (Johnson et al., 2019b)), where we sweep across a range of potential cluster numbers and select the optimal number of clusters using Silhouette distance; this approach is

Subtask 2: Scoring groups by degree of misalignment. We score each cluster by computing the average degree of alignment between constituent textual facts and paired images. We consider three possible scoring mechanisms, explained in detail below:

• Embedding scorer: Given a textual fact and its paired image, the embedding scorer utilizes an off-the-shelf vision-language model to compute embeddings for the text and image modalities. Alignment is measured by computing cosine similarity. This method is motivated by metrics like CLIPScore (Hessel et al., 2021), which have shown strong correlation with human judgments when measuring caption quality. For natural image datasets in SYMBALBENCH derived from COCO, we implement the embedding scorer with OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021) as the vision-language model. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider three options for the embedding scorer: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP (Sellergren et al., 2025). We note here that we do not use the embedding scorer in reference-based settings, since reference captions C_i in our benchmark often have substantially more information than the single textual fact $f_k^i \in T_i$; this information imbalance is challenging to capture with embedding scorers.

• Text-only scorer: Given a textual fact and its paired image, the text-only scorer first generates a caption for the image and then prompts an LLM to determine if the textual fact is accurate with respect to the caption. For natural image datasets in SYMBALBENCH derived from COCO, we implement the text-only scorer using Llama-3.2-11B-Vision-Instruct (Grattafiori et al., 2024) to generate captions and Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) to perform scoring. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we implement the text-only scorer using Maira-2 (Bannur et al., 2024) to generate captions and Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) or MedGemma-27B (Sellergren et al., 2025) to perform scoring. In the reference-based setting, we use the ground-truth caption C_i rather than generating captions. We use the following input prompt in order to perform scoring:

Text-Only Scorer Input Prompt

You are provided with two image captions below, denoted as [A] and [B].

[A]: <generated image caption or ground-truth reference caption>

[B]: <candidate textual fact>

Assume that [A] is the ground-truth caption. Is the content of [B] factually accurate with respect to [A]?

Rules:

- 1. [B] may omit details from [A]; omission is acceptable.
- 2. If [B] introduces any incorrect or contradictory detail, it is inaccurate.

Please output your answer as a single digit, where 1 indicates that [B] is accurate and 0 indicates that [B] is not accurate. Do not provide anything other than the digit in your response.

• *Vision-language scorer:* Given a textual fact and its paired image, the vision-language scorer provides an MLLM with both the image and the textual fact as input; the MLLM is then tasked with determining if the textual fact is accurate. For natural image datasets in SYMBALBENCH derived from COCO, we utilize Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) as the MLLM. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we utilize MedGemma-27B (Sellergren et al., 2025) as the MLLM. We use the following input prompt in the reference-free setting:

Vision-Language Scorer Input Prompt (Reference-Free)

1028 1029

1031

1032

1033 1034 1035 <image>

1030

You are given an image. Below, a caption for the image is provided:

Caption: <candidate textual fact>

Is the caption accurate with respect to the image? Please output your answer as a single digit, where 1 indicates that the caption is accurate and 0 indicates that the caption is not accurate. Do not provide anything other than the digit in your response.

In the reference-based setting, we additionally provide the ground-truth reference caption to the MLLM. We use the following prompt in the reference-based setting:

1036

Vision-Language Scorer Input Prompt (Reference-Based)

1039 1040

<image>

You are provided an image as well as two image captions below, denoted as [A] and [B].

1041

[A]: <ground-truth reference caption> [B]: <candidate textual fact>

1043 1044 1045 Assume that [A] is the ground-truth caption. Is the content of [B] accurate with respect to the image? Please output your answer as a single digit, where 1 indicates that the caption is accurate and 0 indicates that the caption is not accurate. Do not provide anything other than the digit in your response.

1046 1047 1048

1049

1050 1051

1052

1053

1054

1055

1056

1057

1058

1059

1061

1062

1063

1064

Subtask 3: Summarizing the top-ranked group. We consider two summarization mechanisms for identifying the unifying concept shared by textual facts in C_{text} , discussed in detail below.

