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Abstract

Personalizing large-scale diffusion models poses serious privacy risks, especially1

when adapting to small, sensitive datasets. A common approach is to fine-tune the2

model using differentially private stochastic gradient descent (DP-SGD), but this3

suffers from severe utility degradation due to the high noise needed for privacy,4

particularly in the small data regime. We propose an alternative that leverages5

Textual Inversion (TI), which learns an embedding vector for an image or set6

of images, to enable adaptation under differential privacy (DP) constraints. Our7

approach, Differentially Private Aggregation via Textual Inversion (DPAgg-TI),8

adds calibrated noise to the aggregation of per-image embeddings to ensure formal9

DP guarantees while preserving high output fidelity. We show that DPAgg-TI10

outperforms DP-SGD finetuning in both utility and robustness under the same11

privacy budget, achieving results closely matching the non-private baseline on12

style adaptation tasks using private artwork from a single artist and Paris 202413

Olympic pictograms. In contrast, DP-SGD fails to generate meaningful outputs in14

this setting.15

Figure 1: We compare our method (DPAgg-TI, top) to a baseline applying DP-SGD to Textual
Inversion (bottom), using the prompt “an icon of the Eiffel Tower in the style of the Paris 2024
Olympic Pictograms.” While the baseline learns a single embedding over the dataset, our method
privately aggregates per-image embeddings. At privacy budget ε = 1, DPAgg-TI preserves visual
fidelity much better than the baseline, and closely matches the non-private output (left), demonstrating
a superior privacy-utility tradeoff.

1 Introduction16

The rapid adoption of diffusion models Ho et al. [2020], Song et al. [2021b], Rombach et al. [2022]17

has raised significant privacy and legal concerns. These models are vulnerable to privacy attacks, such18
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as membership inference Duan et al. [2023], where attackers determine if a specific data point was19

used for training, and data extraction Carlini et al. [2023], which enables reconstruction of training20

data. This risk is amplified during fine-tuning on smaller, domain-specific datasets, where each record21

has a greater impact. Additionally, reliance on large datasets scraped without consent raises copyright22

concerns Vyas et al. [2023], as diffusion models can reproduce original artworks without credit or23

compensation. These issues highlight the urgent need for privacy-preserving technologies and clearer24

ethical and legal guidelines for generative models.25

Figure 2: Overview of DPAgg-TI. We first apply Textual Inversion to extract embeddings for each
image in the private dataset. These embeddings are then aggregated with differentially private
mechansim, incorporating subsampling to produce a private embedding u∗

DP. Finally, images are
generated using the corresponding token <S∗>.
Differential privacy (DP) Dwork [2006] is a widely adopted framework for addressing these chal-26

lenges. One standard approach for ensuring DP in deep learning is Differentially Private Stochastic27

Gradient Descent (DP-SGD) Abadi et al. [2016], which modifies traditional SGD by adding noise to28

clipped gradients. However, applying DP-SGD to train diffusion models poses several challenges.29

It introduces significant computational and memory overhead due to per-sample gradient clipping30

Hoory et al. [2021], which is essential for bounding gradient sensitivity Dwork et al. [2006], Abadi31

et al. [2016]. DP-SGD is also incompatible with batch-wise operations like batch normalization, as32

these link samples and hinder sensitivity analysis. Furthermore, training large models with DP-SGD33

often leads to substantial performance degradation, particularly under realistic privacy budgets since34

the required noise scales with the gradient norm. Consequently, existing diffusion models trained35

with DP-SGD are limited to relatively small-scale images.36

Independent of privacy concerns, Textual Inversion (TI) Gal et al. [2023] provides an effective method37

for adapting diffusion models to specific styles or content without modifying the model. Instead, TI38

learns an external embedding vector that captures the style or content of a target image set, which39

is then incorporated into text prompts to guide the model’s outputs. A key advantage of TI is its40

ability to compress a style into a compact vector, reducing computational and memory demands41

while simplifying the application of privacy-preserving mechanisms, as privacy constraints can be42

applied directly to embeddings rather than the full model. Additionally, since TI avoids direct model43

optimization, it remains efficient and compatible with DP constraints on smaller datasets.44

In this work, we propose a novel privacy-preserving adaptation method for smaller datasets, lever-45

aging TI to avoid the extensive model updates required by DP-SGD. Standard TI does not offer46

formal privacy guarantees, so to address this limitation, we introduce a private variant of TI, called47

Differentially Private Aggregation via Textual Inversion (DPAgg-TI) and summarize it in Figure 2.48

Our method decouples interactions among samples by learning a separate embedding for each target49

image, which are then aggregated into a noisy centroid. This approach ensures efficient and secure50

adaptation to private datasets.51

Our experiments demonstrate the effectiveness of DPAgg-TI, showing that TI remains robust in52

preserving stylistic fidelity even under privacy constraints. Applying our method to a private artwork53

collection by @eveismyname and Paris 2024 Olympics pictograms Paris 2024, we show that54

