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ABSTRACT

Conformal Prediction is a distribution-free statistical framework that outputs a set
of possible labels to capture the predictive uncertainty. In this work, we show that
existing conformal prediction methods may generate inefficient sets arising from
the inclusion of redundant labels. To mitigate this issue, we propose a novel con-
formal prediction algorithm, Post-Calibration Truncated Conformal Prediction
(PoT-CP), which limits the size of the prediction sets generated by existing con-
formal prediction methods through a maximum rank cutoff. Specifically, PoT-CP
determines this cutoff by minimizing a truncation rank that preserves the marginal
coverage of the calibration dataset. The key idea is to eliminate classes with exces-
sive predictive uncertainty, allowing PoT-CP to shorten the prediction sets. Theo-
retically, we provide the asymptotic validity of marginal coverage for PoT-CP and
demonstrate the asymptotic conditional coverage equivalence between PoT-CP
and the standard conformal prediction algorithm. Extensive experiments demon-
strate that PoT-CP can effectively reduce prediction set sizes while maintaining
the stable conditional coverage of various conformal prediction algorithms across
different classification tasks.

1 INTRODUCTION

Modern neural networks, widely deployed in many high-stakes tasks such as autonomous driving
(Bojarski et al., 2016), medical diagnostics (Caruana et al., 2015; Vazquez & Facelli, 2022), and
financial decision making (Greenberg & Hershfield, 2019), frequently struggle with unreliable and
unexplainable predictions. Therefore, these high-stakes applications require not only precise point
predictions but also accurate quantification of predictive uncertainty. In such setting, Conformal
Prediction (Vovk et al., 2005; Shafer & Vovk, 2008; Balasubramanian et al., 2014; Angelopoulos
& Bates, 2021; Manokhin, 2022) provides a promising approach with marginal coverage guaran-
tee to capture predictive uncertainty. Specifically, conformal prediction utilizes a non-conformity
score function to produce a finite prediction set, including the ground-truth label with a specified
confidence level, for an unseen input data point.

In addition to the marginal coverage, the length of the prediction set refers to the efficiency. Higher
efficiency (i.e., smaller prediction sets) could speed up the decision-making process or assist users
in better assessing the model’s reliability (Kagita et al., 2017; Cresswell et al., 2024; De Toni et al.,
2024). For instance, in medical diagnosis, smaller prediction sets enable doctors to make faster
and more focused decisions while maintaining uncertainty awareness, and in autonomous driving,
compact prediction sets allow systems to react more quickly while preserving safety guarantees.
Thus, improved efficiency could enhance the practicality of CP in modern machine learning sys-
tems, bridging the gap between theoretical guarantees and real-world deployability. Beyond effi-
ciency, conditional coverage measures the valid coverage for each data point group, serving as a
stronger criterion than marginal coverage. To enhance conditional coverage, Adaptive Prediction
Sets (APS) (Romano et al., 2020) compute the non-conformity scores by accumulating sorted soft-
max probabilities in descending order, which often results in low efficiency. Then, Regularized
Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2020) improves efficiency by penalizing
non-conformity scores for unlikely classes, but this improvement is achieved at the expense of con-
ditional coverage, illustrating the inherent trade-off. This motivates our question: Is it possible to
reduce the length of prediction sets and maintain a stable conditional coverage?
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In this work, we empirically show that current non-conformity scores typically lead to inefficient
prediction sets, containing redundant classes (see Section 3.1). Specifically, the prediction sets
that include the correct labels tend to encompass classes with greater uncertainty compared to the
ground-truth labels, thereby undermining efficiency. Furthermore, in prediction sets that exclude the
ground-truth label, all included classes are essentially redundant. To address this issue, a potential
approach is to remove classes with higher uncertainty than the true label in prediction sets that
contain the correct label and to consider prediction sets without the true label as empty. However,
determining the appropriate truncation for a test instance poses a challenge, as access to ground truth
labels is inherently impossible.

To this end, we propose a novel conformal prediction algorithm, Post-Calibration Truncated Confor-
mal Prediction (PoT-CP). Specifically, after employing the existing conformal calibration algorithm,
PoT-CP searches for a minimum truncation rank that maintains the marginal coverage of the cali-
bration set. Then, when getting a prediction set from the existing conformal prediction algorithm,
PoT-CP truncates the prediction set by the truncation rank. The fundamental principle of PoT-CP is
to exclude classes with excessive predictive uncertainty that can be removed without compromising
the coverage guarantee. To theoretically understand PoT-CP, we prove that it achieves asymptotic
validity in terms of marginal coverage while also asymptotically preserving conditional coverage.
Furthermore, we theoretically demonstrate that PoT-CP consistently decreases the length of predic-
tion sets, thereby enhancing their efficiency.

Extensive experiments demonstrate that our method could improve the performance of various ex-
isting conformal prediction methods. First, PoT-CP could improve the efficiency of prediction sets
generated by different scoring functions within the split conformal prediction framework while pre-
serving conditional coverage. For example, on the ImageNet dataset with APS, PoT-CP reduces the
set size of 6.3153 to 5.4801, while maintaining a stable conditional coverage. Second, we show that
our method not only elevates the performance of different score functions but also enhances other
conformal prediction algorithms and general classification tasks.

Our contributions are summarized as follows:

1. We empirically demonstrate that prediction sets from current conformal prediction methods
often contain extra classes, resulting in reduced efficiency. Specifically, the over-covered
prediction sets contain classes with higher uncertainty compared to the ground-truth label,
while under-covered prediction sets should remain empty, devoid of any extraneous label.

2. We introduce a novel conformal prediction algorithm, Post-Calibration Truncated Confor-
mal Prediction (PoT-CP). The key idea is to eliminate classes with high uncertainty in the
prediction sets. Theoretically, we prove the asymptotic validity of marginal coverage and
asymptotic conditional coverage equality.

3. We conduct extensive evaluations to show that PoT-CP improves the performance of exist-
ing score functions and various conformal prediction procedures. specifically, we validate
that our method can enhance the efficiency of class-wise conformal prediction (Shi et al.,
2013) and cluster conformal prediction (Dey et al., 2024).

2 PRELIMINARY

In this work, we consider multi-class classification with K classes. Let X ⊂ Rd be the input space
and Y := {1, . . . ,K} be the label space. We use (X,Y ) ∼ PXY to denote a random data pair
satisfying a joint data distribution PXY and f : X → RK to denote a classification neural network.
Thus, the classifier π̂ : X → ∆K−1is defined as σ ◦ f , where ∆K−1 is a (K-1)-dimensional
probability simplex and σ is a normalization function such as the softmax function. Ideally, π̂y(x)
serves as an approximation to the conditional probability of class y given the image feature x, i.e.,
P (Y = y|X = x). Then, the model prediction is generally made as: ŷ = argmax

y∈Y
π̂y(x).

Conformal Prediction. Conformal prediction (Balasubramanian et al., 2014; Manokhin, 2022; An-
gelopoulos et al., 2023) is a statistical framework that generates uncertainty sets containing ground-
truth label with a desired probability. In this paper, we mainly focus on Split Conformal Prediction
which is the most widely-used version of the conformal prediction procedure. Specifically, split
conformal prediction divides a given dataset into two disjoint subsets: one for training the base clas-
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sifier and the other for conformal calibration. We next outline the main process of split conformal
prediction:

1. Divide a given dataset into two disjoint subsets: a training fold Dtr and a calibration fold
Dcal, with |Dcal| being n;

2. Train a deep learning model on the training dataset Dtr, and define a non-conformity score
function V (x, y);

3. Compute Q̂1−α as the ⌈(n+1)(1−α)⌉
n quantile of the calibration scores

{V (xi, yi) : (xi, yi) ∈ Dcal}, where Q̂1−α is defined by

Q̂1−α := inf{Q ∈ R :
|{i : V (xi, yi) ≤ Q}

n
≥ ⌈(n+ 1)(1− α)⌉

n
};

4. Use the conformal threshold Q̂1−α to generate a prediction set for a new instance xn+1:

C(xn+1) = {y ∈ Y : V (xn+1, y) ≤ Q̂1−α}. (1)

In particular, the score V (x, y) can represent the model’s predictive uncertainty for the label y. For
instance, V (x, y2) > V (x, y1) indicates that the model is more confident in predicting y1 than y2
for the instance x. Moreover, under the assumption of independent and identically distributed (i.i.d.)
data, the prediction set satisfies a formal coverage guarantee for any deep learning model and data
distribution. The detailed coverage guarantee is presented below.
Theorem 1. (Conformal coverage guarantee; Papadopoulos et al. (2002)). Suppose {(Xi, Yi)}ni=1

and (Xn+1, Yn+1) are i.i.d., and define Q̂1−α as in step 3 above and C (Xn+1) as in step 4 above.
Then the following holds:

P (Yn+1 ∈ C (Xn+1)) ≥ 1− α.

Actually, this inequation is known as marginal coverage since it holds in expectation unconditionally
across all data points. Furthermore, the validity of marginal coverage shown in Theorem 1 still holds
on the assumption of exchangeability (Lei et al., 2018; Tibshirani et al., 2019). The i.i.d. assumption
in Theorem 1 is stricter than the assumption of exchangeability that is practicable in the real world.

In the literature on conformal prediction, conditional coverage is considered a more strict criterion
than the marginal coverage. Object-conditional coverage, defined as P(Yn+1 ∈ C(x)|Xn+1) ≥ 1−
α, is recognized as a common instance of conditional coverage. Although exact object-conditional
coverage is theoretically unachievable (Vovk, 2012; Lei & Wasserman, 2014), certain conformal
prediction algorithms aim to approximate it. For instance, Adaptive Prediction Sets (APS) (Romano
et al., 2020) approximates object-conditional coverage by calculating a non-conformity score based
on the cumulative sum of sorted softmax probabilities. Formally, the definition of APS is given by:

Vaps(x, y, u; π̂) :=
∑
y′∈Y

π̂y′(x)1(rf (x, y
′) < rf (x, y)) + u · π̂y(x), (2)

where rf (x, y) denotes the rank of π̂y(x) among the descending softmax probabilities, and u is an
independent random variable satisfying a uniform distribution on [0, 1]. Although APS demonstrates
excellent conditional coverage performance, its efficiency is often significantly lower compared to
other methods (Angelopoulos et al., 2020; Ding et al., 2024).

3 METHOD

In this section, we give an empirical analysis of the prediction sets from the calibration set. Mo-
tivated by this analysis, we explain the proposed method, Post-Calibration Truncated Conformal
Prediction (PoT-CP), and present its asymptotic analysis along with its provable improvement in
predictive efficiency over split conformal prediction.

3.1 MOTIVATION

We start with a motivating discussion about the length of prediction sets. As shown in Equation 1,
for a given test input xn+1, the prediction set includes the labels whose non-conformity score is
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Figure 1: The redundancy analysis of prediction sets over different scores. “p” represents the pro-
portion of the corresponding part in the total testing dataset. The blue region represents the under-
covered prediction sets and the red region represents the over-covered prediction sets.

lower than Q̂a−α. However, some of these labels may have higher predictive uncertainty than the
ground truth label, making their inclusion in the prediction set unnecessary. The optimal prediction
set should be the smallest set that includes the ground truth label. Similarly, if the prediction set
C(xn+1) is under-covered, meaning yn+1 /∈ C(xn+1), the entire prediction set becomes redundant.
In this case, the optimal prediction set would be empty, i.e., |C(x)| = 0. This analysis motivates a
closer investigation of the redundant labels within prediction sets. To this end, we introduce a new
metric to quantify the redundancy of prediction sets. Formally, we define redundancy as follows:

Re(x, y) :=

{
−1 ∗ |C(x)|, if |C(x)| − rV (x, y) < 0,
|C(x)| − rV (x, y), else,

where y represents the ground truth label of input x and rV (xi, yi) denote the rank of V (xi, yi)
among of the ascending non-conformity scores {V (xi, y

′) : y′ ∈ Y}.

