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ABSTRACT

Despite the impressive advancements of Large Vision-Language Models (LVLMs),
existing approaches suffer from a fundamental bottleneck: inefficient visual-
language integration. Current methods either disrupt the model’s inherent structure
or introduce long-context computational burdens, severely limiting scalability and
efficiency. In this paper, we rethink multimodal integration and present LaVi, a
novel LVLM that enables seamless and efficient vision-language fusion through
internal feature modulation within the Large Language Models (LLMs). Un-
like dominant LVLMs that rely on visual token concatenation, LaVi sidesteps
long-context expansion by injecting vision-conditioned deltas into the affine param-
eters of LayerNorm, a ubiquitous component in modern LLMs. This lightweight
transformation makes visual input directly modulate the linguistic hidden states,
grounding the next-token probabilities in visual evidence. LaVi achieves precise
vision–language alignment while retaining the linguistic priors and substantially re-
ducing computation. Across 18 benchmarks covering images, video, and language,
LaVi delivers superior or comparable performance with substantial efficiency gains.
In addition, it preserves strong linguistic capability. Compared to LLaVA-OV-7B,
it reduces FLOPs by 94.0%, accelerates inference by 3.1×, and halves memory
consumption. These properties make LaVi a scalable and practical framework for
real-time multimodal reasoning. Code and models will be released.

1 INTRODUCTION

Recently, significant advancements in Large Language Models (LLMs) (Radford et al., 2019; Achiam
et al., 2023; Yang et al., 2024; Touvron et al., 2023) have catalyzed the emergence of Large Vision-
Language Models (LVLMs) (Bai et al., 2023; Liu et al., 2023a; Awadalla et al., 2023; Tong et al.,
2024), demonstrating remarkable capabilities in visual perception and cognitive reasoning (Liu et al.,
2024c; Fu et al., 2023; Singh et al., 2019; Hudson & Manning, 2019). While considerable progress
has been achieved separately in visual encoding and language generation, the pivotal challenge of
effectively integrating visual information into LLMs still remains open.

Existing integration techniques generally fall into two categories. The first, termed architectural
injection (e.g., Flamingo (Awadalla et al., 2023)), augments the original LLMs by introducing
additional layers (Alayrac et al., 2022; Meta, 2024; Ye et al., 2024a), such as cross-attention and
feed-forward layers, strategically throughout the model. While these modules explicitly insert
visual features into the linguistic processing pathway, their introduction inherently disrupts the
architectural coherence and processing flow of the original LLMs. Consequently, it can degrade
the delicate pre-trained language understanding, risking losing the rich linguistic priors encoded
within LLMs (Zhang et al., 2024b; Luo et al., 2024; Wang et al., 2025). The second and currently
predominant approach, in-context injection (e.g., the LLaVA series (Liu et al., 2024b; 2023a; Li et al.,
2024a)), integrates visual information by concatenating vision-derived token sequences directly into
textual input, treating them as part of the initial context for the LLMs. While preserving architectural
integrity, this method introduces significant practical challenges. Specifically, the large number
of visual tokens required (e.g., 576 tokens for a single image using CLIP ViT-L/336px (Radford
et al., 2021)) leads to severe computational overhead due to the quadratic complexity inherent in
self-attention mechanisms (Vaswani et al., 2017). This complexity escalates dramatically when
processing high-resolution images or long video sequences, resulting in substantial inference latency
and computational bottlenecks, thus hindering real-time applicability.
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Through analyzing these methods, we argue that an ideal visual-language integration strategy must sat-
isfy two fundamental principles: 1) minimal structural interference, which ensures the preservation
of pretrained linguistic knowledge to support coherent text generation and empower vision-grounded
understanding and reasoning; and 2) computational scalability, which mitigates inefficiencies arising
from quadratic complexity when processing extensive visual tokens.

Guided by these principles, we propose a new vision–language integration strategy for LVLMs:
internal Feature Modulation Injection (FMI) within the LLMs. At the core of FMI is LayerNorm
(LN) (Ba, 2016; Zhang & Sennrich, 2019), a ubiquitous component in modern LLMs that applies
learnable affine transformations to rescale and shift hidden states, offering a natural pathway for
internal modulation via additive and multiplicative adjustments. Inspired by this, we introduce
Vision-Infused Layer Normalization (ViLN), a lightweight extension of standard LN that incorporates
visual context into language modeling. Visual features from the vision encoder are transformed
by a conditioning module into vision-conditioned deltas, which act as residual updates to the
original affine parameters of LN. This delta-based modulation refines the normalization in a vision-
aware manner, adapting hidden states to the visual context. The adapted hidden states are then
passed to the language modeling head to generate next-token predictions, enabling ViLN to ground
language generation in vision, akin to existing vision-language integration techniques. Through
zero-initialized deltas, FMI introduces minimal intervention to the pretrained LLM, leaving its
architectural structure and processing flow intact. This design preserves the linguistic priors and
relieves the impact on linguistic performance. Moreover, by avoiding visual-token concatenation,
it circumvents the quadratic complexity issue, achieving superior computational scalability and
efficiently accommodating visual data such as high-resolution images and long videos.

Building on this strategy, we present LaVi (Language and Vision Integrator), a novel LVLM that inte-
grates FMI by selectively replacing standard LN with ViLN modules. To provide vision-conditioned
modulation, LaVi employs a conditioning module that generates a dedicated visual condition for each
text token, enabling fine-grained token-wise alignment. The design of this conditioning module is
highly flexible. We explore three alternative implementations: MLP-based, convolution-based, and
attention-based approaches, each offering a favorable trade-off between computational efficiency and
multimodal performance. The resulting visual conditions are then mapped into token-wise deltas
through a lightweight projection and injected into the affine parameters of ViLN, thereby modulating
the internal linguistic representations in a vision-aware manner.

Figure 1: Comparison between LaVi and open-
source LVLMs on image understanding bench-
marks. We report the average accuracy on MM-
Bench (Liu et al., 2024c), MME (Fu et al., 2023),
TextVQA (Singh et al., 2019), and GQA (Hudson &
Manning, 2019). For MME, scores are normalized to
percentages. The red dashed line represents the linear
fit to all models except LaVi.

Benefiting from a significantly reduced con-
text length and a lightweight yet effective
visual-language integration strategy, LaVi
strikes an impressive balance between com-
putational efficiency and benchmark perfor-
mance. Comprehensive evaluations across
9 image-based and 6 video-based under-
standing benchmarks demonstrate that LaVi
achieves superior performance comparable
to LLaVA-style models while substantially
reducing computational overhead. More-
over, it maintains superior linguistic capa-
bilities compared to using other injection
strategies. As illustrated in Figure 1, com-
pared to the baseline LLaVA-OV-7B (Li
et al., 2024a), LaVi, despite maintaining
the same 7B parameter scale, demonstrates
substantial improvements in both efficiency
and performance. It achieves an impres-
sive 94.0% reduction in FLOPs, operates
3.1× faster, lowers memory consumption
by 51.5%, and reduces inference latency
from 612.5 ms to just 198.1 ms. Remark-
ably, LaVi requires even fewer FLOPs than
LLaVA-OV-0.5B (Li et al., 2024a), yet surpasses it by +15.5 points in benchmark accuracy. These
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advancements significantly enhance real-time multimodal interactions, positioning LaVi as a highly
efficient alternative in the evolving landscape of LVLMs.

Our contribution can be concluded as:

• We introduce a novel internal feature modulation injection paradigm for LVLMs. It en-
sures minimal structural interference, effectively preserves pretrained linguistic priors, and
achieves computational scalability by avoiding excessive context length expansion.

• We propose LaVi, a highly efficient LVLM capable of comprehensive image and video
understanding. LaVi integrates ViLN to achieve fine-grained visual-linguistic alignment
and investigates various visual conditioning mechanisms, effectively balancing multimodal
performance with computational efficiency.

