
Published as a conference paper at ICLR 2025

LEARNING SPLITTING HEURISTICS IN DIVIDE-AND-
CONQUER SAT SOLVERS WITH REINFORCEMENT
LEARNING

Shumao Zhai1, Ning Ge1,2 ∗
1Beihang University 2State Key Laboratory of Complex & Critical Software Environment (CCSE)

ABSTRACT

We propose RDC-SAT, a novel approach to optimize splitting heuristics in Divide-
and-Conquer SAT solvers using deep reinforcement learning. Our method dynami-
cally extracts features from the current solving state whenever a split is required.
These features, such as learned clauses, variable activity scores, and clause LBD
(Literal Block Distance) values, are represented as a graph. A GNN integrated
with an Actor-Critic model processes this graph to determine the optimal split
variable. Unlike traditional linear state transitions characterized by Markov pro-
cesses, divide-and-conquer challenges involve tree-like state transitions. To address
this, we developed a reinforcement learning environment based on the Painless
framework that efficiently handles these transitions. Additionally, we designed dif-
ferent discounted reward functions for satisfiable and unsatisfiable SAT problems,
capable of handling tree-like state transitions. We trained our model using the
Decentralized Proximal Policy Optimization (DPPO) algorithm on phase transition
random 3-SAT problems and implemented the RDC-SAT solver, which operates
in both GPU-accelerated and non-GPU modes. Evaluations show that RDC-SAT
significantly improves the performance of D&C solvers on phase transition ran-
dom 3-SAT datasets and generalizes well to the SAT Competition 2023 dataset,
substantially outperforming traditional splitting heuristics.

1 INTRODUCTION

The propositional satisfiability problem (SAT) is one of the foundational problems in theoretical
computer science. It involves determining the assignment of variables that satisfy a given Boolean
formula. Due to its NP-complete nature, SAT plays a crucial role in theoretical computer science
and has a wide range of applications, including software verification, hardware design verification,
combinatorial optimization, and artificial intelligence, etc. Most modern complete SAT solvers
primarily employ the conflict-driven clause learning (CDCL) algorithm (Marques-Silva et al., 2021),
which has transformed the field by introducing clause learning mechanisms that effectively optimize
the search space. CDCL solvers avoid revisiting previously explored paths and concentrate on
promising areas of the search space, establishing them as the leading method for tackling complex
and challenging SAT problems.

In the realm of modern SAT solvers, parallelism has been embraced to fully harness the computational
power of many-core machines (Hamadi & Sais, 2018). Two dominant parallelization strategies have
emerged: Divide-and-Conquer (D&C) and Portfolio. The D&C strategy, often employing the guiding
path technique, dynamically divides the problem into smaller, more manageable subspaces. Each
subspace is independently tackled by individual sequential solvers, allowing the problem to be
processed more efficiently in parallel. This method leverages problem structure to enable targeted
sub-formula exploration, reducing overall solving time. The Portfolio approach adopts a competitive
strategy in which multiple sequential solvers concurrently tackle the entire problem. This competition
continues until one solver successfully solves the problem. Strategic diversity among solvers enhances
solution coverage and success probability. Although D&C approaches seem to be the natural way
to work in parallel, empirical results from annual SAT competitions indicate that Portfolio-based

∗Corresponding author: Ning Ge (gening@buaa.edu.cn)

1

Published as a conference paper at ICLR 2025

solvers currently lead in performance. However, D&C solvers still possess unique advantages in
certain domains, such as better scalability in environments with large parallel computing power, like
cloud platforms (Heisinger et al., 2020), and have been successfully employed to solve large-scale
mathematical problems (Heule et al., 2016).

In modern D&C SAT solvers, the problem is dynamically divided into smaller, more manageable
subproblems. The splitting process entails selecting a variable and dividing the problem into sub-
formulas by setting the variable to either True or False, which are subsequently solved using CDCL
sequential solvers. This partitioning is guided by splitting heuristics, which largely determine the
performance of D&C SAT solvers. An effective splitting heuristic minimizes total solving time while
ensuring balanced subspaces for optimal load distribution. Splitting heuristics generally fall into
two categories: look-ahead and look-back techniques. Look-ahead heuristics evaluate the potential
impact of variables to minimize runtime, as demonstrated in the Cube-and-Conquer solver (Heule
et al., 2011; Fleury & Heisinger, 2020), which creates smaller subspaces by choosing variables
that maximize unit propagations. In contrast, look-back heuristics evaluate variables based on their
historical effectiveness in the search, selecting split variables through methods like VSIDS-based
variable activity (Audemard et al., 2016), the number of flips of variables (Le Frioux et al., 2019),
and propagation rates (Nejati et al., 2017) of variables.

Machine learning methods have already been widely applied to SAT problems (Holden et al., 2021;
Guo et al., 2023; Yolcu & Póczos, 2019; Zhang et al., 2020). In recent years, GNNs and RL have
shown potential in optimizing branch splitting, phase selection, clause deletion, etc., heuristics in
CDCL solvers (Jaszczur et al., 2020; Kurin et al., 2020; Selsam & Bjørner, 2019; Cameron et al.,
2020; Han, 2020; Wang et al., 2023; Shi et al., 2023; Liu et al., 2024). For example, Graph-Q-
Sat (Kurin et al., 2019; 2020) uses GNNs and RL to optimize branch heuristics in CDCL solvers,
significantly reducing the number of iterations. However, Graph-Q-Sat did not effectively reduce
overall runtime due to CDCL’s requirement for high-frequency variable selection calls. In contrast,
splitting heuristics in D&C solvers are equally critical but invoked far less frequently, making RL and
GNN-based optimization of these heuristics particularly promising. A more detailed discussion of
related work is provided in Appendix A.

In this paper, we present a technique that employs deep reinforcement learning to optimize the
splitting euristics within parallel D&C SAT solvers, resulting in the development of the Reinforced
Divide-and-Conquer SAT solver (RDC-SAT). When a split is required, the D&C solver parses
information from the sequential solver, including learned clauses, variable activities, and clause
LBD(Literal Block Distance), and represents this information as a graph. A GNN is then used to
evaluate the importance of each variable and select the optimal split variable.

To optimize this model using reinforcement learning, we developed an RL environment within
the Painless (PArallel INstantiabLE Sat Solver) framework (Le Frioux et al., 2017; 2019) that
efficiently manages the tree-like state transitions characteristic of D&C methods. Additionally,
we designed distinct discounted reward functions for satisfiable and unsatisfiable SAT problems.
We then trained a model optimized for splitting heuristics using the Distributed Proximal Policy
Optimization(DPPO)(Heess et al., 2017) algorithm, resulting in the creation of RDC-SAT. Moreover,
considering the computational overhead of the neural network in the SAT solver, we also implemented
an approach similar to NeuroBack (Wang et al., 2023), which supports invoking the neural network
only once at the initial stage to guide subsequent splits, making it suitable for GPU resource-poor
computing environments. To validate our approach, we trained the model on a random dataset
at the phase transition and evaluated its effectiveness and generalization on larger-scale problems.
Our empirical results demonstrate that RDC-SAT outperforms baseline methods. On the random
3-SAT dataset, RDC-SAT achieved a 25.08% reduction in PAR2 score; on the SAT Competition
2023 dataset—which includes small to medium-sized SAT problems with hundreds of thousands
of variables and clauses—it achieved a 14.95% reduction. Even without GPU acceleration, the
insights from the initial neural network call effectively guide subsequent splits, ensuring efficient
problem-solving with minimal reliance on neural network computations.

2 PRELIMINARIES

SAT problem. The Boolean Satisfiability Problem (SAT)(Biere et al., 2009) concerns the satisfi-
ability determination of propositional logic formulas. A propositional logic formula is composed

2

Published as a conference paper at ICLR 2025

of variables and operators such as AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬),
and parentheses, typically expressed in Conjunctive Normal Form (CNF). In CNF, a formula is a
conjunction of clauses, where a clause is a disjunction of literals, and a literal is either a variable
(positive literal) or its negation (negative literal). For example, (x∨¬y)∧ (¬x∨ z) is a CNF formula,
where x and z are positive literals of their respective variables, and ¬y is a negative literal. In the
SAT problem, each variable can be assigned one of two values: True or False. If there is at least one
assignment of variables that makes the entire formula True, then the formula is deemed satisfiable
(SAT); otherwise, it is considered unsatisfiable (UNSAT). During the process of solving SAT prob-
lems, CDCL solvers generate numerous learned clauses to aid in resolving the problem efficiently.
These learned clauses help reduce the search space by preventing the solver from revisiting conflicting
assignments, thus facilitating quicker convergence towards a solution or proving unsatisfiability.

Divide-and-Conquer SAT solvers. Modern D&C SAT solvers follow a hierarchical master-slave
architecture.(Le Frioux et al., 2019) The master node manages the partitioning of the search space
into smaller subspaces, which are tackled independently and in parallel by multiple sequential CDCL
solvers. These subproblems are solved concurrently by worker nodes, which share learned clauses
with each other to accelerate the solving process and reduce redundant computations. To ensure
dynamic load balancing, D&C solvers utilize a work-stealing mechanism. When a worker node
becomes idle, the master node identifies an ongoing subproblem currently being processed by another
node, splits it into smaller tasks, and assigns one to the idle worker. This dynamic redistribution
of tasks enhances computational efficiency. Incremental solvers further optimize this approach by
enabling solvers to continue from previous states with retained learned clauses and variable activity
scores, minimizing redundancy and improving overall solving speed.

