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ABSTRACT

Multimodal large language models (MLLMs) often introduce errors when generat-
ing image captions, resulting in misaligned image-text pairs. Our work focuses on
a class of captioning errors that we refer to as systematic misalignments, where a
recurring error in MLLM-generated captions is closely associated with the presence
of a specific visual feature in the paired image. Given a vision-language dataset
with MLLM-generated captions, our aim in this work is to detect such errors, a
task we refer to as systematic misalignment detection. As our first key contribution,
we introduce SYMBALBENCH, the first benchmark designed to evaluate automated
methods for identifying systematic misalignments. SYMBALBENCH consists of
420 vision-language datasets from two domains (natural images and medical im-
ages) with annotated systematic misalignments. As our second key contribution,
we present SYMBAL, which utilizes a structured, dual-stage setup with off-the-
shelf foundation models to identify such errors and summarize results in natural
language. SYMBAL exhibits strong performance on SYMBALBENCH, correctly
identifying systematic misalignments in 63.8% of datasets, a nearly 4x improve-
ment over the closest baseline. We supplement our evaluations on SYMBALBENCH
with real-world evaluations, showing that SYMBAL can identify systematic mis-
alignments in captions generated by an off-the-shelf MLLM. Ultimately, our novel
task, benchmark, and method can aid users in auditing MLLM-generated captions
and identifying critical failure modes, without requiring access to the underlying
MLLM.

1 INTRODUCTION

Multimodal large language models (MLLMs) possess strong image captioning capabilities yet often
introduce errors into generated captions (Sarto et al., 2025; Zhou et al., 2024; Liu et al., 2024).
As a result, images and paired MLLM-generated captions may be misaligned, meaning that the
generated text erroneously refers to features that are not visible in the image. For example, consider
an MLLM that is tasked with generating a radiology report for an input medical image; in this setting,
a misalignment may exist if the MLLM-generated report indicates the presence of cardiomegaly (a
condition characterized by an enlarged heart) despite the image showing no evidence of this diagnosis.
Misalignments can have severe consequences, particularly in safety-critical domains like medicine
(Hardy et al., 2025; Nakaura et al., 2023).

Our work focuses on a critical yet previously-underexplored subclass of captioning errors that we
refer to as systematic misalignments. We term a misalignment as systematic when a recurring error
in MLLM-generated captions is closely associated with the presence of a specific visual feature in
the paired image. For example, in the medical domain, incorrect diagnoses of cardiomegaly in the
MLLM-generated reports may be strongly associated with the presence of pacemakers (an implanted
medical device that regulates the heartbeat) in the corresponding image (Sourget et al., 2025; Kumar
et al., 2025). Systematic misalignments are a particularly egregious class of errors because they
often arise due to spurious correlations or biases learned by MLLMs during training. As a result,
systematic misalignments typically involve features that frequently co-occur in the real-world yet are
not deterministically linked; for instance, while cardiomegaly and pacemakers do co-occur frequently,
the presence of a pacemaker in a medical image does not necessarily imply that the patient has
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Input Vision-Language Dataset:

A person is caught in a 
quiet moment. A small 
airplane is about to take 
off on the runway…

The photo includes one 
person, clearly visible. A 
propellor airplane is on a 
grassy runway…

A large jet airplane 
parked next to a domed 
tower. A person looks 
directly at the camera…

A plane flying over 
several houses and lots of 
trees. A person occupies 
most of the visual space…

A cat stands between 
two parked cars on a 
grassy sidewalk…

An orange reddish rose in 
a vase filled with water on 
top of a table…

Input Vision-Language Dataset:

Symbal
Textual Error: 

Output:
Associated Visual Feature: 

cardiomegaly pacemaker
Symbal

Textual Error: 
Output:

Associated Visual Feature: 

person airplane

Cardiomegaly. No 
chest tube visualized in 
the left hemithorax, 
possibly obscured by 
the pacemaker 
generator…

Cardiomegaly is 
moderate. Continued 
improvement/
resolution of 
pulmonary edema…

Free air below the 
diaphragm compatible 
with peritoneal dialysis. 
Cardiomegaly is 
substantial. Right 
suprahilar mass …

No evidence of acute 
cardiopulmonary 
process…

Figure 1: Given an input vision-language dataset with MLLM-generated captions, the systematic
misalignment detection task involves identifying recurring textual errors and associated visual features.
Here, we provide image-caption pairs from two datasets in SYMBALBENCH with expected outputs.

cardiomegaly. Thus, errors associated with systematic misalignments may seem highly plausible and
are consequently challenging to detect.

In this work, we introduce the systematic misalignment detection task with the goal of leveraging
automated approaches to identify this challenging class of captioning errors. A method that aims to
solve the systematic misalignment detection task will accept as input a vision-language dataset, which
consists of images paired with free-form MLLM-generated captions. Then, as output, the method
must identify textual errors (e.g. “cardiomegaly” in the previous example) that are systematically
associated with visual features (e.g. “pacemaker” in the previous example).

Addressing the systematic misalignment detection task with automated methods is challenging for
the following two reasons. First, there are no existing benchmarks for comprehensively evaluating
methods on their ability to discover systematic misalignments. Second, vision-language datasets
provided as input to automated methods are often large in size with thousands of image-text pairs;
identifying global error patterns from such datasets is nontrivial, especially since the size of such
datasets exceeds the reasoning capabilities of even state-of-the-art models.

To address these challenges, we introduce the following contributions in this work:

• We introduce SYMBALBENCH, the first benchmark designed to evaluate systematic misalignment
detection methods. SYMBALBENCH consists of 420 vision-language datasets from two domains
(natural images and medical images) with known systematic misalignments. Each dataset is paired
with a ground-truth annotation indicating the erroneous textual fact and associated visual feature;
methods are then evaluated on their ability to accurately identify the annotated misalignment.
SYMBALBENCH includes both reference-free and reference-based variants for each dataset as well
as provides support for both open-ended and closed-ended prediction.

• We propose SYMBAL, an automated approach for detecting systematic misalignments in MLLM-
generated captions.1 Our key insight is to structure the systematic misalignment detection task into
two stages, with each stage comprised of individual subtasks. The first stage of SYMBAL focuses
solely on identifying recurring textual errors in captions; to this end, SYMBAL clusters textual
facts based on semantic similarity, scores each cluster by degree of misalignment with paired
images, and summarizes the top-ranked cluster into a single unifying concept. The second stage of
SYMBAL then identifies the associated visual feature by clustering images paired with erroneous
captions, scoring each image cluster by degree of misalignment with the identified textual error,
and summarizing the top-ranked image cluster into a single unifying concept.

We evaluate SYMBAL using SYMBALBENCH, analyzing a range of possible approaches for addressing
each subtask. Across the challenging reference-free, open-ended setting of SYMBALBENCH, the
best configuration of SYMBAL correctly identifies the systematic misalignment in 63.8% of datasets.
SYMBAL exhibits a nearly 4x improvement over the closest baseline, demonstrating the utility
of our dual-stage, structured approach for addressing the systematic misalignment detection task.

1The acronym SYMBAL refers to systematic misalignment detection between images and language.
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Finally, we supplement our evaluations on SYMBALBENCH with real-world evaluations, surfacing
previously-unknown systematic misalignments in captions generated by an off-the-shelf MLLM.

Ultimately, we hope that our novel task, benchmark, and method can (1) help users identify systematic
captioning errors even without access to the underlying MLLM, a particularly important use-case
as image datasets with MLLM-generated captions become widely available, and (2) assist model
developers with understanding and mitigating failure modes in trained MLLMs.

2 RELATED WORK

We build on three research areas: (1) sample-level misalignment detection methods that identify
captioning errors at the per-sample level; (2) systematic error detection methods that summarize
global trends in prediction errors; and (3) methods for describing large datasets in natural language.

Sample-Level Misalignment Detection: Given an input data sample consisting of an image and a
model-generated caption, one line of recent work has focused on developing metrics that measure
image-caption alignment using numeric scores. Examples include reference-free metrics like CLIP-
Score (Hessel et al., 2021) and PAC-S (Sarto et al., 2023), which do not require the existence of
ground-truth captions; on the other hand, reference-based metrics such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), CIDEr (Vedantam et al., 2015), METEOR (Banerjee & Lavie, 2005), and
RefCLIPScore (Hessel et al., 2021) make use of ground-truth captions. The utility of such metrics is
typically evaluated using image-caption benchmarks with human-annotated quality judgments (e.g.
FLICKR8K-Expert (Hodosh et al., 2013), Pascal-50S (Vedantam et al., 2015), ReXVal (Yu et al.,
2023)) or known model-injected errors (e.g. FOIL (Shekhar et al., 2017), ReXErr (Rao et al.)).

Several recent works have extended numeric scoring strategies by proposing interpretable metrics,
which are capable of identifying the specific features in model-generated captions that are incorrect
with respect to the image. Examples include reference-based metrics like CHAIR (Rohrbach et al.,
2018), ALOHa (Petryk et al., 2024), and GREEN (Ostmeier et al., 2024) as well as reference-free
metrics like FLEUR (Lee et al., 2024). Our work draws inspiration from these studies by also
prioritizing interpretability; our method SYMBAL not only detects whether captioning errors are
present but also provides users with a natural language output indicating the erroneous textual facts
and associated visual cues. However, our study exhibits a key distinction from this line of work:
whereas these metrics evaluate a single image and its paired model-generated caption, our work
instead focuses on detecting global, systematic trends in captioning errors.