Following this, we conduct experiments on split conformal prediction using four score functions
based on softmax probabilities: APS, RAPS, Threshold conformal prediction (THR)(Sadinle et al.,
2019) and Sorted Adaptive Prediction Sets (SAPS) (Huang et al., 2024). Detailed descriptions of
these score functions are provided in Appendix A. Our experiments are conducted on the Ima-
geNet (Deng et al., 2009) dataset, using the pre-trained Inception model from TorchVision (Paszke
et al., 2019), with a target error rate of 10% (i.e., α = 0.1). For RAPS and SAPS, we tune the
hyper-parameters based on the set size. Further details of experiments are provided in Appendix B.

The redundancies of prediction sets. In Figure 1, we illustrate the density distribution of redun-
dancies across different score functions. The results show that the majority of prediction sets for
various score functions include redundant classes and the proposition of over-covered prediction
sets generally is greater than that of under-covered prediction sets. For example, regarding SAPS,
the proportion of redundant prediction sets is nearly one. In addition, the length of redundant pre-
diction sets, particularly the under-covered ones, is notably large. For instance, the redundant size
in the over-covered prediction sets for APS reaches as high as 750.

From the results, we can design a truncation algorithm that reduces the size of the prediction set
while guaranteeing valid marginal coverage. Specifically, for prediction sets that exhibit under-
coverage, we can assign them as null sets without compromising the marginal coverage. For over-
covered prediction sets, we can truncate the size of the prediction set according to the rank of the
ground-truth label. While this idealized truncation approach offers clear benefits, the unknown
ground truth labels for test examples make it infeasible. Building on the core principle of rank-
based truncation, we propose a post-calibration truncation algorithm that determines appropriate set
size cutoffs using information from the split conformal calibration procedure.

3.2 POST-CALIBRATION TRUNCATED CONFORMAL PREDICTION

Motivated by the previous analysis, we propose a novel conformal calibration algorithm, Post-
Calibration Truncated Conformal Prediction (PoT-CP), to find an appropriate maximum set size.
The key idea behind our method is to truncate the classes with higher uncertainty than that of the
ground-truth label in the prediction sets as much as possible. Specifically, after applying the split
conformal prediction algorithm shown in Section 2, we utilize the calibration data to find the max-
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Figure 2: The diagram for Post-Calibration Truncation Conformal Predictor. In the prediction sets,
classes with greater uncertainty are assigned a higher rank and the words in green represent the
ground-truth label. “r∗” represents the truncation rank defined as in Eq. 3.

imum rank of samples whose ground truth label’s score is smaller than Q̂1−α. Formally, we define
the conformal truncation rank by

r∗ = inf{r ∈ Z+ :
|{i : V (xi, yi) ≤ Q̂1−α} ∩ {i : rV (xi, yi) ≤ r}|

n
≥ ⌈(n+ 1)(1− α)⌉

n
}, (3)

Then, the truncated prediction set can be given by

CT (x) = {y ∈ Y : V (x, y) ≤ Q̂1−α, rV (x, y) ≤ r∗}. (4)

Particularly, for the non-conformity score functions based on softmax probabilities such as THR
and APS, rV (x, y) is equivalent to rf (x, y). This implies that a lower conditional probability π̂y(x)
corresponds to greater uncertainty in assigning x to class y.

By using r∗ to truncate the prediction sets, we can discard the redundant classes in the prediction sets
and maintain the marginal coverage. An illustration of the PoT-CP approach is shown in Figure 2.
We now provide some theoretical analysis of PoT-CP under Assumption 1.
Assumption 1. Supposed that {(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)} ∈ Pn+1

XY are i.i.d. random
variables, where {(Xi, Yi)}ni=1 is a calibration set and (Xn+1, Yn+1) is a test example.
Lemma 1. Suppose Assumption 1 holds. C(x) and CT (x) are defined as in Equation 1 and Equa-
tion 4, respectively. Then, we can have that

P( lim
n→∞

P(Yn+1 ∈ CT (Xn+1)|Yn+1 ∈ C(Xn+1)) = 1) = 1.

Moreover, P(Yn+1 ∈ CT (Xn+1)|Yn+1 ∈ C(Xn+1)) approaches 1 as n → ∞, at a rate of
√

lnn
n .

Given the above Lemma 1, we observe that as the calibration size approaches infinity, the probability
that the truncated prediction set excludes the ground-truth label converges to zero. Therefore, PoT-
CP preserves the marginal coverage. In the following, we further explore the asymptotic equivalence
between C(Xn+1) and CT (Xn+1).
Theorem 2. (Asymptotic Coverage Equality) Suppose Assumption 1 holds. C(x) and CT (x) are
defined as in Equation 1 and Equation 4. Then, as n → ∞, we have

P(Yn+1 ∈ C(Xn+1) ⇐⇒ Yn+1 ∈ CT (Xn+1))
a.s.→ 1.

This indicates that Yn+1 ∈ C(Xn+1) and Yn+1 ∈ CT (Xn+1) are asymptotically equivalent.
Corollary 1. (Asymptotic Validity of Marginal Coverage) From Theorem 2, we conclude that
P(limn→∞ P(Yn+1 ∈ CT (Xn+1) ≥ 1− α)) = 1.
Corollary 2. (Asymptotic conditional-coverage Equality) Suppose Assumption 1 holds. For a test
example (Xn+1, Yn+1), the conditional coverage of C(x) and CT (Xn+1) are asymptotically equiv-
alent. Specifically, we have the following
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1. Asymptotically Object-conditional coverage: as n → ∞,

P(P(Yn+1 ∈ C(x)|Xn+1 = x) = P(Yn+1 ∈ CT (x)|Xn+1 = x))
a.s.→ 1

2. Asymptotically class-conditional coverage: as n → ∞,

P(P(Yn+1 ∈ C(x)|Yn+1 = y) = P(Yn+1 ∈ CT (x)|Yn+1 = y))
a.s.→ 1

Moreover, we can get that the length of the truncated prediction set CT (x) is not greater than that
of the standard prediction sets, i.e., |CT (Xn+1)| ≤ |C(Xn+1)|. The proofs of the theorems and
corollaries mentioned above can be found in Appendix C. From Corollary 1 and Corollary 2, we
conclude that the truncated prediction set asymptotically equals the prediction set generated by split
conformal prediction. We emphasize that PoT-CP is a general framework that can be applied to
other conformal prediction algorithms, such as Class-wise Conformal Prediction (Vovk, 2012) and
Cluster Conformal Prediction (Ding et al., 2024)(see Section 5).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Models. In main experiments, We consider two common datasets: ImageNet (Deng
et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009), both of which are standard benchmarks for
conformal prediction. For ImageNet, its test dataset of 50,000 images is divided, allocating 30,000
images to the calibration set and 20,000 images to the test set. The tested models are pre-trained on
ImageNet from TorchVision (Paszke et al., 2019). For CIFAR-100, we equally split the test dataset
into a calibration set of 5,000 images and a test set of 5,000 images, and the models are fine-tuned
based on the pre-trained models from TorchVision.

Non-conformity score functions. We assess our method using four non-conformity score functions
with α = 0.1: THR, APS, RAPS, and SAPS. For score functions that involve hyper-parameters
(i.e., RAPS, SAPS), we optimize these parameters through a fine-grained grid search on a subset
of the calibration set, referred to as the tuning data, which comprises 20% of the overall calibration
data. Additionally, this paper focuses on the split conformal prediction algorithm. Each experiment
is repeated 10 times, and we present the average results. Further details regarding the experimental
setup are provided in Appendix D. Moreover, Our code is built upon TorchCP (Wei & Huang, 2024).

Evaluation metrics. Denote a test dataset by {(xi, yi)}Ntest
i=1 . The key metrics for evaluating pre-

diction sets are set size (the average length of prediction sets) and marginal coverage rate (the pro-
portion of test examples whose prediction sets include the ground-truth label). Formally, set size
and coverage rate are defined as:

Size =
1

Ntest

Ntest∑
i=1

|C(xi)|, Coverage =
1

Ntest

Ntest∑
i=1

1(yi ∈ C(xi)).

Moreover, We evaluate the conditional coverage of different methods using the following metrics:
Worst-slice Coverage (WSC)(Romano et al., 2020), Average Class Coverage Gap (CovGap) (Ding
et al., 2024) and Size-stratified Coverage Violation (SSCV) (Angelopoulos et al., 2020). WSC
approximates object-conditional coverage, while CovGap measures violations in class-conditional
coverage. SSCV captures the adaptiveness of prediction sets in classification tasks. The definition
of these metrics can be found in Appendix D.1.

4.2 RESULTS

PoT-CP improves the efficiency of APS while maintaining stable conditional coverage. In Ta-
ble 1, we present the results of split conformal prediction and PoT-CP applied to APS. We can ob-
serve that the coverage rate of all models is close to the desired coverage 1−α. A salient observation
is that PoT-CP consistently constructs smaller prediction sets compared to APS. For example, on the
Inception model, PoT-CP reduces the size of APS from 35.9576 to 30.6982, with a slight increase in
WSC and CovGap. On average, across seven models, the size of APS decreases by approximately

6
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Table 1: Experimental results of ImageNet for APS under α = 0.1. “ ” indicates that the average
value of our proposed methods is lower than the Base method.

Models Coverage Size ↓ WSC ↓ SSCV ↓ CovGap ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

ResNeXt101 0.899 ±0.0029 0.899 ±0.0024 7.0472 ±0.2123 6.5127 ±0.9696 0.0109 ±0.0088 0.0117 ±0.0085 0.0678 ±0.0057 0.0585 ±0.0191 5.9361 ±0.1387 5.9533 ±0.1299

ResNet152 0.900 ±0.0038 0.900 ±0.0033 6.3153 ±0.2212 5.4801 ±0.8072 0.0022 ±0.0084 0.0026 ±0.0085 0.0452 ±0.0065 0.0301 ±0.0182 5.4399 ±0.1575 5.4740 ±0.1659

ResNet101 0.899 ±0.0034 0.899 ±0.0030 6.8317 ±0.1823 6.2196 ±0.8397 0.0095 ±0.0061 0.0100 ±0.0061 0.0613 ±0.0047 0.0490 ±0.0189 5.4116 ±0.1427 5.4209 ±0.1364

ResNet50 0.900 ±0.0029 0.899 ±0.0017 9.0544 ±0.2294 8.0018 ±1.0763 0.0071 ±0.0089 0.0072 ±0.0085 0.0626 ±0.0022 0.0434 ±0.0201 5.2648 ±0.0863 5.2906 ±0.0737

DenseNet161 0.899 ±0.0030 0.898 ±0.0024 6.7598 ±0.2046 5.8301 ±0.8827 0.0067 ±0.0057 0.0077 ±0.0052 0.0582 ±0.0029 0.0368 ±0.0212 5.6360 ±0.0919 5.6659 ±0.0947

Inception 0.900 ±0.0028 0.900 ±0.0028 35.9476 ±1.0070 30.6982 ±5.0222 0.0462 ±0.0128 0.0513 ±0.0102 0.0750 ±0.0020 0.0711 ±0.0053 6.5707 ±0.1373 6.5821 ±0.1410

ShuffleNet 0.899 ±0.0028 0.899 ±0.0029 22.6550 ±0.5211 21.0803 ±1.9011 0.0058 ±0.0040 0.0067 ±0.0042 0.0461 ±0.0030 0.0385 ±0.0110 5.6828 ±0.1400 5.7037 ±0.1368

Average 0.900 0.899 13.5159 11.9747 0.0126 0.0139 0.0595 0.0468 5.7060 5.7272

Table 2: Experimental results of ImageNet for automatic tunning hyper-parameters on SSCV. α =
0.1. “ ” indicates that the average value of PoT-CP is lower than the standard method.