• LaVi outperforms or matches LLaVA-style baselines across multimodal benchmarks while
significantly improving computational efficiency. Compared to the LLaVA-OneVision-7B,
LaVi reduces FLOPs by 94.0%, offering an efficient and practical solution for real-time
multimodal processing with significantly reduced resource demands.

2 RELATED WORK

Large Vision-Language Models. Large Vision-Language Models (LVLMs) have significantly
advanced multimodal understanding, enabling the integration of vision and language. Closed-source
models such as Claude (Anthropic, 2024), GPT (Achiam et al., 2023), and Gemini (Team et al., 2023)
series exhibit strong multimodal capabilities. Meanwhile, open-source models like LLaVA (Liu et al.,
2023b;a; 2024b; Li et al., 2024a), BLIP (Li et al., 2022; 2023a), Qwen-VL (Bai et al., 2023; Yang et al.,
2024), and InternVL (Chen et al., 2024d;c) series have contributed significantly to the community
by providing accessible and adaptable alternatives. Recent research has focused on improving input
resolution (Liu et al., 2024b; Guo et al., 2024), enhancing training and inference efficiency (Chen
et al., 2024a; Wan et al., 2024; Ye et al., 2025), and extending multimodal capabilities to temporal
video sequences (Li et al., 2023b; Zhang et al., 2023; Maaz et al., 2023), cognitive alignment (Zhao
et al., 2025), various integration (Luo et al., 2025) or reasoning (Xu et al., 2025) approaches.

Layer Normalization. Layer Normalization (LN) (Ba, 2016) is a cornerstone of modern Transformers
and is widely adopted in LLMs for stabilizing training and regulating hidden state distributions. Its
learnable affine parameters provide a natural mechanism for controlling how information flows
through attention and feed-forward layers. As models scale, several LN variants (Xiong et al., 2020;
Zhang & Sennrich, 2019; Shleifer et al., 2021) have been proposed to better regulate information flow
in deep architectures. Building on this controllability, some prior works have explored conditioning
affine parameters on external signals, e.g., style (Dumoulin et al., 2016; Ghiasi et al., 2017) or class
tags (Brock et al., 2018; Peebles & Xie, 2023), to control the visual appearance of generated images
toward a specified style or semantic category. However, existing methods are primarily limited
to image synthesis, applying a global conditioning shared across all tokens. To the best of our
knowledge, LaVi is the first to extend the LN-based modulation paradigm to LVLMs for cross-modal
interaction. To support finer-grained alignment, it introduces a novel token-wise conditioning scheme
that generates customized visual deltas for each language token.

3 METHODOLOGY

3.1 PRELIMINARIES

In this section, we begin with a concise overview of the predominant visual-language integration
strategies employed in LVLMs. Specifically, existing methods primarily fall into two categories:
architectural injection and in-context injection:

Architectural Injection. As illustrated in Figure 2a, this approach integrates visual information
by inserting additional interaction layers (e.g., cross attention (Awadalla et al., 2023; Alayrac et al.,
2022) and hyper attention (Ye et al., 2024a)), enabling fusion between the text sequence t and visual
features v within the Θ-parameterized LLM:

H0 = t, Hℓ+1 = Θℓ

(
Φℓ(v,Hℓ)

)
(1)

where Hℓ denotes the hidden states at layer ℓ, Φℓ(·, ·) represents the inserted cross-modal interaction
module, and Θℓ(·) denotes the ℓ-th layer of the LLM. While this method ensures direct multimodal
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(a) Architectural Injection

LLM Block

Insertion

хN

(b) In-context Injection

Visual Tokens Text Tokens

LLM Block
хN

Connector

(c) Feature Modulation Injection

LLM Block хN

Visual Tokens Text Tokens Text TokensVisual Tokens

Feature
Modulation

Figure 2: Comparisons of various vision integration techniques for LVLMs. (a) Architectural
injection: additional layers are inserted into LLM for cross-modal interaction; (b) In-context injection:
visual tokens are concatenated before the text sequence as the initial context; (c) Feature modulation
injection (Ours): the internal hidden states are modulated by the vision-guided affine transformation.

alignment, it comes at the cost of architectural disruption, requiring extensive modifications to the
pretrained LLMs. Such modifications compromise the model’s linguistic priors, potentially degrading
the generative capabilities in both multimodal and language-only contexts.

In-context Injection. As illustrated in Figure 2b, this approach involves mapping visual features v
into the LLM’s semantic space via a vision-language connector (Li et al., 2023a; 2024a; Liu et al.,
2024b; 2023a) and appending them as a visual prefix before the text sequence t:

H0 = [v; t], Hℓ+1 = Θℓ

(
Hℓ

)
(2)

This method allows cross-modal interaction to occur within the LLM’s existing self-attention layers,
avoiding explicit structural modifications. However, because self-attention scales quadratically with
sequence length (Vaswani et al., 2017), the introduction of numerous visual tokens leads to severe
computational inefficiencies. This becomes particularly problematic when processing high-resolution
images or long video sequences, where the number of visual tokens grows significantly.

To address the limitations of these approaches, we propose feature modulation injection (FMI), as
depicted in Figure 2c. Instead of injecting additional layers or expanding sequence length, FMI
incorporates visual information directly into the internal hidden states of the LLM via a lightweight
modulation mechanism. More details are provided in the following section.

3.2 FEATURE MODULATION INJECTION.
At the core of FMI is the Layer Normalization (LN) module (Ba, 2016; Zhang & Sennrich, 2019), a
ubiquitous and essential component in virtually all mainstream LLM architectures. Given an input
text sequence t = {ti}Ti=1, a typical LLM block processes t as follows:

t← t+ Fatt(LN1(t)) (3)
t← t+ Fffn(LN2(t)) (4)

Here, Fatt and Fffn denote the self-attention and feed-forward sub-layers, respectively. The LN
module normalizes the input features via:

LN(t) = α⊙ t− µ

σ
+ β = α⊙ t̂+ β (5)

where µ and σ are the mean and standard deviation of t, and α, β are learnable affine parameters that
control the scaling and shifting of the normalized features. Inspired by this structure, we propose to
link the learning of affine parameters to visual features, thereby allowing the visual context to directly
influence the hidden states that govern the language modeling distribution. Specifically, we define the
following Vision-Infused Layer Normalization (ViLN):

ViLN(t,v) = (α+∆αv)⊙ t̂+ (β +∆βv), (6)
Here, ∆αv and ∆βv are vision-conditioned deltas that adaptively adjust the original affine parameters
α and β in LLM based on visual context. They are dynamically regressed from visual features v
through a token-wise conditioning module, which will be detailed later.

Overall, FMI transforms visual information into affine parameters that directly adjust the LLM’s
internal hidden states via multiplicative and additive operations. This enables a direct and efficient
fusion of vision information at the feature level, eliminating the need for lengthy visual token
sequences or additional cross-modal interaction modules.
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Figure 3: An illustrative diagram of the overall model architecture. For a LLM block equipped
with ViLN, visual and textual features are fed into the conditioning module to obtain token-wise
visual conditions. Through a lightweight MLP, these conditions are then transformed into scale
(∆αv) and shift (∆βv) parameters, which modulate the internal language features of the LLM.