Graph Neural Networks. Graph Neural Networks (GNNs) (Wu et al., 2020; Zhou et al., 2020)
are designed to handle data structured as graphs, allowing for the modeling of relationships and
interactions within data. The GraphNets framework (Battaglia et al., 2018) utilizes an Encoder-
Processor-Decoder architecture to effectively process graph-structured data. The encoder maps node
and edge features into high-dimensional latent representations. The processor iteratively updates
these representations through a message-passing mechanism, where each node aggregates information
from its neighbors to refine its embedding. This mechanism enables the network to propagate and
integrate information across the graph. Finally, the decoder reconstructs the desired outputs from
the node embeddings for tasks such as node classification, graph classification, or link prediction,
utilizing the embeddings either directly or through aggregation for graph-level predictions.

Reinforcement Learning. Reinforcement Learning (RL) is a machine learning paradigm where an
agent learns to make decisions by interacting with its environment, maximizing cumulative rewards.
Central to RL is the classic Markov Decision Process (MDP), which models the decision-making
problem through states s ∈ S, actions a ∈ A, state-transition probabilities P (s′|s, a), and a reward
function R(s, a). This framework assumes the state transitions are generally linear, meaning the next
state s′ depends only on the current state s and action a. Advanced RL algorithms like Actor-Critic
methods use a policy network (actor) to select actions and a value network (critic) to estimate the value
function, improving both networks iteratively. Proximal Policy Optimization (PPO) (Schulman et al.,
2017) introduces a clipped surrogate objective function to stabilize policy updates, preventing drastic
changes and ensuring more reliable learning. Distributed Proximal Policy Optimization (DPPO)Heess
et al. (2017) extends PPO by employing multiple agents across distributed environments, leveraging
data parallelism to speed up learning while maintaining policy stability.

3 INTERACTIVE DIVIDE-AND-CONQUER ENVIRONMENT

We selected Painless (Le Frioux et al., 2017; 2019) as the foundational parallel divide-and-conquer
framework. The Painless framework is a modular and high-performance parallel SAT-solving system,
ideal for comparing different heuristics. It uses a master-slave architecture with a work-stealing
strategy for dynamic load balancing and supports clause sharing to enhance solving efficiency. For
our experiments, we used the best-performing settings identified, including MapleCOMSPS (Liang
et al., 2016b;a) as the sequential solver and the "alltoall" clause-sharing strategy. Building on
this foundation, to construct a reinforcement learning environment suitable for optimizing splitting
heuristics and handling tree-structured state transitions, we implemented features to extract SAT
problem states from the SAT solver, store various information required for training using a binary

3

Published as a conference paper at ICLR 2025

tree, and retain only simple interfaces. To use Python for model training, we encapsulated the
divide-and-conquer environment as a Python library using Pybind11 and created the PainlessEnv
environment in Python. Specific implementation details can be found in Appendix B.

3.1 ENVIRONMENT INTERFACE

Our custom PainlessEnv environment is specifically designed for the needs of divide-and-conquer
SAT problems, addressing the complexities of parallel and branching operations in SAT solving.
It manages a binary tree structure to support the non-linear state transitions characteristic of these
problems, unlike the linear transitions typical in traditional environments like Gym (Brockman et al.,
2016). PainlessEnv primarily provides two interfaces for agent interaction: ’reset’ and ’step’. The
reset method initializes a new SAT problem and provides the initial state of the first subproblem that
needs to be partitioned. Unlike Gym’s ’step’ method, which returns the next observation, reward, and
done flag, our ’step’ method only returns the next subproblem state and a ’done’ flag. This is because,
in the tree-structured state transitions, the next state is not always a direct successor of the previous
state, and the reward can only be accurately determined from the tree structure. Therefore, our ’step’
method does not return the reward directly.

3.2 MANAGING STATE TRANSITIONS WITH BINARY TREES

Due to the non-linear state transitions inherent in D&C problems, PainlessEnv cannot produce a
continuous sequence of states and rewards for training. Instead, it utilizes a binary tree, as illustrated
in Figure 1, to store all critical information during the solving process. The root node denotes
the initial problem, internal nodes correspond to subproblems requiring splitting, and leaf nodes
signify fully solved subproblems. When a worker requests a division or completes a solution, a new
node is added to the tree with all pertinent data. After solving a SAT problem, the reinforcement
learning agent retrieves training information from this binary tree. Additionally, In a D&C solver for
SAT problems, once a subproblem is proven satisfiable, it indicates that the entire SAT problem is
satisfiable. Typically, the D&C solver would interrupt all other active workers and return the result.
However, for reinforcement learning training, the other unresolved subproblems are still meaningful.
Interrupting the process leads to missing leaf nodes in the binary tree, which is suboptimal for training.
To address this, even if a subproblem is confirmed as satisfiable, we continue processing until all
subproblems are resolved before returning a result, ensuring a complete and informative dataset for
training.

3.3 SAT SUBPROBLEM STATE EXTRACTION

Each time a split is required, the Painless environment interrupts a sequential solver and extracts
basic information about the SAT problem to represent its state. MapleCOMSPS categorizes learned
clauses into three levels: core, tier2, and local. Core learned clauses are considered the most crucial.
They are generally derived from conflicts that involve decisions at deeper levels of the decision tree
that are usually kept permanently. Tier2 learned clauses are of intermediate importance. They are
often derived from conflicts at shallower depths and are kept as long as they are deemed useful. Local
learned clauses are less critical and more temporary, typically generated from recent conflicts and
are discarded periodically to manage memory and performance overhead. Additionally, it maintains
variable activity values used in branch heuristics, the LBD values of clauses to evaluate their utility,
and other statistical information such as the number of decisions and unit propagations. We extract
these learned clauses at different levels, along with variable activity scores and other pertinent data,
to comprehensively represent the current solving state of the SAT problem. This information is then
represented as a graph, which our environment can be configured to utilize.

4 REINFORCED DIVIDE-AND-CONQUER SAT

We utilized a state representation and a GNN similar to Graph-Q-Sat (Kurin et al., 2020), with
modifications to incorporate additional information that better represents the evolving state of the
SAT problem. Additionally, we replaced DQN with an Actor-Critic network and trained it using
DPPO.

4

Published as a conference paper at ICLR 2025

Figure 1: Binary tree maintained by PainlessEnv
to store process information. Each node in the
tree stores problem states, splitting times, solv-
ing times, split variables, satisfiability status, and
other relevant information. Internal nodes rep-
resent subproblems that have been split, while
leaf nodes represent solved subproblems. Dashed
lines indicate satisfiable subproblems.

Figure 2: State representation of Boolean formula
(x1 ∨ x2) ∧ (¬x2 ∨ x3). The first position of the
node feature indicates node type: 1 for variable
nodes and 0 for clause nodes, and vice versa for
the second position. Fx, Fc, and Fg represent
variable activity features, clause LBD features,
and global SAT problem statistics, respectively.
Edge features represent the polarity of literals.

4.1 STATE REPRESENTATION

In RDC-SAT, the SAT problem is structured as a graph shown in Figure 2 where nodes represent
variables and clauses, with node and edge features indicating variable polarity and type. We extract
detailed information from the Maple solver, including variable data and learned clauses at various
levels. Incorporating learned clauses provides a more dynamic reflection of the SAT problem’s state.
Variable activity levels and clause LBD values are normalized to enhance message passing efficiency.
Additionally, global characteristics like restart counts, decision counts, conflict counts, and unit
propagation counts are included as global features. This comprehensive representation captures the
dynamic state changes in the SAT problem, enabling the GNN to process node and edge data more
effectively.

4.2 REWARD FUNCTION FOR TREE-STRUCTURED STATE TRANSITIONS

In traditional reinforcement learning, rewards are typically calculated for linear state transitions,
where the reward for each state is computed from the final state backward through the sequence,
applying a discount factor at each step. This process involves calculating the reward for the final state
first and then propagating it backward through the sequence. Correspondingly, for tree-structured
state transitions, calculating the reward for each state requires first computing the discounted rewards
for its child states. This necessitates using a post-order traversal to ensure that the discounted rewards
of the child states are available before calculating the reward for the current state. Once the discounted
rewards of the child states are obtained, they can be integrated into the discounted reward of current
state using methods such as summation, averaging, taking the maximum, or the minimum of the
child states’ rewards. To illustrate this, consider a binary tree, where each state has two child states.
Mathematically, if RL and RR are the discounted rewards of the left and right child states, and rs is
the immediate reward for the current state, the current state’s reward R can be calculated as

R = rs + γ · f(RL, RR)

The primary goal of this optimization is to minimize solving time. Thus, we simply use the negative
solving time as the reward, making the maximization of this reward equivalent to minimizing the
solving time. After solving SAT problems, we extract the splitting time and solving time from
the binary tree in PainlessEnv to calculate the actual solving time for each state. For unsatisfiable
problems, the total solving time is the sum of the splitting time and the longer solving time of the two
subproblems. In contrast, for satisfiable problems, the total solving time is the sum of the splitting
time and the shorter solving time of the satisfiable subproblems. The following formulas encapsulate

5

Published as a conference paper at ICLR 2025

the calculation of discounted reward:

RU = − (Ts +max (∆TUc + γ · |RUc|))

RS = − (Ts +min (∆TSc + γ · |RSc|))

Figure 3: Calculation of discounted re-
ward in tree-structured state transitions.