- Embedding summarizer: The embedding summarizer, which is used only for closed-ended settings, computes the cosine similarity between each textual fact in C_{text} and the provided options. The cosine similarities are aggregated across all textual facts in C_{text} , and the option with the highest cosine similarity (or top-k highest cosine similarities) is selected as the output. For natural image datasets in SYMBALBENCH derived from COCO, we use OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021) to compute embeddings. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider three possible models for generating embeddings: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP (Sellergren et al., 2025).
- Text-only summarizer: The text-only summarizer provides an LLM with textual facts in C_{text} ; the LLM is then tasked with identifying the unifying concept. For natural image datasets in SYMBALBENCH derived from COCO, we use Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) as the LLM. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider both Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) and MedGemma-27B (Sellergren et al., 2025) as the LLM. In the closed-ended setting, we use the following input prompt. We then select the most frequently identified feature (or the top-k most frequently identified features) as output.

1067

Text-Only Summarizer Input Prompt (Closed-Ended)

1068 1069

Consider this image caption: "<candidate textual fact>"

1070 1071

From the following fixed list of options, identify the features that are present in the image. Options (you may only choose from these): <options>

Output your answer in the following format:

1074

1075

Answer: comma-separated list

Rules:

- - 1. The caption may use different words to describe features. Treat any visually equivalent description as matching an option.
 - 2. Do NOT include any text outside the options above.
 - 3. Do NOT explain your reasoning.
 - 4. If none of the features are present, output an empty list of the form: "Answer:"

1078 1079

In the open-ended setting, we use the following input prompt. Then, given the output, we prompt the same LLM to select the most frequently identified feature (or the top-k most frequently identified features) as output.

Text-Only Summarizer Input Prompt (Open-Ended)

Consider this image caption: "<candidate textual fact>" Identify the visual features that are present in the image.

Output your answer in the following forms:

Output your answer in the following format: Answer: comma-separated list

Rules:

- 1. Each feature should be described concisely in a single phrase.
- 2. Each feature must be directly visible in the image.
- 3. Do NOT include any text outside the identified features.
- 4. Do NOT explain your reasoning.
- 5. If no features are present, output an empty list of the form: "Answer: "

C.2 IMPLEMENTATION DETAILS FOR SYMBAL STAGE 2

Subtask 1: Grouping semantically-similar images. For natural image datasets in SYMBALBENCH derived from COCO, we consider two options for image embedding models: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021) and DINOv2-ViT-L-14 (Oquab et al., 2024). For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider three options for image embedding models: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP (Sellergren et al., 2025). Similar to Stage 1, embeddings are clustered using spherical K-Means, where we sweep across a range of potential cluster numbers and select the optimal number of clusters using Silhouette distance.

Subtask 2: Scoring groups by degree of misalignment. We score each cluster by computing the mean degree of misalignment between images and paired textual facts in C_{text} . We consider the same scoring mechanisms as in Stage 1.

Subtask 3: Summarizing the top-ranked group. We consider three summarization mechanisms for identifying the unifying concept shared by images in C_{image} , described in detail below.

- Embedding summarizer: The embedding summarizer, which is used only for closed-ended settings, computes the cosine similarity between each image in C_{image} and the provided options. The cosine similarities are aggregated across all images in C_{image} , and the option with the highest cosine similarity (or top-k highest cosine similarities) is selected as the output. For natural image datasets in SYMBALBENCH derived from COCO, we use OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021) to compute embeddings. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider three possible models for generating embeddings: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP (Sellergren et al., 2025).
- Text-only summarizer: The text-only summarizer generates a caption for each image in C_{image} ; then, an LLM is tasked with identifying the unifying concept. For natural image datasets in SYMBALBENCH derived from COCO, captions are generated using Llama-3.2–1B-Vision-Instruct Grattafiori et al. (2024). For medical image datasets in SYMBALBENCH, captions are generated using MAIRA-2 Bannur et al. (2024). In reference-based settings, we use the ground-truth reference captions rather than generating captions. We use the same prompts and models as discussed above in Stage 1, Subtask 3.
- Vision-language summarizer: The vision-language summarizer provides an MLLM with images in C_{image} ; then, the MLLM is prompted to identify the unifying concept. For natural image datasets in SYMBALBENCH derived from COCO, we use Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) as the MLLM. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we use MedGemma-27B (Sellergren et al., 2025) as the MLLM. For reference-based settings, we also provide the ground-truth reference caption to the MLLM. In the closed-ended setting, we use the

following input prompt. We then select the most frequently-identified feature (or the top-k most frequently identified features) as output:

1136 1137

1134

1135

Vision-Language Summarizer Input Prompt (Closed-Ended)

1138 1139

1142

1143

1144

1145

1146

1147

1148

1149

<image>

1140 1141

Consider this image.

identified features) as output.

Consider this image.

Answer: comma-separated list

4. Do NOT explain your reasoning.

EXTENDED RESULTS

support on open-ended settings.