3.3 LAVI: A HIGHLY EFFICIENT LVLM
The overall architecture of LaVi is illustrated in Figure 3. After replacing the internal LN of the LLM
with ViLN, LaVi leverages a conditioning module to generate token-wise affine parameters deltas
from visual features v, comprising two sets that are applied before the self-attention and feed-forward
sublayers, respectively:

[∆α1
v,∆β1

v,∆α2
v,∆β2

v] = Swi
(
Cond(t,v)

)
W + b (7)

Here, Swi(·) denotes the Swish activation function (Ramachandran et al., 2017), while W and b are
learnable projection weights and bias, respectively. This projection is zero-initialized to ensure that
the vision-conditioned deltas are initially zero, so that the forward pass exactly replicates the original
LLM behavior—thereby facilitating stable adaptation and linguistic priors preservation during early
training. The conditioning function Cond(·) is responsible for aggregating visual context relevant to
each token in the text sequence t. The design of this function is highly flexible. In this paper, we
explore three alternative instantiations:

MLP-based Conditioning. Inspired by MLP-Mixer (Tolstikhin et al., 2021), we design two sequen-
tial MLPs to aggregate visual context. Given a text token ti, we concatenate it with visual features v,
then transpose the sequence [ti;v] to interchange token and channel dimensions. A token-mixing
MLP integrates information across tokens, and after transposing back, a channel-mixing MLP blends
features across dimensions. Vision-aware embedding for ti is extracted at original position:

Condmlp(ti,v) =
[
MLPchannel

((
MLPtoken([ ti;v ]⊤)

)⊤)]
ti

(8)

Conv-based Conditioning. Inspired by ConvMixer (Trockman & Kolter, 2022), we treat the
concatenated sequence [ti;v] as a 1-D signal along the token dimension. We first apply a depth-
wise convolution followed by an activation σ to mix information between ti and visual features v.
Subsequently, a point-wise convolution is utilized to integrate these features across the embedding
dimension. The resulting representation at the token position corresponding to ti provides the
vision-aware embedding:

Condconv(ti,v) =
[
Convpoint

(
σ
(
Convdepth

(
[ ti;v ]

)))]
ti

(9)

Attention-based Conditioning. We introduce a cross-attention module, where text token ti is used
as the query, while visual tokens v serve as keys and values. Through the attention mechanism, we
directly aggregate relevant visual context to produce the vision-aware representation for ti:

Condattn(ti,v) = Attention(tiWQ,vWK ,vWV ) (10)

We provide further implementation details for the three paradigms in the Appendix. By default, we
adopt the attention-based approach due to its simplicity and effectiveness. In Section 4.3, we provide
a comparative analysis of each conditioning function, demonstrating that all approaches provide
robust multimodal integration with minimal computational overhead.
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Table 1: Performance on 9 image-based benchmarks, including VQAv2, GQA, VisWiz, ScienceQA,
TextVQA, POPE, MMEP, MMBench and SEEDI. For MMEP, the scores are presented as percentages.
Along with efficiency and accuracy, we also report the LLM backbone for each baseline.

Method LLM Efficiency Performance

FLOPs Latency VQAv2 GQA VisWiz SciQA VQAT POPE MMEP MMB SEEDI Avg.
Baselines with ≤ 2B parameters scale
MoE-LLaVA (Lin et al., 2024) StableLM-1.6B 3.8 206.4 76.0 60.4 37.2 62.6 47.8 84.3 65.0 59.4 – –
MobileVLM-V2 (Chu et al., 2024) MLLaMA-1.4B 4.3 214.9 – 59.3 – 66.7 52.1 84.3 65.1 57.7 – –
SPHINX-tiny (Liu et al., 2024a) TLLaMA-1.1B 4.1 212.3 74.7 58.0 49.2 21.5 57.8 82.2 63.1 56.6 25.2 54.3
LLaVA-OV (Li et al., 2024a) Qwen2-0.5B 7.8 228.0 78.5 58.0 51.4 67.2 65.9 86.0 61.9 52.1 65.5 65.2

Baselines with ≤ 8B parameters scale
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 8.2 239.4 78.2 57.5 38.9 68.2 61.5 – 74.4 60.6 65.4 –
mPLUG-Owl2 (Ye et al., 2024b) LLaMA2-7B 9.3 278.6 79.4 56.1 54.5 68.7 54.3 – 72.5 64.5 57.8 –
Cambrian-1 (Tong et al., 2024) LLaMA3-8B 18.6 393.7 – 64.6 – 80.4 71.7 – 77.4 75.9 74.7 –
LLaVA-v1.5 (Liu et al., 2023a) Vicuna-7B 8.4 254.4 78.5 62.0 50.0 66.8 58.2 85.9 75.5 64.3 66.1 67.5
LLaVA-v1.6 (Liu et al., 2024b) Vicuna-7B 32.9 502.4 81.8 64.2 57.6 70.1 64.9 86.5 76.0 67.4 70.2 71.0
LLaVA-OV (Li et al., 2024a) Qwen2-7B 60.4 612.5 84.5 62.2 53.0 96.0 76.1 87.4 79.0 80.8 75.4 77.2

Ours
LaVi-Image Vicuna-7B 0.6 110.8 79.6 63.0 52.9 67.8 58.4 86.9 75.2 64.8 67.5 68.5

∆ compare to LLaVA-v1.5 7.1% 43.6% +1.1 +1.0 +2.9 +1.0 +0.2 +1.0 -0.3 +0.5 +1.4 +1.0
LaVi-Image (HD) Vicuna-7B 1.7 148.6 81.4 63.7 57.8 71.7 64.3 87.0 77.5 68.1 71.6 71.5

∆ compare to LLaVA-v1.6 5.2% 29.6% -0.4 -0.5 +0.2 +1.6 -0.6 +0.5 +1.5 +0.7 +1.4 +0.5
LaVi Qwen2-7B 3.6 198.1 84.0 65.0 53.8 95.4 77.0 87.1 80.9 79.3 76.9 77.7

∆ compare to LLaVA-OV 6.0% 32.3% -0.5 +2.8 +0.8 -0.6 +0.9 -0.3 +1.9 -1.5 +1.5 +0.5

Multiple Visual Input Support. LaVi flexibly accommodates more complex visual inputs—such as
high-resolution images and videos—while requiring only minimal structural modifications, making it
broadly applicable across diverse vision-language scenarios. Specifically, for high-resolution images,
we adopt a tiling strategy, where the image is divided into non-overlapping tiles compatible with the
native input size of the vision encoder. Each tile is independently encoded, and the resulting visual
tokens are concatenated along the sequence dimension. For videos, we uniformly sample k frames.
Each frame is encoded by the vision encoder and undergoes 2×2 adaptive pooling. The resulting
frame features are concatenated sequentially, with shared temporal position encoding applied to each
frame’s tokens to capture temporal dynamics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. We sequentially train three models to investigate the potential and
scalability of the proposed architecture. We begin with LaVi-Image, which mirrors the configuration
of LLaVA-v1.5 (Liu et al., 2023a), using the CLIP ViT-L/336px (Radford et al., 2021) as the vision
encoder and Vicuna-v1.5-7B (Chiang et al., 2023) as the LLM backbone. For high-resolution
scalability, we incorporate a dynamic high-resolution mechanism adopted in LLaVA-v1.6 (Liu et al.,
2024b) for fair comparison, resulting in LaVi-Image (HD). Furthermore, to explore the full potential
of the proposed approach, we extend it to an advanced version, LaVi, which is capable of handling
both image and video understanding. For LaVi, in line with LLaVA-OneVision (Li et al., 2024a),
we replace the vision encoder with the SigLIP ViT-SO400M/384px (Zhai et al., 2023) and use
Qwen2-7B-Instruct (Yang et al., 2024) as the LLM backbone. For all three variants, we uniformly
select 25% of the layers in the LLMs and replace their original LN modules with ViLN, upon which
FMI is applied. We adopt the attention-based conditioning as the default method. For video inputs,
32 frames are uniformly sampled. All experiments are conducted on 16 NVIDIA A100 GPUs, with
the training hyperparameters detailed in the Appendix.