Here, RU and RS are the discounted rewards for UNSAT
and SAT problems, respectively; Ts is the splitting time,
which is the time taken to analyze the problem state and
decide the split variable; |RUc| and |RSc| are the absolute
values of the discounted rewards for the child subproblems
of UNSAT and SAT states, respectively. If a corresponding
child state is a leaf node, its discounted reward is zero;
∆TUc and ∆TSc are the time intervals from the completion
of the division to the return of the next child subproblem
state in UNSAT and SAT scenarios, respectively; and γ is
the discount factor applied to future rewards. Typically, γ
is less than 1 to prioritize immediate rewards over future
rewards. However, in our study, we set γ = 1 because the
solving process terminates within a definite time frame.
This ensures that each action considers the entire solving
process, and the reward directly reflects the total solving
time under the current policy and action.

4.3 NEURAL NETWORK, ACTION DEFINITION, AND OBJECTIVE FUNCTION

We use a Graph Neural Network (GNN) with an Encoder-Processor-Decoder architecture (Battaglia
et al., 2018) to extract features, followed by an Actor-Critic network to make decisions. The Encoder
transforms initial features into higher-dimensional representations. The Processor integrates local
and global information through message passing. The Decoder outputs variable, clause, and global
features. The RL action corresponds to selecting a variable as the split variable during the Divide-
and-Conquer process. The Actor network assigns probabilities to valid variables, excluding those
already chosen as split variables or eliminated during the solving process, ensuring the action space
only contains currently selectable variables. The Critic network estimates the value of the current
state based on clause and global features. We use the Proximal Policy Optimization (PPO)(Schulman
et al., 2017) objective function. This objective combines policy loss, value loss, and entropy loss to
optimize the learning process.

4.4 TRAINING AND DEPLOYMENT

Training data. We utilize randomly generated 3-SAT problems at the phase transition as our training
data. The phase transition in SAT problems is characterized by a specific ratio of clauses (n) to
variables (m), given by n = 4.258m+ 58.26m− 2

3 (Crawford & Auton, 1996), where the likelihood
of satisfiability sharply transitions from high to low as the number of clauses increases relative to the
number of variables. This critical point presents the greatest computational challenge. Although these
datasets may initially exhibit a uniform structure, CDCL solvers in D&C solvers can quickly generate
a large number of learned clauses, making the subsequent SAT problems input to the neural network
inherently rich in structural features. We selected two datasets: one with 300 variables and 1,278
clauses, and another with 350 variables and 1,491 clauses (hereafter referred to as the 300-1278 and
350-1491 datasets, respectively), each comprising 1,000 instances with a balanced ratio of satisfiable
to unsatisfiable instances. These training datasets can be solved within seconds to tens of seconds,
allowing for the generation of a large amount of training data. All these datasets can be solved within
a reasonable timeframe, generating complete binary trees that are used for subsequent extraction of
training data.

Training. We implemented DPPO using a multi-agent architecture to enhance both exploration and
learning efficiency. The system architecture includes five exploration agents continuously solving
SAT problems and collecting training data, complemented by a single dedicated training agent. Each
exploration agent runs 16 threads to solve SAT problems continuously. Upon completion, these
agents parse the binary tree to extract training data, which is then transmitted to the training agent via

6

Published as a conference paper at ICLR 2025

a message queue. The training agent systematically retrieves this data from the queue, stores it in a
replay buffer, and samples from this buffer to form batches for neural network training. We represent
the state using a graph constructed from variables, original clauses, core learned clauses, and tier2
learned clauses, all extracted from the Sequential CDCL solver. We use the Adam optimizer to train
the model. Post-training, the updated network parameters are synchronized across all exploration
agents to maintain consistency and optimize policy performance. An ϵ-greedy strategy is implemented
to ensure a balance between exploration and exploitation, with the epsilon parameter decreasing
progressively over time. Additionally, all rewards are normalized during training to maintain a
consistent learning scale and enhance algorithmic stability. The exploration agents use only CPU
resources, while the training agent uses only GPU resources. For exploration processes, we used LRB
as the branch heuristics, as it performed better on the random dataset. Training took approximately
2-3 days. After completing this training, we switched the branch heuristics to VSIDS and trained a
new model, which took about half a day. This training operation is hosted on a Linux server equipped
with an Intel(R) Xeon(R) Platinum 8373C CPU, featuring 72 physical cores and 144 logical cores,
supplemented by 256 GB of memory and a Tesla A100 GPU with 80 GB of memory. During training,
we observed that even though random 3-SAT problems at the phase transition initially have just over
a thousand clauses, the states used for training showed that the CDCL solver generated approximately
ten to fifty thousand core and tier2 learned clauses, ensuring a rich structural representation.

Deployment. After the training phase, we utilized TorchScript to export the model and integrate it
with the Painless framework, thereby creating the RDC-SAT solver. This solver is a complete D&C
SAT solver that no longer depends on Python, and it can dynamically generate variable probability
rankings required for splitting decisions using the neural network. The solver can choose to run the
neural network’s forward propagation on either CPU or GPU. However, the relatively high overhead
of neural networks often becomes a bottleneck in SAT solving with GNNs, especially when GPUs
are unavailable and the forward propagation is done using CPUs. When multiple threads call the
neural network simultaneously, resource contention may occur, slowing down the solving process.
To address this and enable RDC-SAT to function effectively without GPU support, we implemented
a new strategy: the neural network is used only once during the first required split to generate a
ranked list of candidate split variables. For all subsequent splits, the solver directly selects split
variables from this precomputed ranking. Additionally, when the problem size is very large, leading
to excessive overhead from neural network calls or potential memory limitations, RDC-SAT will
switch to the default splitting heuristic.

5 EVALUATION

In this chapter, we compare the performance of different splitting heuristics within the Painless
framework across various datasets. We evaluate the performance of RDC-SAT against traditional
splitting heuristics and analyze the cost of using GNNs.

5.1 SETUP

Solvers. We used the Painless framework to evaluate the performance of our RDC methods
compared to baseline divide-and-conquer solvers. To ensure a fair comparison, we kept all con-
figurations consistent except for the splitting heuristics. Specifically, we used FLIPS (Audemard
et al., 2014b), VSIDS(Audemard et al., 2016), and PR (Nejati et al., 2017) splitting strategies from
the work (Le Frioux et al., 2019), with P-CLONE-FLIPS showing the best overall performance,
outperforming Treengeling and MapleAmpharos. Our RDC-SAT utilized core and tier2 learned
clauses to construct the graph, employing two modes: RDC-GPU-always and RDC-CPU-once. RDC-
GPU-always uses the GPU to accelerate neural network calls, selecting the split variable with GNN
every time it splits. RDC-CPU-once, on the other hand, does not rely on GPU and only uses the CPU
to call the GNN and generate variable sorting. For subsequent splitting, the worker uses the variable
probability sorting to select split variables. Due to the poor performance of VSIDS on random
datasets compared to LRB (as shown in Appendix E.2), we used Maple’s LRB branch heuristics for
the random dataset, and the RDC used the LRB model. In contrast, for the SAT Competition dataset,
we used Maple’s VSIDS branch heuristics, and the RDC used the VSIDS model.

Dataset. We evaluated RDC-SAT on two datasets. (1) To investigate whether RDC-SAT has
effectively learned the splitting heuristics, we randomly selected 200 SAT instances from the random

7

Published as a conference paper at ICLR 2025

dataset at the phase transition. This set includes 100 problems from the 450-1917 dataset and 100 from
the 500-2129 dataset, with a 1:1 ratio of satisfiable to unsatisfiable instances. This dataset provides
a suitable level of difficulty for the baseline solvers, enabling us to distinguish their performance.
(2) To evaluate whether RDC-SAT, trained on random datasets, can generalize to more extensive,
application-oriented datasets, we screened 305 small to medium-sized SAT problems from the
400 instances in the SAT Competition 2023. These problems, which make up the majority of the
competition’s instances, have a total number of variables and clauses below one million. The SAT
Competition dataset includes a diverse range of difficult SAT instances, such as industrial applications
and handmade problems. Since our model was trained solely on random datasets, without any
knowledge of application-specific or handmade instances, this dataset serves as an ideal benchmark
for evaluating the generalization capability of RDC-SAT.

All experiments were conducted on the same machine used for training, with each solver allocated 16
threads. RDC-CPU-once was also limited to using 16 CPU cores for running the neural network’s
forward propagation process. The timeout for each instance was set to 5000 seconds. For instances
that timed out, we used the same PAR2 score as in the SAT Competition, treating the timeouts as
requiring double the timeout duration to solve. To analyze the performance of different splitting
heuristics, we recorded the splitting and solving time. In our small-scale tests, we found that the PR
method was not well-suited for solving random problems, and thus we did not evaluate PR on the
random dataset.

5.2 EVALUATION RESULT

Table 1 presents all the results. Figure 4 illustrates the comparison of wall-clock time and problems
solved across different splitting heuristics on two datasets. Instances that no solver could successfully
solve within the time limit were excluded from the statistics.

Table 1: Comparison of Splitting Heuristics across Datasets. #SAT, #UNSAT, and #ALL indicate the
number of SAT problems, UNSAT problems, and total problems solved within the time limit. Clock
Time is the average wall-clock time in seconds. PAR2 is the penalized average runtime. Splits are the
average number of splits per problem. Splitting Time represents the average CPU time spent by all
threads on splitting SAT subproblems. Solving Time represents the average CPU time spent by all
threads using the Sequential CDCL solver to solve SAT subproblems. All time values are in seconds.