DPAgg-TI captures nuanced stylistic elements while ensuring privacy. We observe a trade-off55

between privacy (controlled by DP parameter ε) and image quality: lower ε reduces fidelity but56

maintains the target style under moderate noise. Subsampling further amplifies privacy by reducing57

sensitivity to individual data points, mitigating noise impact on image quality. This framework58
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enables privacy-preserving adaptation of diffusion models to new styles and domains while protecting59

sensitive data.60

Our contributions can be summarized as follows:61

(1) We propose DPAgg-TI that ensures privacy by learning separate embeddings for individual images62

and aggregating them into a noisy centroid.63

(2) Our approach enables style adaptation without extensive model updates, reducing computational64

overhead while preserving privacy.65

(3) We analyze the trade-off between privacy and image quality, showing that moderate noise66

maintains stylistic fidelity while protecting sensitive data.67

(4) We validate our method on diverse datasets, demonstrating its effectiveness in capturing stylistic68

elements under privacy constraints.69

2 Background and Related Work70

2.1 Diffusion Models71

Diffusion models Ho et al. [2020], Song et al. [2021b,a], Rombach et al. [2022] leverage an iterative72

denoising process to generate high-quality images that align with a given conditional input from73

random noise. In text-to-image generation, this conditional input is based on a textual description (a74

prompt) that guides the model in shaping the image to reflect the content and style specified by the75

text. To convert the text prompt into a suitable conditional format, it is first broken down into discrete76

tokens, each representing a word or sub-word unit. These tokens are then converted into a sequence77

of embedding vectors vi that encapsulate the meaning of each token within the model’s semantic78

space. Next, these embeddings pass through a transformer text encoder, such as CLIP Radford et al.79

[2021], outputting a single text-conditional vector y that serves as the conditioning input. This vector80

y is then incorporated at each denoising step, guiding the model to align the output image with the81

specific details outlined in the prompt.82

The image generation process, also known as the reverse diffusion process, comprises of T discrete83

timesteps and starts with pure Gaussian noise xT . At each decreasing timestep t, the denoising model,84

which often utilizes a U-Net structure with cross-attention layers, takes a noisy image xt and text85

conditioning y as inputs and predicts the noise component ϵθ(xt, y, t), where θ denotes the denoising86

model’s parameters. The predicted noise is then used to make a reverse diffusion step from xt to87

xt−1, iteratively refining the noisy image closer to a coherent output x0 that aligns with the text88

conditional y.89

The objective function for a text-conditioned diffusion model, given both the noisy image xt and90

the text conditioning y, is typically a mean squared error (MSE) between the true noise ϵ and the91

predicted noise ϵθ(xt, y, t). The denoising model is therefore trained over:92

θ∗ = argmin
θ

Ex,ϵ∼N (0,I),t∼[T ][∥ϵ− ϵθ(xt, y, t)∥2]. (1)

2.2 Textual Inversion.93

Textual Inversion (TI) Gal et al. [2023] is an adaptation technique that enables personalization using a94

small dataset of typically 3-5 images. This approach essentially learns a new token that encapsulates95

the semantic meaning of the training images, allowing the model to associate specific visual features96

with a custom token.97

To achieve this, TI trains a new token embedding, denoted as u, representing a placeholder token,98

denoted as S. During training, images are conditioned on phrases such as “A photo of S” or “A99

painting in the style of S”. However, unlike the fixed embeddings of typical tokens vi, u is a learnable100

parameter. Let yu denote the text conditioning vector resulting from a prompt containing the token S.101

Through gradient descent, TI minimizes the diffusion model loss given in (1) with respect to u, while102

keeping the diffusion model parameters θ fixed, iteratively refining this embedding to capture the103

unique characteristics of the training images. The resulting optimal embedding u∗ is formalized as:104

u∗ = argmin
u

Ex,ϵ∼N (0,I),t∼[T ][∥ϵ− ϵθ(xt, yu, t)∥2]. (2)
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Hence, u∗ represents an optimized placeholder token S∗, which can employed in prompts such as “A105

photo of S∗ floating in space” or “A drawing of a capybara in the style of S∗”, enabling the generation106

of personalized images that reflect the learned visual characteristics.107

2.3 Differential Privacy.108

In this work, we adopt differential privacy (DP) Dwork et al. [2006], Dwork [2006] as our privacy109

framework. Over the past decade, DP has become the gold standard for privacy protection in both110

research and industry. It measures the stability of a randomized algorithm with respect to changes in111

an input instance, thereby quantifying the extent to which an adversary can infer the existence of a112

specific input based on the algorithm’s output.113

Definition 1 ((Approximate) Differential Privacy). For ε, δ ≥ 0, a randomized mechanism M :
Xn → Y satisfies (ε, δ)-DP if for all neighboring datasets D,D′ ∈ Xn which differ in a single
record (i.e., ∥D − D′∥H ≤ 1 where ∥·∥H is the Hamming distance) and all measurable S in the range
of M, we have that

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ.

When δ = 0, we say M satisfies ε-pure DP or (ε-DP).114

To achieve DP, the Gaussian mechanism is often applied Dwork et al. [2014], Balle and Wang [2018],115

adding Gaussian noise scaled by the sensitivity of the function f and privacy parameters ε and δ.116

Specifically, noise with standard deviation σ =
∆f

√
2 ln(1.25/δ)

ε is added to the output1 Balle and117

Wang [2018], where ∆f represents ℓ2-sensitivity of the target function f(·). When the context is118

clear, we may omit the subscript f . This mechanism enables a smooth privacy-utility tradeoff and is119

widely used in privacy-preserving machine learning, including in DP-SGD Abadi et al. [2016], which120

applies Gaussian noise during model updates to achieve DP.121

Privacy Amplification by Subsampling. Subsampling is a standard technique in DP, where a122

full dataset of size n is first subsampled to m records without replacement (typically with m ≪ n)123

before the privatization mechanism (such as the Gaussian mechanism) is applied. Specifically, if124

a mechanism provides (ε, δ)-DP on a dataset of size m, it achieves (ε′, δ′)-DP on the subsampled125

dataset, where δ′ = m
n δ and126

ε′ = log
(
1 +

m

n
(eε − 1)

)
= O

(m
n
ε
)
. (3)