Training Data. (1) Pre-training Datasets. We train all three LaVi variants using publicly available
images from CC12M (Changpinyo et al., 2021). Following the pre-processing pipeline outlined in
(Radford et al., 2021), we retain only samples with resolutions exceeding 448 × 448, resulting in a
curated subset of 8M samples. (2) Supervised Fine-tuning Datasets. For LaVi-Image, we leverage
the instruction datasets corresponding to LLaVA-v1.5 (Liu et al., 2023a), i.e., LLaVA-665K. For
LaVi-Image (HD), we leverage the instruction datasets corresponding to LLaVA-v1.6 (Liu et al.,
2024b), i.e., LLaVA-760K. For LaVi, we leverage the instruction data from LLaVA-OneVision (Li
et al., 2024a). For further details, please refer to the Appendix.

Evaluation Benchmarks and Metrics. We evaluate LaVi on both image and video understanding
tasks, including 9 image benchmarks and 6 video benchmarks. For evaluation metrics, we report two
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Table 2: Performance on 6 video-based benchmarks, including EgoSchema, MLVU, VideoMME,
MVBench, CinePile and Video-ChatGPT. Along with computational efficiency and accuracy metrics,
we also report the number of sampled frames for each video.

Method #Frames Efficiency Performance
FLOPs Latency EgoSchema MLVU VideoMME MVBench CinePile Video-ChatGPT

Video-LLaVA (Lin et al., 2023) 8 32.6 488.6 38.4 47.3 39.9 43.1 25.7 2.84
ShareGPT4Video (Chen et al., 2024b) 16 39.2 502.7 – 46.4 43.6 51.2 – –
VideoLLaMA2 (Cheng et al., 2024) 16 27.3 465.5 51.7 48.5 46.6 54.6 44.6 –
LongVA (Zhang et al., 2024a) 32 84.5 742.2 – – 51.8 – 41.0 3.17
LLaVA-NeXT-Video (Liu et al., 2024b) 32 89.6 775.4 43.9 – 33.7 46.5 – –
LLaVA-OV (Li et al., 2024a) 32 129.6 1215.6 60.1 64.7 58.2 – 49.3 3.49
LLaMA-VID (Li et al., 2024d) 1fps 182.1 2174.3 38.5 33.2 25.9 41.9 – 2.88

LaVi (Ours) 8 4.2 217.0 51.8 54.2 49.4 51.8 45.6 3.03
LaVi (Ours) 16 8.9 272.3 55.5 58.5 54.0 54.3 50.3 3.14
LaVi (Ours) 32 18.6 401.5 58.4 62.3 57.3 56.5 54.0 3.23

categories: computational efficiency and benchmark accuracy. Specifically, computational efficiency
includes FLOPs (T) and latency (ms). Further details could be found in the Appendix.

4.2 EVALUATION RESULTS

Image Understanding Evaluation. We compare LaVi with baseline models across 9 benchmarks
to assess its efficiency and performance, with results presented in Table 1. LaVi strikes a remarkable
balance between computational efficiency and performance when compared with all baseline models.
The three LaVi variants—LaVi-Image, LaVi-Image (HD), and LaVi —are compared against LLaVA-
v1.5, LLaVA-v1.6, and LLaVA-OV, respectively. Compared to their counterparts, they achieve
reductions of 14.0×, 19.4×, and 16.8× in FLOPs cost. Despite substantial reductions in computational
overhead, the three variants achieve 1.0%, 0.5%, and 0.5% average accuracy improvements across all
benchmarks, respectively. These results underscore the superior cross-modal interaction efficiency
of FMI compared to existing integration strategies. A more comprehensive comparison of the three
strategies is provided in Table 4 of Section 4.3 for further reference.

Video Understanding Evaluation. We compare LaVi with advanced video baseline models across
6 widely used benchmarks. To conduct a more comprehensive comparative analysis, in addition to the
default setting of 32 frames, we further train two versions utilizing 8 and 16 frames, respectively. The
results are presented in Table 2. The superiority of LaVi is strikingly clear. It demonstrates significant
computational efficiency, achieving a 6× to 7× reduction in FLOPs compared to baseline models with
identical frame counts. Notably, the FLOPs required for the 32-frame LaVi are comparable to half of
those needed by the 8-frame Video-LLaVA (Lin et al., 2023). LaVi also consistently surpasses or
matches the baseline models in performance across all frame configurations. We further provide a
thorough computational overhead analysis associated with frame extension in Section 4.4.

4.3 ABLATION STUDY

In this section, we conduct a comprehensive ablation study of the proposed method. For all ex-
periments in this section, we adopt SigLIP ViT-SO400M (Zhai et al., 2023) as vision encoder and
Qwen2-7B-Instruct (Yang et al., 2024) as LLM backbone. For training data, we uniformly leverage a
4M subset of the pretraining dataset and LLaVA-665K for alignment and SFT, respectively.

Fair Comparison of Integration Techniques. Under same data and backbone settings, we present
a fair comparison of different integration strategies discussed in Figure 2. We comprehensively
assesses efficiency, linguistic and multimodal capabilities across multiple benchmarks.
(1) For architectural injection, we evaluate two inserted modules: cross-attention (Awadalla et al.,
2023) and hyper-attention (Ye et al., 2024a). (2) For in-context injection, we follow the LLaVA series
by concatenating visual features, mapped through a connector, into the text sequence as context. (3)
For the proposed FMI, we evaluate the three instantiations introduced in Section 3.3.
The results in Table 4 demonstrate that FMI achieves a superior balance between efficiency and
performance. Specifically, it surpasses existing paradigms in both training time and inference
overhead. As illustrated in Figure 4, the learning curves of the three injection paradigms during pre-
training show that FMI achieves significantly faster convergence, requiring only 1/8 of the training
time compared to in-context injection to reach comparable performance. Furthermore, compared
to the other two injection strategies, FMI preserves better linguistic proficiency, demonstrating
significant advantages on three prevailing language-only benchmarks.
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Table 4: Fair comparison of integration techniques under identical data and backbone settings.
We present the total training hours (Time), the FLOPs during inference, and the accuracy results on
three language-only benchmarks and four vision-language tasks.

Architecture Efficiency Language Benchmarks Vision-Language Benchmarks

Training Time FLOPs MMLU MBPP MATH Avg. VQAT GQA MMB SEEDI Avg.

Qwen2-7B-Instruct – – 69.3 66.2 47.8 61.1 – – – – –

Architectural Injection
Cross Attention 9.8 2.5 64.8 62.4 40.8 56.0 55.8 62.4 71.6 68.0 64.5
Hyper Attention 8.7 2.3 65.3 62.0 41.2 56.2 56.6 61.8 71.8 68.4 64.7

In-context Injection
Concat 22.0 11.4 66.2 63.6 42.4 57.4 59.0 63.4 72.0 69.2 65.9

Feature Modulation Injection
MLP-based 5.8 0.8 68.4 66.0 45.2 59.9 58.4 63.0 72.1 68.6 65.5
Conv-based 6.0 0.8 67.7 65.4 44.9 59.3 58.0 62.7 72.4 67.5 65.2
Attention-based 6.6 0.9 68.2 65.6 44.6 59.5 58.7 63.2 72.7 69.5 66.0

Table 3: Effect of modulating different sublayers.
Injecting visual information into both sublayers
yields optimal results.

Attn FFN VQAT GQA MMB SEEDI Avg.

✗ ✓ 55.4 61.5 71.4 69.2 64.4
✓ ✗ 57.6 62.4 72.0 67.8 65.0
✓ ✓ 58.7 63.2 72.7 69.5 66.0

Effect of Modulation at Different Sublayers.
Each LLM layer comprises two sublayers: self-
attention and feed-forward. We first investigate
the impact of applying ViLN at the sublayer
level. Results are detailed in Table 3. Disabling
ViLN from either sublayer results in a perfor-
mance decrement, notably more pronounced
when removed from the self-attention sublayer.
This observation likely stems from the self-attention sublayer’s pivotal role in handling interactions be-
tween tokens, having a more substantial influence on the efficacy of cross-modal interactions.

Table 5: Effect of modulation parameters. Each
parameter enhances visual information integration
through corresponding operation.