Dataset Splitting Heuristics #SAT #UNSAT #All Clock Time PAR2 Splits Splitting Time Solving Time

Random
(141)

RDC-GPU-always 76 53 129 1064.43 1489.96 60.42 20.78 16870.24
RDC-CPU-once 73 53 126 1238.04 1769.95 65.84 0.624 19316.30
FLIPS 74 50 124 1385.80 1988.64 49.21 0.00037 22090.20
LRB 70 50 120 1484.81 2229.49 74.77 0.00054 23617.79

SAT COMP
2023
(140)

RDC-GPU-always 50 85 135 764.00 942.57 162.19 142.47 10678.02
RDC-CPU-once 50 85 135 882.10 1060.67 191.95 8.77 11737.56
FLIPS 50 83 133 858.25 1108.25 80.02 0.0146 12296.52
VSIDS 46 84 130 901.12 1258.26 108.44 0.0013 12602.74
PR 49 72 121 1269.57 1948.14 104.19 0.0155 19232.39

0 20 40 60 80 100 120
Problems solved

0

1000

2000

3000

4000

5000

Ti
m

e

RDC-GPU-always
RDC-CPU-once
FLIPS
LRB

(a) Results on Random Dataset

0 20 40 60 80 100 120 140
Problems solved

0

1000

2000

3000

4000

5000

Ti
m

e

RDC-GPU-always
RDC-CPU-once
FLIPS
VSIDS
PR

(b) Results on SAT COMP 2023 Dataset

Figure 4: Comparison of wall-clock time and problems solved across splitting heuristics on two
datasets.

8

Published as a conference paper at ICLR 2025

Evaluation on Random 3-SAT Dataset. For the Random 3-SAT dataset, the RDC-GPU-always
and RDC-CPU-once modes were evaluated against traditional heuristics FLIPS and LRB. RDC-
GPU-always successfully solved 129 out of 141 problems, while RDC-CPU-once solved 126, both
significantly outperforming the traditional splitting heuristics in terms of average clock time and
PAR2 score. Specifically, RDC-GPU-always achieved the best performance with an average clock
time of 1064.43 seconds and a PAR2 score of 1489.96. Compared to the best baseline method, FLIPS,
RDC-GPU-always reduced the PAR2 score by approximately 25.08%, demonstrating the model’s
capability to effectively learn and apply splitting heuristics from the random dataset, thus significantly
enhancing solving efficiency. Even RDC-CPU-once, which only utilizes the initial SAT problem state
for its analysis, reduced the PAR2 score by approximately 10.99%, showing substantial performance
improvement over traditional heuristics.

Generalization to SAT Competition Dataset. The RDC-SAT model, trained solely on random
3-SAT problems at the phase transition without any additional dataset information, was further
evaluated on the SAT Competition dataset to test its generalization capability. This dataset includes a
diverse range of problems, many of which are application-specific, providing a comprehensive test
of RDC-SAT’s robustness. Both RDC-GPU-always and RDC-CPU-once demonstrated competitive
performance. Specifically, both methods successfully solved 135 problems, with RDC-GPU-always
achieving the best average clock time of 764.00 seconds and a PAR2 score of 942.57. Compared to
the best traditional method, FLIPS, which had a PAR2 score of 1108.25, RDC-GPU-always reduced
the PAR2 score by approximately 14.95%, showcasing its effectiveness across varied problem types.
RDC-CPU-once, while solving the same number of problems, recorded slightly higher average
clock time and PAR2 score of 1060.67, yet still achieved a PAR2 reduction of approximately 4.29%,
indicating substantial performance improvement even with limited reliance on neural network calls.
These results underscore the ability of RDC-SAT to generalize well beyond its training conditions.

Analysis of Splitting Time and Solving Time. To analyze the solving performance of our methods,
we consider two key metrics: Splitting Time, which represents the total splitting time across all
threads, and Solving Time, which represents the total solving time across all threads. In SAT solvers,
incorporating a GNN is beneficial only if its performance improvements outweigh the overhead. In
D&C solvers, the average number of splits per problem is relatively low; for example, in the random
dataset, it ranges from 49.21 to 74.77 across various splitting heuristics (see Table 1). Therefore, even
if the GNN is invoked at each split, it does not introduce significant performance overhead. Figures 5a
and 5b illustrate the relationship between the splitting time per split and the total number of nodes for
RDC-GPU-always and RDC-CPU-once on the two datasets. From the figures, it can be observed
that the Splitting Time is approximately proportional to the total number of nodes. Notably, in RDC-
GPU-always, the average time per split is less than 1 second. In RDC-CPU-once, although the initial
GNN call takes slightly longer, subsequent splits are faster because they utilize precomputed variable
rankings. When considering total CPU time, the Splitting Time of RDC-GPU-always accounts for
only 0.12% and 1.33% of the total Solving Time on the random and SAT Competition datasets,
respectively. Similarly, for RDC-CPU-once, it accounts for just 0.003% and 0.075%. Despite the
slightly higher Splitting Time compared to baseline methods, the RDC methods significantly reduce
the overall Solving Time. Specifically, RDC-GPU-always reduces the Solving Time by approximately
23.63% and 13.17% on the random and SAT Competition datasets, respectively, compared to the
best-performing baseline, FLIPS. RDC-CPU-once achieves reductions of approximately 12.56% and
4.54%, respectively. Therefore, although the Splitting Time of both RDC-SAT methods is marginally
higher than that of the baseline methods, they substantially decrease the Solving Time, leading to
superior overall performance compared to the baselines.

6 DISCUSSION

In this paper, we propose a method to optimize splitting heuristics in D&C SAT solvers using
reinforcement learning. We built a reinforcement learning environment tailored for Divide-and-
Conquer tasks and trained a model, resulting in the RDC-SAT solver. Compared to baseline methods,
RDC-SAT achieves significant performance improvements in wall-clock time. To the best of our
knowledge, this is the first work addressing tree-structured state transitions induced by Divide-and-
Conquer tasks using reinforcement learning. However, our focus was on exploring the potential of
reinforcement learning and GNNs in optimizing splitting heuristics, rather than constructing a state-
of-the-art (SOTA) parallel D&C SAT solver. Therefore, we did not modify any other components of

9

Published as a conference paper at ICLR 2025

0 25000 50000 75000 100000 125000 150000 175000 200000
Node Count(Variable Count + Clause Count)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
lit

tin
g

Ti
m

e

RDC-GPU-always
RDC-CPU-once

(a) Splitting Time on Random Dataset. RDC-GPU-
always: Avg. 72803.28 nodes, 0.344s per split. RDC-
CPU-once: Avg. 9043.16 nodes, 0.624s per split.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Node Count(Variable Count + Clause Count) 1e6

0

10

20

30

40

50

60

70

Sp
lit

tin
g

Ti
m

e

RDC-GPU-always
RDC-CPU-once

(b) Splitting Time on SAT Competition 2023 Dataset.
RDC-GPU-always: Avg. 248184.79 nodes, 0.878s per
split. RDC-CPU-once: Avg. 191098.54 nodes, 8.77s
per split.

Figure 5: Analysis of splitting Times for RDC-SAT on two dataset.

the Painless framework or train a general model on large-scale datasets containing multiple types of
instances, leaving room for further optimization to reach better performance.

Integration of GNNs with SAT Solvers. The integration of GNNs with SAT solving has become a
hot research area in recent years. However, for SAT solvers, which are performance-critical tools,
the overhead introduced by GNNs—including computational cost and GPU memory usage—is
non-negligible, making it challenging to scale to very large SAT problems. Leading SAT solvers
have not adopted GNNs. For example, attempts to swap CDCL solvers’ branch heuristics with
GNNs show that while GNNs can improve decision-making, their significant overhead might extend
overall solving time. Our work expands the application of GNNs in SAT solving to a new direction.
In a Divide-and-Conquer solver, the splitting heuristic significantly impacts performance, but its
invocation frequency is relatively low, allowing RDC-SAT to improve wall-clock time. To extend
GNNs to larger-scale SAT problems and reduce overhead, future efforts should prioritize reducing
both the size and computational cost of the neural networks. Currently, the GNN employed in RDC-
SAT is relatively large, resulting in substantial GPU memory consumption. We plan to reduce the size
of the neural network to decrease memory usage and improve efficiency. For large SAT problems,
sampling methods can be explored to construct the graph. Techniques such as sampled message
passing could further reduce the overhead of GNNs. Minimizing GNN calls is another crucial focus.
For example, using the RDC-once method proposed in this work, the GNN is called only initially or
at specific points to generate information that guides subsequent decisions. Currently, RDC-once
only calls the neural network once initially, without using any new information generated during the
solving process. In the future, we will explore a hybrid approach that integrates initial GNN-generated
information with default strategies for decision-making. Additionally, training specialized models for
domain-specific problems(Li et al., 2022) may yield significant performance improvements for these
applications.

Further Improvements for RDC-SAT. The development of D&C solvers has lagged behind
portfolio-based parallel solvers in recent years. Many D&C solvers, including the Painless framework
we used, have not incorporated high-performance sequential solvers like Kissat and CaDiCaL or
recent optimizations. RDC-SAT currently uses default configurations of the Painless framework,
such as MapleCOMSPS as the sequential solver. Replacing MapleCOMSPS with better-performing
solvers, optimizing other components, and exploring different configurations could lead to substantial
improvements. Additionally, since our experiments aimed to evaluate RDC-SAT’s performance, we
trained the model only on the random dataset without training a general model. Training on larger
and more diverse datasets could enhance RDC-SAT’s effectiveness and generalization. Furthermore,
RDC-SAT uses limited information to represent states, focusing on key features of variables and
clauses. Future work could explore incorporating additional features to achieve greater performance
enhancements.