This result is well-known (Steinke [2022, Theorem 29]), with tighter amplification bounds available127

for Gaussian mechanisms Mironov [2017].128

2.4 Private Adaptation of Diffusion Models129

Recent advancements in applying DP to diffusion models have aimed to balance privacy preservation130

with the high utility of generative outputs. Dockhorn et al. Dockhorn et al. [2023] proposed a131

Differentially Private Diffusion Model (DPDM) that enables privacy-preserving generation of realistic132

samples, setting a foundational approach for adapting diffusion processes using DP-SGD. Another133

common strategy involves training a model on a large public dataset, followed by differentially private134

fine-tuning on a private dataset, as explored by Ghalebikesabi et al. [2023]. While effective in certain135

contexts, this approach raises privacy concerns, particularly around risks of information leakage136

during the fine-tuning phase Tramèr et al. [2024].137

In response to these limitations, various adaptation techniques have emerged. Although not spe-138

cific to diffusion models, some methods focus on training models on synthetic data followed by139

DP-constrained fine-tuning, as in the VIP approach Yu et al. [2024], which demonstrates the fea-140

sibility of applying DP in later adaptation stages. Other approaches explore differentially private141

learning of feature representations Sander et al. [2024], aiming to distill private information into142

a generalized embedding space while maintaining DP guarantees. Although these adaptations are143

not yet implemented for diffusion models, they lay essential groundwork for developing secure and144

efficient privacy-preserving generative models.145

1In practice, we use numerical privacy accountant such as Balle and Wang [2018], Mironov [2017] to
calibrate the noise.
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Figure 3: Samples of images used in our style adaptation experiments. Left: artwork by
@eveismyname (n = 158). Right: Paris 2024 Olympic pictograms (n = 47), © International
Olympic Committee, 2023.

Figure 4: Images generated by Stable Diffusion v1.5 using the prompt “A painting of Taylor Swift in
the style of <@eveismyname>”, with the embedding <@eveismyname> trained using different
values of m and ε.

3 Differentially Private Adaptation via Textual Inversion146

Let x(1), . . . , x(n) represent a target dataset of images whose characteristics we wish to privately147

adapt our image generation towards. Instead of training a single token embedding on the entire148

dataset as in regular TI, we train a separate embedding u(i) on each x(i) to obtain a set of embeddings149

u(1), . . . , u(n), as illustrated in Figure 2. We can formalize the encoding process as follows:150

u(i) = argmin
u

Eϵ∼N (0,I),t[∥ϵ− ϵθ(x
(i)
t , yu, t)∥2]. (4)

Then, we can aggregate the embeddings u(1), . . . , u(n) by calculating the centroid. The purpose of151

this aggregation is to limit the sensitivity of the final output to each x(i). In order to provide DP152

guarantees, we also add isotropic Gaussian noise to the centroid. We can therefore define the resulting153
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Figure 5: Images generated by Stable Diffusion v1.5 using the prompt “Icon of a dragon in the style
of <Paris 2024 Pictograms>”, with the embedding <Paris 2024 Pictograms> trained using different
values of m and ε.

embedding vector u∗
DP as follows:154

u∗
DP =

1

n

n∑
i=1

u(i) +N (0, σ2I), (5)

where the minimum σ required to provide (ε, δ)-DP is given by the following expression based on155

Balle and Wang [2018, Theorem 1]:156

σ =
∆

n
·
√
2 ln(1.25/δ)

ε
. (6)

In the context of our problem, ∆ = supi,j ∥u(i)−u(j)∥. Since our embedding vectors are directional,157

we can normalize each u(i), allowing us to set ∆ = 2.158

The noisy centroid embedding u∗
DP can then be used to adapt the downstream image generation159

process. Similar to regular TI’s u∗, we can use u∗
DP to represent a new placeholder token S∗ that160

can be incorporated into prompts for personalized image generation. While u∗
DP may not fully solve161

the TI optimization problem presented in (2), it provides provable privacy guarantees, with only a162

minimal trade-off in accurately representing the style of the target dataset.163

To reduce the amount of noise needed to provide the same level of DP, we employ subsampling:164

instead of computing the centroid over all n embedding vectors, we randomly sample m ≤ n165

embedding vectors without replacement and compute the centroid over only the sampled vectors.166

Then the standard privacy amplification by subsampling bounds (such as (3)) can be applied. Formally,167

we sample Dsub ⊆ {u(1), . . . , u(n)} where |Dsub| = m, and compute the output embedding as168

follows:169

u∗
DP =

1

m

∑
u(i)∈Dsub

u(i) +N (0, σ2I), (7)

where σ can be computed numerically for any target ε, δ and subsampling rate m
n .170

4 Experimental Results171

4.1 Datasets172

We compiled two datasets to evaluate our style adaptation method, specifically selecting content173

unlikely to be recognized by Stable Diffusion v1.5, our base model.174

The first dataset consists of 158 artworks by the artist @eveismyname, who has granted consent175

for non-commercial use. This dataset allows us to assess whether models can capture artistic styles176
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without memorizing individual works. While some of these artworks may have been publicly177

accessible on social media, making incidental inclusion in Stable Diffusion’s pretraining possible,178

the artist’s limited recognition and relatively small portfolio reduce the likelihood that the model has179

internalized her unique style. This dataset serves as a controlled test for privacy-preserving style180

transfer on individual artistic collections.181

The second dataset contains 47 pictograms from the Paris 2024 Olympics Paris 2024, permitted182

strictly for non-commercial editorial use International Olympic Committee. These pictograms were183

officially released in February 2023, several months after the release of Stable Diffusion v1.5, ensuring184

they were absent from the model’s pretraining data. This dataset allows us to assess how well our185

approach adapts to newly introduced visual styles that the base model has never encountered.186