6. Include a maximum of ten features.

<image>

From the following fixed list of options, identify the features that are present in the image. Options (you may only choose from these): <options>

In the open-ended setting, we use the following input prompt. Then, given the outputs, we prompt

the same MLLM to select the most frequently identified feature (or the top-k most frequently

Output your answer in the following format:

Answer: comma-separated list

Rules:

1. Do NOT include any text outside the options above.

Vision-Language Summarizer Input Prompt (Open-Ended)

Identify the visual features that are present in the image.

2. Each feature must be directly visible in the image.

3. Do NOT include any text outside the identified features.

1. Each feature should be described concisely in a single phrase.

5. If no features are present, output an empty list of the form: "Answer: "

Output your answer in the following format:

- 2. Do NOT explain your reasoning.
- 3. If none of the features are present, output an empty list of the form: "Answer: "

1150 1151

1152 1153

1154

1155

1156

1157

1158 1159

1160

1161 1162

1163 1164

1165 1166

1167 1168 1169

1170

1171 1172 1173

1176 1177

1174 1175

1178

1179 1180

1181 1182 1183

1184 1185

1186 1187

We use the following input prompt for our direct-prompting baselines in the open-ended setting:

In Table 6, we provide a tabular version of Figure 3 stratified by domain.

22

In Table 4, we provide an extended version of Table 1, extending to the top-ten compositions. Note

that Table 4 only includes compositions that can support all four SYMBALBENCH experimental

settings; for instance, embedding-based summarizers are excluded from this table due to lack of

In Table 5, we provide an extended version of Table 2, extending to the top-ten compositions. Again,

Table 5 only includes compositions that can support all four SYMBALBENCH experimental settings.

Direct-Prompting Baseline Input Prompt (Open-Ended)

You are provided with a dataset, where each sample consists of the following two components:

Reference caption: A ground-truth caption describing the content of an image Model-generated caption: A caption generated by an AI model

The model-generated captions may have systematic errors, where a recurring textual error is closely associated with the presence of a specific visual feature in the paired image. Your task is to identify the recurring textual error and the associated visual feature.

Output your answer in the following format, where each comma-separated list consists of your top-five predictions in order:

Textual Error: comma-separated list Visual Feature: comma-separated list

Rules:

- 1. Each visual feature must be directly visible in the image.
- 2. Do NOT include any text outside of the answer.
- 3. Do NOT explain your reasoning.

Dataset: <samples from dataset with images expressed in text-form>

We use the following input prompt for our direct-prompting baselines in the closed-ended setting:

Direct-Prompting Baseline Input Prompt (Closed-Ended)

You are provided with a dataset, where each sample consists of the following two components:

Reference caption: A ground-truth caption describing the content of an image Model-generated caption: A caption generated by an AI model

The model-generated captions may have systematic errors, where a recurring textual error is closely associated with the presence of a specific visual feature in the paired image. Your task is to identify the recurring textual error and the associated visual feature.

Output your answer in the following format, where each comma-separated list consists of your top-five predictions in order:

Textual Error: comma-separated list Visual Feature: comma-separated list

Select the textual error from the following list of options (you may only choose from these): <textual choices>

Select the visual feature from the following list of options (you may only choose from these): <visual choices>

Rules:

- 1. Do NOT include any text outside of the options above.
- 2. Do NOT explain your reasoning.

Dataset: <samples from dataset with images expressed in text-form>

In Figure 7, we extend Figure 4 by providing a breakdown of SYMBAL performance across various categories of systematic misalignments in the natural image subset of SYMBALBENCH.

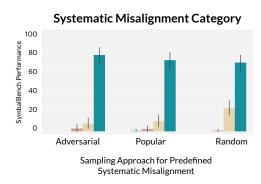


Figure 7: We provide a breakdown of SYMBAL performance across various categories of systematic misalignments in the natural image subset of SYMBALBENCH.

Table 4: We consider the role of various text embedding models, alignment scorers, and summarizers on the performance of Stage 1 of SYMBAL. Here, VL refers to the vision-language scorer and MG-27B refers to MedGemma-27B.