∆αv ∆βv VQAT GQA MMB SEEDI Avg.

✓ ✗ 58.1 62.2 70.8 67.7 64.7
✗ ✓ 59.3 62.7 69.3 66.5 64.5
✓ ✓ 58.7 63.2 72.7 69.5 66.0

Effect of Modulation Parameter. ViLN intro-
duces two vision-conditioned deltas, ∆αv and
∆βv, which apply multiplicative and additive
modulation to the hidden states. We conduct
an ablation study to isolate the effect of each
component, with results shown in Table 5. Both
deltas contribute comparably to performance,
highlighting the equal importance of additive
and multiplicative modulation in integrating visual information effectively.

Table 6: Effect of modulation frequency. Apply-
ing ViLN at a moderate frequency yields the best
average performance.

Config VQAT GQA MMB SEEDI Avg.

100% 59.1 62.9 71.9 68.2 65.5
50% 58.1 62.5 70.9 69.1 65.2
25% 58.7 63.2 72.7 69.5 66.0

12.5% 57.6 62.2 71.5 67.0 64.6

shallow 54.7 59.4 69.2 64.5 62.0
middle 56.5 61.6 71.4 67.3 64.2
deep 57.0 60.8 70.1 65.9 63.4

uniform 58.7 63.2 72.7 69.5 66.0

Effect of Modulation Pattern. We then in-
vestigate the modulation pattern of ViLN by its
frequency and location within the LLM. For
frequency, as shown in Table 6, we vary the pro-
portion of layers applying ViLN from 12.5% to
100%, and observe that 25% yields the best aver-
age performance across benchmarks, suggesting
that a moderate frequency is necessary to bal-
ance the influence of textual and visual signals
on the language modeling distribution. Fixing
the frequency at 25%, we then evaluate four
layer selection strategies: shallow (first 25%),
deep (last 25%), middle (central 25%), and uni-
form. The results show that uniformly distributing ViLN yields better performance, indicating that a
balanced allocation across layers facilitates more effective and stable cross-modal fusion.

4.4 VISUALIZATION AND ANALYSIS

Linguistic Capabilities Preservation. For the baselines in Table 4, we compute the cosine distance
between their hidden states and those of the base LLM on MMLU to quantify their drift in language
representation encoding. The layer-wise distances are visualized in Figure 5. LaVi exhibits the
highest similarity to the base LLM, which closely aligns with its performance on language-only
benchmarks in Table 4, thereby validating its advantage in preserving linguistic priors.
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Figure 4: Training loss of three
injection techniques over time.
Our method achieves faster con-
vergence and lower loss.
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Figure 5: Feature distances
compared with base LLM. Our
method preserves best linguistic
capabilities.
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Figure 6: Features distances
before and after ViLN module.
Stronger changes in early layers,
while stabilize in deeper layers.
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Figure 7: Modulation influence
of LaVi across POS categories.
Semantically rich tokens exhibit
stronger modulation influence.

Figure 8: FLOPs comparison
across frame counts. LaVi
achieves significant FLOPs re-
duction across all frames.

Figure 9: Memory compari-
son across frame counts. LaVi
achieves significant Memory re-
duction across all frames.

Stronger Modulation Influence on Early Layers. For LaVi, we then compute the cosine distance
between features before and after modulation at each layer as a metric for modulation influence on
GQA. Figure 6 shows the average distance (solid line) and the range (shaded area) across tokens.
The tokens in early layers undergo significant modulation with notable variance among tokens, while
deeper layers show reduced influence and stability. This reflects early layers dynamically establishing
cross-modal alignments, while deeper layers refine them into coherent representations.

Stronger Modulation Influence on Semantically Rich Tokens. We then evaluate the cosine
distances before and after feature modulation across different part-of-speech (POS) categories: nouns,
verbs, conjunctions, adjectives/adverbs, and punctuation. POS tagging is performed using NLTK.
As illustrated in Figure 7, nouns and verbs exhibit more significant modulation influence compared
to conjunctions and punctuation. This is intuitive, as nouns and verbs, which carry richer semantic
meaning, are more likely to integrate visual information during cross-modal interactions.

Superior Vision Sequence Scalability. High-resolution images and long videos substantially
increase visual sequence lengths, resulting in higher computational and memory costs. To evaluate
scalability, we compare FLOPs and GPU memory usage of LaVi and existing baselines (Cheng et al.,
2024; Lin et al., 2023; Liu et al., 2024b) as the number of frames increases, as shown in Figure 8 and
Figure 9. LaVi demonstrates excellent context-length scalability, with both computation and memory
overhead growing significantly more slowly than in other models. At 128 frames, it reduces FLOPs
and memory usage by 92.0% and 61.1%, respectively, compared to Video-LLaVA, while maintaining
superior performance on video understanding benchmarks.

5 CONCLUSION

In this work, we propose a novel internal feature modulation injection paradigm for LVLMs, ensuring
minimal structural interference and superior computational scalability by avoiding excessive context
expansion. Building on this paradigm, we develop LaVi, a highly efficient LVLM that leverages
Vision-Infused Layer Normalization (ViLN) for precise visual-linguistic alignment while drastically
reducing computational costs. Compared to LLaVA-style models, LaVi achieves 94.0% FLOP
reduction, runs 3.1× faster, and significantly lowers latency, establishing LaVi as a highly efficient
alternative for vision-language integration.
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A IMPLEMENTATION DETAILS

A.1 TRIANING DETAILS.

The overall training process adopts a two-stage paradigm, initially involving the pretraining of
the conditioning module, followed by instruction tuning. Table 7 and Table 8 presents the details
of this two-stage training for LaVi. The implementation includes two sets of vision and LLM
combinations: CLIP ViT-L/336px (Radford et al., 2021) + Vicuna (Chiang et al., 2023) or SigLIP
ViT-SO400M/384px (Zhai et al., 2023) + Qwen2 (Yang et al., 2024), aligned with the respective
LLaVA configurations. Furthermore, consistent with the settings of LLaVA1.6 and LLaVA-OV, we
additionally unfroze the ViT during the SFT phase.

A.2 BENCHMARK DETAILS.

We conduct a comprehensive evaluation of LaVi, including both image and video understanding
benchmarks.

Image-based Benchmarks Following the LLaVA framework (Liu et al., 2023a), we conduct
experiments across 9 widely recognized benchmarks, including VQA-v2 (VQAv2) (Goyal et al.,
2017), GQA (Hudson & Manning, 2019), VisWiz (Gurari et al., 2018), ScienceQA-IMG (SciQA) (Lu
et al., 2022), TextVQA (VQAT) (Singh et al., 2019), POPE (Li et al., 2023c), MME (Fu et al., 2023),
MMBench (MMB) (Liu et al., 2024c), SEED-Bench (SEEDI) (Li et al., 2024b). These benchmarks
span a broad spectrum of visual tasks. Our evaluation protocols are aligned with those established in
the LLaVA framework, ensuring fair consistency.

Video-based Benchmarks We conduct experiments across 6 widely recognized benchmarks,
including MVBench (Li et al., 2024c), MLVU (Zhou et al., 2024), EgoSchema (Mangalam et al.,
2023), VideoMME (Fu et al., 2024), CinePile (Rawal et al., 2024) and Video-ChatGPT (Maaz et al.,
2023). They cover multiple knowledge dimensions and domain focuses, with video durations ranging
from a few seconds to several hours.

A.3 EVALUATION DETAILS.

We adopt LMMs-Eval as our evaluation toolkit. For evaluation prompts, we provide a thorough
examination of all evaluation benchmarks utilized in this paper in Table 9. For model efficiency, the
FLOPs and latency are calculated using the DeepSpeed toolkit (Team, 2025) on a single A100 GPU
without any engineering acceleration techniques.

Table 7: The training details of LaVi based
on Vicuna.