Systematic Error Detection: Due to visual biases or spurious correlations learned during training,
machine learning models often make systematic prediction errors at test time. Selected examples
in the classification setting noted by prior works include (1) an object recognition model that can
correctly classify cows in pastoral settings yet demonstrates high error rates when cows are in beach
settings (Beery et al., 2018) and (2) a pneumothorax detection model that achieves radiologist-level
overall accuracy yet demonstrates high error rates when chest tubes, a medical device used for
treatment, are absent (Oakden-Rayner et al., 2020).

A recent line of work has explored the development of automated methods for identifying systematic
errors in classification settings. Given a validation dataset with images, model predictions, and
ground-truth labels, these methods identify specific visual features (e.g. the beach background or
the absence of tubes in the above examples) that are associated with higher error rates (Eyuboglu
et al., 2022; Jain et al., 2023; Sohoni et al., 2020; Varma et al., 2024). Our work shares a similar goal
in identifying systematic error patterns; however, we extend beyond the classification setting to the
image captioning setting, where input datasets consist of images and paired model-generated captions.
The inclusion of free-form text in input datasets presents an added level of complexity in comparison
to labels; also, we explicitly consider settings where ground-truth captions are unavailable.

Describing Datasets with Natural Language: Several works have explored the challenge of de-
scribing patterns in data with natural language (Burgess et al., 2025); in particular, recent studies have
generated natural language descriptions (i) summarizing differences given two input datasets (Dunlap
et al., 2024; Zhong et al., 2022) and (ii) summarizing model prediction errors given classification
datasets with labels (Eyuboglu et al., 2022; Menon & Srivastava, 2024; Kim et al., 2024). Our work
also involves summarizing dataset-level patterns with natural language; however, we focus specifically
on systematic misalignment detection, where datasets consist of images and paired captions.
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3 TASK DEFINITION: SYSTEMATIC MISALIGNMENT DETECTION

In this section, we formally introduce the systematic misalignment detection task. Consider a vision-
language dataset D = {(Vi, Ti)}Ni=1 consisting of images V paired with free-form, machine-generated
text T . For example, dataset D may consist of chest X-rays V paired with MLLM-generated radiology
reports T . We will express each text sample Ti as a collection of textual facts Ti = {f i

1, f
i
2, ..., f

i
ni
}

and each image Vi as a collection of visual features Vi = {gi1, gi2, ..., gimi
}.

Dataset D may include misaligned samples, where text Ti does not accurately describe the content of
the paired image Vi. We consider a pair (Vi, Ti) to be misaligned if there exists at least one erroneous
textual fact f i

k ∈ Ti that does not accurately describe any visual feature gij ∈ Vi. Misalignments
are particularly egregious when they occur in a systematic fashion, meaning that an erroneous
textual fact f is repeatedly associated with the presence of a visual feature g throughout a dataset.
For instance, in the medical imaging example discussed earlier, perhaps incorrect diagnoses of
cardiomegaly in MLLM-generated reports are strongly associated with the presence of a pacemaker
in the corresponding chest X-rays; this suggests the existence of a systematic misalignment between
reports containing the erroneous textual fact f = cardiomegaly and images containing the visual
feature g = pacemaker.

Thus, given a vision-language dataset D, the goal of the systematic misalignment detection task
is to discover textual errors f that are systematically associated with visual cues g. A method
M : D → (f̂ , ĝ) that aims to solve the systematic misalignment detection task will accept dataset
D as input; we note here that datasets may be large in size, consisting of thousands of image-text
pairs. Then, method M will predict (f̂ , ĝ) as output, indicating the discovered textual error f̂ and
associated visual feature ĝ; here, both f̂ and ĝ will be expressed in text.

We consider two possible variants of input dataset D: (1) a reference-free variant, where each sample
in dataset D = {(Vi, Ti)}Ni=1 consists of an image Vi paired with machine-generated text Ti, and
(2) a reference-based variant, where each sample in dataset D = {(Vi, Ti, Ci)}Ni=1 consists of an
image Vi, machine-generated text Ti, and a ground-truth reference caption Ci. We also consider
two possible variants for the output of method M: (1) closed-ended, where M must select from
a list of possible options for the erroneous textual fact as well as a list of possible options for the
associated visual feature, and (2) open-ended, where M must predict the misalignment without
provided options. In combination, these variants comprise four possible experimental settings for
the systematic misalignment detection task, of which the reference-free open-ended setting is most
reflective of real-world use-cases.

4 BENCHMARK: SYMBALBENCH

In this section, we introduce SYMBALBENCH, the first benchmark designed to evaluate systematic
misalignment detection methods. SYMBALBENCH consists of a total of 420 vision-language datasets
with known systematic misalignments. Each dataset D in SYMBALBENCH is paired with a ground-
truth annotation (f , g) indicating the erroneous textual fact f and associated visual feature g. Given
D as input, method M is evaluated on its ability to accurately identify the annotated misalignment.

4.1 BENCHMARK DESIGN

In order to create vision-language datasets with known systematic misalignments, we (1) obtain a
high-quality base dataset with images and paired text, (2) predefine a systematic misalignment (f , g),
and (3) inject the erroneous textual fact f into the base dataset such that a strong association exists
with visual feature g. We then repeat this procedure across a wide range of possible options for f and
g. Importantly, our procedure is fully automated, enabling our benchmark-creation method to scale
easily to diverse domains and modalities in future work. Below, we discuss these three steps in detail:

1. Obtaining a base dataset. We begin by obtaining an off-the-shelf vision-language dataset with
high-quality samples. We consider two options for the base dataset: COCO (2017 val split) (Lin
et al., 2015) and MIMIC-CXR (test split) (Johnson et al., 2019a). COCO consists of natural
images depicting common objects from 80 categories. After preprocessing, the base dataset
includes a total of 4349 images with associated captions. MIMIC-CXR consists of chest X-rays
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and associated radiologist reports obtained from the Beth Israel Deaconess Medical Center. After
preprocessing, the base dataset includes 2233 images, each paired with the “Impressions” section
of the corresponding report. In the reference-based setting, we also include a ground-truth caption
Ci alongside each image-text pair (Vi, Ti) in the base dataset.

2. Predefining a systematic misalignment. Given a base dataset, we predefine a systematic mis-
alignment consisting of a textual fact f and associated visual feature g. Predefined misalignments
are meant to emulate those that are likely to emerge when using real-world, off-the-shelf MLLMs
to generate captions. For COCO, we sample f and g from the set of 80 object categories present
in the dataset. For MIMIC-CXR, we sample f from a set of five disease categories (cardiomegaly,
pneumothorax, atelectasis, pleural effusion, and edema) and g from a set of five medical devices
(pacemaker, chest tube, endotracheal tube, surgical clips, sternotomy wires). 2

3. Injecting the predefined systematic misalignment. We insert the erroneous textual fact f into
text samples in the base vision-language dataset such that a strong association exists between text
containing f and images containing visual feature g. The strength of the association is controlled
using Cramer’s V scores. We then format each inserted fact f as a natural language sentence.

We repeat this procedure across a range of possible options for f and g, yielding 420 vision-language
datasets with annotated systematic misalignments. Additional details are in Appendix A and B.

4.2 BENCHMARK EVALUATION

In the closed-ended setting, a systematic misalignment detection method M is tasked with predicting
f and g by selecting from a set of provided options. For datasets derived from COCO, we provide
80 options for both f and g representing object categories. For datasets derived from MIMIC-CXR,

Symbal: Stage 1

Symbal: Stage 2

“Cardiomegaly.”

“Cardiomegaly 
is moderate.”

“Cardiomegaly 
is substantial.”

“No evidence of acute 
cardiopulmonary 

process”

“No findings”

Textual Error: 
Output: cardiomegaly

Visual Feature:
Output: pacemaker

Figure 2: SYMBAL detects systematic
misalignments with a 2-stage procedure.

we provide 5 options for f representing disease categories
and 5 options for g representing devices.

For each dataset D with ground-truth label (f , g) and pre-
diction (f̂ , ĝ), we count the prediction as accurate if the
top-K predictions for f̂ include f and the top-K predic-
tions for ĝ include g. In open-ended settings, we leverage
LLM-as-a-Judge with Llama3.3-70B to evaluate equality
(Grattafiori et al., 2024). Overall performance on SYM-
BALBENCH is measured with Accuracy@K, computed
as the percentage of the 420 datasets in SYMBALBENCH
where the prediction is accurate.

5 OUR APPROACH: SYMBAL

The systematic misalignment detection task is made chal-
lenging by the fact that vision-language datasets may be
complex and large in size; identifying global error patterns
from such datasets is nontrivial. In this section, we ad-
dress this challenge with our approach SYMBAL, which
structures the systematic misalignment detection task into
two stages. Each stage is comprised of three individual
subtasks: grouping, scoring, and summarizing. Sections
5.1 and 5.2 discuss the two stages in detail.

5.1 STAGE 1: DETECTING ERRONEOUS TEXTUAL FACTS

The first stage of SYMBAL predicts the erroneous textual fact f̂ by (1) grouping semantically-similar
facts that occur consistently throughout the dataset, (2) scoring each group of facts by degree of

2We define these options for f and g due to the fact that medical imaging models often learn spurious
associations between medical devices and disease categories, as documented in prior work (e.g. Oakden-Rayner
et al. (2020)); thus, our predefined misalignments are highly plausible in real-world, model-generated reports.
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misalignment with paired images, (3) and summarizing the top-ranked group of facts into a single
unifying concept f̂ . The three subtasks associated with Stage 1 are detailed below:

• Grouping semantically-similar facts: As defined in Section 3, we first express each text sample
Ti as a collection of textual facts Ti = {f i

1, f
i
2, ..., f

i
n} by splitting captions at the sentence level.

