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Abstract

Multilingual semantic search is the task of re-001
trieving relevant contents to a query expressed002
in different language combinations. It is less003
explored and more challenging than its mono-004
lingual or bilingual counterparts, due to the005
need to circumvent “language bias”. Overcom-006
ing language bias requires a stronger alignment007
approach to pull the contents to be retrieved008
close to the representation of their correspond-009
ing queries no matter their language combina-010
tions. Traditionally, this is achieved through011
more supervision in the form of multilingual012
parallel resources which is expensive to obtain.013
In this work, we propose a novel alignment014
approach: MAML-Align,1 specifically for low-015
resource multilingual semantic search. Our ap-016
proach leverages meta-distillation learning on017
top of MAML, an optimization-based Model-018
Agnostic Meta-Learner. MAML-Align dis-019
tills knowledge from a Teacher meta-transfer020
model T-MAML, specialized in transferring021
from monolingual to bilingual semantic search,022
to a Student model S-MAML, which trans-023
fers from bilingual to multilingual semantic024
search. To the best of our knowledge, we are025
the first to extend meta-distillation to a multi-026
lingual search application. Our low-resource027
evaluation shows that on top of a strong base-028
line based on sentence transformers, our meta-029
distillation approach significantly outperforms030
naive fine-tuning and vanilla MAML.031

1 Introduction032

The web offers a wealth of information in multi-033

ple languages presenting a challenge for reliable,034

efficient, and accurate information retrieval. Users035

across the globe may express the need to retrieve036

relevant content in a language different from the037

language of the query or in multiple languages038

simultaneously. These observations bolster the039

strong demand for multilingual semantic search.040

1We will release our code in the camera-ready version.
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Figure 1: A high-level diagram of our meta-distillation
MAML-Align framework for multilingual semantic
search and some of its application scenarios. This differs
from standard cross-lingual transfer setups where the
focus is on transferring between individual languages.
Given the nature of the downstream task where multi-
ple language combinations could be used in the query
and content to be retrieved, we study the transfer here
between different variants of the task. As illustrated
above, we focus on the three most to least resourced
variants where the queries and contents are either from
the same language (monolingual), two different lan-
guages (bilingual), or multiple languages (multilingual).
We leverage knowledge distillation to align between
the teacher T-MAML (Finn et al., 2017), specialized
in transferring from monolingual to bilingual, and the
student S-MAML specialized in transferring from bilin-
gual to multilingual semantic search. We show the merit
of gradually transferring between those variants through
few-shot and zero-shot applications involving different
language arrangements in the training and evaluation.

Compared to bilingual semantic search, often por- 041

trayed as cross-lingual information retrieval (Savoy 042

and Braschler, 2019; Grefenstette, 1998), multi- 043

lingual semantic search, which involves retrieving 044

answers in multiple languages is under-explored 045

and more challenging. One of the main challenges 046

of multilingual semantic search is the need to cir- 047

cumvent “language bias”. Language bias is the 048

tendency of a model to prefer one language over 049

another making it prone to retrieve answers from 050

the preferred language more regardless of how rel- 051

evant they truly are. For example, a weakly aligned 052

model which clusters relevant content and queries 053

more by language while poorly encapsulating their 054

meaning could pick answers that match the lan- 055
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guage of the query even if they are incorrect. Cir-056