Both datasets are used to test the ability of our method to extract and transfer stylistic elements while187

preserving privacy. Representative samples are shown in Figure 3.188

4.2 Style Transfer Results189

Using both the @eveismyname and Paris 2024 pictograms dataset, we trained TI Gal et al. [2023]190

embeddings on Stable Diffusion v1.5 Rombach et al. [2022] using DPAgg-TI. Our primary goal191

is to investigate how DP configurations, specifically the privacy budget ε and subsampling size m,192

affect the generated images quality and privacy resilience. For regular TI, we utilize the default193

process to embed the private dataset without any additional noise. For the DPAgg-TI, we test multiple194

configurations of m and ε to analyze the trade-off between image fidelity and privacy.195

Figures 4 and 5 present generated images across two key configurations: (1) regular TI without196

DP, (2) DPAgg-TI with DP at different values of m and ε. We used the same random seed to197

generate embeddings, subsample images, and sample DP noise for ease of visual comparison between198

different configurations. As with common practice, we set δ = 1/n. Since σ is undefined for199

ε = 0, we demonstrate the results of ε ≈ 0, in other words, infinite noise, by setting ε = 10−5.200

The purpose of this parameter value is to demonstrate the image generated when u∗
DP contains zero201

information about the target dataset. Images generated without DP closely resemble the unique202

stylistic elements of the target dataset. In particular, images adapted using @eveismyname images203

displayed crisp details and nuanced color gradients characteristic of the artist’s work, while those of204

Paris 2024 pictograms captured the logo’s original structure. In contrast, DP configurations introduce205

a discernible degradation in image quality, with lower epsilon values and smaller subsampling sizes206

resulting in diminished stylistic fidelity.207

As ε → 0, the resulting token embedding u∗
DP gradually loses its semantic meaning, leading to a208

loss of stylistic fidelity. In particular, yu∗
DP

tends towards y (a conditioning vector independent of209

the learnable embedding). In our results, this manifests as a painting of Taylor Swift devoid of the210

artist-specific stylistic elements, or a generic icon of a dragon (with color, as opposed to the black211

and white design of the pictograms). With this in mind, ε can be interpreted as a drift parameter,212

representing the progression from the optimal u∗
DP towards infinity, gradually steering the generated213

image away from the target style in exchange for stronger privacy guarantees. We also observe214

instances where there is a temporary drop in prompt fidelity (e.g., m = 16, ε ∈ [0.5, 1] in Figure 4215

and intermediate ε values in Figure 5) which restores as u∗
DP drifts even further from its optimal value.216

We hypothesize that this is due to drifted u∗
DP capturing a different meaning unrelated to the prompt,217

before losing any meaning that could be interpreted by Stable Diffusion’s text encoder, causing u∗
DP218

to be disregarded from yu∗
DP

and the prompt fidelity to be restored. Another possible explanation is219

that the temporary drop in prompt fidelity is due to the drift path of u∗
DP passing through non-linear220

regions within embedding space. We leave further investigations into this observation for future work.221

Meanwhile, reducing m also reduces the sensitivity of the generated image to ε, as evident by the222

observation that, on both datasets at m = 4, (subsampling rate below 0.1) image generation can223

tolerate ε as low as 0.5 without significant changes in visual characteristics, and retaining stylistic224

elements of the target dataset at ε as low as 0.1. This strong boost in robustness comes at a small225

price of base style capture fidelity. As observed in Figures 4 and 5, we can also treat subsampling as226

an introduction of noise. Mathematically, the subsample centroid is an unbiased estimate of the true227

centroid, and so the subsampling process itself defines a distribution centered at the true centroid.228

However, the amount of noise introduced by the subsampling process is limited by the individual229
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image embeddings, as a subsample centroid can only stray from the true centroid as much as the230

biggest outlier in the dataset.231

4.3 Quantitative Evaluation232

User Study To evaluate the utility of our approach under different DP and subsampling configura-233

tions, we conducted a user study with 25 participants. Each participant was shown reference images234

from the target dataset and asked to compare pairs of generated images, selecting the one that better235

captured the style of the reference images. Images were generated using 10 prompts and adapted236

TI embeddings for the @eveismyname and Paris 2024 Pictogram datasets, resulting in 20 groups237

of images. Each participant evaluated two groups, one randomly selected from each dataset, with238

comparisons focusing on model configurations differing by DP noise and subsampling size.239

Survey results, summarized in Table 1 in Appendix A, align with our design goals. Participants240

showed no clear preference between regular TI and DPAgg-TI, suggesting that our privacy-preserving241

approach maintains perceptual quality. As expected, both DP noise and reduced subsampling size242

degraded style fidelity, consistent with the trade-offs inherent in differential privacy. Preferences at243

ε = 1 were split, but subsampling was generally favored, reinforcing its role in reducing noise impact244

while preserving style.245

Kernel Inception Distance The Kernel Inception Distance (KID) Bińkowski et al. [2018] is a246

metric for evaluating generative models by measuring the difference between the distributions of247

generated and training images in an embedding space. To compute KID, images generated by the248

model and real training images are passed through an Inception network Szegedy et al. [2015], and249

their distributional differences are estimated. Unlike the more commonly used Fréchet Inception250

Distance (FID) Heusel et al. [2017], KID is an unbiased estimator of the true divergence between the251

learned and target distributions Jayasumana et al. [2024], making it more suitable for smaller datasets,252

as in our case.253

We report KID scores for different parameters in Tables 2 and 3 (see Appendix B), showing that254