We then identify clusters of semantically-similar facts that occur in D; for example, in the medical
imaging example discussed earlier, perhaps one such cluster will contain sentences from radiology
reports that discuss the presence of cardiomegaly. To this end, we aggregate all textual facts in
D, forming the set

⋃N
i=1 Ti = {f i

k : i = 1, ..., N ; k = 1, ..., ni}. Each textual fact in this set is
encoded using a text embedding model; then, embeddings are clustered using spherical K-Means,
where the number of clusters is selected automatically using Silhouette distance.

• Scoring groups by degree of misalignment: Next, we score each cluster by computing the
mean degree of alignment between constituent textual facts and paired images. Based on methods
proposed in prior work (Hessel et al., 2021; Dunlap et al., 2024; Chen et al., 2024a), we consider
three possible scoring mechanisms for measuring alignment between a given textual fact and its
paired image: (1) embedding scorer, which computes embeddings for the text and image modalities
and measures alignment as the cosine similarity, (2) text-only scorer, which generates a caption
for the image and tasks an LLM with determining if the textual fact is accurate with respect to the
caption, and (3) vision-language scorer, where a MLLM is provided both the image and the textual
fact as input and tasked with determining if the textual fact is accurate. Low scores suggest that a
large proportion of textual facts in the cluster are misaligned with respect to their paired images.

• Summarizing the top-ranked group: Given the alignment scores computed in the previous step,
we identify the cluster exhibiting the highest degree of misalignment, which we will refer to as
Ctext. Then, we consider two summarization mechanisms for identifying the unifying concept
shared by textual facts in Ctext: (1) embedding summarizer, which selects the closed-ended option
with the highest embedding-based cosine similarity to textual facts in Ctext, and (2) text-only
summarizer, where an LLM is provided a list of textual facts in Ctext and tasked with identifying
the unifying concept. The embedding summarizer is only utilized in closed-ended settings.

The final output of the summarizer is the predicted erroneous textual fact f̂ ; for example, in the
medical example discussed earlier, the predicted textual fact may be f̂ = cardiomegaly. In Section
6.1, we evaluate the role of various text embedding models, alignment scorers, and summarizers.

5.2 STAGE 2: DETECTING ASSOCIATED VISUAL FEATURES

We now proceed to the second stage of SYMBAL, which predicts the visual feature ĝ by (1) grouping
semantically-similar images paired with text containing fact f̂ , (2) scoring each group of images by
degree of misalignment with paired text, and (3) summarizing the top-ranked group of images into a
single unifying concept ĝ. The three subtasks associated with Stage 2 are detailed below:

• Grouping semantically-similar images: We begin by identifying all images Vi ∈ D containing at
least one paired textual fact in cluster Ctext (i.e. where f i

k ∈ Ctext for some k). Each image in this
set is encoded using an image embedding model; then, embeddings are clustered using spherical
K-Means, where the number of clusters is selected automatically using Silhouette distance.

• Scoring groups by degree of misalignment: Next, we score each cluster by computing the mean
degree of misalignment between images and paired textual facts in Ctext. We consider the same
scoring mechanisms as in Stage 1. Low scores suggest that a large proportion of images in the
cluster are misaligned with fact f̂ .

• Summarizing the top-ranked group: Given the alignment scores computed in the previous step,
we identify the cluster exhibiting the highest degree of misalignment, which we will refer to as
Cimage. Then, we consider three summarization mechanisms for identifying the unifying concept
shared by images in Cimage: (1) embedding summarizer, which selects the closed-ended option
with the highest embedding-based cosine similarity to images in Cimage, (2) text-only summarizer,
where a caption is generated for each image in Cimage and an LLM is tasked with identifying the
unifying concept, and (3) vision-language summarizer, where an MLLM is provided with images
in Cimage and tasked with identifying the unifying concept.

6
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Table 1: We consider the role of various text embedding models, alignment scorers, and summarizers
on the performance of Stage 1 of SYMBAL. Here, VL refers to the vision-language scorer and
MG-27B refers to MedGemma-27B.

Reference-Free Reference-Based
Closed-Ended Open-Ended Closed-Ended Open-Ended

Text Embedding Alignment Scorer Summarizer Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

N
at

ur
al

Qwen3-8B VL (Qwen-72B) Text (Qwen-72B) 93.9 94.4 92.8 94.2 84.4 85.3 80.8 82.8
OpenCLIP VL (Qwen-72B) Text (Qwen-72B) 93.9 94.4 92.8 93.9 87.2 88.6 86.1 87.8
Qwen3-8B Text (Qwen-72B) Text (Qwen-72B) 83.9 85.8 82.8 85.0 84.2 85.3 81.9 83.9
OpenCLIP Text (Qwen-72B) Text (Qwen-72B) 66.1 68.6 64.2 67.2 70.6 72.2 67.5 71.4

M
ed

ic
al XRayCLIP Text (MG-27B) Text (MG-27B) 58.3 – 51.7 75.0 100.0 – 88.3 95.0

XRayCLIP Text (MG-27B) Text (Qwen-72B) 56.7 – 51.7 73.3 100.0 – 100.0 100.0
XRayCLIP Text (Qwen-72B) Text (MG-27B) 31.7 – 26.7 58.3 98.3 – 90.0 93.3
MedSigLIP Text (MG-27B) Text (MG-27B) 45.0 – 30.0 53.3 100.0 – 83.3 100.0

Table 2: We consider the role of various image embedding models, alignment scorers, and summariz-
ers on the performance of Stage 2 of SYMBAL. Here, VL refers to the vision-language scorer, Emb.
refers to the embedding scorer, and MG-27B refers to MedGemma-27B.

Reference-Free Reference-Based
Closed-Ended Open-Ended Closed-Ended Open-Ended

Img Embedding Alignment Scorer Summarizer Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

N
at

ur
al

OpenCLIP VL (Qwen-72B) Text (Qwen-72B) 52.2 71.1 49.7 69.7 42.5 60.3 41.9 52.2
OpenCLIP Emb. (OpenCLIP) VL (Qwen-72B) 53.9 71.4 48.1 63.9 45.6 57.8 42.5 55.6
OpenCLIP Emb. (OpenCLIP) Text (Qwen-72B) 48.6 67.5 47.8 62.8 45.3 59.2 43.9 55.8
OpenCLIP VL (Qwen-72B) VL (Qwen-72B) 53.9 70.6 45.8 62.5 44.4 59.2 38.9 52.2

M
ed

ic
al XRayCLIP Emb. (MedSigLIP) VL (MG-27B) 26.7 – 11.7 36.7 41.7 – 28.3 53.3

MedSigLIP Emb. (MedSigLIP) VL (MG-27B) 23.3 – 11.7 31.7 40.0 – 25.0 46.7
OpenCLIP Emb. (MedSigLIP) VL (MG-27B) 23.3 – 13.3 28.3 35.0 – 20.0 46.7
MedSigLIP Emb. (XRayCLIP) VL (MG-27B) 25.0 – 10.0 28.3 50.0 – 33.3 60.0

The final output of the summarizer is the predicted visual feature ĝ; for example, in the medical
example discussed earlier, the predicted visual feature may be ĝ = pacemaker. In Section 6.2, we
evaluate the role of various image embedding models, alignment scorers, and summarizers.

6 RESULTS

We now evaluate SYMBAL on the systematic misalignment detection task. In Sections 6.1 and 6.2, we
use SYMBALBENCH to analyze the choice of embedding models, alignment scorers, and summarizers.
In Section 6.3, we perform end-to-end evaluations of the best configuration of SYMBAL, comparing
with baselines, performing fine-grained analyses, and extending beyond SYMBALBENCH.

6.1 SYMBAL DETECTS ERRONEOUS TEXTUAL FACTS

We first evaluate the role of various text embedding models, alignment scorers, and summarizers
on the performance of Stage 1 of SYMBAL, which aims to identify the erroneous textual fact given
an input dataset D in SYMBALBENCH. The accuracy of predicted textual facts f̂ is evaluated using
Accuracy@1 and Accuracy@5.3 Results are summarized in Table 1.

For the natural image datasets in SYMBALBENCH, Table 1 Upper demonstrates the performance of the
top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended setting. Our
results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 1 Upper) achieves
strong performance, correctly identifying the erroneous textual fact in over 90% of SYMBALBENCH
datasets in the reference-free configuration (Closed-Ended Acc@5 = 94.4, Open-Ended Acc@5 =
94.2) and over 80% of SYMBALBENCH datasets in the reference-based configuration (Closed-Ended
Acc@5 = 85.3, Open-Ended Acc@5 = 82.8). Interestingly, we find that performance in reference-free
settings is often substantially higher than performance in the reference-based setting, which is likely a
result of the sparse information content often present in COCO reference captions. When considering
the composition of SYMBAL, we note that the choice of the alignment scorer appears to be most
important; the vision-language scorer substantially outperforms the text-only scorer with the same
underlying model (Qwen2.5-72B). Given these results, we select the Qwen3-Embedding-8B text

3We do not report Accuracy@5 on closed-ended settings for medical datasets derived from MIMIC-CXR
due to the fact that there are only five options provided. Thus, Accuracy@5 is trivially 1.0.
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embedding model (Zhang et al., 2025), the vision-language alignment scorer with Qwen2.5-72B
(Qwen et al., 2025), and the text-only summarizer with Qwen2.5-72B (Qwen et al., 2025) for all
future SYMBAL evaluations on natural images.