Config Stage I Stage II

LLM backbone Vicuna-7B
ViT backbone CLIP ViT-L/336px
Global batch size 1024 256
Batch size per GPU 64 16
Accumulated steps 1 1
DeepSpeed zero stage 2 2
Learning rate 1×10−3 2×10−5

Learning rate schedule cosine decay
Warmup ratio 0.03
Weight decay 0
Epoch 1
Optimizer AdamW
Precision bf16

Table 8: The training details of LaVi base on
Qwen.

Config Stage I Stage II

LLM backbone Qwen2-7B
ViT backbone SigLIP SO400M/384px
Global batch size 1024 256
Batch size per GPU 64 16
Accumulated steps 1 1
DeepSpeed zero stage 2 3
Learning rate 1×10−3 1×10−5

Learning rate schedule cosine decay
Warmup ratio 0.03
Weight decay 0
Epoch 1
Optimizer AdamW
Precision bf16

B CONDITIONING MODULE

To provide a clearer understanding of the proposed conditioning modules, we present PyTorch-style
pseudocode implementations for the three vision-conditioned modulation strategies introduced in
Section 3.3. Each variant—MLP-based, Conv-based, and Attention-based—is designed to instantiate
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Table 9: Summary of the evaluation benchmarks. Prompts are mostly borrowed from LMMs-
Eval (Bo Li* & Liu, 2024).

Benchmark Response formatting prompts

POPE (Li et al., 2023c) –
GQA (Hudson & Manning, 2019) Answer the question using a single word or phrase.
VQAv2 (Goyal et al., 2017) Answer the question using a single word or phrase.
TextVQA (Singh et al., 2019) Answer the question using a single word or phrase.
MME (Fu et al., 2023) Answer the question using a single word or phrase.

VisWiz (Gurari et al., 2018) Answer the question using a single word or phrase. When the
provided information is insufficient, respond with Unanswerable’.

SciQA (Lu et al., 2022) Answer with the option’s letter from the given choices directly.
MMBench (Liu et al., 2024c) Answer with the option’s letter from the given choices directly.
SEED-Bench (Li et al., 2024b) Answer with the option’s letter from the given choices directly.

MLVU (Zhou et al., 2024) –
Video-ChatGPT (Maaz et al., 2023) –
MVBench (Li et al., 2024c) Only give the best option.
VideoMME (Fu et al., 2024) Answer with the option’s letter from the given choices directly.
EgoSchema (Mangalam et al., 2023) Answer with the option’s letter from the given choices directly.
Cineplie (Rawal et al., 2024) Answer with the option key (A, B, C, D, E) and nothing else.

the generic conditioning function Cond(·) used to derive token-wise affine parameters for Vision-
Infused Layer Normalization (ViLN). These modules differ in how they aggregate visual context to
influence individual text tokens, yet they all share a common design objective: enabling efficient,
token-specific vision-language interaction without altering the LLM’s original architecture.

C ADDITIONAL EXPERIMENTS

C.1 EVALUATION ON FINE-GRAINED VISUAL UNDERSTANDING

In this section, we further strengthen our evaluation with an assessment of fine-grained visual
understanding. Specifically, in addition to the TextVQA (Singh et al., 2019) benchmark provided
in the main manuscript, we extend our evaluation to benchmarks such as DocVQA (Mathew et al.,
2021), ChartQA (Masry et al., 2022), AI2D (Kembhavi et al., 2016), OCRBench (Liu et al., 2023c),
and InfoVQA (Mathew et al., 2022), which require detailed reasoning over figures, documents, and
textual content. The results are presented in the Table 10. The results indicate that LaVi performs on
par with visual token concatenation in terms of fine-grained visual understanding, thereby validating
the effectiveness of our proposed token-wise modulation strategy.

Since fine-grained recognition often relies on representing visual content with a larger number
of tokens, we further discuss LaVi’s advantages in visual scalability. For traditional approaches,
extending the length of visual token sequences comes at a substantial computational cost (e.g., FLOPs
increase from 8.4T in LLaVA-v1.5 to 32.9T in LLaVA-v1.6, and further to 60.4T in LLaVA-OV).
In contrast, under the same visual token scaling strategy, LaVi’s computational cost increases only
modestly (e.g., from 0.6T to 1.7T and then to 3.6T). It indicates that LaVi can further enhance the
granularity of visual inputs while maintaining low computational overhead. Specifically, we train
and then evaluate an extreme case where every input image is divided into a 4×4 grid of tiles for
LaVi. The corresponding results are presented in the Table 11. These results demonstrate that LaVi

Table 10: Performance on 6 fine-grained visual understanding benchmarks.

Model TextVQA DocVQA ChartQA AI2D InfoVQA OCRBench Avg.
LLaVA-1.5 58.2 23.8 17.9 52.6 21.7 20.1 32.4
LaVi-Image 58.4 24.5 17.3 52.8 21.6 21.0 32.6

LLaVA-1.6 64.9 66.9 54.2 64.6 30.2 50.3 55.2
LaVi-Image (HD) 64.3 66.3 55.4 65.3 31.4 51.0 55.6

LLaVA-OV 76.1 87.3 80.3 81.4 66.3 62.7 75.7
LaVi 77.0 87.6 81.3 80.9 67.5 63.4 76.3
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Table 11: Performance on 6 fine-grained visual understanding benchmarks with longer vision
token sequence.

Model FLOPs AnyRes TextVQA DocVQA ChartQA AI2D InfoVQA OCRBench Avg.
LLaVA-OV 60.4 Max9 76.1 87.3 80.3 81.4 66.3 62.7 75.7
LaVi 3.6 Max9 77.0 87.6 81.3 80.9 67.5 63.4 76.3
LaVi 19.5 16 77.8 88.2 81.6 81.8 68.0 64.3 77.0

Table 12: Performance on 5 multi-image benchmarks.

Model LLaVA-Interleave MuirBench Mantis BLINK TR-VQA Avg.
GPT-4V (V-Preview) 60.3 62.3 62.7 51.1 54.5 58.2
LLaVA-OV 64.2 41.8 64.2 48.2 80.1 59.7
LaVi 65.6 43.7 63.5 46.9 81.8 60.3

offers a significant efficiency advantage when scaling up the visual sequence length to enable more
fine-grained understanding of input images.

C.2 EVALUATION ON MULTI-IMAGE UNDERSTANDING

In this section, we further extend our evaluation on multi-image understanding benchmarks, which
represents a crucial frontier for advancing LVLM capabilities.

We begin with a brief introduction to how LaVi performs multi-image understanding. First, analogous
to how LaVi distinguishes frames in video inputs using frame embeddings, multi-image inputs are
firstly handled by assigning an image-level embedding to all patch tokens belonging to the same
image. Distinct embeddings across images allow the conditioning module to differentiate among them.
Furthermore, multi-image tasks are typically composed of two basic forms and their combinations.
(1) One is joint understanding over multiple images (e.g., describing similarities, differences, or
changes across images), where the input typically follows the format [IMG1, ..., IMGN ,Text], In this
case, distinguishing images using the image-level embedding is sufficient for effective conditioning.
(2) The other is interleaved image–text understanding (e.g., visual storytelling), where the input
may take the form [IMG1,Text1, IMG2,Text2, ...]. For such settings, we incorporate causality
into the conditioning module. The tokens in Texti are modulated only by the visual features of
the preceding images [IMG1, ..., IMGi]. Different images are also distinguished by image-level
embedding. Based on these principles, the processing of any multi-image input can be unified as
follows: all text segments Texti are concatenated and fed into the LLM, while all images IMGi are
encoded by the ViT and concatenated in their original order. Each token in Texti constructs its visual
conditioning by aggregating information from all images that precede it in the original sequence,
enforced through a causal mask. It allows LaVi to seamlessly support the multi-image training data
used in LLaVA-OneVision-Instruct.