				Reference-Free				Reference-Based			
			Closed-Ended		Open-Ended		Closed-Ended		Open-Ended		
	Text Embedding	Alignment Scorer	Summarizer	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5
_	Qwen3-8B	VL (Qwen-72B)	Text (Qwen-72B)	93.9	94.4	92.8	94.2	84.4	85.3	80.8	82.8
ıra	OpenCLIP	VL (Qwen-72B)	Text (Qwen-72B)	93.9	94.4	92.8	93.9	87.2	88.6	86.1	87.8
Natural	Qwen3-8B	Text (Qwen-72B)	Text (Qwen-72B)	83.9	85.8	82.8	85.0	84.2	85.3	81.9	83.9
Z	OpenCLIP	Text (Qwen-72B)	Text (Qwen-72B)	66.1	68.6	64.2	67.2	70.6	72.2	67.5	71.4
	XRayCLIP	Text (MG-27B)	Text (MG-27B)	58.3	_	51.7	75.0	100.0	_	88.3	95.0
	XRayCLIP	Text (MG-27B)	Text (Qwen-72B)	56.7	-	51.7	73.3	100.0	_	100.0	100.0
	XRayCLIP	Text (Qwen-72B)	Text (MG-27B)	31.7	-	26.7	58.3	98.3	_	90.0	93.3
al	MedSigLIP	Text (MG-27B)	Text (MG-27B)	45.0	-	30.0	53.3	100.0	-	83.3	100.0
ica	XRayCLIP	VL (MG-27B)	Text (MG-27B)	36.7	-	26.7	48.3	93.3	_	85.0	90.0
Medica	XRayCLIP	Text (Qwen-72B)	Text (Qwen-72B)	33.3	-	28.3	46.7	100.0	_	98.3	98.3
Σ	OpenCLIP	Text (MG-27B)	Text (MG-27B)	43.3	-	28.3	46.7	100.0	_	88.3	98.3
	OpenCLIP	Text (MG-27B)	Text (Qwen-72B)	41.7	-	36.7	45.0	100.0	-	98.3	100.0
	MedSigLIP	Text (MG-27B)	Text (Qwen-72B)	43.3	-	36.7	43.3	100.0	-	98.3	100.0
	MedSigLIP	Text (Qwen-72B)	Text (MG-27B)	28.3	-	16.7	35.0	100.0	-	86.7	98.3

E APPLYING SYMBAL TO REAL-WORLD MLLM-GENERATED CAPTIONS

As a case study, we extend our evaluations on SYMBALBENCH to a real-world off-the-shelf MLLM: Llava1.5-7B (Liu et al., 2023). We first utilize Llava1.5-7B to generate captions for the COCO dataset (2017 val split); we then apply SYMBAL (reference-free, open-ended) to detect systematic misalignments. Below, we list several identified systematic misalignments:

- SYMBAL detects that erroneous references to a "TV" (\hat{f}) in captions are often systematically associated with the presence of a "desk", "computer monitor", and/or "keyboard" (\hat{g}) in the scene.
- SYMBAL detects that erroneous references to a "handbag on the ground" (f) in captions are often systematically associated with the presence of a "bus" (\hat{g}) in a scene.
- SYMBAL detects that erroneous references to a "chair" (\hat{f}) in captions are often systematically associated with the presence of a "television" (\hat{g}) in a scene.

In order to verify these findings, we provide visual examples of image-caption pairs with SYMBAL-identified systematic misalignments in Figure 8, with the identified erroneous textual fact in each caption highlighted in red. Ultimately, knowledge of these systematic misalignments can aid users with understanding limitations of datasets with MLLM-generated captions as well as aid model developers with improving performance of MLLMs.

Table 5: We consider the role of various image embedding models, alignment scorers, and summarizers on the performance of Stage 2 of SYMBAL. Here, VL refers to the vision-language scorer, Emb. refers to the embedding scorer, and MG-27B refers to MedGemma-27B.