In future work, we plan to implement these optimizations and evaluate the performance of RDC-SAT
on larger datasets to further enhance its effectiveness.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported by National Key Research and Development Program of China Grant
2022YFB3305102, Natural Science Foundation of China Grant 61902011, and State Key Laboratory
of Complex & Critical Software Environment (CCSE-2024ZX-16).

REFERENCES

Gilles Audemard, Benoît Hoessen, Saïd Jabbour, and Cédric Piette. Dolius: A distributed parallel sat
solving framework. In POS@ SAT, pp. 1–11, 2014a.

Gilles Audemard, Benoît Hoessen, Said Jabbour, and Cédric Piette. An effective distributed d&c
approach for the satisfiability problem. In 2014 22nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 183–187. IEEE, 2014b.

Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, and Sébastien Tabary. An adaptive paral-
lel sat solver. In International Conference on Principles and Practice of Constraint Programming,
pp. 30–48. Springer, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda (eds.). Proceedings
of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions. Department
of Computer Science Series of Publications B. Department of Computer Science, University of
Helsinki, Finland, 2023.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185. IOS
press, 2009.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional satis-
fiability via end-to-end learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3324–3331, 2020.

Zhihan Chen, Xindi Zhang, Yuhang Qian, and Shaowei Cai. Prs: A new parallel/distributed framework
for sat. SAT COMPETITION 2023, pp. 39, 2023.

James M Crawford and Larry D Auton. Experimental results on the crossover point in random 3-sat.
Artificial intelligence, 81(1-2):31–57, 1996.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treengeling
entering the sat competition 2020. SAT COMPETITION, 2020:50, 2020.

Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and Junchi
Yan. Machine learning methods in solving the boolean satisfiability problem. Machine Intelligence
Research, 20(5):640–655, 2023.

Youssef Hamadi and Lakhdar Sais. Handbook of Parallel Constraint Reasoning. Springer, 2018.

Jesse Michael Han. Enhancing sat solvers with glue variable predictions. arXiv preprint
arXiv:2007.02559, 2020.

11

Published as a conference paper at ICLR 2025

Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286, 2017.

Maximilian Heisinger, Mathias Fleury, and Armin Biere. Distributed cube and conquer with para-
cooba. In Theory and Applications of Satisfiability Testing–SAT 2020: 23rd International Confer-
ence, Alghero, Italy, July 3–10, 2020, Proceedings 23, pp. 114–122. Springer, 2020.

Marijn JH Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer: Guiding
cdcl sat solvers by lookaheads. In Haifa Verification Conference, pp. 50–65. Springer, 2011.

Marijn JH Heule, Oliver Kullmann, and Victor W Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In International Conference on Theory and
Applications of Satisfiability Testing, pp. 228–245. Springer, 2016.

Sean B Holden et al. Machine learning for automated theorem proving: Learning to solve sat and
qsat. Foundations and Trends® in Machine Learning, 14(6):807–989, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski. Neural heuristics for sat solving.
arXiv preprint arXiv:2005.13406, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Improving sat solver heuristics
with graph networks and reinforcement learning. 2019.

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can q-learning with graph
networks learn a generalizable branching heuristic for a sat solver? Advances in Neural Information
Processing Systems, 33:9608–9621, 2020.

Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon. Painless: a framework
for parallel sat solving. In Theory and Applications of Satisfiability Testing–SAT 2017: 20th
International Conference, Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings
20, pp. 233–250. Springer, 2017.

Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon. Modular and efficient
divide-and-conquer sat solver on top of the painless framework. In Tools and Algorithms for the
Construction and Analysis of Systems: 25th International Conference, TACAS 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6–11, 2019, Proceedings, Part I 25, pp. 135–151. Springer, 2019.

Min Li, Zhengyuan Shi, Qiuxia Lai, Sadaf Khan, Shaowei Cai, and Qiang Xu. Deepsat: An eda-driven
learning framework for sat. arXiv preprint arXiv:2205.13745, 2022.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based branching
heuristic for sat solvers. In Theory and Applications of Satisfiability Testing–SAT 2016: 19th Inter-
national Conference, Bordeaux, France, July 5-8, 2016, Proceedings 19, pp. 123–140. Springer,
2016a.

Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart. Maple-comsps,
maplecomsps lrb, maplecomsps chb. Proceedings of SAT Competition, 2016, 2016b.

Hongduo Liu, Peng Xu, Yuan Pu, Lihao Yin, Hui-Ling Zhen, Mingxuan Yuan, Tsung-Yi Ho, and
Bei Yu. Neuroselect: Learning to select clauses in sat solvers. In ACM/IEEE Design Automation
Conference (DAC), 2024.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

12

Published as a conference paper at ICLR 2025

Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning sat solvers. In
Handbook of satisfiability, pp. 133–182. ios Press, 2021.

Saeed Nejati and Vijay Ganesh. Maplepainless-dc parallel sat solver for sat competition 2020. SAT
COMPETITION 2020, pp. 38.

Saeed Nejati, Zack Newsham, Joseph Scott, Jia Hui Liang, Catherine Gebotys, Pascal Poupart,
and Vijay Ganesh. A propagation rate based splitting heuristic for divide-and-conquer solvers.
In Theory and Applications of Satisfiability Testing–SAT 2017: 20th International Conference,
Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings 20, pp. 251–260. Springer,
2017.

Saeed Nejati, Ludovic Le Frioux, and Vijay Ganesh. A machine learning based splitting heuristic for
divide-and-conquer solvers. In Principles and Practice of Constraint Programming: 26th Interna-
tional Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7–11, 2020, Proceedings 26,
pp. 899–916. Springer, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers with unsat-core predictions.
In Theory and Applications of Satisfiability Testing–SAT 2019: 22nd International Conference,
SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings 22, pp. 336–353. Springer, 2019.

Zhengyuan Shi, Min Li, Yi Liu, Sadaf Khan, Junhua Huang, Hui-Ling Zhen, Mingxuan Yuan, and
Qiang Xu. Satformer: Transformer-based unsat core learning. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1–4. IEEE, 2023.

Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikkulainen.
Neuroback: Improving cdcl sat solving using graph neural networks. In The Twelfth International
Conference on Learning Representations, 2023.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. Advances
in Neural Information Processing Systems, 32, 2019.

Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. Nlocalsat:
Boosting local search with solution prediction. arXiv preprint arXiv:2001.09398, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

13

Published as a conference paper at ICLR 2025

A RELATED WORK

A.1 DIVIDE-AND-CONQUER SAT SOLVERS AND THEIR SPLITTING HEURISTICS

Divide-and-Conquer (D&C) SAT solvers have gained prominence due to their ability to leverage
parallel computing resources to tackle large and complex SAT problems efficiently. These solvers
divide the problem into smaller subproblems, which are then solved independently. A crucial aspect
of their performance is the heuristic used to select the best split variable, which significantly impacts
the overall solving time and the balance of the resulting subspaces.

Treengeling (Fleury & Heisinger, 2020) and Paracooba (Heisinger et al., 2020) are advanced SAT
solvers that employ the Cube-and-Conquer method to harness parallelism. Treengeling utilizes a
look-ahead heuristic during the Cube phase to divide the SAT problem into numerous subproblems,
or cubes. This heuristic selects the split variable based on the number of unit propagations, aiming to
create balanced subspaces. Treengeling generates more cubes than the available computational cores
to ensure efficient utilization of all resources. Each cube is then solved independently by sequential
CDCL solvers in the Conquer phase. Similarly, Paracooba extends the Cube-and-Conquer method to
a distributed environment. It divides the SAT problem into many cubes using a look-ahead heuristic
and distributes these cubes to different nodes across a network. Each node runs a CDCL solver to
independently solve its assigned subproblems. By aggregating the computational power of multiple
machines, Paracooba effectively handles significantly larger SAT problems, ensuring better load
balancing and reducing overall solving time.

In contrast to look-ahead techniques, some solvers use look-back methods that dynamically analyze
the search performed by the solver, as well as formula statistics, to identify the best candidate at the
current splitting point. For example, Ampharos (Audemard et al., 2016) picks the variable with the
highest VSIDS activity, while MapleAmpharos (Nejati et al., 2017) uses a propagation-rate (PR)
based splitting heuristic. This heuristic ranks variables by the ratio of the propagations they cause
to the number of times they are branched on, selecting the highest-ranking variables for splitting.
Another explored track is the number of flips of the variables (Audemard et al., 2014b;a). A flip
occurs when a variable is propagated to the reverse of its last propagated value. Ranking the variables
according to the number of their flips and choosing the highest one as a split variable helps to generate
search subspaces with comparable computational time. This approach can also be used to limit the
number of variables on which the look-ahead propagation is applied by preselecting a predefined
percentage of variables with the highest number of flips. MaplePainlessDC (Nejati et al., 2020) uses
a machine learning-based splitting heuristic to optimize divide-and-conquer parallel Boolean SAT
solvers. The paper developed pairwise ranking models and minimum ranking models using a random
forest classifier, comparing and selecting split variables based on structural features of the formula
and dynamic probing statistics.