Model Score Coverage Size SSCV
Split +PoT Split +PoT Split +PoT

RAPS

ResNeXt101 0.900 ±0.0025 0.899 ±0.0028 5.2447 ±1.3510 4.8561 ±1.4247 0.0614 ±0.0292 0.0527 ±0.0262
ResNet152 0.901 ±0.0025 0.900 ±0.0029 5.2131 ±0.9996 4.6751 ±0.8715 0.0535 ±0.0329 0.0360 ±0.0363
ResNet101 0.900 ±0.0027 0.899 ±0.0030 4.7839 ±0.9149 4.6276 ±1.0253 0.2016 ±0.2690 0.1572 ±0.2855
ResNet50 0.900 ±0.0019 0.899 ±0.0022 7.0332 ±1.1439 6.3667 ±1.0116 0.0427 ±0.0331 0.0193 ±0.0147

DenseNet161 0.900 ±0.0030 0.899 ±0.0031 5.1367 ±1.2305 4.7700 ±1.2232 0.0764 ±0.0249 0.0465 ±0.0312
Inception 0.900 ±0.0027 0.900 ±0.0027 10.5462 ±4.1436 10.3672 ±3.9857 0.0625 ±0.0089 0.0625 ±0.0089

ShuffleNet 0.900 ±0.0032 0.900 ±0.0029 12.4808 ±2.6603 12.2008 ±2.5904 0.0294 ±0.0180 0.0193 ±0.0139

Average 0.900 0.900 7.2055 6.8376 0.0754 0.0562

SAPS

ResNeXt101 0.900 ±0.0030 0.900 ±0.0031 2.6855 ±0.5671 2.6684 ±0.5496 0.5551 ±0.4452 0.3816 ±0.4462
ResNet152 0.901 ±0.0022 0.900 ±0.0019 2.8870 ±0.6570 2.8470 ±0.5880 0.0359 ±0.0082 0.0371 ±0.0079
ResNet101 0.900 ±0.0032 0.899 ±0.0032 2.7634 ±0.0244 2.7455 ±0.0383 0.0358 ±0.0041 0.0375 ±0.0052
ResNet50 0.899 ±0.0016 0.899 ±0.0017 3.4217 ±0.9701 3.3957 ±0.9285 0.1363 ±0.2689 0.1367 ±0.2688

DenseNet161 0.900 ±0.0030 0.900 ±0.0031 3.0163 ±0.6756 2.9815 ±0.6536 0.1238 ±0.2728 0.0391 ±0.0077
Inception 0.901 ±0.0024 0.901 ±0.0024 5.6087 ±0.3544 5.6069 ±0.3536 0.0093 ±0.0244 0.0092 ±0.0244

ShuffleNet 0.900 ±0.0016 0.900 ±0.0016 5.5509 ±0.2845 5.5509 ±0.2846 0.0096 ±0.0261 0.0096 ±0.0261

Average 0.900 0.900 3.7048 3.6851 0.1294 0.0930

1.55, from 13.52 to 11.97. Additionally, PoT-CP enhances size-conditional coverage (i.e., SSCV).
For instance, on the DenseNet161 model, PoT-CP reduces the SSCV of APS from 0.0582 to 0.0368.
Overall, PoT-CP improves both the efficiency and SSCV of APS while delivering comparable re-
sults in WSC and CovGap relative to standard APS. A similar trend is observed in the CIFAR-100
results, as detailed in Appendix F.

PoT-CP improves the efficiency of RAPS and SAPS tuned on SSCV. For the score functions with
hyper-parameters, we can optimize them not only based on set size but also by considering SSCV.
In this part, we investigate how PoT-CP affects the performance of score functions tuned for SSCV.
Specifically, we aim to tune the hyper-parameters of RAPS and SAPS to minimize SSCV within the
tuning dataset. Further experimental details are outlined in Appendix D.

Table 2 presents the results of the score function tuned for SSCV on ImageNet, while the results
for CIFAR-100 can be found in Appendix F. From Table 2, we can observe that PoT-CP improves
the efficiency and reduces the SSCV of prediction sets. For instance, on the ResNet152 model
with RAPS, PoT-CP reduces the set size from 5.2131 (Base score) to 4.6751 and lowers SSCV
from 0.0535 (Base score) to 0.0360. When averaged across seven models with RAPS, PoT-CP
decreases the set size by 0.3679, from a baseline of 7.2055, and reduces SSCV by 0.0192, compared
to a baseline of 0.0754. Overall, these results demonstrate that PoT-CP improves the efficiency
and reduces the SSCV of split conformal prediction with various score functions, even after prior
optimization specifically targeting SSCV.

Ablation analysis on split conformal prediction. Here, we provide an empirical analysis of how
the scale of the calibration dataset affects the performance of PoT-CP. Specifically, We conduct ex-
periments on the Inception model, varying the calibration set sizes from 1,000 to 20,000 samples,
while maintaining the test set fixed at 30,000 samples. We evaluate the performance of split confor-
mal prediction across four different score functions. In addition, we tune the hyper-parameters of
RAPS and SAPS based on the average size, with further details provided in Appendix D.

As shown in Figure 3, we can observe that for different score functions, PoT-CP consistently pro-
duces smaller prediction sets than the Base score function, regardless of the calibration set size. For
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Figure 3: Effect of the calibration dataset size on average set size for various scores in ImageNet.
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Figure 4: Effect of the calibration dataset size on empirical coverage for various scores in ImageNet.

Table 3: Experimental results of ImageNet for class-wise conformal prediction under α = 0.1. “ ”
indicates that the average value of PoT-CP is lower than the baselines.

Models Scores Coverage Size CovGap
Split +PoT Split +PoT Split +PoT

ResNeXt101
THR 0.928 ±0.0021 0.917 ±0.0022 22.6845 ±3.5244 6.7699 ±0.4895 6.6421 ±0.1282 6.3175 ±0.1296
APS 0.927 ±0.0019 0.897 ±0.0017 49.6545 ±3.3418 6.5153 ±0.4139 6.6358 ±0.1680 6.4280 ±0.1384

RAPS 0.928 ±0.0014 0.903 ±0.0014 17.3127 ±1.1241 11.4044 ±1.0478 6.5969 ±0.1603 6.5333 ±0.1241
SAPS 0.928 ±0.0008 0.905 ±0.0018 17.3114 ±1.1115 11.6668 ±0.6817 6.6300 ±0.1546 6.6163 ±0.1408

ResNet152
THR 0.927 ±0.0024 0.917 ±0.0024 13.1668 ±1.3695 6.4633 ±0.4198 6.6365 ±0.1197 6.3878 ±0.1328
APS 0.927 ±0.0029 0.896 ±0.0027 30.6555 ±2.1205 5.9883 ±0.4236 6.5965 ±0.0898 6.5152 ±0.1245

RAPS 0.928 ±0.0023 0.900 ±0.0027 17.2928 ±1.0959 10.7236 ±0.6434 6.5882 ±0.1706 6.6157 ±0.1279
SAPS 0.928 ±0.0018 0.904 ±0.0025 17.3817 ±1.1363 11.5239 ±0.8821 6.5880 ±0.1329 6.6008 ±0.1151

Inception
THR 0.928 ±0.0019 0.911 ±0.0024 84.6774 ±4.9129 27.8362 ±1.5073 6.7269 ±0.1390 6.4653 ±0.1348
APS 0.928 ±0.0016 0.893 ±0.0021 125.0769 ±2.8126 23.3743 ±1.1293 6.6847 ±0.1385 6.6450 ±0.1127

RAPS 0.927 ±0.0019 0.903 ±0.0021 56.8881 ±1.5086 38.4036 ±2.4146 6.6645 ±0.1629 6.8307 ±0.1401
SAPS 0.928 ±0.0028 0.904 ±0.0037 56.7532 ±1.4861 36.5982 ±2.1672 6.6715 ±0.1588 6.8101 ±0.0903

ShuffleNet
THR 0.928 ±0.0020 0.915 ±0.0015 39.4263 ±2.1294 22.2134 ±1.2105 6.6936 ±0.0898 6.4776 ±0.1203
APS 0.927 ±0.0014 0.890 ±0.0016 82.6374 ±2.4700 21.0205 ±0.9734 6.7258 ±0.1499 6.7877 ±0.1809

RAPS 0.928 ±0.0023 0.898 ±0.0017 51.8426 ±2.1157 34.2591 ±2.3800 6.6785 ±0.1575 6.8992 ±0.1525
SAPS 0.928 ±0.0020 0.903 ±0.0021 52.0187 ±2.1499 33.5909 ±2.0497 6.6520 ±0.1252 6.8299 ±0.1990

Average 0.928 0.904 45.9238 19.2720 6.6507 6.6100

example, with APS, PoT-CP could reduce the set size of APS by nearly 10 across different calibra-
tion set sizes. Even with only 1,000 samples in the calibration set, PoT-CP reduces the set size of
THR by approximately 0.6. Since RAPS and SAPS are score functions with hyperparameters, these
parameters may be less accurately tuned with small calibration sets. Thus, as the calibration set size
increases, RAPS and SAPS can achieve smaller prediction set sizes due to better hyperparameter
estimation. The results of empirical coverage are presented in Figure 4 and similar results can be
observed on the CIFAR-100 dataset, as shown in Appendix F.

5 DISCUSSION

Class-wise conformal prediction. In the experiments above, we demonstrate that our method could
improve the performance of split conformal prediction. Here, we further verify that PoT-CP can
enhance the efficiency of prediction sets generated by Class-wise Conformal Prediction (dubbed
CCP) (Vovk, 2012; Shi et al., 2013). CCP finds the class-wise quantiles of non-conformity scores on
calibration data. Therefore, PoT-CP can be utilized within each class, as explained in Appendix G.
We perform experiments with several models on both ImageNet and CIFAR-100.
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Table 4: Experimental results of ImageNet for Cluster conformal prediction under α = 0.1. “ ”
indicates that the average value of PoT-CP is lower than the standard method.