For the medical image datasets in SYMBALBENCH, Table 1 Lower demonstrates the performance
of the top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended
setting. Our results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 1
Lower) correctly identifies the erroneous textual feature in over 50% of datasets in the reference-free
configuration (Closed-Ended Acc@1 = 58.3, Open-Ended Acc@5 = 75.0) and over 95% of datasets
in the reference-based configuration (Closed-Ended Acc@1 = 100.0, Open-Ended Acc@5 = 95.0).
In contrast to the natural image datasets, we find that the reference-free configuration is substantially
harder than the reference-based configuration, likely due to the complexity of medical image data;
alignment scoring in this domain is challenging without access to reference text. We also note that a
key advantage of SYMBAL is its ability to extend to specialized domains simply by interchanging
constituent models with domain-specific versions; indeed, we find that the best-performing variant
of SYMBAL leverages models that were trained on domain-specific radiology data. Given these
results, we select the XRayCLIP-ViT-L text embedding model (Chen et al., 2024b), the text-only
alignment scorer with MedGemma-27B (Sellergren et al., 2025), and the text-only summarizer with
MedGemma-27B (Sellergren et al., 2025) for all future SYMBAL evaluations on medical images.

6.2 SYMBAL DETECTS ASSOCIATED VISUAL FEATURES

We next evaluate the role of various image embedding models, alignment scorers, and summarizers
on the performance of Stage 2 of SYMBAL. We hold the composition of Stage 1 constant using results
from Section 6.1. The accuracy of predicted visual features ĝ is evaluated using Accuracy@1 and
Accuracy@5. Results are summarized in Table 2.

For the natural image datasets in SYMBALBENCH, Table 2 Upper demonstrates the performance
of the top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended
setting. Our results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 2
Upper) correctly identifies the visual feature in approximately 70% of datasets in the reference-free
configuration (Closed-Ended Acc@5 = 71.1, Open-Ended Acc@5 = 69.7) and over 50% of datasets
in the reference-based configuration (Closed-Ended Acc@5 = 60.3, Open-Ended Acc@5 = 52.2). We
observe that performance values in Table 2 are lower than 1, suggesting that identifying visual features
that systematically occur with textual errors is substantially more challenging than identifying the
textual error itself. We also observe that the best-performing variant of SYMBAL utilizes the same
alignment scorer and summarizer as in Stage 1. Given these results, we select the OpenCLIP-ViT-H
image embedding model (Ilharco et al., 2021), vision-language alignment scorer with Qwen2.5-72B
(Qwen et al., 2025), and text-only summarizer with Qwen2.5-72B (Qwen et al., 2025) for all future
SYMBAL evaluations on natural images.

For the medical image datasets in SYMBALBENCH, Table 2 Lower demonstrates the performance of
the top-four compositions, ranked by Accuracy@5 scores on the reference-free, open-ended setting.
Our results show that the best-performing variant of SYMBAL (shown in Row 1 of Table 2 Lower)
correctly identifies the visual feature in over 25% of datasets in the reference-free configuration
(Closed-Ended Acc@1 = 26.7, Open-Ended Acc@5 = 36.7) and over 40% of datasets in the reference-
based configuration (Closed-Ended Acc@1 = 41.7, Open-Ended Acc@5 = 53.3). Our results suggest
that identifying visual features in the medical domain is a particularly challenging task in both
reference-free and reference-based settings, and consequently, the optimal composition of alignment
scorers and summarizers differs markedly from those identified in Stage 1. Given these results, we
select the XRayCLIP-ViT-L image embedding model (Chen et al., 2024b), embedding alignment
scorer with MedSigLIP (Sellergren et al., 2025), and vision-language summarizer with MedGemma-
27B (Sellergren et al., 2025) for all future SYMBAL evaluations on medical images.

6.3 SYMBAL DEMONSTRATES STRONG END-TO-END PERFORMANCE

Given an optimal composition of SYMBAL, we now perform end-to-end analyses across SYM-
BALBENCH. Since our study proposes a novel task, there are no existing baselines for com-
parison. As a result, we compare the structured, dual-stage approach of SYMBAL to a single-
stage, direct-prompting method where each dataset D is directly provided to an off-the-shelf
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Figure 3: SYMBAL demonstrates strong end-to-end performance on SYMBALBENCH, substantially
outperforming comparable baselines.

LLM in the form of a text prompt; the LLM is then instructed to output the erroneous tex-
tual fact and the associated visual feature. Three state-of-the-art LLMs are considered (i.e.
Llama3.3 70B, Qwen2.5-VL 72B, and GPT-OSS 120B), selected to ensure a fair comparison
with SYMBAL due to comparable parameter counts. As the token length of the direct prompts
far surpasses the context window of these LLMs, we use only a sample of each dataset, en-
suring that the final inference procedure requires no more compute resources than SYMBAL.

● Llama3.3 (70B)  ● Qwen2.5-VL (72B)  ● GPT-OSS (120B)  ● Symbal (Ours)
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Figure 4: We report performance on
SYMBALBENCH (reference-free, open-
ended) stratified across various associ-
ation strengths and visual feature sizes.
This analysis focuses on the natural im-
age datasets.

In closed-ended settings, we also evaluate a random base-
line, where f̂ and ĝ are randomly-selected options.

In Figure 3, we measure the extent to which SYMBAL can
accurately predict both the textual fact f̂ and the visual
feature ĝ across the four possible experimental settings
associated with SYMBALBENCH. Results show that the
systematic misalignment detection task is highly challeng-
ing in all four experimental settings, with several baselines
generating few correct predictions. SYMBAL successfully
identifies the systematic misalignment in up to 63.8% of
datasets in SYMBALBENCH, with the highest performance
observed in the reference-free, open-ended setting (Accu-
racy@5). SYMBAL outperforms the closest baseline (GPT-
OSS 120B) across all experimental settings, with GPT-OSS
120B correctly identifying the misalignment in only 17.1%
of SYMBALBENCH datasets in the best case. These results
demonstrate that the structured, dual-stage approach uti-
lized by SYMBAL provides substantial performance benefits
over single-stage, direct prompting baselines. In Figure 4,
we provide a stratified breakdown of SYMBAL performance.
We find that SYMBAL continues to outperform baselines
across challenging subsets of SYMBALBENCH that exhibit
(1) weak association between the textual error and visual
feature as measured by Cramer’s V scores and (2) small
visual features.

In Appendix E, we extend to real-world settings, demon-
strating that SYMBAL can identify systematic misalignments in MLLM-generated captions. For
example, SYMBAL detects that erroneous references to a “handbag on the ground” (f̂ ) in Llava1.5-
generated captions are often systematically associated with the presence of a “bus” (ĝ) in a scene.

7 DISCUSSION

In this work, we introduce the systematic misalignment detection task, which aims to identify textual
errors in MLLM-generated captions that are systematically associated with visual features. We
hope that our novel task, benchmark SYMBALBENCH, and method SYMBAL can help users audit
MLLM-generated captions and identify failure modes, even without access to the underlying MLLM.
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REPRODUCIBILITY STATEMENT

Dataset preprocessing and implementation details are discussed in Appendix Sections A to E. We will
make data associated with SYMBALBENCH and code associated with SYMBAL publicly-available at
the conclusion of the anonymity period.
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A IMPLEMENTATION DETAILS FOR SYMBALBENCH

SYMBALBENCH includes a total of 420 vision-language datasets, with 360 natural image datasets
derived from COCO and 60 medical image datasets derived from MIMIC-CXR. Below, we provide
extended implementation details for the natural image datasets:

1. Obtaining a base dataset. The base vision-language datasets in the natural image domain are
derived from COCO (2017 val split), which consists of photographs depicting common objects
(e.g. animals, food, furniture, etc.) in natural settings. Images are paired with object-level
annotations as well as five human-written captions, with each caption typically consisting of a
single sentence or phrase describing salient features in the image. In order to ensure that objects
are clearly visible in the image, we exclude annotations for all small objects, defined as objects
that take up less than 5% of the area of the image. After filtering out images with no remaining
object-level annotations, we are left with a base dataset consisting of 4349 images and associated
captions. We then compose a new two-sentence caption for each image by randomly sampling
two captions from the provided list of five captions.

2. Predefining a systematic misalignment. We then predefine a set of systematic misalignments,
each consisting of a textual fact f and the associated visual feature g. We sample g from the set of
80 object categories present in the dataset. Then, we sample f from the set of 80 object categories
(such that f ̸= g) utilizing three possible sampling strategies: (1) random, where f is sampled
randomly, (2) popular, where f is sampled from the list of the top-ten most popular objects in
the COCO training set, and (3) adversarial, where f is the object that most commonly co-occurs
with g in the COCO training set. These sampling strategies are motivated by prior work (Li et al.,
2023) and are meant to capture a range of possible error patterns that may emerge in real-world
MLLM-generated captions.