The Painless Framework is a modular and high-performance parallel SAT solving framework that
supports the implementation of various components, including multiple splitting heuristics. It
allows developers to create parallel SAT solvers that can compete with state-of-the-art solvers. The
framework implements several splitting heuristics, ensuring its solvers can match the performance of
leading SAT solvers. Our reinforcement learning environment and the RDC-SAT solver are developed
based on the Painless framework. This framework was also used for comparative experiments to
evaluate the effectiveness of our approach.

A.2 OPTIMIZING SAT SOLVING WITH GNNS AND RL

Graph Neural Networks (GNNs) and Reinforcement Learning (RL) have been increasingly applied to
optimize SAT solving, showing promising results. Research like Graph-Q-Sat has utilized GNNs
to learn branch heuristics in CDCL solvers, replacing VSIDS. Similarly, RL techniques have been
used to train heuristics to enhance decision-making in SAT solvers. However, the overhead of
calling GNNs for each variable decision in CDCL solvers is very high, making it difficult to apply to
real-world problems. Consequently, recent research in this field has focused on reducing the overhead
and frequency of GNN calls.

Graph-Q-Sat(Kurin et al., 2020) is an approach that improves the heuristics of SAT solvers by
employing GNNs and reinforcement learning. It uses value-based reinforcement learning to train a
branching heuristic that significantly reduces the number of iterations compared to VSIDS. However,

14

Published as a conference paper at ICLR 2025

it requires calling GNNs at each decision point, which incurs high computational costs and does
not reduce the actual wall-clock solving time. To mitigate this issue, other research, such as Neuro-
Core (Selsam & Bjørner, 2019), predicts the unsatisfiable core through periodic GNN inferences,
reducing the frequency of GNN calls. While this approach enhances solver performance, it still
demands substantial computational resources and relies heavily on GPUs. Neuroglue (Han, 2020)
enhances SAT solvers by predicting glue variables, which are critical for efficient clause learning.
This method periodically updates variable scores using GNN-based insights, significantly improving
solver performance without incurring substantial computational costs. NeuroBack (Wang et al., 2023)
builds upon these methods by making offline GNN predictions about variable phases before the SAT
solving begins, thus eliminating the need for frequent online inferences and reducing computational
costs. NeuroBack guides CDCL solvers like Kissat with a single GNN call for phase predictions,
increasing performance on recent SAT competition benchmarks. SATformer (Shi et al., 2023) uses
a GNN to extract clause representations only once, reducing computational costs, and applies a
Transformer to predict unsatisfiability. Integrated into solvers like CaDiCaL and Kissat, SATformer
improves solving efficiency over baseline methods. NeuroSelect (Liu et al., 2024) employs a GNN to
guide the deletion of learned clauses, making only a single GNN call per instance. On instances with
fewer than 400,000 nodes from the SAT Competition 2022, NeuroSelect improves performance over
Kissat These methods primarily optimize branch heuristics and phase heuristics in CDCL solvers, but
the overhead of GNNs remains a challenge.

In contrast, our approach focuses on the importance of splitting heuristics in Divide-and-Conquer
(D&C) solvers. The invocation frequency of these heuristics is relatively low, making it feasible to
use GNNs without incurring high computational costs. Our RDC-GPU method leverages GNNs to
significantly optimize D&C solver performance with minimal GNN calls. Even without GPUs, we
can adopt a strategy similar to NeuroBack. By using RDC-CPU-once, we make a single GNN call to
guide subsequent splitting decisions, thereby optimizing splitting heuristics while minimizing GNN
overhead.

B IMPLEMENTATION DETAILS OF INTERACTIVE DIVIDE-AND-CONQUER
ENVIRONMENT

B.1 DIVIDE-AND-CONQUER IN PAINLESS FRAMEWORK

The Painless framework (Le Frioux et al., 2017; 2019) is a modular and high-performance parallel
SAT-solving framework that is both flexible and ideal for comparing different algorithms. Within
Painless, the D&C algorithm is implemented using a master-slave architecture that employs a work-
stealing strategy to achieve dynamic load balancing. Whenever a CPU core becomes idle, the master
thread interrupts an active worker, splits its subproblem, and assigns it to two separate workers.
Painless also supports clause sharing, allowing multiple workers to exchange learned clauses to speed
up the solving process. This design makes the framework highly adaptable and efficient, empowering
researchers to explore and compare various heuristics for parallel SAT solving.

The Painless framework incorporates several D&C solvers, which can compete effectively with the
leading solvers available. For the basic configuration in our experiment, we used the best-performing
settings identified through experimentation. This includes utilizing MapleCOMSPS (Liang et al.,
2016b) as the sequential solver, the "alltoall" clause-sharing strategy, and the "clone" strategy.
Specifically, MapleCOMSPS, which won the SAT Competition in 2016, serves as the sequential
solver. The "alltoall" clause-sharing strategy ensures that all solvers directly share clauses with an
LBD below 4, which helps to improve the efficiency of the solving process. Additionally, the "clone"
strategy allows a new worker, after requesting and dividing a partition, to duplicate the original solver
and tackle the next problem. This helps to reuse learned clauses and internal solver information to
accelerate problem-solving.

Our Interactive Divide-and-Conquer Environment is primarily divided into two parts. First, we encap-
sulate the necessary components in the PainlessSolver within the Painless C++ environment,
derived from painless-v2,The basic configuration is based on P-CLONE-FLIP (Le Frioux et al.,
2019)., and use Pybind11 to create a shared library. Then, we create a custom PainlessEnv in
Python to facilitate interaction with the agent. PainlessSolver handles the solving process,

15

https://www.lrde.epita.fr/wiki/Painless

Published as a conference paper at ICLR 2025

Train

PainlessEnvPPO
Agent

Manage

Painless
Solver

manage

Share learned
clauses

Queue
Parse subproblem as graph

Parse training data Binary Tree

Splitting request

Worker

Pybind

Sample Replay
Buffer

Maple

Masker

Sharer

State,Done

Action

DPPO
（Python）

Divide-and-Conquer Solver
(C++)

NN

Call
manage

Figure 6: Interactive Divide-and-Conquer environment

while PainlessEnv provides the interface for the agent to interact, allowing for dynamic state
transitions and reward calculations.

B.2 PAINLESSSOLVER IN C++

Algorithm 1: PainlessSolver::step
Input: action
Output: state,done

1 if there is a pending splitting request then
2 pass action as split variable to worker;
3 while not done do
4 if no globalEnding, no pending splitting requests, and no finished workers then
5 wait for signal;
6 parse finished workers and insert as leaf nodes in binary tree;
7 if there is a pending splitting request then
8 state = create graph from subproblem;
9 parse worker and insert as internal node in binary tree;

10 return state, done = false;
11 if globalEnding then
12 return root, done = true;

We designed a new class, PainlessSolver, to handle all interactions and maintain statistics
with the Python environment. When solving a new SAT problem, a PainlessSolver instance
is created, initializing the Master thread, Worker threads, and Sharer thread, and setting the initial
solving state. The Master thread manages the Worker threads, which use a CDCL solver to solve
SAT problems. The Sharer thread handles the sharing of learned clauses among the Worker threads.
Additionally, the PainlessSolver thread executes the logic described in the corresponding
pseudocode. This class uses the solve() method to start the entire solving process. The interface
built with Pybind11 enables the direct transmission of data generated by Painless to Python algorithms
for processing and the reception of decision outputs from the Python environment to control the
solving process. The core function step() of PainlessSolver is shown in Algorithm 1.

Due to Python’s Global Interpreter Lock (GIL), only one thread can execute Python bytecode at a
time. In a D&C solver, multiple workers may request splits simultaneously. To manage these requests,

16

Published as a conference paper at ICLR 2025

we use a queue. When the master thread detects idle threads, it interrupts a worker, adds its instance
to the pending split queue, and signals the PainlessSolver thread(line 5). The worker then
blocks, waiting for the split variable. The PainlessSolver thread dequeues the worker instance,
parses the problem state,adds it as a internal node to the binary tree,and sends the state to the Python
environment(line 7-10). After processing, the PainlessSolver thread returns the split variable,
allowing the worker to continue solving(line 2). While one worker waits, others continue solving
their subproblems. Additionally, PainlessSolver parses finished workers and inserts them as
leaf nodes in the tree(line 6). Once solving is complete, it returns the root node and sets done to true.
Locks and signals ensure thread-safe communication and protect data structures.

Finally, we used Pybind11 to package PainlessSolver into a shared library. This allows the
shared library to be directly imported into Python, enabling interaction with PainlessSolver
through its provided interfaces.

B.3 PAINLESSENV IN PYTHON

To facilitate interaction between the agent and the environment, we defined a custom environment
similar to gym.Env. OpenAI’s gym library provides a widely-used framework for custom reinforce-
ment learning environments. However, gym.Env is designed for linear state transitions, where each
state follows a sequential order, and rewards are computed based on this continuous sequence. In
these environments, the step function returns the "next state," which is not suitable for our case. In a
divide-and-conquer reinforcement learning environment, each split creates two subproblems, forming
a binary tree structure rather than a direct "forward" relationship between states. Additionally, it is
not possible to immediately obtain the reward in divide-and-conquer, as this information is embedded
within the tree structure. To address these challenges, we created a custom class PainlessEnv,
mimicking the basic structure of the gym library but without inheriting it. This allows us to define
state transitions and reward logic flexibly, accurately handling parallel and tree-structured transitions.