Models Scores Coverage Size CovGap
Split +PoT Split +PoT Split +PoT

ResNeXt101
THR 0.902 ±0.0082 0.902 ±0.0081 2.1601 ±0.1949 2.1226 ±0.1878 5.9354 ±0.1586 5.9483 ±0.1565
APS 0.901 ±0.0060 0.899 ±0.0064 8.2605 ±0.6656 5.8587 ±0.7552 5.5188 ±0.0976 5.5838 ±0.1068

RAPS 0.901 ±0.0076 0.900 ±0.0077 2.8675 ±0.2191 2.7803 ±0.2318 5.7404 ±0.1543 5.7648 ±0.1473
SAPS 0.903 ±0.0067 0.902 ±0.0068 3.8285 ±1.1118 3.8025 ±1.1005 6.8547 ±0.2418 6.8662 ±0.2485

ResNet152
THR 0.901 ±0.0071 0.901 ±0.0071 2.1998 ±0.2390 2.1804 ±0.2359 6.0166 ±0.1159 6.0250 ±0.1129
APS 0.903 ±0.0055 0.902 ±0.0055 7.0071 ±0.4549 5.2849 ±0.4722 5.2034 ±0.1549 5.2693 ±0.1288

RAPS 0.903 ±0.0061 0.902 ±0.0060 3.6224 ±1.2028 3.5379 ±1.2112 5.4265 ±0.1542 5.4548 ±0.1543
SAPS 0.903 ±0.0071 0.903 ±0.0071 5.2119 ±1.7445 5.1264 ±1.6489 6.5733 ±0.1698 6.5782 ±0.1660

Inception
THR 0.902 ±0.0039 0.901 ±0.0041 8.8738 ±0.8433 7.5645 ±0.8961 5.7870 ±0.1076 5.8125 ±0.1091
APS 0.903 ±0.0083 0.901 ±0.0086 41.4338 ±4.4195 30.3638 ±4.6957 5.8042 ±0.1866 5.8394 ±0.1977

RAPS 0.904 ±0.0061 0.903 ±0.0061 9.3687 ±1.9255 8.8053 ±1.5309 6.2317 ±0.1404 6.2400 ±0.1452
SAPS 0.905 ±0.0048 0.904 ±0.0052 11.0119 ±3.2620 10.0400 ±1.8448 6.7717 ±0.1565 6.7798 ±0.1668

ShuffleNet
THR 0.900 ±0.0071 0.899 ±0.0070 6.2230 ±0.8786 6.1337 ±0.8691 5.8217 ±0.1851 5.8402 ±0.1800
APS 0.899 ±0.0072 0.897 ±0.0077 24.0230 ±1.9489 20.8449 ±2.5901 5.4355 ±0.1817 5.4908 ±0.2027

RAPS 0.901 ±0.0076 0.900 ±0.0080 8.4622 ±1.5824 8.2384 ±1.5261 5.8180 ±0.1553 5.8444 ±0.1686
SAPS 0.902 ±0.0051 0.902 ±0.0052 9.7420 ±2.7880 9.5248 ±2.7841 6.6364 ±0.1970 6.6494 ±0.2053

Average 0.902 0.901 9.6435 8.2631 5.9735 5.9992

Table 5: Experimental results for ordinal classification under α = 0.1. “ ” indicates that the average
value of PoT-CP is lower than the baselines.

Dataset Score Coverage Size SSCV
Base +PoT Base +PoT Base +PoT

Synthetic APS 0.9010±0.0049 0.9003±0.0048 1.9172±0.0139 1.9150±0.0149 0.1000±0.000 0.0865±0.014
THR 0.9011±0.0048 0.9010±0.0048 1.7274±0.0143 1.7273±0.0142 0.0847±0.019 0.0611±0.006

UTKFace APS 0.9005±0.0066 0.8989±0.0059 5.5295±0.0773 5.4928±0.0769 0.0443±0.007 0.0489±0.009
THR 0.8996±0.0030 0.8991±0.0028 5.1416±0.0427 5.1326±0.0435 0.0740±0.001 0.0740±0.015

Average 0.9006 0.8998 3.5789 3.5669 0.0758 0.0676

The results for ImageNet are presented in Table 3, while the CIFAR-100 results can be found in
Appendix F. we can observe that PoT-CP improves the efficiency of CCP with different score func-
tions while maintaining a stable CovGap. For instance, with the ResNeXt101 model using APS,
PoT-CP decreases the set size of CCP from 50.60 (Base score) to 7.28. Additionally, we observe
that PoT-CP consistently preserves stable CovGap. Overall, these results demonstrate that PoT-CP
effectively reduces the set size of CCP and maintains a stable class-conditional coverage.

Clutser conformal prediction. Here, we further verify that PoT-CP still enhances the efficiency of
prediction sets generated by Cluster Conformal Prediction (dubbed Cluster CP) (Ding et al., 2024).
Cluster CP employs split conformal prediction to clusters of classes in order to achieve cluster-
conditional coverage, which serves as an approximation of class-conditional guarantees. Therefore,
PoT-CP can be utilized within each cluster, as explained in Appendix H. We perform experiments
with several models on both ImageNet and CIFAR-100.

The results for ImageNet are presented in Table 4, while the CIFAR-100 results can be found in
Appendix F. A notable finding is that PoT-CP reduces the set size of Cluster CP while maintaining
a stable CovGap. For instance, with the ResNeXt101 model using APS, PoT-CP decreases the
set size of Cluster CP from 8.2605 (Base score) to 5.8587. Additionally, we observe that PoT-
CP consistently preserves stable CovGap. Consequently, these results demonstrate that PoT-CP
effectively reduces the set size of Cluster CP without compromising conditional coverage.

Ordinal classification. Ordinal classification (Beckham & Pal, 2017), which involves predicting
outcomes with a natural order among categories, is a widely used classification task in various appli-
cations, such as disease severity labeling (Li et al., 2020) and budget-based recommendations (Sep-
tiadi et al., 2018). In this part, we demonstrate the advantages of our method across different ordinal
classification tasks. Specifically, we conduct experiments on both a synthetic dataset and a real-
world dataset, the UTKFace dataset (Zhang et al., 2017), for age recognition. Further details about
the datasets are provided in Appendix I. Then, to train an ordinal classifier, we adopt a standard
classifier to generate an unimodal distribution of softmax probabilities across ordinal classes, based
on the unimodal framework (Dey et al., 2024).
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In Table 5, we present the PoT-CP results across different datasets and various score functions.
The results show that PoT-CP can improve the efficiency of prediction sets and significantly reduce
SSCV. For example, on the synthetic dataset with THR, PoT-CP reduces the SSCV of 0.1 to 0.0865,
representing a 13.5% improvement. Averaged across the two datasets and two score functions, PoT-
CP lowers the SSCV from 0.0758 (for the Base score) to 0.0676. Overall, PoT-CP can be applied to
a wide range of classification problems and effectively improves SSCV.

6 RELATED WORK

Conformal Prediction (CP), a statistical framework characterized by a finite-sample coverage guar-
antee (Vovk et al., 2005), has recently witnessed a wide adoption in many real-world applications,
such as healthcare (Papadopoulos et al., 2009; Hirsch & Goldberger, 2024; Lambert et al., 2024),
finance (Wisniewski et al., 2020; Bastos, 2024), robotics (Kuipers et al., 2024; Dixit et al., 2024;
Luo et al., 2024) and autonomous systems (Lindemann et al., 2024; Chen et al., 2024).

Split conformal prediction. The split conformal prediction framework (Vovk et al., 2005; Shafer
& Vovk, 2008; Angelopoulos & Bates, 2021; Manokhin, 2022) is widely applied for classification
problems, where the training data set (used to train the base classifier) and calibration data set are
disjoint. Various methods aim to design score functions to enhance the efficiency or adaptiveness
of prediction sets, including THR (Sadinle et al., 2019), APS (Romano et al., 2020), RAPS (An-
gelopoulos et al., 2020), SAPS (Huang et al., 2024), and RANK (Luo & Zhou, 2024). However,
there is an inherent trade-off between efficiency and conditional coverage. For instance, while APS
can closely approximate conditional coverage, it compromises efficiency. Conversely, RAPS im-
proves the efficiency of APS by incorporating a regularization term to reduce the impact of noisy
softmax probabilities. Unfortunately, this adjustment in RAPS can degrade the performance in terms
of conditional coverage. In this work, we show that PoT-CP can boost the performance of existing
score functions in terms of efficiency and maintain a stable conditional coverage.

Conditional conformal prediction. Several methods have been proposed to improve the condi-
tional coverage of prediction sets (Vovk, 2012), such as class-conditional coverage (Shi et al., 2013;
Sun et al., 2017; Ding et al., 2024; Shi et al., 2024), object-conditional coverage (Sadinle et al.,
2019; Melki et al., 2023; Gibbs et al., 2023; Kiyani et al.), and training-conditional coverage (Bian
& Barber, 2023; Pournaderi & Xiang, 2024). For instance, to enhance class-conditional coverage,
class-conditional conformal prediction (Vovk, 2012) computes quantiles for each class using cali-
bration data. However, when the number of classes is large, limited examples per class can result
in inaccurate quantile estimates, producing larger prediction sets. To address this, cluster conformal
prediction (Ding et al., 2024) leverages marginal coverage validity within class clusters to approxi-
mate class-conditional coverage. In this work, we show that our method enhances the efficiency of
various conformal prediction procedures using different non-conformity score functions, all while
maintaining stable conditional coverage.

7 CONCLUSION AND LIMITATIONS

In this work, we introduce the Post-Calibration Truncated Conformal Predictor (PoT-CP), a trun-
cation method that improves the efficiency of the conformal procedures while preserving the con-
ditional coverage. The key idea of PoT-CP is truncating the classes with high uncertainty in the
prediction sets. Extensive experiments show that PoT-CP could improve the efficiency of different
score functions. Moreover, PoT-CP is computationally inexpensive and can be easily integrated into
existing conformal prediction procedures. Overall, our method is an effective and complementary
approach for boosting the efficiency of prediction sets while preserving conditional coverage. We
hope that the observations and analyses in this work can inspire more specially designed methods
using the truncating technology to improve efficiency.

Limitations There remain several limitations in PoT-CP. The i.i.d. assumption is more restric-
tive than the assumption of exchangeability, which is more appropriate for real-world applications.
Furthermore, the theoretical framework is based on asymptotic assumptions, whereas finite-sample
theories would likely offer greater practical relevance for the conformal prediction community.
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conditional conformal prediction via quantile regression calibration for crop and weed classi-
fication. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
614–623, 2023.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
machines for regression. In Machine Learning: ECML 2002: 13th European Conference on
Machine Learning Helsinki, Finland, August 19–23, 2002 Proceedings 13, pp. 345–356. Springer,
2002.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Reliable diagnosis of acute abdominal
pain with conformal prediction. Engineering Intelligent Systems, 17(2):127, 2009.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Mehrdad Pournaderi and Yu Xiang. Training-conditional coverage bounds under covariate shift.
arXiv preprint arXiv:2405.16594, 2024.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
age. Advances in Neural Information Processing Systems, 33:3581–3591, 2020.

Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
bounded error levels. Journal of the American Statistical Association, 114(525):223–234, 2019.

Handito Muhammad Septiadi, Citrananda Ariandika, and Andry Alamsyah. Prediction models
based on flight tickets and hotel rooms data sales for recommendation system in online travel
agent business. Sustainable Collaboration in Business, Technology, Information and Innovation
(SCBTII), 2018.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

Fan Shi, Cheng Soon Ong, and Christopher Leckie. Applications of class-conditional conformal pre-
dictor in multi-class classification. In 2013 12th International Conference on Machine Learning
and Applications, volume 1, pp. 235–239. IEEE, 2013.

Yuanjie Shi, Subhankar Ghosh, Taha Belkhouja, Janardhan Rao Doppa, and Yan Yan. Confor-
mal prediction for class-wise coverage via augmented label rank calibration. arXiv preprint
arXiv:2406.06818, 2024.

Jiangming Sun, Lars Carlsson, Ernst Ahlberg, Ulf Norinder, Ola Engkvist, and Hongming Chen.
Applying mondrian cross-conformal prediction to estimate prediction confidence on large imbal-
anced bioactivity data sets. Journal of Chemical Information and Modeling, 57(7):1591–1598,
2017.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
diction under covariate shift. Advances in Neural Information Processing Systems, 32, 2019.