We assess the multi-image capability of LaVi on five established multi-image benchmarks, using
LMMs-Eval as the evaluation toolkit. The results are summarized in the Table 12. The results indicate
that LaVi attains superior or comparable performance to LLaVA-OV-7B, demonstrating the effective
support for multi-image understanding.

C.3 EVALUATION ON VISUAL REASONING TASKS

In this section, we evaluate LaVi on visual reasoning tasks that require complex, multi-step inference.
We consider five benchmarks covering mathematical problem solving, visual question answering
with multi-hop reasoning, and code-related reasoning. LLaVA-OV-7B (Li et al., 2024a) is used as the
main baseline. Following the LMMs-Eval (Bo Li* & Liu, 2024) protocol, we adopt a reason-first
prompt format, where the model is instructed to explicitly reason before providing the answer. For
CoT evaluation, we randomly selected 1k samples from these five benchmarks and provided the
images, questions, answers, and the full model outputs to GPT-4o for reasoning quality evaluation
(CoT Score). Besides, we further analyze the reasoning depth and CoT consistency. For each model-
generated CoT, we prompted GPT-4o to: (i) identify how many distinct reasoning steps are involved
in reaching the final conclusion (Reasoning Depth), and (ii) rate the overall logical consistency of the
CoT on a scale from 1 to 10 (CoT Consistency).
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Table 13: Performance on Visual Reasoning Tasks.

Model FLOPs CoT Benchmark
Length Score Depth Consist MMS MMV MathV AI2D MMMU Avg.

LLaVA-OV 60.4T 132.5 7.4 4.3 8.7 62.4 57.8 63.3 81.4 48.6 62.7
LaVi 3.6T 187.6 8.0 5.0 8.4 63.5 58.6 64.2 80.9 48.8 63.2

Table 14: Performance on Caption Generation Tasks.

Model FLOPs GPT Score COCO NoCaps
CIDER BLEU-4 CIDER BLEU-4

LLaVA-OV 60.4T 8.5 137.4 41.9 86.2 34.0
LaVi 3.6T 9.0 139.7 43.3 84.8 32.6

The results in Table 13 show that LaVi achieves comparable or superior performance to LLaVA-OV on
visual reasoning tasks, with competitive reasoning depth and CoT consistency. These improvements
are achieved while maintaining a significantly lower computational cost. We believe this performance
stems from better preservation of language capabilities for LaVi, as the reasoning ability is largely
inherited from the base LLM. Additionally, the ability of LaVi to generate in-depth and consistent
CoT further demonstrates potential capacity to handle complex multi-step reasoning tasks effectively
with futher RL-based tuning.

C.4 EVALUATION ON CAPTION GENERATION TASKS

In this section, we evaluate LaVi on caption generation tasks, where the goal is to produce meaningful
captions for images based on both visual and linguistic understanding. We consider two widely
used benchmarks, COCO (Lin et al., 2014) and NoCaps (Agrawal et al., 2019), and use LLaVA-
OV-7B (Li et al., 2024a) as the baseline model. Following standard evaluation protocols, we report
CIDER (Vedantam et al., 2015) and BLEU (Papineni et al., 2002) to assess the quality of generated
captions. Besides, to further evaluate the semantic alignment of the generated captions, we randomly
select 1k samples from each benchmark and feed the images along with ground truth captions and
model-generated captions into GPT-4o for evaluation. GPT-4o rates the captions on a scale from 1 to
10 (GPT Score), considering aspects such as relevance, coherence, and accuracy in relation to the
visual content. The results are summarized in the Table 14.

The results show that LaVi achieves comparable or superior performance to LLaVA-OV on caption
generation tasks. This highlights LaVi ’s capacity for generating meaningful, contextually relevant
captions, reinforcing its efficiency and effectiveness in multimodal tasks.

C.5 EVALUATION ON PERTURBATION EXPERIMENT

In this section, we assess the robustness of LaVi by evaluating its performance under various pertur-
bations. Specifically, we introduce three types of visual input perturbations, noise, irrelevant images,
and adversarial attacks, to simulate potential real-world variations in visual data quality. For each per-
turbation type, we apply two levels of intensity and measure the resulting performance on 6 standard
benchmarks. For adversarial attacks, we apply FGSM-based adversarial perturbations (Goodfellow
et al., 2014) to the visual inputs. The attack modifies the image according to the gradient of the loss
function, as shown in the following equation:

V = V + ϵ · sign(∇V J(θ, V, y)) (11)

where ϵ is the perturbation magnitude, ∇V J(θ, V, y) is the gradient of the loss function with respect
to the vision input, and y represents the target label. This perturbation aims to maximize the model’s
prediction error by pushing the vision input in the direction of the gradient. For noise and irrelevant
image perturbations, we add Gaussian noise or related images to the given input:

V = V + σN (12)

V = V + λVunrelated (13)
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Table 15: Robustness evaluation under different perturbation settings: Gaussian Noise, Unrelated
Inputs, and Adversarial Inputs.

Model TextVQA DocVQA ChartQA AI2D InfoVQA OCRBench Avg.
Gaussian Noise

LLaVA-OV-7B 76.1 87.3 80.3 81.4 66.3 62.7 75.7
+ σ = 0.4 71.7 83.8 75.7 80.2 63.0 54.9 71.6
+ σ = 0.8 65.6 78.2 67.7 72.1 56.0 53.9 65.6

LaVi-7B 77.0 87.6 81.3 80.9 67.5 63.4 76.3
+ σ = 0.4 73.5 85.0 77.9 80.8 65.1 57.3 73.3
+ σ = 0.8 71.4 78.7 67.3 74.5 60.9 53.8 67.8

Unrelated Inputs

LLaVA-OV-7B 76.1 87.3 80.3 81.4 66.3 62.7 75.7
+ λ = 0.5 74.2 86.1 78.6 80.1 65.9 60.4 74.2
+ λ = 1.0 70.1 82.8 76.4 79.2 62.8 56.7 71.3

LaVi-7B 77.0 87.6 81.3 80.9 67.5 63.4 76.3
+ λ = 0.5 75.8 85.5 80.8 78.7 66.9 62.5 75.0
+ λ = 1.0 73.6 84.1 79.3 76.6 64.4 59.2 72.9

Adversarial Inputs

LLaVA-OV-7B 76.1 87.3 80.3 81.4 66.3 62.7 75.7
+ ϵ = 0.2 70.8 84.3 73.4 78.8 62.4 56.3 71.0
+ ϵ = 0.4 68.5 79.7 72.5 77.6 59.3 52.8 68.4

LaVi-7B 77.0 87.6 81.3 80.9 67.5 63.4 76.3
+ ϵ = 0.2 73.2 81.3 78.6 79.4 65.8 56.5 72.5
+ ϵ = 0.4 69.6 77.8 76.4 78.5 62.3 52.1 69.5

where N represents a Gaussian noise generated from a standard normal distribution. After applying
these perturbations, we compare the performance of LaVi against the baseline LLaVA-OV-7B (Li
et al., 2024a) on all 6 benchmarks. The results are summarized in Table 15.

The results show that the proposed modulation mechanism exhibits a reasonable degree of robustness
across different types of perturbations, comparable to that of conventional in-context injection
methods. Given that visual inputs in LVLM applications rarely contain strong disturbances, we
respectfully argue that the robustness of FMI is unlikely to limit its scalability or usability.

D CASE STUDY

To provide a more intuitive demonstration of the intrinsic impact of the proposed feature modulation
injection paradigm and the capabilities of the novel LVLM LaVi in various scenarios, we present
several representative specific examples in this section.