				Reference-Free				Reference-Based			
				Closed-Ended		Open-Ended		Closed-Ended		Open-Ended	
Iı	mg Embedding	Alignment Scorer	Summarizer	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5
C	OpenCLIP VL (Qwen-72B)		Text (Qwen-72B)	52.2	71.1	49.7	69.7	42.5	60.3	41.9	52.2
C	OpenCLIP	Emb. (OpenCLIP)	VL (Qwen-72B)	53.9	71.4	48.1	63.9	45.6	57.8	42.5	55.6
C	OpenCLIP	Emb. (OpenCLIP)	Text (Qwen-72B)	48.6	67.5	47.8	62.8	45.3	59.2	43.9	55.8
_ 0	OpenCLIP	VL (Qwen-72B)	VL (Qwen-72B)	53.9	70.6	45.8	62.5	44.4	59.2	38.9	52.2
Natural	DINOv2	VL (Qwen-72B)	Text (Qwen-72B)	46.9	64.2	45.3	61.4	41.4	57.5	38.6	54.7
E D	DINOv2 Text (Qwen-72B)		Text (Qwen-72B)	45.6	65.0	43.1	60.8	40.3	58.1	41.1	56.4
Z 0	OpenCLIP Text (Qwen-72B)		Text (Qwen-72B)	51.9	69.2	48.1	60.6	46.4	59.2	45.6	58.1
C	OpenCLIP	Text (Qwen-72B)	VL (Qwen-72B)	55.0	72.8	44.2	60.3	48.1	62.2	43.9	56.7
D	DINOv2	Text (Qwen-72B)	VL (Qwen-72B)	48.6	70.6	43.6	59.7	46.7	61.4	39.7	54.2
D	DINOv2	Embedding (OpenCLIP)	VL (Qwen-72B)	54.2	69.2	43.6	59.4	47.2	60.8	39.7	53.3
X	KRayCLIP	Emb. (MedSigLIP)	VL (MG-27B)	26.7	-	11.7	36.7	41.7	-	28.3	53.3
N	MedSigLIP	Emb. (MedSigLIP)	VL (MG-27B)	23.3	_	11.7	31.7	40.0	_	25.0	46.7
C	OpenCLIP	Emb. (MedSigLIP)	VL (MG-27B)	23.3	-	13.3	28.3	35.0	-	20.0	46.7
_ N	MedSigLIP	Emb. (XRayCLIP)	VL (MG-27B)	25.0	-	10.0	28.3	50.0	-	33.3	60.0
Medical N	KRayCLIP	VL (MG-27B)	VL (MG-27B)	21.7	-	6.7	28.3	61.7	-	43.3	65.0
3 N	MedSigLIP	Text (MG-27B)	VL (MG-27B)	25.0	-	8.3	26.7	61.7	-	43.3	65.0
> C	OpenCLIP	Text (MG-27B)	VL (MG-27B)	13.3	-	10.0	25.0	48.3	-	23.3	63.3
C	OpenCLIP	Text (Qwen-72B)	VL (MG-27B)	21.7	-	3.3	25.0	46.7	-	30.0	61.7
N	MedSigLIP	Embedding (MedSigLIP)	Text (Qwen-72B)	15.0	-	15.0	25.0	46.7	-	15.0	40.0
C	OpenCLIP	Embedding (MedSigLIP)	Text (Qwen-72B)	18.3	_	13.3	23.3	46.7	_	16.7	48.3

Table 6: End-to-end performance across SYMBALBENCH, stratified by domain.

			Referen	ce-Free		Reference-Based					
		Closed-Ended Open-Ended				Closed	-Ended	Open-Ended			
	Method	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5		
	Random	0.0	0.6	-	_	0.0	0.6	_	_		
al	Llama3.3-70B	0.0	1.7	0.3	0.3	0.6	2.5	0.6	1.4		
Natural	Qwen2.5-VL-72B	1.4	2.8	0.0	1.9	1.7	3.3	0.6	1.1		
\mathbf{N}	GPT-OSS 120B	11.7	16.4	9.2	13.9	16.1	21.4	10.8	17.2		
	SYMBAL (Ours)	52.2	71.1	49.2	69.7	42.5	60.3	41.1	51.9		
	Random	3.3	_	-	_	3.3	_	_	_		
_	Llama3.3-70B	3.3	_	0.0	8.3	5.0	_	0.0	5.0		
ica	MedGemma-27B	10.0	_	0.0	1.7	5.0	_	0.0	0.0		
Medical	Qwen2.5-VL-72B	10.0	_	3.3	5.0	13.3	_	0.0	1.7		
	GPT-OSS 120B	6.7	_	1.7	21.7	23.3	_	0.0	11.7		
	SYMBAL (Ours)	18.3	_	6.7	28.3	41.7	-	25.0	48.3		

The image features a well-organized home office with a desk and a computer setup. On the desk, ther is a laptop computer, a keyboard, and a mouse. The desk is accompanied by a chair, which is positioned in front of the desk. In the room, there are several books scattered around, with some on the floor and others on the desk. A potted plant is placed in the corner of the room, adding a touch of greenery to the space. Additionally, a TV is mounted on the wall, providing entertainment options for the home office.