Janette Vazquez and Julio C Facelli. Conformal prediction in clinical medical sciences. Journal of
Healthcare Informatics Research, 6(3):241–252, 2022.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian Conference on
Machine Learning, pp. 475–490. PMLR, 2012.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Hongxin Wei and Jianguo Huang. Torchcp: A library for conformal prediction based on pytorch.
arXiv preprint arXiv:2402.12683, 2024.

Wojciech Wisniewski, David Lindsay, and Sian Lindsay. Application of conformal prediction inter-
val estimations to market makers’ net positions. In Conformal and Probabilistic Prediction and
Applications, pp. 285–301. PMLR, 2020.

Yunpeng Xu, Wenge Guo, and Zhi Wei. Conformal risk control for ordinal classification. In Uncer-
tainty in Artificial Intelligence, pp. 2346–2355. PMLR, 2023.

Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial
autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5810–5818, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DEFINITIONS OF DIFFERENT SCORE FUNCTIONS

Threshold conformal prediction (THR). The THR method (Sadinle et al., 2019) measures the
similarity between the example and the data space by the conditional probability P(Y |X). Specifi-
cally, given a data pair (x, y), the non-conformity score write as:

Vthr(x, y; π̂) := 1− π̂y(x). (5)

Although yielding small set sizes, THR results in uneven coverage, particularly for difficult classes.

Regularized Adaptive Prediction Sets (RAPS). The RAPS method (Angelopoulos et al., 2020)
builds on APS by modifying the conformity scores to penalize noisy tail probabilities and regularize
the number of samples in the uncertainty set. Specifically, the score function is defined as:

Vraps(x, y, u; π̂) :=
∑
y′∈Y

π̂y′(x)1(rf (x, y
′) < rf (x, y)) + u · π̂y(x) + η · (rf (x, y)− kreg)

+,

where η represents the weight of regularization, kreg ≥ 0 are regularization hyper-parameters and
(z)+ denotes the positive part of z. The regularization term excludes tail probabilities, resulting in
smaller prediction sets than APS.

Sorted Adaptive Prediction Sets (SAPS). The SAPS method (Huang et al., 2024) mitigates the
issue of probability miscalibration by only retaining the highest probability value and discarding all
others. Subsequently, the score function is given by:

Vsaps(x, y, u; π̂) :=

{
u · π̂max(x), if rf (x, y) = 1,
π̂max(x) + (rf (x, y)− 2 + u) · λ, else, (6)

where λ is a hyper-parameter representing the weight of ranking information and π̂max(x) denotes
the maximum softmax probability. By discarding the unreliable probability values of the models’
output, SAPS could further improve the efficiency of prediction sets.

B EXPERIMENTAL SETUP OF SECTION 3.1

To analyze the redundancies of prediction sets, we employ four non-conformity scores—THR, APS,
RAPS, and SAPS—on the ImageNet dataset. For this analysis, we employ the pre-trained Inception
model from TorchVision, setting the target error rate at 10% (i.e., α = 0.1). The ImageNet test
dataset, consisting of 50,000 images, is split into two subsets: 20,000 images are assigned to the
calibration set, while the remaining 30,000 images are used for testing.

Score functions with hyperparameters. For the score functions involving hyperparameters, we
tune these parameters on a fine grid using a subset of the calibration set designated as the tuning
data, which comprises 20% of the calibration data. Let m be the number of data points in the tuning
dataset. For RAPS, we follow the experimental setting outlined in previous work (Angelopoulos
et al., 2020). We first identify the smallest k such that the top-k predictive sets have coverage
at least ⌈(m+1)(1−α)⌉

m on the tuning dataset, denoting this as kreg. We then select η from the set
{0.02, 0.04, . . . , 0.5} that minimizes the average set size of the m holdout samples. For SAPS, we
first apply Temperature Scaling (Guo et al., 2017) on the tuning dataset before choosing λ from the
same range.

C PROOFS

C.1 PROOF OF LEMMA 1

Proof. Given the definition of Q̂1−α, we can have that Yn+1 ∈ C(Xn+1), V (Xn+1, Yn+1) ≤ Q̂1−α.
Then, we reformulate Equation 3 by :

|{i : V (Xi, Yi) ≤ Q̂1−α} ∩ {i : Vf (Xi, Yi) < r}|
n

=

∑n
i=1 1(V (Xi, Yi) ≤ Q̂1−α)× 1(Vf (Xi, Yi) < r)

n
.
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With the definition of Q̂1−α, we can have
∑n

i=1 1(V (Xi,Yi)≤Q̂1−α)

n ≥ ⌈(n+1)(1−α)⌉
n and ∀Q ≤ Q̂1−α,∑n

i=1 1(V (Xi,Yi)≤Q)

n < ⌈(n+1)(1−α)⌉
n . Thus, for any Xi ∈ {(Xi, Yi)}ni=1, if V (Xi, Yi) ≤ Q̂1−α,

Vf (Xi, Yi) ≤ r∗. Then, we define m := n ∗ (1 − α) as the number of examples whose score is
smaller than Q̂1−α.

Define the events: EVi
: V (Xi, Yi) ≤ Q̂1−α and EWi

: Vf (Xi, Yi) ≤ r∗. From the data of m
samples, we can evaluate the empirical conditional probability P̂(EW |EV ):

P̂(EW |EV ) :=
#{EVi

⋂
EWi

}
#EVi

= 1.

By the Law of Large Numbers, as m → ∞, P̂(EW |EV )
a.s.→ P(EW |EV ). Then, we can con-

clude that P(EW |EV ) = 1. Finally, for the example (Xn+1, Yn+1), we can have that as n → ∞,
P({Vf (Xn+1, Yn+1) ≤ r∗|V (Xn+1, Yn+1) ≤ Q̂1−α))

a.s.
= 1.

We provide an analysis of the convergence rate as follows. To quantify the coverage rate, we use
Hoeffding’s inequality for bounded independent random variables. Let Zi, for i = 1, 2, . . . ,m , be
independent random variables where Zi = 1 if EWi

occurs given EVi
on the i-th instance, and Zi =

0 otherwise. The empirical estimate of the conditional probability is P̂ (EW | EV ) =
1
m

∑m
i=1 Zi ,

which takes values in [0, 1]. Thus, for any ϵ > 0, we can get that

P(|P(EW |EV )− P̂(EW |EV )| ≥ ϵ) ≤ 2 exp (−2mϵ2).

With P̂(EW |EV ) = 1, we have
P(P(EW |EV ) ≤ 1− ϵ) ≤ 2 exp (−2mϵ2).

Let 2 exp (−2mϵ2) = δ and m ≈ (1 − α)n. Then, ϵ =
√

ln (2/δ)
2n(1−α) . Assuming δ decrease polyno-

mially with n, e.g., δ = n−k where k > 0. Thus, the convergence rate becomes:

ϵ = O(

√
ln (n)

n
).

C.2 PROOF OF THEOREM 2

Proof. If Yn+1 ∈ CT (Xn+1), we can have S(Xn+1, Yn+1) ≤ q̂ and Vf (Xn+1, Yn+1) ≤ r∗. Thus,
Yn+1 ∈ C(Xn+1). Therefore, with Lemma 1, we can have that as n → ∞,

P(Yn+1 ∈ C(Xn+1) ⇐⇒ Yn+1 ∈ CT (Xn+1))
a.s.→ 1.

.

C.3 PROOF OF COROLLARY 1

With the Law of total probability, we can have that
P(Yn+1 ∈ CT (Xn+1)) = P(Yn+1 ∈ CT (Xn+1)|Yn+1 ∈ C(Xn+1))P(Yn+1 ∈ C(Xn+1))

+P(Yn+1 ∈ CT (Xn+1)|Yn+1 /∈ C(Xn+1))P(Yn+1 /∈ C(Xn+1)).

By Theorem 1 and Lemma 1, we can have that P(limn→∞ P(Yn+1 ∈ CT (Xn+1) ≥ 1− α)) = 1.

C.4 PROOF OF COROLLARY 2

Firstly, we have that P (Yn+1 ∈ C(x) | Xn+1 = x) = P(Yn+1∈C(x)∩(Xn+1=x))
P(Xn+1=x) and

P (Yn+1 ∈ CT (x) | Xn+1 = x) = P(Yn+1∈CT (x)∩(Xn+1=x))
P(Xn+1=x) . By Theorem 2, we have that

P (Yn+1 ∈ CT (x) ∩ (Xn+1 = x)) = P (Yn+1 ∈ C(x) ∩ (Xn+1 = x)) a.s.

Finally, we can conclude that as n → ∞,

P(P(Yn+1 ∈ C(x)|Xn+1 = x) = P(Yn+1 ∈ CT (x)|Xn+1 = x))
a.s.→ 1

We can use a similar proof to get the asymptotic class-conditional coverage.
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C.5 PROOF OF SET SIZE FROM POT-CP

In this part, we prove that |CT (Xn+1)| ≤ |C(Xn+1)|. Given Equation 4 and Equation 1, for any
y ∈ CT (Xn+1), V (Xn+1, y) ≤ Q̂1−α and Vf (Xn+1, y) ≤ r∗. Thus, for any y ∈ CT (Xn+1),
y ∈ C(Xn+1). Thus, we have CT (Xn+1) ⊆ C(Xn+1)

D EXPERIMENTAL SETUP OF SECTION 4

Here we provide the details of the experimental setup in Section 4.

Fine-tuning models on the CIFAR-100 dataset. We fine-tune the pre-trained models from
TorchVision (Paszke et al., 2019) using the training dataset of CIFAR-100. The initial learning
rate is set to 0.1 and is reduced by a factor of 5 at the 60th, 120th, and 160th epochs. The model
is trained for 200 epochs with a batch size of 128, using the SGD optimizer with a weight decay of
5× 10−4 and Nesterov momentum of 0.9.

Tuning hyper-parameters of score functions. For score functions that involve hyper-parameters,
we tune the hyper-parameters by performing a fine grid search on a subset of the calibration set,
referred to as the tuning data, which consists of 20% of the total calibration data. Let m represent
the number of data points in the tuning dataset.

1. Automatically tuning hyper-parameters of RAPS. We begin by identifying the smallest k
such that the top-k predictive sets achieve coverage of at least ⌈(m+1)(1−α)⌉

m on the tuning
dataset, referring to this as kreg. To enhance the efficiency of the prediction sets, we then
select η from the set {0.02, 0.04, . . . , 0.5} that minimizes the average set size of the tuning
dataset. In addition, to minimize the SSCV of prediction sets, we choose η from the set
{0.00001, 0.0001, 0.0008, 0.001, 0.0015, 0.002} that minimizes the average SSCV of the
m holdout samples.

2. Automatically tuning hyper-parameters of SAPS. We first apply Temperature Scaling (Guo
et al., 2017) on the tuning dataset. Then, to improve the efficiency of prediction sets, we
select λ from the set {0.02, 0.04, . . . , 0.5} that minimizes the average set size of the m
holdout samples. For SSCV, we search for λ within the same range, aiming to minimize
the average SSCV of the tuning dataset.

Class-wise conformal prediction and Cluster conformal prediction. In the experiments for Class-
wise Conformal Prediction and Cluster Conformal Prediction, we use fixed hyper-parameters for
RAPS and SAPS. Specifically, for RAPS, we adopt the settings from Cluster Conformal Predic-
tion (Ding et al., 2024), where kreg and η are set to 5 and 0.01, respectively. For SAPS, the regular-
ization parameter λ is fixed at 0.1.