DPAgg-TI maintains the style transfer fidelity of TI while ensuring differential privacy. Further255

discussion of these results is also provided in Appendix B.256

Ablation Study: Textual Inversion with DP-SGD A natural question that arises is how well257

our approach compares to the naive method of applying DP-SGD to regular TI training. We there-258

fore integrated DP-SGD into the TI codebase using the Opacus library and trained similar embed-259

dings on the @eveismyname and Paris 2024 datasets. We found that in most cases, notably the260

@eveismyname dataset, the amount of noise required for DP-SGD to achieve a reasonable value of261

ε for DP is so high that the resulting embedding contains negligible information about the training262

dataset. In particular, the results for ε = 1 are almost indistinguishable to ε ≈ 0, as shown in Figure263

6. We believe that this is simply because DP-SGD is not designed to handle such small datasets in264

the order of 100 images. Additional results can be found in Appendix F.265

Figure 6: Comparing our approach to applying DP-SGD to regular TI using prompts “an icon of a
dragon in the style of the Paris 2024 Olympic Pictograms” and “a painting of Taylor Swift in the style
of @eveismyname” respectively. Note that our method aggregates individual TI embeddings for
each training image, whereas the baseline trains a single TI embedding over the entire dataset.
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5 Copyright Protection Implications266

Our proposed mechanism can also be interpreted through the lens of copyright protection. This267

connection is grounded in the framework of Near Access-Freeness (NAF) [Vyas et al., 2023], which268

evaluates whether a model’s outputs reveal undue influence from specific data points by comparing269

them to those from a safe model trained without access to the same data. Since DPAgg-TI satisfies270

ε-DP, it also satisfies ε-NAF, which means the adapted model behaves similarly to one that never271

saw the private images, under the NAF criterion. However, we emphasize that this guarantee holds272

only within the NAF framework; it does not constitute a general claim about content similarity or273

legal compliance. Crucially, DPAgg-TI is designed to adapt to the style of private images, not their274

specific content. Prior work and legal precedent suggest that style imitation is generally considered275

fair use and does not constitute infringement [Vyas et al., 2023]. Thus, our mechanism aligns with the276

intended protections of NAF: it avoids memorization while still enabling meaningful personalization277

and stylistic adaptation. We defer the details of copyright protection to Appendix D.278

6 Conclusion279

We presented a differentially private adaptation method for diffusion models based on Textual280

Inversion, enabling privacy-preserving style transfer without the need for full model fine-tuning. By281

learning per-image embeddings and aggregating them with calibrated noise, our method, DPAgg-TI,282

achieves strong formal privacy guarantees while maintaining high output fidelity. Experiments283

on private artwork and Paris 2024 pictograms show that DPAgg-TI consistently outperforms DP-284

SGD, which fails to produce meaningful results under comparable privacy budgets. These results285

highlight the effectiveness of embedding-level adaptation as an efficient and scalable alternative286

to traditional gradient-based approaches, especially in low-data regimes. Unlike DP-SGD, which287

introduces significant computational overhead and utility degradation, DPAgg-TI is lightweight,288

modular, and compatible with existing diffusion backbones. Our findings suggest that embedding-289

centric approaches offer a promising direction for privacy-aware personalization, and motivate further290

research into cross-modal extensions, improved aggregation techniques, and integration with broader291

privacy-preserving frameworks.292
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A User Study357

regular TI No Adaptation Unsure
@eveismyname 19 4 2
Paris 2024 16 6 3

DPAgg-TI (no DP, no subsampling) No Adaptation Unsure
@eveismyname 16 9 0
Paris 2024 15 4 6

regular TI DPAgg-TI (no DP, no subsamp.) Unsure
@eveismyname 12 13 0
Paris 2024 9 10 6

regular TI DPAgg-TI (no DP, subsamp. m = 8) Unsure
@eveismyname 16 6 3
Paris 2024 7 13 5

DPAgg-TI (no DP, no subsampling) DPAgg-TI (no DP, subsamp. m = 8) Unsure
@eveismyname 18 4 3
Paris 2024 10 8 7

DPAgg-TI (ε = 1) no subsampling DPAgg-TI (ε = 1, subsamp. m = 8) Unsure
@eveismyname 14 10 1
Paris 2024 3 16 6

DPAgg-TI (no DP, no subsampling) Style Guidance Unsure
@eveismyname 16 8 1
Paris 2024 20 2 3

DPAgg-TI (ε = 1, subsamp. m = 8) Style Guidance Unsure
@eveismyname 16 8 1
Paris 2024 19 2 4

DPAgg-TI (no DP, subsamp. m = 8) DPAgg-TI (ε = 1, subsamp. m = 8) Unsure
@eveismyname 8 5 12
Paris 2024 15 4 6

Table 1: Survey Results.

A.1 Study Design and Objective358

The user study aimed to assess the utility of our approach under different DP and subsampling359

configurations by evaluating the models’ ability to adapt to novel styles. The study involved 25360

participants, each of whom was tasked with comparing images generated using various configurations361

and selecting the one that better captured the style of reference images.362

A.2 Experimental Setup363

Participants were shown reference images from two datasets:364

• The @eveismyname dataset of private artwork.365

11



Figure 7: Samples of image sets used in our user study. Participants are asked to compare 2 images at
a time.