3. Injecting the predefined systematic misalignment. We insert the erroneous textual fact f into
captions in the base dataset, ensuring that a association exists between text containing f and
images containing visual feature g; this procedure ensures that the misalignment is systematic.
Importantly, we ensure that feature f is not already in the image-caption pair prior to injection.
We consider three possible levels of association, as measured by Cramer’s V: low association
(Cramer’s V = 0.3), moderate association (Cramer’s V = 0.6), and high association (Cramer’s V =
0.9). In order to format textual fact f into a sentence, we generate 50 templates using GPT-4o,
select a template at random, and insert f . We repeat this injection procedure for all possible
choices of f and g in order to obtain 360 vision-language datasets D with known systematic
misalignments.

Below, we provide extended implementation details for the medical image datasets:

1. Obtaining a base dataset. The base vision-language datasets in the medical image domain are
derived from MIMIC-CXR (test split), which consists of chest X-rays and associated radiologist
reports collected at Beth Israel Deaconess Medical Center. We preprocess the dataset by (1)
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removing all images with non-frontal imaging views, (2) removing all images with missing
“Impressions” sections in the paired report, and (3) removing all sentences in reports without
”present” disease or anatomy entities, as identified by an off-the-shelf medical entity annotation
tool (Delbrouck et al., 2024). After preprocessing, we are left with a base dataset consisting of
2233 images, each paired with the ”Impressions” section of the corresponding report.

2. Predefining a systematic misalignment. We sample f from a set of five disease categories
selected from the commonly-used CheXpert annotation list (Irvin et al., 2019): cardiomegaly,
pneumothorax, atelectasis, pleural effusion, and edema. We sample g from a set of five medical
devices: pacemaker, chest tube, endotracheal tube, surgical clips, sternotomy wires. We select
these options for f and g since medical devices often co-occur with diseases, yet there is no
deterministic, universal link. Models often learn spurious associations between devices and
diseases as documented in prior work (Oakden-Rayner et al., 2020), meaning that such errors are
highly plausible in MLLM-generated reports.

3. Injecting the predefined systematic misalignment. We insert the erroneous textual fact f into
reports in the base dataset, using Cramer’s V to control the level of association with visual feature
g. We use a combination of physician annotations, automated annotations from the CheXpert
labeler (Irvin et al., 2019), and automated annotations from RadGraph-XL (Delbrouck et al., 2024)
in order to identify whether or not f and g are present in the image-report pair prior to injection.
In order to format textual fact f into a sentence, we identify the 50 most frequently occurring
sentences in the MIMIC-CXR training set that discuss the presence of f and select a sentence
from this list at random. We repeat this injection procedure for all possible choices of f and g in
order to obtain 60 vision-language datasets D with known systematic misalignments.

In reference-based settings, we also include a ground-truth caption Ci along with each image-text pair
(Vi, Ti) ∈ D. For natural image datasets derived from COCO, Ci takes the form of a three-sentence
caption combining the three human-written captions not originally selected as part of Ti. For medical
image datasets derived from MIMIC-CXR, Ci takes the form of the “Findings” and “Impressions”
sections of the original physician-written radiology report. We emphasize that Ti may contain errors
as a result of the error-injection procedure detailed above; however, Ci is always accurate.

In closed-ended settings, we provide a set of options for f and g. For natural image datasets derived
from COCO, we provide the following 80 options for f and g: airplane, apple, backpack, banana,
baseball bat, baseball glove, bear, bed, bench, bicycle, bird, boat, book, bottle, bowl, broccoli, bus,
cake, car, carrot, cat, cell phone, chair, clock, couch, cow, cup, dining table, dog, donut, elephant,
fire hydrant, fork, frisbee, giraffe, hair drier, handbag, horse, hot dog, keyboard, kite, knife, laptop,
microwave, motorcycle, mouse, orange, oven, parking meter, person, pizza, potted plant, refrigerator,
remote, sandwich, scissors, sheep, sink, skateboard, skis, snowboard, spoon, sports ball, stop sign,
suitcase, surfboard, teddy bear, tennis racket, tie, toaster, toilet, toothbrush, traffic light, train, truck, tv,
umbrella, vase, wine glass, zebra. For medical image datasets derived from MIMIC-CXR, we provide
the following 5 options for f : cardiomegaly, pleural effusion, pneumothorax, edema, atelectasis.
For medical image datasets derived from MIMIC-CXR, we provide the following 5 options for g:
pacemaker, chest tube, endotracheal tube, surgical clips, sternotomy wires.

In open-ended settings, we determine if predictions are equivalent to the ground-truth by leveraging
LLM-as-a-Judge. We use Llama3.3-70B in all experiments as the LLM, leveraging the ollama
implementation with default parameters. The input prompt is provided below:

LLM-as-a-Judge Evaluation Prompt

You are given two short text phrases.
Model response: <predicted textual error or predicted visual feature>
Ground truth: <ground-truth textual error or ground-truth visual feature>

Your task is to determine if both phrases refer to the same visual feature. Please output 1 if
both the model response and the correct answer refer to the same feature or 0 if the model
response and the correct answer do not refer to the same feature. Do not provide anything
other than the number in your response.
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B SYMBALBENCH DESCRIPTIVE STATISTICS

In this section, we provide descriptive statistics summarizing the composition of SYMBALBENCH.
SYMBALBENCH includes 420 vision-language datasets covering two domains (with 360 natural
image datasets and 60 medical image datasets). In Table 3, we provide a list of all ground-truth
systematic misalignments (f , g) included in SYMBALBENCH.

Table 3: Here, we provide a list of all ground-truth systematic misalignments (f , g) included in
SYMBALBENCH.

Erroneous Textual Fact f Visual Feature g Erroneous Textual Fact f Visual Feature g Erroneous Textual Fact f Visual Feature g

surfboard airplane person airplane bottle airplane
person banana chair banana car banana

kite bed person bed chair bed
person bench handbag bench oven bench
hot dog bicycle person bicycle truck bicycle
person bird wine glass bird book bird
truck boat person boat bicycle boat
toilet book cup book person book
pizza bottle person bottle elephant bowl
car bowl dining table bowl cat broccoli

dining table broccoli car broccoli handbag bus
frisbee bus person bus bicycle cake

dining table cake chair cake fork car
person car car cat umbrella cat
person cat airplane chair person chair

car chair bottle couch baseball glove couch
person couch person cow cake cow
bowl cow person cup bottle cup

microwave cup book dining table apple dining table
person dining table chair dog person dog
laptop dog boat elephant person elephant
bowl elephant dining table fire hydrant car fire hydrant

airplane fire hydrant sandwich fork dining table fork
car fork cup giraffe umbrella giraffe

person giraffe cup horse person horse
banana horse zebra keyboard truck keyboard
mouse keyboard person laptop bottle laptop

hair drier motorcycle book motorcycle person motorcycle
giraffe oven sink oven cup oven
laptop person car person dining table pizza
person pizza cell phone pizza airplane potted plant
person potted plant book potted plant dining table refrigerator

microwave refrigerator oven refrigerator stop sign sandwich
dining table sandwich dining table sheep person sheep

orange sheep cat sink car sink
bottle sink fork suitcase person suitcase
bowl surfboard airplane surfboard person surfboard
carrot teddy bear bowl teddy bear person teddy bear
bottle toilet car toilet sink toilet
cup train person train truck train

dining table truck refrigerator truck person truck
spoon tv chair tv car tv

baseball bat umbrella person umbrella tv zebra
giraffe zebra book zebra cardiomegaly surgical clips
edema chest tube pleural effusion chest tube pneumothorax chest tube

atelectasis chest tube cardiomegaly chest tube edema endotracheal tube
pleural effusion endotracheal tube atelectasis endotracheal tube pneumothorax endotracheal tube
cardiomegaly endotracheal tube edema pacemaker pleural effusion pacemaker
pneumothorax pacemaker atelectasis pacemaker cardiomegaly pacemaker

atelectasis sternotomy wires pneumothorax sternotomy wires cardiomegaly sternotomy wires
edema sternotomy wires pleural effusion sternotomy wires edema surgical clips

pleural effusion surgical clips atelectasis surgical clips pneumothorax surgical clips

In Figure 5, we summarize SYMBALBENCH with histograms detailing (1) the size of each dataset,
(2) the strength of the injected systematic misalignment in each dataset as measured with Cramer’s V,
(3) the proportion of image-text pairs in each dataset containing the injected textual error f , and (4)
the proportion of image-text pairs in each dataset containing the visual feature g. In Figure 6, we
provide additional descriptive statistics on the natural image subset of SYMBALBENCH consisting of
datasets derived from COCO; here, we provide histograms detailing (1) the mean size of the visual
feature in each dataset (measured as proportion of total image area) and (2) the category of systematic
misalignment (random, popular, or adversarial) as discussed in Appendix Section A.
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Figure 5: Here, we provide histograms summarizing the composition of datasets included in SYM-
BALBENCH.
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Figure 6: We provide additional descriptive statistics summarizing the composition of the 360 natural
image datasets in SYMBALBENCH. We note here that if multiple sampling strategies yield the same
predefined systematic misalignment, more than one category will be assigned to the same dataset;
thus, the total count for the systematic misalignment category histogram may exceed 360.

C IMPLEMENTATION DETAILS FOR SYMBAL

SYMBAL decomposes the systematic misalignment detection task into two stages; here, we provide
extended implementation details for each of these stages.