D.1 EVALUATION METRICS FOR CONDITIONAL COVERAGE

Worst-slice Coverage (WSC). To approximate the Object-conditional coverage in finite samples, the
previous works (Romano et al., 2020) measure the worst coverage over different slabs of the feature
space. Formally, the definition of WSC is given by:

WSC(Ĉ; δ) = 1− α− inf
v∈Rd,a<b∈R

{
P
[
Y ∈ Ĉ(X) | X ∈ Sv,a,b

]
s.t. P [X ∈ Sv,a,b] ≥ δ

]}
where Sv,a,b :=

{
x ∈ Rd : a ≤ vTx ≤ b

}
define a slab of the feature space. Therefore, conformal

prediction algorithms with better Object-conditional coverage generally achieve lower WSC.

Average Class Coverage Gap (CovGap). The CovGap (Ding et al., 2024) quantifies the deviation
of the class-conditional coverage from the target coverage level of 1 − α. let J y := {i ∈ [Ntest]:
yi = y} be the indices of examples with label y and denote the empirical class-conditional coverage
of class y by ĉy =

∑
i∈Jy 1{yi∈C(xi)}

|J y| . We then compute CovGap by:

CovGap = 100× 1

|Y|
∑
y∈Y

|ĉy − (1− α)| .
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Table 6: Experimental results of ImageNet for APS under α = 0.1. “ ” indicates that the average
value of our proposed methods is lower than the Base method.

Models Coverage Size ↓ NoE ↓ CovS ↓ UCovS ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

ResNeXt101 0.899 ±0.0029 0.899 ±0.0024 7.0472 ±0.2123 6.5127 ±0.9696 7.2034 ±0.2129 6.6578 ±0.9944 7.4099 ±0.2211 6.8094 ±1.1014 3.8029 ±0.1461 3.8821 ±0.2584

ResNet152 0.900 ±0.0038 0.900 ±0.0033 6.3153 ±0.2212 5.4801 ±0.8072 6.4943 ±0.2204 5.6360 ±0.8330 6.5253 ±0.2201 5.6079 ±0.8999 4.4153 ±0.1930 4.3441 ±0.1994

ResNet101 0.899 ±0.0034 0.899 ±0.0030 6.8317 ±0.1823 6.2196 ±0.8397 7.0239 ±0.1832 6.3947 ±0.8638 7.1135 ±0.1800 6.4323 ±0.9510 4.3180 ±0.2273 4.3398 ±0.1964

ResNet50 0.900 ±0.0029 0.899 ±0.0017 9.0544 ±0.2294 8.0018 ±1.0763 9.3257 ±0.2291 8.2425 ±1.1138 9.4699 ±0.2283 8.2962 ±1.2102 5.3348 ±0.2027 5.4076 ±0.2106

DenseNet161 0.899 ±0.0030 0.898 ±0.0024 6.7598 ±0.2046 5.8301 ±0.8827 6.9336 ±0.2058 5.9802 ±0.9061 6.9994 ±0.2045 5.9754 ±0.9763 4.6332 ±0.2062 4.5567 ±0.1253

Inception 0.900 ±0.0028 0.900 ±0.0028 35.9476 ±1.0070 30.6982 ±5.0222 36.0169 ±0.9985 30.7580 ±5.0336 38.7808 ±1.0046 32.8949 ±5.6349 10.4091 ±0.6117 10.9887 ±0.8485

ShuffleNet 0.899 ±0.0028 0.899 ±0.0029 22.6550 ±0.5211 21.0803 ±1.9011 23.1075 ±0.5176 21.5016 ±1.9396 23.6533 ±0.5273 21.8941 ±2.1221 13.7272 ±0.4783 13.8393 ±0.4204

Average 0.900 0.899 13.5159 11.9747 13.7293 12.1673 14.2789 12.5586 6.6629 6.7655

Table 7: Experimental results of ImageNet for APS under α = 0.3. “ ” indicates that the average
value of our proposed methods is lower than the Base method.

Models Coverage Size ↓ WSC ↓ SSCV ↓ CovGap ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

ResNeXt101 0.702 ±0.0055 0.700 ±0.0050 1.5500 ±0.0284 1.3786 ±0.1607 0.0058 ±0.0096 0.0111 ±0.0101 0.2732 ±0.0566 0.1870 ±0.1207 8.6969 ±0.1592 8.7349 ±0.1795

ResNet152 0.702 ±0.0070 0.700 ±0.0063 1.6897 ±0.0304 1.5297 ±0.1346 0.0019 ±0.0090 0.0035 ±0.0084 0.3000 ±0.0000 0.1189 ±0.1251 8.1496 ±0.1015 8.1770 ±0.1240

ResNet101 0.701 ±0.0059 0.699 ±0.0054 1.8086 ±0.0279 1.6072 ±0.1284 0.0019 ±0.0083 0.0041 ±0.0084 0.3048 ±0.1610 0.0894 ±0.1113 8.1520 ±0.1026 8.1994 ±0.1072

ResNet50 0.701 ±0.0046 0.699 ±0.0047 2.2201 ±0.0375 1.9598 ±0.2445 0.0023 ±0.0067 0.0050 ±0.0056 0.1467 ±0.0902 0.0807 ±0.0822 8.0130 ±0.0804 8.0421 ±0.1027

DenseNet161 0.701 ±0.0058 0.699 ±0.0055 1.7292 ±0.0304 1.5704 ±0.1571 0.0046 ±0.0093 0.0085 ±0.0085 0.3000 ±0.0000 0.1700 ±0.1373 8.4238 ±0.1406 8.4656 ±0.1495

Inception 0.702 ±0.0038 0.701 ±0.0046 2.8826 ±0.1033 2.2245 ±0.4631 0.0518 ±0.0097 0.0508 ±0.0090 0.1852 ±0.0213 0.1501 ±0.0248 11.1674 ±0.0690 11.1854 ±0.0943

ShuffleNet 0.700 ±0.0054 0.698 ±0.0052 3.7849 ±0.0861 3.2481 ±0.4296 -0.0005 ±0.0058 0.0046 ±0.0071 0.2308 ±0.0443 0.1083 ±0.1142 8.6819 ±0.1199 8.7207 ±0.1096

Average 0.701 0.699 2.2379 1.9312 0.0097 0.0125 0.2487 0.1292 8.7549 8.7893

Table 8: Experimental results of ImageNet for APS under α = 0.2. “ ” indicates that the average
value of our proposed methods is lower than the Base method.

Models Coverage Size ↓ WSC ↓ SSCV ↓ CovGap ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

ResNeXt101 0.801 ±0.0039 0.798 ±0.0039 2.6037 ±0.0505 2.0774 ±0.3557 0.0140 ±0.0102 0.0157 ±0.0093 0.1060 ±0.0263 0.0684 ±0.0482 7.7739 ±0.1332 7.8463 ±0.1601

ResNet152 0.802 ±0.0049 0.799 ±0.0048 2.7379 ±0.0505 2.2738 ±0.2492 0.0008 ±0.0108 0.0059 ±0.0090 0.0754 ±0.0295 0.0474 ±0.0352 7.2394 ±0.0843 7.2897 ±0.1045

ResNet101 0.800 ±0.0040 0.798 ±0.0038 2.9778 ±0.0462 2.5576 ±0.3664 0.0089 ±0.0068 0.0093 ±0.0079 0.0609 ±0.0265 0.0426 ±0.0282 7.2829 ±0.1549 7.3512 ±0.1773

ResNet50 0.801 ±0.0041 0.799 ±0.0035 3.8453 ±0.0770 3.2058 ±0.4429 0.0039 ±0.0095 0.0054 ±0.0081 0.1045 ±0.0181 0.0517 ±0.0388 7.0620 ±0.1336 7.1223 ±0.1712

DenseNet161 0.800 ±0.0052 0.798 ±0.0049 2.8259 ±0.0611 2.4559 ±0.2560 0.0111 ±0.0075 0.0132 ±0.0069 0.1176 ±0.0247 0.0461 ±0.0518 7.5285 ±0.1104 7.5637 ±0.1142

Inception 0.801 ±0.0038 0.801 ±0.0037 7.4450 ±0.2062 6.7802 ±1.1111 0.0638 ±0.0111 0.0643 ±0.0106 0.1346 ±0.0061 0.1268 ±0.0104 9.8631 ±0.1277 9.8684 ±0.1267

ShuffleNet 0.800 ±0.0042 0.798 ±0.0041 7.8175 ±0.1431 6.6036 ±0.8770 0.0041 ±0.0086 0.0044 ±0.0094 0.0838 ±0.0089 0.0452 ±0.0243 7.6809 ±0.0910 7.7292 ±0.0932

Average 0.801 0.799 4.3219 3.7078 0.0152 0.0169 0.0975 0.0612 7.7758 7.8244

Size-stratified Coverage Violation (SSCV). The SSCV metric (Angelopoulos et al., 2020) measures
how prediction sets of varying sizes violate conditional coverage. Specifically, given disjoint set-
size strata {Sj}Ns

j=1, where
⋃Ns

j=1 Sj = {1, 2, · · · , |Y|}, the indices of examples are stratified by
prediction set size and denoted as Jj = {i : |C(xi)| ∈ Sj}. Formally, SSCV is defined by:

SSCV = sup
j

∣∣∣∣ |{i ∈ Jj : yi ∈ C (xi)}|
|Jj |

− (1− α)

∣∣∣∣ . (7)

E ADDITIONAL RESULTS ON IMAGENET

In this section, we provide more analysis about PoT-CP.

Further analysis of average set size. To evaluate the prediction set characteristics, we employ four
metrics: ’Size’ (total average size), ’NoE’ (average size excluding empty sets), ’CovS’ (average size
of sets containing ground-truth labels), and ’UCovS’ (average size of sets excluding ground-truth
labels). Our experiments on ImageNet using APS with significance level α = 0.1 demonstrate that
PoT-CP effectively reduces both ’NoE’ and ’CovS’ measurements while maintaining stable ’UCovS’
values, as shown in Table 6.

Results of APS for different α. To comprehensively evaluate PoT-CP, we conduct experiments
using ResNeXt101 as the backbone model on ImageNet across various significance levels α. The
results are presented in Table 9. We further extend our experiments to multiple models with α ∈
{0.3, 0.2, 0.05, 0.01}, as shown in Tables 7, 8, 10, and 11. The results demonstrate that across
different significance levels, PoT-CP achieves smaller average set sizes and lower SSCV values
while maintaining comparable WSC and CovGap.
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Table 9: Experimental results of ImageNet for APS under different α using ResNeXt101 as the
backbone model. “ ” indicates that the average value of our proposed methods is lower than the
Base method.