• The Paris 2024 Pictogram dataset.366

For each dataset, 10 prompts were used to generate images, resulting in 20 groups of images (10367

prompts per dataset). Each group included images generated using the same prompt and dataset but368

with different model configurations. Configurations varied in the addition of DP noise and the size of369

subsampling.370

• Original Textual Inversion (TI)371

• DPAgg-TI (ε = ∞, no DP) w/o subsampling372

• DPAgg-TI (ε = 1) without subsampling373

• No Adaptation374

• DPAgg-TI (ε = ∞, no DP) with subsampling (m = 8)375

• DPAgg-TI (ε = 1) with subsampling (m = 8)376

• Style Guidance (SG)377

A.3 Survey Procedure378

Participants were asked to evaluate two groups of images: one randomly selected from the379

@eveismyname dataset and one from the Paris 2024 Pictogram dataset. For each group:380

1. Participants were shown reference images from the target dataset.381

2. They were presented with pairs of images generated using different model configurations382

for the same prompt.383

3. Participants selected the image they felt better captured the style of the reference images.384

A.4 Evaluation Metrics385

The study focused on assessing:386
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• Participants’ preference between regular TI and DPAgg-TI for style adaptation.387

• The impact of DP noise and subsampling size on the perceived utility of style transfer.388

A.5 Results and Analysis389

The results are summarized in Table 1. Key observations include:390

• Participants showed no clear preference between regular TI and DPAgg-TI in capturing391

styles for either dataset.392

• Both DP noise and reduced subsampling size decreased the perceived quality of style393

transfer.394

• Preferences were split between configurations with ε = 1 with and without subsampling,395

though subsampling generally had favorable outcomes.396

These findings highlight the trade-off between increased DP robustness and reduced utility, suggest-397

ing that the optimal configuration may depend on subjective preferences and specific application398

requirements.399

B Kernel Inception Distance400

m No DP ε = 5.0 ε = 1.0 ε = 0.5 ε = 0.1 ε ≈ 0

– 0.0441 ± 0.0027 0.0798 ± 0.0032 0.0526 ± 0.0022 0.0688 ± 0.0020 0.1114 ± 0.0032 0.0654 ± 0.0027
32 0.0753 ± 0.0047 0.0836 ± 0.0042 0.1166 ± 0.0037 0.0295 ± 0.0019 0.0644 ± 0.0021 0.0650 ± 0.0025
16 0.0350 ± 0.0020 0.0381 ± 0.0018 0.0663 ± 0.0025 0.1303 ± 0.0033 0.0438 ± 0.0030 0.0660 ± 0.0029
8 0.0359 ± 0.0018 0.0364 ± 0.0017 0.0366 ± 0.0019 0.0394 ± 0.0025 0.0527 ± 0.0033 0.0654 ± 0.0024
4 0.0246 ± 0.0013 0.0251 ± 0.0016 0.0249 ± 0.0014 0.0256 ± 0.0012 0.0313 ± 0.0017 0.0653 ± 0.0023
ctrl 0.0314 ± 0.0010 – – – – –

Table 2: KID scores of DPAgg-TI on @eveismyname dataset for various ε values ranging from
ε = 10−5, 0.1, 0.5, 1.0, 5.0 (including no DP) under different subsampling levels (m = 4, 8, 16, 32)
as well as regular TI (ctrl). Reported values are the mean ± standard deviation over 100 random
subsamples.

m No DP ε = 5.0 ε = 1.0 ε = 0.5 ε = 0.1 ε ≈ 0

– 0.1153 ± 0.0055 0.1194 ± 0.0054 0.1306 ± 0.0046 0.1395 ± 0.0057 0.1201 ± 0.0053 0.1274 ± 0.0055
32 0.1222 ± 0.0066 0.1036 ± 0.0065 0.1375 ± 0.0047 0.1311 ± 0.0048 0.1248 ± 0.0060 0.1258 ± 0.0054
16 0.1321 ± 0.0057 0.1411 ± 0.0077 0.1309 ± 0.0061 0.1380 ± 0.0047 0.1359 ± 0.0060 0.1273 ± 0.0057
8 0.1303 ± 0.0084 0.1303 ± 0.0074 0.1112 ± 0.0062 0.1311 ± 0.0064 0.1318 ± 0.0052 0.1267 ± 0.0056
4 0.1158 ± 0.0057 0.1085 ± 0.0056 0.1184 ± 0.0068 0.1194 ± 0.0065 0.1592 ± 0.0065 0.1268 ± 0.0055
ctrl 0.1383 ± 0.0066 – – – – –

Table 3: KID scores of DPAgg-TI on Paris dataset for various ε values ranging from ε = 1e −
5, 0.1, 0.5, 1.0, 5.0 (including no DP) under different subsampling levels (m = 4, 8, 16, 32) as well as
regular TI (ctrl). Reported values are the mean ± standard deviation over 100 random subsamples.

Our results indicate that DPAgg-TI preserves the style transfer fidelity of TI while also ensuring401

differential privacy. Notably, for @eveismyname (m = 4) at low privacy budgets, we observe even402

lower KID values than standard TI, suggesting enhanced style alignment. Similarly, results for the403

Paris 2024 dataset follow a comparable trend, with DPAgg-TI achieving KID scores similar to TI at404

low privacy budgets. However, the overall KID scores for this dataset remain high within the context405

of diffusion model style transfer.406

Upon inspecting the generated images (Figure 8), we hypothesize that the abstract and out-of-407

distribution nature of the Paris 2024 images poses a challenge for the Inception network, leading to408

less meaningful feature embeddings. This likely inflates the measured embedding distances between409

generated and reference images, resulting in higher-than-expected KID values.410
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For KID evaluations, we used prompts similar to those employed during TI training: “A painting/icon411

in the style of S∗”. Consistent with the training image captions, these prompts do not specify a412

subject. For each parameter configuration, we generate 100 images and compute KID by repeatedly413

subsampling the larger of the real and generated sets to match the size of the smaller set, 100 times,414

then averaging the resulting KID scores.415

Figure 8: Sample of generated images for KID evaluations with respect to the Paris 2024 dataset.