C.1 IMPLEMENTATION DETAILS FOR SYMBAL STAGE 1

Subtask 1: Grouping semantically-similar facts. After aggregating all textual facts in D forming
the set

⋃N
i=1 Ti, we encode each fact using a text embedding model. For natural image datasets

in SYMBALBENCH derived from COCO, we consider two options for text embedding models:
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OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021) and Qwen3-Embedding-8B (Zhang et al., 2025).
For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider three options
for text embedding models: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L
(Chen et al., 2024b), and MedSigLIP (Sellergren et al., 2025). Of these, XrayCLIP-ViT-L and
MedSigLIP are trained on radiology datasets. Embeddings are then clustered using spherical K-
Means (implemented in Faiss (Johnson et al., 2019b)), where we sweep across a range of potential
cluster numbers and select the optimal number of clusters using Silhouette distance; this approach is
motivated by prior work (Sohoni et al., 2020; Varma et al., 2025).

Subtask 2: Scoring groups by degree of misalignment. We score each cluster by computing the
average degree of alignment between constituent textual facts and paired images. We consider three
possible scoring mechanisms, explained in detail below:

• Embedding scorer: Given a textual fact and its paired image, the embedding scorer utilizes an
off-the-shelf vision-language model to compute embeddings for the text and image modalities.
Alignment is measured by computing cosine similarity. This method is motivated by metrics like
CLIPScore (Hessel et al., 2021), which have shown strong correlation with human judgments when
measuring caption quality. For natural image datasets in SYMBALBENCH derived from COCO, we
implement the embedding scorer with OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021) as the
vision-language model. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR,
we consider three options for the embedding scorer: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al.,
2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP (Sellergren et al., 2025). We note
here that we do not use the embedding scorer in reference-based settings, since reference captions
Ci in our benchmark often have substantially more information than the single textual fact f i

k ∈ Ti;
this information imbalance is challenging to capture with embedding scorers.

• Text-only scorer: Given a textual fact and its paired image, the text-only scorer first generates
a caption for the image and then prompts an LLM to determine if the textual fact is accurate
with respect to the caption. For natural image datasets in SYMBALBENCH derived from COCO,
we implement the text-only scorer using Llama-3.2-11B-Vision-Instruct (Grattafiori et al., 2024)
to generate captions and Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) to perform scoring. For
medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we implement the text-only
scorer using Maira-2 (Bannur et al., 2024) to generate captions and Qwen2.5-VL-72B-Instruct
(Qwen et al., 2025) or MedGemma-27B (Sellergren et al., 2025) to perform scoring. In the
reference-based setting, we use the ground-truth caption Ci rather than generating captions. We
use the following input prompt in order to perform scoring:

Text-Only Scorer Input Prompt

You are provided with two image captions below, denoted as [A] and [B].
[A]: <generated image caption or ground-truth reference caption>
[B]: <candidate textual fact>
Assume that [A] is the ground-truth caption. Is the content of [B] factually accurate with
respect to [A]?
Rules:
1. [B] may omit details from [A]; omission is acceptable.
2. If [B] introduces any incorrect or contradictory detail, it is inaccurate.
Please output your answer as a single digit, where 1 indicates that [B] is accurate and 0
indicates that [B] is not accurate. Do not provide anything other than the digit in your
response.

• Vision-language scorer: Given a textual fact and its paired image, the vision-language scorer
provides an MLLM with both the image and the textual fact as input; the MLLM is then tasked
with determining if the textual fact is accurate. For natural image datasets in SYMBALBENCH
derived from COCO, we utilize Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) as the MLLM. For
medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we utilize MedGemma-
27B (Sellergren et al., 2025) as the MLLM. We use the following input prompt in the reference-free
setting:
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Vision-Language Scorer Input Prompt (Reference-Free)

<image>
You are given an image. Below, a caption for the image is provided:
Caption: <candidate textual fact>
Is the caption accurate with respect to the image? Please output your answer as a single
digit, where 1 indicates that the caption is accurate and 0 indicates that the caption is not
accurate. Do not provide anything other than the digit in your response.

In the reference-based setting, we additionally provide the ground-truth reference caption to the
MLLM. We use the following prompt in the reference-based setting:

Vision-Language Scorer Input Prompt (Reference-Based)

<image>
You are provided an image as well as two image captions below, denoted as [A] and [B].
[A]: <ground-truth reference caption>
[B]: <candidate textual fact>
Assume that [A] is the ground-truth caption. Is the content of [B] accurate with respect to
the image? Please output your answer as a single digit, where 1 indicates that the caption
is accurate and 0 indicates that the caption is not accurate. Do not provide anything other
than the digit in your response.

Subtask 3: Summarizing the top-ranked group. We consider two summarization mechanisms for
identifying the unifying concept shared by textual facts in Ctext, discussed in detail below.

• Embedding summarizer: The embedding summarizer, which is used only for closed-ended settings,
computes the cosine similarity between each textual fact in Ctext and the provided options. The
cosine similarities are aggregated across all textual facts in Ctext, and the option with the highest
cosine similarity (or top-k highest cosine similarities) is selected as the output. For natural image
datasets in SYMBALBENCH derived from COCO, we use OpenCLIP-ViT-H-14-quickgelu (Ilharco
et al., 2021) to compute embeddings. For medical image datasets in SYMBALBENCH derived
from MIMIC-CXR, we consider three possible models for generating embeddings: OpenCLIP-
ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP
(Sellergren et al., 2025).

• Text-only summarizer: The text-only summarizer provides an LLM with textual facts in Ctext;
the LLM is then tasked with identifying the unifying concept. For natural image datasets in
SYMBALBENCH derived from COCO, we use Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) as
the LLM. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we consider
both Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) and MedGemma-27B (Sellergren et al., 2025)
as the LLM. In the closed-ended setting, we use the following input prompt. We then select the
most frequently identified feature (or the top-k most frequently identified features) as output.

Text-Only Summarizer Input Prompt (Closed-Ended)

Consider this image caption: “<candidate textual fact>”
From the following fixed list of options, identify the features that are present in the image.
Options (you may only choose from these): <options>
Output your answer in the following format:
Answer: comma-separated list
Rules:
1. The caption may use different words to describe features. Treat any visually equivalent
description as matching an option.
2. Do NOT include any text outside the options above.
3. Do NOT explain your reasoning.
4. If none of the features are present, output an empty list of the form: “Answer: ”
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In the open-ended setting, we use the following input prompt. Then, given the output, we prompt the
same LLM to select the most frequently identified feature (or the top-k most frequently identified
features) as output.

Text-Only Summarizer Input Prompt (Open-Ended)

Consider this image caption: “<candidate textual fact>”
Identify the visual features that are present in the image.
Output your answer in the following format:
Answer: comma-separated list

Rules:
1. Each feature should be described concisely in a single phrase.
2. Each feature must be directly visible in the image.
3. Do NOT include any text outside the identified features.
4. Do NOT explain your reasoning.
5. If no features are present, output an empty list of the form: “Answer: ”

C.2 IMPLEMENTATION DETAILS FOR SYMBAL STAGE 2

Subtask 1: Grouping semantically-similar images. For natural image datasets in SYMBALBENCH
derived from COCO, we consider two options for image embedding models: OpenCLIP-ViT-H-14-
quickgelu (Ilharco et al., 2021) and DINOv2-ViT-L-14 (Oquab et al., 2024). For medical image
datasets in SYMBALBENCH derived from MIMIC-CXR, we consider three options for image em-
bedding models: OpenCLIP-ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen
et al., 2024b), and MedSigLIP (Sellergren et al., 2025). Similar to Stage 1, embeddings are clustered
using spherical K-Means, where we sweep across a range of potential cluster numbers and select the
optimal number of clusters using Silhouette distance.

Subtask 2: Scoring groups by degree of misalignment. We score each cluster by computing the
mean degree of misalignment between images and paired textual facts in Ctext. We consider the
same scoring mechanisms as in Stage 1.

Subtask 3: Summarizing the top-ranked group. We consider three summarization mechanisms for
identifying the unifying concept shared by images in Cimage, described in detail below.

• Embedding summarizer: The embedding summarizer, which is used only for closed-ended settings,
computes the cosine similarity between each image in Cimage and the provided options. The
cosine similarities are aggregated across all images in Cimage, and the option with the highest
cosine similarity (or top-k highest cosine similarities) is selected as the output. For natural image
datasets in SYMBALBENCH derived from COCO, we use OpenCLIP-ViT-H-14-quickgelu (Ilharco
et al., 2021) to compute embeddings. For medical image datasets in SYMBALBENCH derived
from MIMIC-CXR, we consider three possible models for generating embeddings: OpenCLIP-
ViT-H-14-quickgelu (Ilharco et al., 2021), XRayCLIP-ViT-L (Chen et al., 2024b), and MedSigLIP
(Sellergren et al., 2025).

• Text-only summarizer: The text-only summarizer generates a caption for each image in Cimage;
then, an LLM is tasked with identifying the unifying concept. For natural image datasets in
SYMBALBENCH derived from COCO, captions are generated using Llama-3.2–1B-Vision-Instruct
Grattafiori et al. (2024). For medical image datasets in SYMBALBENCH, captions are generated
using MAIRA-2 Bannur et al. (2024). In reference-based settings, we use the ground-truth reference
captions rather than generating captions. We use the same prompts and models as discussed above
in Stage 1, Subtask 3.