α Coverage Size ↓ WSC ↓ SSCV ↓ CovGap ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

0.9 0.099 ±0.0027 0.099 ±0.0027 0.1425 ±0.0035 0.1425 ±0.0035 0.0011 ±0.0027 0.0011 ±0.0027 0.0918 ±0.0906 0.0843 ±0.0929 4.4873 ±0.1002 4.4873 ±0.1002

0.8 0.199 ±0.0049 0.199 ±0.0049 0.2887 ±0.0062 0.2887 ±0.0062 0.0013 ±0.0049 0.0013 ±0.0049 0.1161 ±0.0670 0.1036 ±0.0610 6.0805 ±0.1422 6.0805 ±0.1422

0.7 0.298 ±0.0050 0.298 ±0.0050 0.4410 ±0.0071 0.4404 ±0.0070 0.0034 ±0.0057 0.0034 ±0.0057 0.2390 ±0.0815 0.2161 ±0.0936 7.2965 ±0.1837 7.2967 ±0.1836

0.6 0.398 ±0.0050 0.398 ±0.0050 0.6091 ±0.0076 0.6088 ±0.0077 0.0046 ±0.0062 0.0046 ±0.0062 0.1552 ±0.0657 0.1552 ±0.0657 8.1102 ±0.2114 8.1102 ±0.2114

0.5 0.501 ±0.0047 0.500 ±0.0046 0.8151 ±0.0099 0.7989 ±0.0271 0.0018 ±0.0086 0.0020 ±0.0088 0.2206 ±0.1944 0.1275 ±0.1373 8.6467 ±0.2323 8.6523 ±0.2272

0.4 0.602 ±0.0040 0.601 ±0.0033 1.0913 ±0.0124 1.0328 ±0.0653 0.0045 ±0.0108 0.0067 ±0.0098 0.3346 ±0.1382 0.1218 ±0.1480 8.8267 ±0.1399 8.8567 ±0.1464

0.3 0.702 ±0.0055 0.700 ±0.0050 1.5500 ±0.0284 1.3786 ±0.1607 0.0058 ±0.0096 0.0111 ±0.0101 0.2732 ±0.0566 0.1870 ±0.1207 8.6969 ±0.1592 8.7349 ±0.1795

0.2 0.801 ±0.0039 0.798 ±0.0039 2.6037 ±0.0505 2.0774 ±0.3557 0.0140 ±0.0102 0.0157 ±0.0093 0.1060 ±0.0263 0.0684 ±0.0482 7.7739 ±0.1332 7.8463 ±0.1601

0.1 0.899 ±0.0029 0.899 ±0.0024 7.0472 ±0.2123 6.5127 ±0.9696 0.0109 ±0.0088 0.0117 ±0.0085 0.0678 ±0.0057 0.0585 ±0.0191 5.9361 ±0.1387 5.9533 ±0.1299

0.05 0.949 ±0.0021 0.949 ±0.0018 19.8068 ±0.7396 17.5855 ±2.7073 0.0083 ±0.0096 0.0087 ±0.0096 0.0394 ±0.0020 0.0345 ±0.0075 4.1618 ±0.1232 4.1757 ±0.1103

0.03 0.970 ±0.0009 0.970 ±0.0008 42.2811 ±1.0037 35.1892 ±7.5316 0.0078 ±0.0057 0.0085 ±0.0055 0.0260 ±0.0008 0.0233 ±0.0048 2.9695 ±0.0572 2.9883 ±0.0561

0.01 0.990 ±0.0008 0.989 ±0.0008 145.1734 ±7.0391 119.9677 ±24.3730 0.0028 ±0.0084 0.0028 ±0.0084 0.0099 ±0.0009 0.0094 ±0.0013 1.5457 ±0.0512 1.5545 ±0.0525

Average - - 18.4875 15.5019 0.0055 0.0065 0.1400 0.0991 6.2110 6.2281

Table 10: Experimental results of ImageNet for APS under α = 0.05. “ ” indicates that the average
value of our proposed methods is lower than the Base method.

Models Coverage Size ↓ WSC ↓ SSCV ↓ CovGap ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

ResNeXt101 0.949 ±0.0021 0.949 ±0.0018 19.8068 ±0.7396 17.5855 ±2.7073 0.0083 ±0.0096 0.0087 ±0.0096 0.0394 ±0.0020 0.0345 ±0.0075 4.1618 ±0.1232 4.1757 ±0.1103

ResNet152 0.950 ±0.0019 0.949 ±0.0017 14.3292 ±0.5110 13.5522 ±0.7758 0.0065 ±0.0042 0.0057 ±0.0029 0.0313 ±0.0019 0.0279 ±0.0050 3.9007 ±0.0985 3.9025 ±0.0964

ResNet101 0.950 ±0.0019 0.949 ±0.0017 15.7522 ±0.5588 14.6741 ±1.3810 0.0049 ±0.0073 0.0050 ±0.0072 0.0316 ±0.0027 0.0275 ±0.0060 3.9371 ±0.1087 3.9503 ±0.1008

ResNet50 0.950 ±0.0017 0.949 ±0.0014 20.1592 ±0.5926 17.9142 ±2.6869 0.0035 ±0.0091 0.0052 ±0.0089 0.0327 ±0.0019 0.0265 ±0.0080 3.8338 ±0.0904 3.8561 ±0.0927

DenseNet161 0.950 ±0.0021 0.950 ±0.0016 16.9994 ±0.7400 14.7292 ±2.4749 0.0056 ±0.0050 0.0067 ±0.0050 0.0331 ±0.0019 0.0254 ±0.0110 4.0335 ±0.0812 4.0504 ±0.0652

Inception 0.950 ±0.0015 0.950 ±0.0014 103.9987 ±1.8489 96.1700 ±9.8758 0.0213 ±0.0137 0.0213 ±0.0142 0.0414 ±0.0033 0.0408 ±0.0038 4.1089 ±0.0863 4.1167 ±0.0861

ShuffleNet 0.950 ±0.0023 0.949 ±0.0021 54.8684 ±1.6728 50.1500 ±2.9818 0.0035 ±0.0084 0.0041 ±0.0082 0.0278 ±0.0014 0.0251 ±0.0027 4.0022 ±0.0823 4.0114 ±0.0847

Average 0.950 0.949 35.1305 32.1107 0.0077 0.0081 0.0339 0.0297 3.9969 4.0090

Table 11: Experimental results of ImageNet for APS under α = 0.01. “ ” indicates that the average
value of our proposed methods is lower than the Base method.

Models Coverage Size ↓ WSC ↓ SSCV ↓ CovGap ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

ResNeXt101 0.990 ±0.0008 0.989 ±0.0008 145.1734 ±7.0391 119.9677 ±24.3730 0.0028 ±0.0084 0.0028 ±0.0084 0.0099 ±0.0009 0.0094 ±0.0013 1.5457 ±0.0512 1.5545 ±0.0525

ResNet152 0.990 ±0.0008 0.989 ±0.0007 76.4870 ±3.6418 65.2601 ±8.4096 -0.0013 ±0.0069 -0.0018 ±0.0073 0.0085 ±0.0002 0.0075 ±0.0011 1.5471 ±0.0519 1.5616 ±0.0463

ResNet101 0.990 ±0.0007 0.989 ±0.0006 86.6406 ±3.7504 75.2470 ±11.5149 0.0023 ±0.0075 0.0019 ±0.0076 0.0086 ±0.0006 0.0077 ±0.0010 1.5479 ±0.0451 1.5619 ±0.0385

ResNet50 0.990 ±0.0006 0.989 ±0.0006 97.9144 ±3.4014 83.0018 ±11.9252 -0.0005 ±0.0083 0.0019 ±0.0083 0.0087 ±0.0008 0.0082 ±0.0011 1.5466 ±0.0404 1.5588 ±0.0405

DenseNet161 0.990 ±0.0006 0.990 ±0.0006 114.0134 ±3.8084 93.0432 ±14.2249 0.0094 ±0.0136 0.0085 ±0.0142 0.0088 ±0.0003 0.0078 ±0.0007 1.5416 ±0.0379 1.5610 ±0.0364

Inception 0.989 ±0.0008 0.989 ±0.0007 368.4748 ±9.6701 358.9707 ±12.3052 0.0111 ±0.0081 0.0107 ±0.0086 0.0194 ±0.0021 0.0194 ±0.0021 1.5496 ±0.0498 1.5584 ±0.0447

ShuffleNet 0.990 ±0.0007 0.989 ±0.0007 229.8350 ±5.9034 224.4323 ±6.9871 0.0025 ±0.0073 0.0025 ±0.0073 0.0114 ±0.0019 0.0114 ±0.0019 1.5682 ±0.0490 1.5761 ±0.0513

Average 0.990 0.989 159.7912 145.7033 0.0038 0.0038 0.0108 0.0102 1.5495 1.5618

F RESULTS OF CIFAR-100

In this section, we report the experimental results for CIFAR-100. In particular, Table 12 demon-
strates that PoT-CP improves the efficiency and reduces SSCV while maintaining stable conditional
coverage for APS applied in split conformal prediction on CIFAR-100. Figure 5 further illustrates
that PoT-CP improves efficiency across different score functions and various calibration set sizes.
The results of empirical coverage are presented in Figure 6. Additionally, Table 13 provides results
for score functions optimized based on SSCV, demonstrating that PoT-CP can reduce both set size
and SSCV. Table 14 presents the results of applying PoT-CP to Class-wise CP on the CIFAR-100
dataset. The results show a reduction in set size while maintaining stable class-conditional cover-
age. Table 15 presents the outcomes of applying PoT-CP to Cluster CP on the CIFAR-100 dataset,
showing a consistent decrease in set size while maintaining stable class-conditional coverage.

G EMPLOYING POT-CP ON CLASS-WISE CONFORMAL PREDICTION

Let Dcal,j represent the set of calibration examples whose label is j. We compute the 1−α qunatile
of scores in Dcal,j , denoted as Q̂1−α,j . Then, we denote the truncation rank for the class j by rj .
The prediction set of class-wise CP, truncated by the truncation ranks, is defined as Cr(x) := {y ∈
Y : V (x, y) ≤ Q̂1−α,j , rV (x, y) ≤ ry}. Formally, the conformal truncated rank r∗j for class j is

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 12: Experimental results of CIFAR-100 for APS under α = 0.1. “ ” indicates that the average
value of our proposed methods is lower than the Base method.

Models Coverage Size ↓ WSC ↓ SSCV ↓ CovGap ↓
APS +PoT APS +PoT APS +PoT APS +PoT APS +PoT

ResNet101 0.898 ±0.0055 0.896 ±0.0065 4.5710 ±0.1541 4.1566 ±0.5925 0.0134 ±0.0243 0.0148 ±0.0228 0.0575 ±0.0085 0.0476 ±0.0141 4.9734 ±0.2502 5.0208 ±0.2233

DenseNet161 0.898 ±0.0043 0.897 ±0.0056 7.1957 ±0.2505 6.6470 ±0.9057 0.0153 ±0.0131 0.0150 ±0.0140 0.0767 ±0.0037 0.0720 ±0.0098 4.1299 ±0.2922 4.1402 ±0.3027

VGG16 0.896 ±0.0063 0.896 ±0.0062 4.6849 ±0.2196 4.6288 ±0.1904 0.0259 ±0.0204 0.0245 ±0.0227 0.0574 ±0.0132 0.0587 ±0.0128 5.1213 ±0.3521 5.1338 ±0.3507

Inception 0.899 ±0.0048 0.897 ±0.0050 10.6457 ±0.2110 9.5815 ±1.6948 0.0101 ±0.0186 0.0120 ±0.0208 0.0777 ±0.0032 0.0738 ±0.0074 3.6918 ±0.2070 3.7285 ±0.1933

ViT 0.900 ±0.0084 0.897 ±0.0079 6.6895 ±0.2485 5.9739 ±0.7054 0.0065 ±0.0133 0.0117 ±0.0167 0.0761 ±0.0102 0.0761 ±0.0102 4.2220 ±0.3780 4.2435 ±0.3494

Average 0.898 0.897 6.7574 6.1976 0.0142 0.0156 0.0691 0.0656 4.4277 4.4534

0.5k 0.8k 1k 2k 3k 4k 5k
Calibration size

1.66

1.68

1.70

1.72

1.74

1.76

Si
ze

Base
+PoT

(a) THR

0.5k 0.8k 1k 2k 3k 4k 5k
Calibration size

7.5

8.0

8.5

9.0

9.5

10.0

10.5

Si
ze

Base
+PoT

(b) APS

0.5k 0.8k 1k 2k 3k 4k 5k
Calibration size

2.200

2.225

2.250

2.275

2.300

2.325

2.350

2.375

Si
ze

Base
+PoT

(c) RAPS

0.5k 0.8k 1k 2k 3k 4k 5k
Calibration size

2.00

2.05

2.10

2.15

Si
ze

Base
+PoT

(d) SAPS

Figure 5: Effect of the calibration dataset size on average set size for various scores in CIFAR-100.
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Figure 6: Effect of the calibration dataset size on empirical coverage for various scores in CIFAR-
100.