PainlessEnv accepts a set of SAT problem paths and related configuration parameters as initial
inputs, such as solver timeout, CPU core count, and levels of learned clauses. It provides reset
and step methods for interaction. The reset method fully reinitializes the solving environment,
creating a new PainlessSolver instance, loading a new SAT problem, and starting the solving
process. The agent returns a split variable, which the stepmethod passes to the PainlessSolver
environment, then waits for the next split state while recording necessary training data. Upon solving
the problem or timeout, PainlessEnv retrieves the root node of the binary tree, analyzes the
solving process, and calculates the reward for each action. It performs a post-order traversal from the
root node to compute the discounted rewards for all internal node states. This tree structure details the
solving paths from root to leaf nodes, storing all this data in a replay buffer for subsequent machine
learning model training.

C DETAILS OF REINFORCED DIVIDE-AND-CONQUER

C.1 NEURAL NETWORK

Our approach utilizes a modified Graph Neural Network (GNN) structure similar to Graph-Q-Sat,
replacing the DQN structure with an Actor-Critic network. As shown in Figure 7, the neural network
encodes the SAT problem information as a graph. The Encoder transforms initial features into
higher-dimensional representations, the Processor performs iterative message passing between nodes,
edges, and global attributes, and the Decoder outputs variable, clause, and global features. The Actor
network evaluates the variable features, outputs the probabilities for selecting each variable after
removing invalid split variables, and the Critic network uses clause and global features to assess the
current state’s value. We implemented our neural network using PyTorch(Paszke et al., 2019) and
PyTorch Geometric(PyG)(Fey & Lenssen, 2019).

We adopted Graph Networks (Battaglia et al., 2018) as the basis of our GNN architecture. This
framework is known for its versatility in handling various graph structures. The GN framework
consists of three main parts: Encoder, Processor, and Decoder. The Encoder independently converts
node, edge, and global features into higher-dimensional representations using MLPs. The Processor,
the core component, updates these features through multiple layers of message passing, aggregating
information from connected nodes and edges, and applying batch normalization to ensure scale

17

Published as a conference paper at ICLR 2025

Encoder Decoder

Actor

Critic

Variable
Features

Clause
Features

Global
Features

action
probs

state
value

Processor

GNN Actor-Critic

x1
c1

x2

x3
c2

Graph of
SAT subproblem

Figure 7: Network of RDC-SAT.

invariance across nodes. The Decoder simplifies the complex graph structure into actionable outputs,
retaining node and global features for the subsequent PPO usage while discarding edge features.
Layer normalization (Ba et al., 2016) is applied within MLPs to expedite training convergence and
reduce sensitivity to input scale variations.

The Actor-Critic network leverages features derived from the GNN to perform variable selection
and value estimation. The Actor network, responsible for decision-making, processes the variable
features through an MLP and applies a softmax function to produce a probability distribution over
the variables, excluding already chosen or invalid ones via a masking strategy. The Critic network
evaluates the cumulative rewards from the current state using clause and global features. It employs
attention pooling networks to aggregate clause nodes and global features, which are then fed into an
MLP to generate the state value. This architecture allows the system to separate decision-making from
value assessment, facilitating more precise policy adjustments and long-term reward optimization.

C.2 SETTINGS AND HYPERPARAMETERS

We implemented a Distributed Proximal Policy Optimization (DPPO) framework, as shown in Fig-
ure 8, to accelerate data collection and training using one training process and multiple exploration
processes. This framework includes a message queue for transferring collected data from exploration
processes to the training process and a parameter server for synchronizing updated network param-
eters from the training process to the exploration processes. The message queue allows real-time
transmission of states, actions, rewards, and subsequent states to the training process, which then
stores them in a replay buffer for training. After updating the network parameters, the training process
synchronizes these updates to the parameter server. Exploration processes check the parameter server
for updates before solving new problems and update their parameters accordingly.

Table 2 shows hyperparameters were used in our experiments:

D DATASETS

D.1 TRAINING DATA

For our task involving reinforcement learning and graph neural networks, the most critical factors
are problem size, difficulty, and structural richness. The ideal dataset should have a moderate
problem size, which demands less memory during training; moderate difficulty, allowing for the
rapid collection of substantial training data; and rich structure, enabling the GNN to learn more
information. Although datasets like SAT Competition possess rich structural features, their generally
high difficulty and larger size significantly slow down the training process for reinforcement learning.
In contrast, random datasets offer highly controllable size and difficulty, and the learning clauses
generated during the process can introduce additional structural features. Therefore, we chose to use
a random dataset for our experiments.

Our training dataset comes from the dataset provided by the study(Cameron et al., 2020) . This study
provides 11 datasets ranging from 100 to 600 variables, each containing 5000 satisfiable (SAT) and

18

https://www.cs.ubc.ca/labs/algorithms/Projects/End2EndSAT/data.zip

Published as a conference paper at ICLR 2025

Exploration
Agent

Message
Queue

Exploration
Agent

Exploration
Agent

PainlessEnv

PainlessEnv

PainlessEnv

Parameter
Server

Training
Agent

Replay
Buffer

CPU GPU
Store Training

Data

Sync
Parameters

Sample

Train

Interaction

Figure 8: Architecture of. Exploration agents interact with the PainlessEnv on CPU, collect training
data, and send it to the message queue. The training agent on GPU samples data from the replay
buffer to update the model parameters, which are then synchronized back to the exploration agents.

5000 unsatisfiable (UNSAT) problems. We randomly selected 500 SAT and 500 UNSAT problems
from the datasets with 300 and 350 variables as our training dataset. These problems have solving
times ranging from a few seconds to several tens of seconds, and during the solving process, they
generate thousands to tens of thousands of core and tier2 learned clauses. Consequently, the resulting
graphs have relatively rich structural features.

D.2 EVALUATION DATA

To investigate whether RDC-SAT has effectively learned the splitting heuristics, we randomly selected
200 SAT instances from the random dataset at the phase transition. This set includes 100 problems
from the 450-1917 dataset and 100 from the 500-2129 dataset, with a 1:1 ratio of satisfiable to
unsatisfiable instances. This dataset provides a suitable level of difficulty for the baseline solvers,
enabling us to distinguish their performance.

To evaluate whether RDC-SAT, trained on random datasets, can generalize to other types of more
extensive, application-oriented datasets, we focused on small to medium-sized SAT problems from
the SAT Competitions dataset. Some problems in the competition are extremely large, with many
SAT instances having tens of millions of clauses. Applying GNNs to these problems would consume
significant memory and computational resources. For such large-scale problems, our RDC-SAT
solver automatically switches to the default splitting heuristics. Therefore, we primarily focus on the
performance of various methods on small to medium-sized SAT problems. We first screened 400
problems from the SAT Competition 2023 (Balyo et al., 2023) dataset and selected those with a total
number of variables and clauses less than one million, resulting in 305 SAT problems. These small to
medium-sized problems constitute the majority of the SAT Competition.

E EXPERIMENT DETAILS

E.1 BASELINES SELECTION

The Painless framework provides three splitting heuristics: based on Flips, PR, and using CDCL
solver branch heuristics to select split variables. We used these three methods for our evaluations.
However, in a small-scale test, we found that the PR method did not perform well on the random
dataset, leading us to exclude it from our random dataset tests. Additionally, we chose not to use
MaplePainlessDC as a baseline . MaplePainlessDC(Nejati et al., 2020) is also a D&C solver based
on the Painless framework, which uses a machine learning method to optimize the splitting heuristic.
While the performance reported in the original paper exceeds that of Treengeling, it has been observed

19

https://satcompetition.github.io/2023/downloads.html

Published as a conference paper at ICLR 2025

Table 2: Hyperparameters used in our experiments

Parameter Value Description
PainlessEnv Configuration

timeout 1000 Maximum time (in seconds) allowed for exploration agent
ncpus 16 The number of threads used by each exploration agent
use_learnt 2 In addition to the original clause, two levels of learning

clauses, core and tire2, are used to build the graph
node_feats 4 Number of node features
edge_feats 2 Number of edge features
global_feats 4 Number of global features
use_LRB true Use LRB as branch heuristic

Network Configuration
encoder_out_dims (32, 32, 32) Dimensions for the encoder outputs (node, edge, global)
core_out_dims (64, 64, 32) Dimensions for the core outputs (node, edge, global)
decoder_out_dims (32, 1, 32) Dimensions for the decoder outputs (node, edge, global)
core_steps 4 Number of processing steps in the Processor
n_hidden 1 Number of hidden layers in Processor’s MLP
hidden_size 64 Size of hidden layers in GNN’s MLP
e2v_aggregator sum + BN Aggregation method for edge to vertex. After sum ag-

gregation, we use batch normalization(Ioffe & Szegedy,
2015) to normalize the features

independent_block_layers 0 Number of hidden layer of Encoder and Decoder
n_hidden_actor 2 Number of hidden layer of actor’s MLP
n_hidden_critic 2 Number of hidden layer of critic’s MLP
activationfunction LeakyRelu(Maas et al., 2013) Activation function unsed in MLP

DPPO Configuration
optimizer Adam(Kingma & Ba, 2014) Optimizer used
lr_gnn 1e-3 Learning rate for the GNN
lr_actor 1e-3 Learning rate for the actor network
lr_critic 1e-3 Learning rate for the critic network
policy_loss_weight 1.0 Weight of the policy loss
value_loss_weight 0.5 Weight of the value loss
entropy_loss_weight 0.1 Weight of the entropy loss
eps_clip 0.2 Clipping parameter for PPO
epsilon_start 1.0 Starting value for epsilon in epsilon-greedy exploration
epsilon_final 0.01 Final value for epsilon in epsilon-greedy exploration
epsilon_decay 200 Decay rate for epsilon
normalize_reward True Whether to normalize rewards
gamma 1.0 Discount factor for future rewards
train_epochs 1 Number of training epochs
train_max_steps 10000 Maximum number of training steps
sample_max_nodes 300000 Maximum number of nodes of one batch to sample
num_of_process 5 Number of exploration processes

from the experimental results of SAT Competition 2020(Nejati & Ganesh) that MaplePainlessDC can
produce incorrect results in a small number of SAT instances. This potential unreliability in solving
performance led us to exclude MaplePainlessDC as a baseline in our evaluations.