• Vision-language summarizer: The vision-language summarizer provides an MLLM with images in
Cimage; then, the MLLM is prompted to identify the unifying concept. For natural image datasets
in SYMBALBENCH derived from COCO, we use Qwen2.5-VL-72B-Instruct (Qwen et al., 2025) as
the MLLM. For medical image datasets in SYMBALBENCH derived from MIMIC-CXR, we use
MedGemma-27B (Sellergren et al., 2025) as the MLLM. For reference-based settings, we also
provide the ground-truth reference caption to the MLLM. In the closed-ended setting, we use the
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following input prompt. We then select the most frequently-identified feature (or the top-k most
frequently identified features) as output:

Vision-Language Summarizer Input Prompt (Closed-Ended)

<image>
Consider this image.
From the following fixed list of options, identify the features that are present in the image.
Options (you may only choose from these): <options>
Output your answer in the following format:
Answer: comma-separated list
Rules:
1. Do NOT include any text outside the options above.
2. Do NOT explain your reasoning.
3. If none of the features are present, output an empty list of the form: ”Answer: ”

In the open-ended setting, we use the following input prompt. Then, given the outputs, we prompt
the same MLLM to select the most frequently identified feature (or the top-k most frequently
identified features) as output.

Vision-Language Summarizer Input Prompt (Open-Ended)

<image>
Consider this image.

Identify the visual features that are present in the image.
Output your answer in the following format:
Answer: comma-separated list
Rules:
1. Each feature should be described concisely in a single phrase.
2. Each feature must be directly visible in the image.
3. Do NOT include any text outside the identified features.
4. Do NOT explain your reasoning.
5. If no features are present, output an empty list of the form: “Answer: ”
6. Include a maximum of ten features.

D EXTENDED RESULTS

In Table 4, we provide an extended version of Table 1, extending to the top-ten compositions. Note
that Table 4 only includes compositions that can support all four SYMBALBENCH experimental
settings; for instance, embedding-based summarizers are excluded from this table due to lack of
support on open-ended settings.

In Table 5, we provide an extended version of Table 2, extending to the top-ten compositions. Again,
Table 5 only includes compositions that can support all four SYMBALBENCH experimental settings.

In Table 6, we provide a tabular version of Figure 3 stratified by domain.

We use the following input prompt for our direct-prompting baselines in the open-ended setting:

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Direct-Prompting Baseline Input Prompt (Open-Ended)

You are provided with a dataset, where each sample consists of the following two components:

Reference caption: A ground-truth caption describing the content of an image
Model-generated caption: A caption generated by an AI model

The model-generated captions may have systematic errors, where a recurring textual error is
closely associated with the presence of a specific visual feature in the paired image. Your
task is to identify the recurring textual error and the associated visual feature.

Output your answer in the following format, where each comma-separated list consists of
your top-five predictions in order:
Textual Error: comma-separated list
Visual Feature: comma-separated list

Rules:
1. Each visual feature must be directly visible in the image.
2. Do NOT include any text outside of the answer.
3. Do NOT explain your reasoning.

Dataset: <samples from dataset with images expressed in text-form>

We use the following input prompt for our direct-prompting baselines in the closed-ended setting:

Direct-Prompting Baseline Input Prompt (Closed-Ended)

You are provided with a dataset, where each sample consists of the following two components:

Reference caption: A ground-truth caption describing the content of an image
Model-generated caption: A caption generated by an AI model

The model-generated captions may have systematic errors, where a recurring textual error is
closely associated with the presence of a specific visual feature in the paired image. Your
task is to identify the recurring textual error and the associated visual feature.

Output your answer in the following format, where each comma-separated list consists of
your top-five predictions in order:
Textual Error: comma-separated list
Visual Feature: comma-separated list

Select the textual error from the following list of options (you may only choose from these):
<textual choices>
Select the visual feature from the following list of options (you may only choose from these):
<visual choices>

Rules:
1. Do NOT include any text outside of the options above.
2. Do NOT explain your reasoning.

Dataset: <samples from dataset with images expressed in text-form>

In Figure 7, we extend Figure 4 by providing a breakdown of SYMBAL performance across various
categories of systematic misalignments in the natural image subset of SYMBALBENCH.
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Figure 7: We provide a breakdown of SYMBAL performance across various categories of systematic
misalignments in the natural image subset of SYMBALBENCH.

Table 4: We consider the role of various text embedding models, alignment scorers, and summarizers
on the performance of Stage 1 of SYMBAL. Here, VL refers to the vision-language scorer and
MG-27B refers to MedGemma-27B.

Reference-Free Reference-Based
Closed-Ended Open-Ended Closed-Ended Open-Ended

Text Embedding Alignment Scorer Summarizer Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

N
at

ur
al

Qwen3-8B VL (Qwen-72B) Text (Qwen-72B) 93.9 94.4 92.8 94.2 84.4 85.3 80.8 82.8
OpenCLIP VL (Qwen-72B) Text (Qwen-72B) 93.9 94.4 92.8 93.9 87.2 88.6 86.1 87.8
Qwen3-8B Text (Qwen-72B) Text (Qwen-72B) 83.9 85.8 82.8 85.0 84.2 85.3 81.9 83.9
OpenCLIP Text (Qwen-72B) Text (Qwen-72B) 66.1 68.6 64.2 67.2 70.6 72.2 67.5 71.4

M
ed

ic
al

XRayCLIP Text (MG-27B) Text (MG-27B) 58.3 – 51.7 75.0 100.0 – 88.3 95.0
XRayCLIP Text (MG-27B) Text (Qwen-72B) 56.7 – 51.7 73.3 100.0 – 100.0 100.0
XRayCLIP Text (Qwen-72B) Text (MG-27B) 31.7 – 26.7 58.3 98.3 – 90.0 93.3
MedSigLIP Text (MG-27B) Text (MG-27B) 45.0 – 30.0 53.3 100.0 – 83.3 100.0
XRayCLIP VL (MG-27B) Text (MG-27B) 36.7 – 26.7 48.3 93.3 – 85.0 90.0
XRayCLIP Text (Qwen-72B) Text (Qwen-72B) 33.3 – 28.3 46.7 100.0 – 98.3 98.3
OpenCLIP Text (MG-27B) Text (MG-27B) 43.3 – 28.3 46.7 100.0 – 88.3 98.3
OpenCLIP Text (MG-27B) Text (Qwen-72B) 41.7 – 36.7 45.0 100.0 – 98.3 100.0
MedSigLIP Text (MG-27B) Text (Qwen-72B) 43.3 – 36.7 43.3 100.0 – 98.3 100.0
MedSigLIP Text (Qwen-72B) Text (MG-27B) 28.3 – 16.7 35.0 100.0 – 86.7 98.3

E APPLYING SYMBAL TO REAL-WORLD MLLM-GENERATED CAPTIONS

As a case study, we extend our evaluations on SYMBALBENCH to a real-world off-the-shelf MLLM:
Llava1.5-7B (Liu et al., 2023). We first utilize Llava1.5-7B to generate captions for the COCO
dataset (2017 val split); we then apply SYMBAL (reference-free, open-ended) to detect systematic
misalignments. Below, we list several identified systematic misalignments:

• SYMBAL detects that erroneous references to a “TV” (f̂ ) in captions are often systematically
associated with the presence of a “desk”, “computer monitor”, and/or “keyboard” (ĝ) in the scene.

• SYMBAL detects that erroneous references to a “handbag on the ground” (f̂ ) in captions are often
systematically associated with the presence of a “bus” (ĝ) in a scene.

• SYMBAL detects that erroneous references to a “chair” (f̂ ) in captions are often systematically
associated with the presence of a “television” (ĝ) in a scene.

In order to verify these findings, we provide visual examples of image-caption pairs with SYMBAL-
identified systematic misalignments in Figure 8, with the identified erroneous textual fact in each
caption highlighted in red. Ultimately, knowledge of these systematic misalignments can aid users
with understanding limitations of datasets with MLLM-generated captions as well as aid model
developers with improving performance of MLLMs.
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Table 5: We consider the role of various image embedding models, alignment scorers, and summariz-
ers on the performance of Stage 2 of SYMBAL. Here, VL refers to the vision-language scorer, Emb.
refers to the embedding scorer, and MG-27B refers to MedGemma-27B.