C Differentially Private Adaptation via Style Guidance416

C.1 Background: Denoising Diffusion Implicit Models417

Denoising Diffusion Implicit Models (DDIM) sampling Song et al. [2021a] uses the predicted noise418

ϵθ(xt, y, t) and a noise schedule represented by an array of scalars {αt}Tt=1 to first predict a clean419

image x̂0, then makes a small step in the direction of x̂0 to obtain xt−1. The reverse diffusion process420

for DDIM sampling can be formalized as follows:421

x̂0 =
xt −

√
1− αtϵθ(xt, y, t)√

αt
(8)

422

xt−1 =
√
αt−1x̂0 +

√
1− αt−1ϵθ(xt, y, t). (9)

C.2 Implementation423

We extend our approach to style guidance (SG) by leveraging the framework of Universal Guid-424

ance Bansal et al. [2024]. Specifically, we focus on CLIP-based style guidance, which optimizes the425

similarity between the CLIP embeddings of a target image and the generated image.426

We encode each target image x(i) as u(i) via a CLIP image encoder, then aggregate the embeddings427

u(1), . . . , u(n) into u∗
DP using (5) or (7), depending on whether subsampling is applied. The aggregated428

embedding u∗
DP is then incorporated into the reverse diffusion process as a style guide.429

Let xc denote the target style image, xt the noisy image at step t, and E(·) the CLIP image encoder.430

The forward guidance process is defined as follows:431

ϵ̂θ(xt, y, t) = ϵθ(xt, y, t) + w
√
1− αt∇xtℓcos(E(xt), E(x̂0)), (10)

where w is a guidance weight and ℓcos is the negative cosine similarity loss. For a detailed description432

of Universal Guidance, including the backward guidance process and per-step self-recurrence, we433

refer the reader to the original paper. The reverse diffusion step replaces ϵθ(xt, y, t) with ϵ̂θ(xt, y, t),434

generating an image x0 that aligns with the text conditioning y while incorporating the stylistic435

characteristics of xc.436

To integrate differential privacy, we encode each target image x(i) into u(i) = E(x(i)) and aggregate437

these embeddings into u∗
DP using the centroid method. The aggregated u∗

DP guides the reverse438

diffusion process:439

ϵ̂θ(xt, y, t) = ϵθ(xt, y, t) + w
√
1− αt∇xtℓcos(u

∗
DP, E(x̂0)). (11)

This ensures privacy-preserving style transfer while maintaining high stylistic fidelity.440

C.3 Style Transfer Results441

We apply our SG-based approach to both datasets. While it provides privacy protection by obfuscating442

embedding details, the resulting images captured only generalized stylistic elements and lack the443

detailed fidelity and coherence achieved with the TI-based method. As shown in Figure 9, this444

highlights the superiority of TI in balancing privacy and high-quality image generation.445
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Figure 9: Attempts of using universal guidance to generate drawings of Taylor Swift and icons of
the Eiffel Tower in the styles of @eveismyname and Paris 2024 Pictograms respectively. Here, we
apply no subsampling or DP-noise.

The reduced effectiveness of SG for style transfer may stem from its sensitivity to hyperparameters446

such as the guidance weight w, leading to instability. Although Bansal et al. [2024] proposed447

remedies, namely backward guidance and per-step self-recurrence, these proved insufficient for our448

application. Additionally, the CLIP embeddings may not retain enough stylistic detail after the449

aggregation.450

C.4 Ablation451

To better understand the limited effectiveness of style guidance in our experiments, despite its success452

in Bansal et al. [2024], we applied our approach to a dataset of 143 paintings from Van Gogh’s453

Saint-Paul Asylum, Saint-Rémy collectionInnat (Figure 10). Unlike the @eveismyname and Paris454

2024 datasets, it is highly likely that Stable Diffusion has been trained on these images. Additionally,455

Bansal et al. [2024] demonstrated successful adaptation towards the style of Van Gogh’s Starry Night456

as a single reference image, making this dataset a reasonable interpolation between their successful457

results and our more limited findings.458

Without DP noise or subsampling, we obtained reasonable style transfer results, as shown in Figure 11.459

This suggests that style guidance struggles when applied to previously unseen target styles, and that460

its effectiveness may depend on prior exposure within the pre-training data.461

Figure 10: Sample of paintings by Van Gogh used to generate style guidance embeddings.

Figure 11: Images generated by Stable Diffusion v1.5 with style guidance towards Van Gogh’s
Saint-Paul Asylum, Saint-Rémy collection using prompts “A painting of Taylor Swift (left) / the Eiffel
Tower (center) / a tree (right)”.

D Copyright Protection462

Modern generative models typically produce outputs via randomized sampling. Leveraging this463

inherent randomness, Vyas et al. [2023] introduced Near Access-Freeness (NAF) as a metric to464

quantify the similarity between a model’s output and copyrighted content. The key idea is to compare465

the output distribution of a potentially infringing model to that of a safe model – one trained without466

access to the target content.467

Formally, let safe be a mapping from a data point x ∈ C (where C is the collection of copyrighted468

samples) to a generative model safe(x) ∈ W that is trained without using x. A canonical example is469

the leave-one-out-safe model, trained on the full dataset excluding x. Since safe(x) does not have470
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access to x, the probability that it generates content resembling x is exponentially small. Any such471

resemblance is considered fortuitous. Formally, the NAF criterion is defined as follows:472

Definition 2 (Near Access-Freeness [Vyas et al., 2023]). Let C be a set of copyrighted samples and473

W a set of generative models. Given a mapping safe : C → W and a divergence measure ∆, we say474

a model w is ky-near access-free (or ky-NAF) on prompt y ∈ Y if for every x ∈ C,475

∆(p(·|y) ∥ safex(·|y)) ≤ ky.