D.1 IMPACT OF FEATURE MODULATION INJECTION

In this section, to demonstrate the impact of feature modulation injection on the model’s output
distribution, we conduct the following experiments. First, we input the pure-text question into LaVi
and obtain the next-token prediction distribution of the last token. Next, we apply feature modulation
using our FMI method, where both the image and the question are simultaneously fed into the model.
This results in a modulated next-token prediction distribution, and we present the top three logits
for visualization. The results are shown in Figure 10. We observe that the logits distribution for
next-token prediction changes before and after the visual feature modulation. Specifically, several
interesting observations can be made. As shown in Figure 10 (a), when no visual modulation is
applied, the model’s prediction of the answer to the question lacks clear distinction and is essentially
blind. However, after applying visual modulation, the model’s output transitions from this non-
targeted distribution to an accurate, targeted one. This illustrates the effect of visual modulation in
achieving precise multimodal understanding. As shown in Figure 10 (b), when no visual modulation
is applied, the model’s prediction shows some language biases, possibly based on previously learned
knowledge. After applying visual modulation, the model successfully integrates the visual input and
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Figure 10: The change in the logits distribution for next-token prediction before and after the
visual feature modulation.

provides the correct understanding. These examples provide strong evidence for the effectiveness of
the feature modulation injection proposed in this work, demonstrating that visual information can
directly and effectively influence the feature distribution of the LLM.

D.2 CASE OF REPRESENTATIVE SCENARIOS

To provide a more intuitive demonstration of the advantages of LaVi as an LVLM compared to existing
models, we compare the performance of different models across three representative scenarios: fine-
grained visual perception, complex chart reasoning, and long-form video understanding, as shown
in Figure 11. The case study highlights LaVi’s impressive capabilities in each of these areas. In
fine-grained visual perception, LaVi demonstrates its ability to handle intricate visual details with
remarkable precision. In the realm of complex chart reasoning, LaVi outperforms previous models
such as LLaVA-v1.5 and LLaVA-OV, demonstrating its advanced reasoning skills in interpreting
both contextual and numerical data from visual charts. Finally, in the long-form video understanding
scenario, LaVi effectively processes and synthesizes extended video content, offering a detailed
description of the video. This comprehensive understanding of both visual and contextual information
further emphasizes LaVi’s strength in managing complex multimodal inputs. Overall, this case study
underscores LaVi’s superior performance in visual perception, reasoning, and video understanding,
highlighting its potential as a powerful tool for multimodal understanding across a wide range of
scenarios.

E USE OF LARGE LANGUAGE MODELS

We used ChatGPT solely as a writing assistant to improve grammar, wording, and LaTeX polishing
(e.g., rephrasing sentences for clarity, adjusting tone, and resolving minor formatting issues). The
LLM did not contribute to research ideation, problem formulation, methodology design, experiment
implementation, data analysis, result interpretation, figure/table creation, or the selection of related
work. All technical content, claims, equations, and citations were authored and verified by the
authors, who take full responsibility for the paper’s contents. Any LLM-suggested edits were treated
as copy-editing and were reviewed for accuracy, and no fabricated references were introduced.

F REPRODUCIBILITY STATEMENT

We have taken concrete steps to facilitate reproducibility. The full model architecture and training
objectives are described in Section 3, and the experimental setup is detailed in Section 4. Stage-wise
training configurations (optimizer, schedules, precision, batch sizes) are summarized in Table 7 and
Table 8 of the appendix, while the evaluation protocols and prompts are also enumerated in Table 9.
In addition, the appendix (“Conditioning Module”) includes PyTorch-style reference implementations
of the modules used in our approach. Together, these materials are intended to enable independent
reproduction of our reported results.
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Question: How many brown or silver coins are in the image? Question: Which region in the image has the largest total 
population?

LaVi: 
There are 4 brown coins and 4 silver 
coins in the image, stacked on top of 
each other.

LLaVA-v1.5:
5 brown coins.

LLaVA-OV: 
The count is: \n\n Brown coins: 4 \n\n 
Silver coins: 5.

LaVi: 
New South Wales has the 
largest total population at 
8.1m.

LLaVA-v1.5: 
Tasmania.

LLaVA-OV: 
The region is New South 
Wales, with a population 
of around 5 million.

180s video

Question: What features of the iPhone are demonstrated in the video?

LaVi: 
The video demonstrates the iPhone has three core functionalities, highlighted respectively in yellow, green, and blue. 
It features as an iPod with touch controls, a mobile phone, and an internet communicator. Together, these 
components unify the capabilities of an iPod, a phone, and an Internet device within a single product.

Video-LLaVA: 
The iPhone enables voice communication and is a smartphone developed by Apple Inc.

LLaVA-OV: 
The video showcases four features in sequence, each serving a different purpose. Together, they highlight the unique 
capabilities of the iPhone. Specifically, these include making phone calls, sending text messages, listening to music, 
and playing video games.

Figure 11: Case of three representative scenarios: fine-grained visual perception, complex chart
reasoning, and long-form video understanding.
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1 class MLP_Condition(nn.Module):
2 def __init__(self, embed_dim: int, num_vis_tok: int,
3 token_exp: int = 4, channel_exp: int = 4):
4 super().__init__()
5 self.L = num_vis_tok + 1 # total tokens (t_i + v)
6 # token-mixing MLP
7 self.mlp_token = nn.Sequential(
8 nn.Linear(self.L, self.L * token_exp),
9 nn.GELU(),

10 nn.Linear(self.L * token_exp, self.L))
11 # channel-mixing MLP
12 self.mlp_channel = nn.Sequential(
13 nn.Linear(embed_dim, embed_dim * channel_exp),
14 nn.GELU(),
15 nn.Linear(embed_dim * channel_exp, embed_dim))
16

17 def forward(self, t_i: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
18 assert v.size(1) + 1 == self.L, "Unexpected #visual tokens"
19 # concat (B, L, C) where L = 1 + V
20 seq = torch.cat([t_i, v], dim=1) # (B, L, C)
21 # Token mixing
22 x = seq.transpose(1, 2) # (B, C, L) swap token/chan
23 x = self.mlp_token(x)
24 x = x.transpose(1, 2) # back to (B, L, C)
25 # Channel mixing
26 y = self.mlp_channel(y) # (B, L, C)
27 # Extract vision-aware embedding for t_i
28 return y[:, 0, :]
29

30 class Conv_Condition(nn.Module):
31 def __init__(self, embed_dim: int, kernel_size: int):
32 super().__init__()
33 pad = kernel_size // 2
34 self.dw = nn.Conv1d(embed_dim, embed_dim, kernel_size,
35 padding=pad, groups=embed_dim)
36 self.pw = nn.Conv1d(embed_dim, embed_dim, kernel_size=1)
37 self.act = nn.SiLU()
38

39 def forward(self, t_i: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
40 # concatenate on token dimension, then transpose for Conv1d
41 seq = torch.cat([t_i, v], dim=1).transpose(1, 2) # (B, C, 1+V)
42 # depth-wise conv activation point-wise conv
43 out = self.pw(self.act(self.dw(seq))).transpose(1, 2) # (B, 1+V, C)
44 # slice the first token position (corresponding to t_i)
45 return out[:, 0, :]
46

47 class Attn_Condition(nn.Module):
48 def __init__(self, C:int, h:int=8):
49 super().__init__()
50 self.q = nn.Linear(C, C, False)
51 self.k = nn.Linear(C, C, False)
52 self.v = nn.Linear(C, C, False)
53 self.o = nn.Linear(C, C, False)
54

55 def forward(self, t, v): # t:(B,1,C) v:(B,V,C)
56 B = t.size(0)
57 def shp(x):
58 return x.reshape(B, -1, self.h, self.dk).permute(0, 2, 1, 3)
59

60 q, k, val = map(shp, (self.q(t), self.k(v), self.v(v)))
61 attn = (q @ k.transpose(-2, -1)) / math.sqrt(self.dk)
62 ctx = (attn.softmax(-1) @ val).transpose(1, 2).reshape(B, 1, -1)
63 return self.o(ctx).squeeze(1)

Figure 12: Implementation of three conditioning modules in PyTorch.
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