Table 13: Experimental results of CIFAR-100 for automatic tunning hyper-parameters on SSCV.
α = 0.1. “ ” indicates that the average value of PoT-CP is lower than the standard method.

Model Score Coverage Size SSCV
Split +PoT Split +PoT Split +PoT

RAPS
ResNet101 0.897 ±0.0062 0.897 ±0.0063 3.7359 ±0.4387 3.5882 ±0.3817 0.0387 ±0.0103 0.0360 ±0.0097

DenseNet161 0.897 ±0.0066 0.896 ±0.0076 5.5300 ±0.2532 5.0613 ±0.6929 0.0607 ±0.0076 0.0547 ±0.0118
VGG16 0.896 ±0.0066 0.895 ±0.0061 4.5576 ±0.2659 4.4726 ±0.2163 0.0622 ±0.0183 0.0658 ±0.0163

Inception 0.901 ±0.0050 0.899 ±0.0051 9.5967 ±0.9102 8.9028 ±1.6529 0.0727 ±0.0041 0.0704 ±0.0075

Average 0.898 0.897 5.8550 5.5062 0.0586 0.0567

SAPS
ResNet101 0.895 ±0.0053 0.894 ±0.0057 3.4584 ±0.8332 3.4005 ±0.8277 0.0568 ±0.0573 0.0557 ±0.0585

DenseNet161 0.897 ±0.0070 0.895 ±0.0062 2.6484 ±0.2961 2.5541 ±0.1685 0.0281 ±0.0115 0.0316 ±0.0130
VGG16 0.896 ±0.0045 0.896 ±0.0046 4.9702 ±1.0083 4.9254 ±0.8985 0.0460 ±0.0384 0.0462 ±0.0385

Inception 0.899 ±0.0067 0.899 ±0.0064 4.1660 ±1.4958 3.9185 ±1.2072 0.0374 ±0.0227 0.0343 ±0.0197

Average 0.897 0.896 3.8107 3.6996 0.0421 0.0420

determined by :

r∗j = inf{r ∈ Z+ :
|{i : V (xi, j) ≤ Q̂1−α} ∩ {i : rV (xi, j) ≤ r}|

n
≥ ⌈(|Dcal,j |+ 1)(1− α)⌉

|Dcal,j |
,xi ∈ Dcal,j}.

(8)
Then, the prediction set of a test instance x is then defined by:

CT (x) := {y ∈ Y : S(x, y) ≤ Q̂1−α,j , Vf (x, y) ≤ r∗j }.
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Table 14: Experimental results of CIFAR-100 for class-wise conformal prediction under α = 0.1.
“ ” indicates that the average value of PoT-CP is lower than the baselines.

Models Scores Coverage Size CovGap
Split +PoT Split +PoT Split +PoT

ResNet101
THR 0.910 ±0.0050 0.902 ±0.0053 3.2202 ±0.1450 2.6506 ±0.0991 4.6956 ±0.3228 4.6348 ±0.2785
APS 0.908 ±0.0041 0.892 ±0.0046 6.7448 ±0.1930 3.6206 ±0.0749 4.5708 ±0.3496 4.7956 ±0.4244

RAPS 0.909 ±0.0058 0.894 ±0.0053 3.7505 ±0.1554 3.1386 ±0.1319 4.6473 ±0.2681 4.7978 ±0.2891
SAPS 0.908 ±0.0057 0.896 ±0.0055 3.7680 ±0.1724 3.3697 ±0.1446 4.6369 ±0.3649 4.7969 ±0.3439

DenseNet161
THR 0.909 ±0.0086 0.903 ±0.0089 2.6007 ±0.1900 2.2372 ±0.1225 4.8072 ±0.3374 4.7718 ±0.2936
APS 0.909 ±0.0036 0.893 ±0.0041 9.2937 ±0.4565 4.2271 ±0.2702 4.5657 ±0.2463 4.6388 ±0.4015

RAPS 0.909 ±0.0042 0.894 ±0.0046 4.2583 ±0.1082 3.0452 ±0.1016 4.6237 ±0.4972 4.6485 ±0.5460
SAPS 0.910 ±0.0045 0.895 ±0.0051 3.2620 ±0.1709 2.7836 ±0.1428 4.8210 ±0.2752 4.8852 ±0.4318

VGG16
THR 0.909 ±0.0053 0.898 ±0.0050 6.1321 ±0.2580 5.2184 ±0.2020 4.7071 ±0.4183 4.6554 ±0.4436
APS 0.909 ±0.0045 0.894 ±0.0047 7.2640 ±0.3663 5.6587 ±0.3385 4.8350 ±0.2892 4.8487 ±0.4162

RAPS 0.908 ±0.0043 0.897 ±0.0044 8.6776 ±0.4100 7.7704 ±0.4024 4.6199 ±0.3352 4.7636 ±0.3356
SAPS 0.908 ±0.0039 0.898 ±0.0049 8.1919 ±0.3269 7.3683 ±0.3209 4.6918 ±0.3876 4.8120 ±0.3874

Inception
THR 0.913 ±0.0029 0.906 ±0.0033 3.5970 ±0.2958 2.7412 ±0.1625 4.6130 ±0.3936 4.4477 ±0.3920
APS 0.910 ±0.0046 0.891 ±0.0043 12.0023 ±0.1940 5.6323 ±0.2041 4.7201 ±0.2779 4.8345 ±0.3625

RAPS 0.909 ±0.0048 0.892 ±0.0040 6.3507 ±0.0888 4.1556 ±0.1665 4.6464 ±0.2779 4.7433 ±0.2869
SAPS 0.911 ±0.0025 0.898 ±0.0025 3.7521 ±0.2270 3.3180 ±0.1968 4.5221 ±0.3809 4.6212 ±0.3490

Average 0.909 0.896 5.8041 4.1835 4.6702 4.7310

Table 15: Experimental results of CIFAR-100 for Cluster conformal prediction under α = 0.1. “ ”
indicates that the average value of PoT-CP is lower than the standard method.

Models Scores Coverage Size CovGap
Split +PoT Split +PoT Split +PoT

ResNet101
THR 0.898 ±0.0091 0.898 ±0.0092 2.3118 ±0.1862 2.2894 ±0.1873 4.6943 ±0.5328 4.6933 ±0.5229
APS 0.903 ±0.0046 0.901 ±0.0045 5.1971 ±0.3104 4.6409 ±0.3166 4.7425 ±0.2137 4.7564 ±0.2175

RAPS 0.902 ±0.0039 0.901 ±0.0040 2.8672 ±0.0595 2.8367 ±0.0597 4.7083 ±0.2526 4.7424 ±0.2392
SAPS 0.899 ±0.0063 0.899 ±0.0064 2.8869 ±0.2814 2.8856 ±0.2817 5.0372 ±0.3527 5.0394 ±0.3453

DenseNet161
THR 0.902 ±0.0099 0.902 ±0.0100 1.9952 ±0.1267 1.9843 ±0.1243 4.4526 ±0.3867 4.4451 ±0.3819
APS 0.901 ±0.0068 0.900 ±0.0071 7.6815 ±0.3913 6.7549 ±0.3532 4.1766 ±0.3401 4.1972 ±0.3281

RAPS 0.901 ±0.0087 0.900 ±0.0092 3.8745 ±0.1408 3.7908 ±0.1549 4.1283 ±0.4117 4.1453 ±0.4180
SAPS 0.903 ±0.0060 0.903 ±0.0059 2.4715 ±0.4742 2.4698 ±0.4748 4.7311 ±0.3615 4.7334 ±0.3571

VGG16
THR 0.899 ±0.0111 0.898 ±0.0107 4.2667 ±0.4498 4.1878 ±0.4356 4.4859 ±0.4469 4.4889 ±0.4737
APS 0.902 ±0.0086 0.901 ±0.0087 5.4036 ±0.5525 5.2537 ±0.5543 4.6645 ±0.3385 4.6887 ±0.3244

RAPS 0.901 ±0.0077 0.901 ±0.0077 5.6311 ±0.7096 5.6007 ±0.7014 4.7868 ±0.3904 4.8161 ±0.3809
SAPS 0.901 ±0.0076 0.901 ±0.0076 6.1813 ±0.7256 6.1590 ±0.7213 4.8167 ±0.3597 4.8072 ±0.3416

Inception
THR 0.901 ±0.0066 0.901 ±0.0065 2.1901 ±0.1463 2.1616 ±0.1389 4.2990 ±0.4605 4.2830 ±0.4575
APS 0.903 ±0.0063 0.901 ±0.0062 10.9725 ±0.3840 9.7192 ±0.5173 3.9609 ±0.1483 3.9745 ±0.1223

RAPS 0.900 ±0.0078 0.899 ±0.0077 5.7199 ±0.1694 5.5125 ±0.1544 3.9817 ±0.1640 3.9906 ±0.1597
SAPS 0.905 ±0.0070 0.905 ±0.0071 2.7252 ±0.3980 2.7233 ±0.3979 4.8873 ±0.2414 4.8944 ±0.2481

Average 0.901 0.901 4.5235 4.3106 4.5346 4.5435

H EMPLOYING POT-CP ON CLUSTER CONFORMAL PREDICTION

We begin by using the tuning dataset to train a clustering function h which maps each class y ∈ Y to
one of m clusters. For the selection of m, we follow the clustering algorithm from cluster CP (Ding
et al., 2024).

Let Dcal,j represent the set of calibration examples whose labels belong to the cluster j. We compute
the 1− α qunatile of scores in Dcal,j , denoted as Q̂1−α,j . Then, the calibration set Dcal,j is treated
as a dataset for a multi-class problem, where the classes are restricted to those within cluster j.
Similar to Section 3.2, we employ PoT-CP to each cluster to obtain a truncated prediction set. Then,
the truncated prediction set for the cluster j is denoted as CT,j(x). Finally, the prediction set of a
test instance x is then defined by:

CT (x) :=
m⋃
j=1

CT,j(x).
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I ORDINAL CLASSIFICATION

In this section, we conduct experiments using a synthetic dataset and the UTKFace dataset, adhering
to the experimental setup of the prior research (Xu et al., 2023). The details are provided below.

Synthetic Dataset. We generated a 10-class ordinal dataset on a 2-D plane, with each class con-
taining 2,000 data points drawn from a Gaussian distribution. The i-th class is centered at the
coordination [i, i], with a randomly generated covariance matrix. Then, The dataset was divided
into 4,000 points for the training set, 8,000 for the calibration set, and 8,000 for the test set. For
classification, we implemented a two-layer MLP with 50 neurons in the hidden layer.

UTKFace. The UTKFace dataset comprises over 20,000 images, spanning ages from 0 to 116 years.
Each image is annotated with the individual’s age. In our analysis, we include only individuals under
100 years old and discretize age into 20 groups, each covering a 5-year range (e.g., group 0 for ages
0-4, group 1 for ages 5-9, etc.). Moreover, we train an ordinal classifier based on the ResNet34 (He
et al., 2016).
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