If ky = 0, the model is indistinguishable from a safe model, meaning any resemblance to copyrighted476

material is by random chance. More generally, a small ky suggests the model is unlikely to generate477

outputs resembling x with higher probability than a model that has never seen x.478

D.1 Connection to Differential Privacy479

NAF is closely related to concepts in Differential Privacy (DP) [Elkin-Koren et al., 2023]. Depending480

on the divergence measure ∆, NAF resembles different DP variants – for example, ε-DP when481

∆ = ∆max [Dwork et al., 2006], and (1, ε)-Rényi DP when ∆ = ∆KL.482

Translating DP to generative models yields the following definition:483

Definition 3 (Differentially Private Generation (DPG)). Let S and S′ be neighboring datasets.484

Denote by PS(·|y) the distribution over outputs generated by a model trained on, or adapted from, S485

with algorithm A, where randomness includes both training and generation stages. The generation is486

said to satisfy ε-Differentially Private Generation (ε-DPG) if for every y ∈ Y ,487

∆(PS(·|y) ∥PS′(·|y)) ≤ ε.

Here, neighboring datasets differ by a single data point (or privacy unit). If the training process is488

ε-DP, then the outputs naturally satisfy ε-DPG via the data processing inequality. One benefit of489

DPG is the flexibility to add noise during generation rather than training, potentially improving the490

utility-privacy tradeoff.491

However, there are notable distinctions. ε-DP offers protection under arbitrary post-processing and492

multiple outputs, whereas ε-DPG only guarantees privacy for single outputs. Also, under DP, the493

trained model can be released, but under DPG, only the outputs are safe to share.494

Elkin-Koren et al. [2023] highlight further differences: NAF is one-sided—comparing a model to a495

fixed safe reference—whereas DPG is symmetric. This asymmetry in NAF can enable better utility.496

Additionally, NAF allows more flexibility in choosing the safe model, which can be exploited in497

algorithm design.498

Given these conceptual overlaps, both DP-SGD based training and our proposed private adaptation499

method DPAgg-TI satisfies ε-DP, so they naturally satisfy ε-NAF with the leave-one-out safe model.500

We emphasize that this guarantee is meaningful only within the formal framework of NAF. It does not501

imply broader legal immunity or empirical indistinguishability from the original content. However,502

within this framework, satisfying ε-NAF allows us to argue that any close resemblance between503

outputs and private training data is no more likely than would be expected from a model that never504

had access to that data. This theoretical grounding supports the privacy and safety claims of our505

adaptation method.506

Importantly, the goal of DPAgg-TI is to adapt to the style of a private image set—not its precise507

content. This distinction matters: style transfer is widely considered to fall under the doctrine of508

fair use, particularly in artistic and creative contexts. As discussed in Elkin-Koren et al. [2023]509

and further elaborated in legal analysis such as Carlini et al. [2023], generating new content in the510

style of a work, without reproducing its substantive elements, is generally not considered copyright511

infringement. Therefore, the use of DPAgg-TI to learn and reproduce stylistic attributes does not512

contradict the spirit or intent of the NAF framework. Instead, it offers a promising direction for513

responsibly fine-tuning generative models on private or copyrighted sources while respecting both514

privacy and intellectual property boundaries.515
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E Computational Cost Comparisons516

Direct comparisons of computational cost across methods are inherently challenging due to differing517

training paradigms, optimization procedures, and parameter settings. Nonetheless, to provide a518

concrete sense of scale, we report representative computational costs for each method based on519

experiments conducted using a Stable Diffusion v1.5 model on a single NVIDIA A100 GPU. Below520

we summarize both training and inference overheads (the number of steps are optimized for each521

setup):

Method Steps Batch Size Time Memory Usage
TI (no DP) 10,000 (for 150 images) 1 25 min 7 GB

8 2.5 hours 20 GB
TI (DP-SGD) 30,000 (for 150 images) 1 80 min 7 GB

8 7 hours 20 GB
DPAgg-TI 2,000 per image N/A ∼5 min/image 7 GB
SG N/A N/A N/A N/A

Table 4: Training cost comparison across methods. Overhead from DP-SGD is relatively modest due
to the low-dimensional embedding being optimized. N/A for SG means nothing is trained aside from
the base model.

522

Method Steps Batch Size Time Memory Usage
TI (no DP, DP-SGD, DPAgg-TI) 50 1 1–2 sec 4 GB

100 1 1–2 min 58 GB
SG (no DP, DPAgg-SG) 500 1 ∼30 min 17 GB

Table 5: Inference cost comparison across methods.

F Additional Style Transfer and Ablation Results523
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Figure 12: Images generated by Stable Diffusion v1.5 using the prompt “A painting of Taylor Swift in
the style of <@eveismyname>”, with the embedding <@eveismyname> trained using DPAgg-
TI (with different subsample sizes m) and TI with DP-SGD using different values of ε.

Figure 13: Images generated by Stable Diffusion v1.5 using the prompt “An icon of the Eiffel Tower
in the style of <Paris 2024 Pictograms>”, with the embedding <Paris 2024 Pictograms> trained
using DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using different values of ε.
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Figure 14: Images generated by Stable Diffusion v1.5 using the prompt “An icon of a dragon in the
style of <Paris 2024 Pictograms>”, with the embedding <Paris 2024 Pictograms> trained using
DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using different values of ε.
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