E.2 EXPLANATION FOR USING LRB OVER VSIDS IN RANDOM DATASET EXPERIMENTS

The decision to use different branching heuristics for random and SAT Competition benchmarks
stems from the observed poor performance of VSIDS on random datasets, as commonly noted in
empirical studies. We conducted a small experiment using VSIDS as the branching heuristic on 100
instances from the 400-1704 random dataset with a time limit of 1000 seconds. The results of this
experiment are presented in Table 3. This performance is significantly worse compared to using LRB
as the branching heuristic (see Table 4 for a comparison). Therefore, we opted for Maple’s LRB
branching heuristics for both training and evaluation on the random datasets. It is also worth noting
that even with VSIDS, RDC-SAT still significantly outperforms the baseline.

20

Published as a conference paper at ICLR 2025

Table 3: Performance Comparison of Splitting Heuristics on 400-1704 random dataset with VSIDS
as Branching Heuristics

Splitting Heuristics Clock time (s) PAR2 Solved
RDC-GPU-always 388.23 588.18 80
RDC-CPU-once 405.48 703.34 77
FLIPS 460.70 720.72 74
VSIDS 502.28 852.20 65

E.3 MORE EVALUATION RESULT ON RANDOM DATASET

Table 4 shows a detailed comparison of various splitting heuristics across different datasets. This
table includes all instances, including those that no solver could solve within the time limit.

Firstly, for relatively easy SAT problems, such as those in the 350-1491 dataset, using the default
splitting heuristics like FLIPS and LRB can yield quick results. In these cases, the overhead of using
a GNN-based approach might actually slow down the process. For example, FLIPS and LRB both
performed better than RDC-GPU-always and RDC-CPU-once in terms of average solving time. This
is because the simpler problems do not require the sophisticated analysis that GNN provides, and the
additional computation introduces unnecessary delay. However, as the problem difficulty increases,
the advantages of RDC-SAT become more apparent. In the 450-1917 dataset, RDC-GPU-always
significantly outperformed traditional methods, with a total average solving time of 526.21 seconds
compared to FLIPS’ 827.07 seconds and LRB’s 780.34 seconds. on the most challenging dataset,
500-2129, RDC-GPU-always not only achieved a lower average solving time but also solved more
instances than the baselines. Specifically, RDC-GPU-always solved 30 instances in this dataset,
whereas the best baseline method solved only 26 instances, representing a 15.38% increase in the
number of solved instances.

Additionally, the table reveals that the PR splitting heuristic performed very poorly on the 350-1491
dataset, with an average solving time of 61.65 seconds. This performance suggests that the PR
method may not be suitable for solving random SAT problems. Due to this, we did not test the PR
method on larger datasets.

Table 4: Comparison of splitting Heuristics across datasets

Dataset Splitting Heuristics SAT Avg (s) #SAT UNSAT Avg (s) #UNSAT Total Avg (s) PAR2

random
350-1491

RDC-GPU-always 12.34 50 19.80 50 16.03 16.03
RDC-CPU-once 11.16 50 17.99 50 14.58 14.58
FLIPS 10.76 50 17.22 50 13.99 13.99
LRB 11.02 50 17.96 50 14.49 14.49
PR 22.36 50 103.83 50 61.65 61.65

random
400-1704

RDC-GPU-always 19.14 50 63.38 50 41.27 41.27
RDC-CPU-once 18.29 50 64.35 50 41.32 41.32
FLIPS 18.16 50 80.27 50 49.21 49.21
LRB 17.90 50 67.84 50 42.87 42.87

random
450-1917

RDC-GPU-always 291.48 50 760.94 49 526.21 576.21
RDC-CPU-once 353.63 50 835.91 49 594.75 644.77
FLIPS 390.83 50 1263.31 48 827.07 927.07
LRB 341.64 50 1219.04 47 780.34 930.34

random
500-2129

RDC-GPU-always 3072.05 26 4777.20 4 3924.63 7424.63
RDC-CPU-once 3397.68 23 4804.05 4 4100.86 7750.86
FLIPS 3255.54 24 4898.27 2 4076.91 7776.91
LRB 3627.84 20 4898.62 3 4263.23 8113.23

E.4 DOMAIN-SPECIFIC BENCHMARK COMPARISON OF RDC-SAT AND SOTA PORTFOLIO
SOLVERS

SAT Competition results indicate that D&C solvers generally lag behind portfolio approaches in
average performance. However, D&C solvers demonstrate unique advantages in specific scenarios.

21

Published as a conference paper at ICLR 2025

For instance, we conducted a small-scale experiment on a dataset containing 100 randomly selected
instances from the miter benchmarks, which are used to verify circuit equivalence. The timeout was
set to 1000 seconds, with all methods using 16 threads and VSIDS as the branch heuristic for the
Sequential Solver. Using the model trained in our work. Table 5 compares our RDC-SAT with the
D&C solver FLIPS (Le Frioux et al., 2019) and PRS (Chen et al., 2023) – the SAT Competition 2023
Parallel Track champion portfolio solver.

Table 5: Performance Comparison on Circuit Equivalence Verification

Method Solved Avg. Time (s) PAR2
RDC-SAT (D&C) 80 313.64 513.64
FLIPS (D&C) 76 333.66 573.66
PRS (Portfolio) 79 385.44 595.44

This result shows that D&C solvers can outperform Portfolio solvers in specific domains. In this
experiment, RDC-SAT solved the most instances and achieved the lowest PAR2, reducing PAR2 by
13.74% compared to the SOTA Portfolio solver PRS. The RDC-SAT model, trained on a random
dataset, generalized effectively to the circuit equivalence dataset.

F THREATS TO VALIDITY

During the training phase of our D&C SAT solver using reinforcement learning, several potential
threats to validity may impact the results. Firstly, due to Python’s Global Interpreter Lock (GIL)
enforcing single-threaded execution for Python bytecode, we use a message queue to manage all split
requests. When multiple threads simultaneously request splits, only one worker can call the neural
network to obtain the split point, while other threads enter a waiting state. This restriction may lead to
inefficiencies and does not fully replicate the actual D&C solver’s runtime environment. Additionally,
during training, multiple threads simultaneously calling the neural network, along with the training
process itself, can cause GPU resource contention, leading to delays in split decisions and affecting
training performance. Consequently, we opted to use CPUs for neural network calls during training
to avoid GPU contention. However, this results in overestimated split times during training, as it does
not accurately reflect the performance of the D&C solver in a real-world environment. Furthermore,
our current setup limits the efficient use of computational resources, particularly GPUs. If more
computational resources were available, such as additional GPUs for running the DPPO framework,
this issue could be significantly mitigated. Enhanced computational resources would allow for more
realistic training conditions, better reflecting the actual operational environment of the D&C solver,
and potentially leading to more effective learning outcomes. These factors may result in the model’s
performance not reaching its optimal potential. With more computational resources to train the model
and better simulate actual environments, RDC-SAT could achieve better results.

Another potential threat to validity pertains to the experimental evaluation of our solvers. All
experiments were conducted on a machine equipped with a CPU featuring 144 logical cores, an
A100 GPU, and 256 GB of RAM. Due to the extensive time required for the experiments, we
executed multiple solvers in parallel, allocating 16 threads to each solver. For the RDC-CPU-once
configuration, the neural network calls were restricted to using a maximum of 16 threads. Although
the number of threads used per solver is less than the total logical cores, the total number of threads
during the SAT Competition experiments exceeded the number of physical cores, potentially leading
to resource contention. This contention could affect performance, but it should impact all solvers
equally, thus maintaining fairness in the comparisons. We primarily used small to medium-sized SAT
problems, so we did not observe significant memory contention.

22

	Introduction
	Preliminaries
	Interactive Divide-and-Conquer Environment
	Environment Interface
	Managing State Transitions with Binary Trees
	SAT Subproblem State Extraction

	Reinforced Divide-And-Conquer SAT
	State representation
	Reward Function for Tree-Structured State Transitions
	Neural Network, Action Definition, and Objective Function
	Training and Deployment

	Evaluation
	Setup
	Evaluation result

	Discussion
	Related work
	Divide-And-Conquer SAT solvers and their Splitting Heuristics
	Optimizing SAT solving with GNNs and RL

	Implementation Details of Interactive Divide-and-Conquer Environment
	Divide-and-Conquer in Painless framework
	PainlessSolver in C++
	PainlessEnv in Python

	Details of Reinforced Divide-And-Conquer
	Neural Network
	settings and hyperparameters

	datasets
	training data
	evaluation data

	Experiment Details
	Baselines selection
	Explanation for Using LRB over VSIDS in Random Dataset Experiments
	More evaluation result on random dataset
	Domain-Specific Benchmark Comparison of RDC-SAT and SOTA Portfolio Solvers

	Threats to validity