Reference-Free Reference-Based
Closed-Ended Open-Ended Closed-Ended Open-Ended

Img Embedding Alignment Scorer Summarizer Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

N
at

ur
al

OpenCLIP VL (Qwen-72B) Text (Qwen-72B) 52.2 71.1 49.7 69.7 42.5 60.3 41.9 52.2
OpenCLIP Emb. (OpenCLIP) VL (Qwen-72B) 53.9 71.4 48.1 63.9 45.6 57.8 42.5 55.6
OpenCLIP Emb. (OpenCLIP) Text (Qwen-72B) 48.6 67.5 47.8 62.8 45.3 59.2 43.9 55.8
OpenCLIP VL (Qwen-72B) VL (Qwen-72B) 53.9 70.6 45.8 62.5 44.4 59.2 38.9 52.2
DINOv2 VL (Qwen-72B) Text (Qwen-72B) 46.9 64.2 45.3 61.4 41.4 57.5 38.6 54.7
DINOv2 Text (Qwen-72B) Text (Qwen-72B) 45.6 65.0 43.1 60.8 40.3 58.1 41.1 56.4
OpenCLIP Text (Qwen-72B) Text (Qwen-72B) 51.9 69.2 48.1 60.6 46.4 59.2 45.6 58.1
OpenCLIP Text (Qwen-72B) VL (Qwen-72B) 55.0 72.8 44.2 60.3 48.1 62.2 43.9 56.7
DINOv2 Text (Qwen-72B) VL (Qwen-72B) 48.6 70.6 43.6 59.7 46.7 61.4 39.7 54.2
DINOv2 Embedding (OpenCLIP) VL (Qwen-72B) 54.2 69.2 43.6 59.4 47.2 60.8 39.7 53.3

M
ed

ic
al

XRayCLIP Emb. (MedSigLIP) VL (MG-27B) 26.7 – 11.7 36.7 41.7 – 28.3 53.3
MedSigLIP Emb. (MedSigLIP) VL (MG-27B) 23.3 – 11.7 31.7 40.0 – 25.0 46.7
OpenCLIP Emb. (MedSigLIP) VL (MG-27B) 23.3 – 13.3 28.3 35.0 – 20.0 46.7
MedSigLIP Emb. (XRayCLIP) VL (MG-27B) 25.0 – 10.0 28.3 50.0 – 33.3 60.0
XRayCLIP VL (MG-27B) VL (MG-27B) 21.7 – 6.7 28.3 61.7 – 43.3 65.0
MedSigLIP Text (MG-27B) VL (MG-27B) 25.0 – 8.3 26.7 61.7 – 43.3 65.0
OpenCLIP Text (MG-27B) VL (MG-27B) 13.3 – 10.0 25.0 48.3 – 23.3 63.3
OpenCLIP Text (Qwen-72B) VL (MG-27B) 21.7 – 3.3 25.0 46.7 – 30.0 61.7
MedSigLIP Embedding (MedSigLIP) Text (Qwen-72B) 15.0 – 15.0 25.0 46.7 – 15.0 40.0
OpenCLIP Embedding (MedSigLIP) Text (Qwen-72B) 18.3 – 13.3 23.3 46.7 – 16.7 48.3

Table 6: End-to-end performance across SYMBALBENCH, stratified by domain.

Reference-Free Reference-Based
Closed-Ended Open-Ended Closed-Ended Open-Ended

Method Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

N
at

ur
al

Random 0.0 0.6 – – 0.0 0.6 – –
Llama3.3-70B 0.0 1.7 0.3 0.3 0.6 2.5 0.6 1.4

Qwen2.5-VL-72B 1.4 2.8 0.0 1.9 1.7 3.3 0.6 1.1
GPT-OSS 120B 11.7 16.4 9.2 13.9 16.1 21.4 10.8 17.2
SYMBAL (Ours) 52.2 71.1 49.2 69.7 42.5 60.3 41.1 51.9

M
ed

ic
al

Random 3.3 – – – 3.3 – – –
Llama3.3-70B 3.3 – 0.0 8.3 5.0 – 0.0 5.0

MedGemma-27B 10.0 – 0.0 1.7 5.0 – 0.0 0.0
Qwen2.5-VL-72B 10.0 – 3.3 5.0 13.3 – 0.0 1.7
GPT-OSS 120B 6.7 – 1.7 21.7 23.3 – 0.0 11.7
SYMBAL (Ours) 18.3 – 6.7 28.3 41.7 – 25.0 48.3
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s The image features a well-organized home 
office with a desk and a computer setup. On 
the desk, there is a laptop computer, a 
keyboard, and a mouse. The desk is 
accompanied by a chair, which is positioned in 
front of the desk. In the room, there are 
several books scattered around, with some on 
the floor and others on the desk. A potted 
plant  is placed in the corner of the room, 
adding a touch of greenery to the space. 
Additionally, a TV is mounted on the  wall, 
providing entertainment options for the 
home office.

The image displays a small, cluttered office 
space with a wooden desk. On the desk, there 
is a laptop computer, a keyboard, and a 
mouse. A monitor is also present, positioned 
above the laptop. A chair is placed in front of 
the desk, ready for someone to sit and work. 
The office is filled with various items, 
including a TV mounted on the wall, a cell 
phone, and a couple of books. There are also 
two remote controls placed on the desk. In 
addition to the electronics, there are two 
bottles and a cup, likely containing beverages 
for the person working in the office

The image features a wooden desk with a 
laptop and a desktop computer sitting on it. 
The laptop is placed on the left side of the 
desk, while the desktop computer is situated 
towards the right. Both computers are 
connected to the same keyboard, which is 
located in the middle of the desk. 
Additionally, there is a mouse on the right 
side of the desk, and a cell phone can be seen 
on the left side. A TV is mounted on the wall 
above the desk, providing a source of 
entertainment or information for the user

The image features a large computer monitor 
sitting on a desk, with a keyboard and mouse 
placed in front of it. The monitor is turned on, 
displaying a beautiful landscape image. The 
keyboard and mouse are positioned close to 
the  monitor, indicating that they are ready 
for use. In addition to the main computer 
setup, there are several other  items on the 
desk. A cell phone can be seen on the left side 
of the desk, while a book is placed towards 
the right side. A remote control is also 
present, located near the center of the desk. 
A TV is mounted on the wall above the desk, 
providing a more comprehensive 
entertainment setup
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s The image features a pink bus parked on the 
side of a street, likely at a bus stop. The bus is 
adorned with a large advertisement on its 
side, possibly promoting a shopping center. 
Several people can be seen around the bus, 
with some standing closer to the bus stop and 
others further away. There are two handbags 
visible in the scene, one near the center of 
the image and the other closer to the right 
side. The presence of these handbags 
suggests that the people might be waiting for 
the bus or have just disembarked from it.

The image features a busy street with a green 
bus driving down the road, surrounded by 
various vehicles. There are two other buses in 
the scene, one on the left side and another on 
the right side of the street. A truck can also be 
seen on the right side of the street. Several 
people are present in the scene, with some 
standing near the buses and others walking 
along the street. There are two traffic lights 
visible in the image, one on the left side and 
another on the right side of the street, 
ensuring the smooth flow of traffic. 
Additionally, there are two handbags in the 
scene, one near the left side of the street 
and the other closer to the center.

The image features a group of people 
standing in front of a bus, likely waiting to 
board or disembark. There are at least nine 
people visible in the scene, with some 
standing closer to the bus and others further 
away. The bus is parked on the left side of the 
image, occupying a significant portion of the 
scene. In addition to the bus, there are 
several cars visible in the background, with 
one car on the left side of the image and two 
cars on the right side. A handbag can be seen 
placed on the ground near the center of the 
scene, possibly belonging to one of the 
passengers.

The image features a white and blue city bus 
parked on the side of a street. The bus is 
stopped at a bus stop, and the driver is visible 
through the windshield. The bus stop has a 
bench nearby, providing a place for 
passengers to wait. There are several people 
in the scene, with one person standing close 
to the bus, another person further away, and 
two more individuals closer to the edge of the 
image. A handbag can be seen placed on the 
ground near the first person, possibly 
belonging to a passenger waiting for the bus.
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s The image features a black and white cat 
sitting on top of a wooden TV stand in a living 
room. The cat is positioned in the center of 
the scene, with the TV screen visible in the 
background. The room is furnished with a 
chair located to the left side of the cat and a 
couch situated on the right side. There are 
also two books placed on the floor, one near 
the left side of the room and the other closer 
to the right side. Additionally, a remote 
control can be seen on the floor, likely used to 
operate the television.

The image features a living room with a 
television set placed on a wooden stand. A cat 
is lying on the floor, appearing to be watching 
the TV. Another cat is sitting on the floor, 
seemingly engaged with the television as 
well. In the room, there are two chairs, one 
located near the left side of the television 
and the other closer to the right side. A 
remote control can be seen on the floor, 
possibly used to operate the television. 
Additionally, there is a book placed on the 
right side of the room, and a vase is located 
near the center of the scene.

The image features a living room with a 
television set placed on a wooden stand. The 
TV is positioned in the center of the room, 
surrounded by various books on a bookshelf. 
The bookshelf is filled with numerous books, 
creating a  cozy atmosphere. In addition to 
the television and bookshelf, there are two 
chairs in the room, one located on the left 
side and the other on the right side. A person 
can be seen in the room, standing near the 
left side of the television. The room also has a 
Christmas tree, adding a festive touch to the 
space.

The image features a cluttered living room 
with a television set placed on a stand in the 
center. The room is filled with various items, 
including a large collection of books scattered 
throughout the space. Some books are placed 
on the floor, while others are stacked on 
shelves or placed on surfaces. In addition to 
the books, there are several figurines and 
knick-knacks, such as a clock, a vase, and a 
cup, adding to the cluttered appearance of 
the room. A chair can be seen in the 
background, and a potted plant is placed 
near the right side of the room. The overall 
atmosphere of the living room is busy and 
filled with various items, creating a cozy yet 
disorganized space 

Figure 8: Examples of image-caption pairs with SYMBAL-identified systematic misalignments are
shown here, with the identified erroneous textual fact in each caption highlighted in red. [Row
1] SYMBAL detects that erroneous references to a “TV” (f̂ ) in captions are often systematically
associated with the presence of a “desk”, “computer monitor”, and/or “keyboard” (ĝ) in the scene.
[Row 2] SYMBAL detects that erroneous references to a “handbag on the ground” (f̂ ) in captions
are often systematically associated with the presence of a “bus” (ĝ) in a scene. [Row 3] SYMBAL

detects that erroneous references to a “chair” (f̂ ) in captions are often systematically associated with
the presence of a “television” (ĝ) in a scene.
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