cumventing language bias requires stronger align-057

ment to factor out language so that the most seman-058

tically relevant pairs across languages stand out as059

closest in the embedding space (Roy et al., 2020).060

The majority of approaches used to improve061

the alignment between languages require paral-062

lel resources across languages (Cao et al., 2020;063

Zhao et al., 2021) which are expensive to obtain064

especially for multilingual tasks and biased to-065

wards high-resource language pairs/combinations.066

Pre-trained unsupervised multilingual encoders067

such as M-BERT (Devlin et al., 2019) and XLM-068

R (Conneau et al., 2020) have been employed069

as off-the-shelf zero-shot tools for cross-lingual070

and multilingual downstream applications. How-071

ever, these models still fail to significantly out-072

perform traditional static cross-lingual embed-073

dings (Glavaš et al., 2019) on multilingual semantic074

search (Litschko et al., 2021). Simply fine-tuning075

M-BERT and XLM-R on English data is not suffi-076

cient to produce an embedding space that exhibits077

strong alignment (Roy et al., 2020). In fact, fine-078

tuning such models to largely available monolin-079

gual data makes them prone to "monolingual over-080

fitting" as they are shown to transfer reasonably081

well to other monolingual semantic search settings082

but not necessarily to bilingual and multilingual083

settings (Litschko et al., 2022).084

Knowledge distillation and contrastive-085

distillation learning approaches are used to086

produce better-aligned multilingual sentence087

representations with reduced need for parallel088

corpora (Reimers and Gurevych, 2020; Tan089

et al., 2023). However, they still rely on some090

supervision in the form of monolingual corpora091

and back-translation. Cross-lingual meta-transfer092

learning (Nooralahzadeh et al., 2020; M’hamdi093

et al., 2021) leveraging MAML (Finn et al.,094

2017) has been shown to reduce overfitting to095

high-resource monolingual setups and improve096

the generalization to new languages with little to097

no training. However, meta-learning can also be098

prone to overfitting when multiple source domains099

or task variants are trained on as part of one100

single model which undermines its transferring101

capabilities (Zhong et al., 2022).102

To obtain a stronger alignment while prevent-103

ing monolingual overfitting and with decreased104

reliance on parallel resources, we propose a low-105

resource adaptation of meta-distillation learning to106

multilingual semantic search. We pursue a meta-107

learning direction based on MAML to allow us to 108

effectively leverage high-resourced monolingual 109

and bilingual variants of semantic search to ef- 110

fectively transfer to multilingual semantic search. 111

To improve the meta-transferring capabilities of 112

MAML, we explore the combination of meta- 113

learning and knowledge distillation (Zhou et al., 114

2022; Liu et al., 2022; Zhang et al., 2020) and 115

propose a new algorithm for gradually adapting 116

them to the task of multilingual semantic search 117

MAML-Align (Figure 1). We perform MAML- 118

Align in two stages 1) from monolingual to bilin- 119

gual and 2) from bilingual to multilingual to create 120

a more gradual feedback loop, which makes it eas- 121

ier to generalize to the multilingual case. We con- 122

duct experiments on two different semantic search 123

benchmarks: LAReQA (Roy et al., 2020), a span- 124

based question-answering task reformulated as a 125

retrieval task, and STSBMulti (Cer et al., 2017), a se- 126

mantic similarity task. Our experiments show that 127

our multilingual meta-distillation approach beats 128

vanilla MAML and achieves statistically signifi- 129

cant gains of 0.6% and 10.6% on LAReQA and 130

1.2% and 2.5% on STSBMulti over an off-the-shelf 131

zero-shot baseline based on sentence transform- 132

ers (Reimers and Gurevych, 2019) and naive fine- 133

tuning, respectively. We also show consistent gains 134

for both benchmarks on different languages even 135

those kept for zero-shot evaluation. Our approach 136

is model-agnostic and is extensible to other chal- 137

lenging multilingual and cross-lingual downstream 138

tasks requiring strong alignment. 139

Our main contributions are: (1) We are the first 140

to propose a meta-learning approach for multilin- 141

gual semantic search (§3) and to curate meta-tasks 142

for that effect (§4.2). (2) We are the first to propose 143

a meta-distillation approach to transfer semantic 144

search ability between monolingual, bilingual, and 145

multilingual data (§3.3). (3) We systematically 146

compare between several few-shot transfer learn- 147

ing methods and show the gains of our multilingual 148

meta-distillation approach (§5.1). (4) We also con- 149

duct ablation studies involving different language 150

arrangements and sampling approaches (§5.2). 151

2 Multilingual Semantic Search 152

In this section, we define sentence-level semantic 153

search and its different categories (§2.1), language 154

variants (§2.2), and supervision degrees (§2.3). 155

2.1 Task Formulation 156

Our base task is sentence-level semantic search. 157

Given a sentence query q from a pool of queries Q, 158
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the goal is to find relevant content r from a pool of159