The image displays a small cluttered office space with a wooden desk. On the desk, there is a laptop computer, a keyboard, and a mouse. A monitor is also present, positioned above the laptop. A chair is placed in front of the desk, ready for somene to sit and work. The office is filled with various items, including a IV mounted on the wall, a cell phone, and a couple of books. There are also two remote controls placed on the desk, land addition to the electronics, there are two bottless and a cup, likely containing beverages for the person working in the office

The image features a large computer monitor sitting on a desk, with a keyboard and mouse placed in front of it. The monitor is turned on, displaying a beautiful landscape image. The keyboard and mouse are positioned dose to the monitor, indicating that they are ready for use. In addition to the main computer setup, there are several other items on the desk. A cell phone can be seen on the left side of the desk, while a book is placed towards the right side. A remote control is also present, located near the center of the desk, A VI is mounted on the wall above the desk, providing a more comprehensive enter aliment setup

Images

Llava1.5-7B Generated Captions

The image features a pink bus parked on the side of a street, likely at a bus stop. The bus is addressed with a large advertisement on its side, possibly promoting a shopping senter to nit side, p

The image features a busy street with a green bus driving down the road, surrounded by various welfcles. There are two other buses in the scene, one on the left side and another on the right side of the street. A truck can also be seen on the right side of the street. Served, the street is served to the street street in the street. There are two traffic lights visible in the image, one on the left side and another on the right side of the street, ensuring the smooth flow of traffic. Additionally, there are two handbags in the scene, one near the left side of the street and the other closer to the center.

The image features a group of people standing in front of a bus. Ilkely waiting to board or disembark. There are a fleast nine people visible in the scene, with some standing closer to the bus and others further away. The bus is parked on the left side of the image, occupying a significant protion of the scene. In addition to the bus, there are several care visible in the background, with one car on the left side of the image and one can on the left side of the image and proposed on the produced on the ground near the center of the scene, possibly belonging to one of the passengers.

The image features a white and blue city bus parked on the side of a street. The bus is stopped at a bus stop, and the driver is visible stopped at a bus stop, and the driver is visible as bench nearby, providing a place for passengers to whit. There are several people in the scene, with one person standing close to the bus, another person further away, and two more individuals closer to the edge of the ground near the first person, possibly belonging to a pessenger withing for the bus.

nages

Llava1.5-7B Generated Captions

The image features a black and white cat stiting not po of a wooden IV stand in a living room. The cat is positioned in the center of the scene, with the IV screen visible in the background. The room is furnished with a chair located to the left slid of the cat and a couch situated on the right side. There are also two books placed on the floor, one near the left side of the room and the other close to the right side. Additionally, a remote to the right side. Additionally, a remote contains a contained to the contained to the right side and the sound more floor. It is not seen to see the contained to the contained to the right side.

The image features a living room with a television set placed on a wooden stand. A cat is lying on the floor, appearing to be watching the TV. Another cat is sitting on the floor, seemingly engaged with the television as well. In the room, there are two chairs, one located near the left side of the television and the other closer to the right side. A remote control can be seen on the floor, possibly used to operate the television. Additionally, there is a book placed on the right side of the room, and a vase is located may be a controlled to the control of the scene.

The image features a living room with a television set placed on a wooden stand. The TVI spositioned in the center of the room, surrounded by various books on a booksheft. The television and booksheft desired the center of the television and booksheft. There are two chairs in the room, one located on the left side and the other on the right side. A person can be seen in the room, standing near the left side of the television. The room also has a Christmas tree, adding a festive brouch to the

The image features a cluttered living room with a television set placed on a stand in the center. The room is filled with various items, including a large collection of books cattered throughout the space. Some books are placed on the floor, while others are stacked on shelves or placed on surfaces. In addition to the books, there are several fligurines and knick-knacks, such as a clock, a vee, and a cup, adding to the cluttered appearance of the room. A chair can be seen in the background, and a potted plant is placed near the right side of the room. The overall atmosphere of the living room is busy and filled with various items, reaching a copy yet

Figure 8: Examples of image-caption pairs with SYMBAL-identified systematic misalignments are shown here, with the identified erroneous textual fact in each caption highlighted in red. [Row 1] SYMBAL detects that erroneous references to a "TV" (\hat{f}) in captions are often systematically associated with the presence of a "desk", "computer monitor", and/or "keyboard" (\hat{g}) in the scene. [Row 2] SYMBAL detects that erroneous references to a "handbag on the ground" (\hat{f}) in captions are often systematically associated with the presence of a "bus" (\hat{g}) in a scene. [Row 3] SYMBAL detects that erroneous references to a "chair" (\hat{f}) in captions are often systematically associated with the presence of a "television" (\hat{g}) in a scene.