candidate contents R. The queries are sentences160

and retrieved contents are either sentences or small161

passages of a few sentences.162

In terms of the format of the queries and con-163

tents, there are two main categories of semantic164

search: (1) Symmetric Semantic Search. Each165

query q and its corresponding relevant content r166

have similar length and format. (2) Asymmetric167

Semantic Search. q and r are not of the same for-168

mat. For example, q and r can be a question and a169

passage answering that, respectively.170

2.2 Task Language Variants171

In the context of languages, we distinguish between172

three variants of semantic search at evaluation time173

(also shown in Figure 1): (1) Monolingual Seman-174

tic Search (mono). The pools of queries and can-175

didate contents Q and R are from the same known176

and fixed language ℓQ = ℓR ∈ L . (2) Bilingual177

Semantic Search (bi). The pools of queries and178

candidate contents are sampled from two different179

languages {ℓQ, ℓR} ∈ L 2, such that ℓQ ̸= ℓR .180

(3) Multilingual Semantic Search (multi). This181

is the problem of retrieving relevant contents from182

a pool of candidates from a subset of multiple lan-183

guages LR ⊆ L to a query expressed in a subset184

of multiple languages LQ ⊆ L . Unlike other185

variants (monolingual and bilingual), multilingual186

semantic search doesn’t restrict which languages187

can be used in the queries or the candidate contents.188

189 2.3 Supervision Degrees190

In the absence of enough training data for the task,191

we distinguish between three degrees of supervi-192

sion of semantic search:193

• Zero-Shot Learning. This resembles ad-hoc se-194

mantic search in that it doesn’t involve any fine-195

tuning specific to the task of semantic search.196

Rather, off-the-shelf pre-trained language mod-197

els are used directly to find relevant content to198

a specific query. This still uses some supervi-199

sion in the form of parallel sentences used to200

pre-train those off-the-shelf models. In the con-201

text of multilingual semantic search, we include202

in the zero-shot learning case any evaluation on203

languages not seen during fine-tuning.204

• Few-Shot Learning. Few-shot learning is used205

in the form of a small fine-tuning dataset. In206

the context of multilingual semantic search, few-207

shot learning on a particular language implies208

that that language is seen during fine-tuning or209

meta-learning either to represent the query or the 210

contents to be retrieved. 211

3 Multilingual Meta-Distillation Learning 212

In this section, we start by giving some background 213

on meta-learning (§3.1) and the original MAML 214

algorithm (§3.2), then we present our optimization- 215

based meta-distillation learning algorithm MAML- 216

Align (§3.3) and how it differs from MAML. 217

3.1 Meta-Learning Background 218

Meta-learning is a techniques used for fast adap- 219

tation to new domains, tasks, and languages. This 220

is done by repeatedly simulating the learning pro- 221

cess on the target tasks using many high-resource 222

ones (Gu et al., 2018). The main distinction be- 223

tween meta-learning and conventional machine 224

learning is that while the latter focuses on one data 225

instance at a time, the former optimizes over a 226

distribution of many sub-tasks, referred to as ’meta- 227

tasks’, sampled to simulate a low-resource scenario. 228

Each meta-task is defined as a tuple Ti = (Si, Qi), 229

where Si and Qi denote support and query sets, 230

respectively. Each Si and Qi are labeled samples 231

from the downstream task data. In bi-level opti- 232

mization approaches (which we focus on in this 233

paper), the meta-learner trains on the support set 234

in the inner loop to produce a learner that will 235

make predictions on the query set, and then use 236

that to update the meta-parameters in the outer loop. 237

Therefore, the inner loop is specialized in learning 238

task-specific optimizations over the support sets; 239

the outer loop, on the other hand, learns the gen- 240

eralization over the query sets in a leader-follower 241

manner (Hospedales et al., 2020). 242

3.2 Original MAML Algorithm 243

Our first variant is a direct adaptation of MAML 244

to multilingual semantic search. We use the proce- 245

dure outlined in Algorithm 1. We start by sampling 246

a batch of meta-tasks from a meta-dataset distri- 247

bution DX� X′ , which simulates the transfer from 248

X to X′. X and X′ are different task language 249

variants of semantic search (§2.2) from which the 250

support and query sets are sampled, respectively. 251

We start by initializing our meta-learner parame- 252

ters θ with the pre-trained base model parameters 253

θB . For each batch of meta tasks, we perform an 254

inner loop (Algorithm 2): we go over each meta- 255

task Tj = (Sj , Qj) in T where we update θj using 256

SX
j . After n steps of this update, we pre-compute 257

the loss of θj on QX′
j and save it for later. At 258

the end of all meta-tasks in the batch, we perform 259

3



Algorithm 1 MAML: Transfer Learning from X to
X′ (X→ X′)
Require: Meta-task set distributionDX � X′ simulating trans-

fer from X to X′ task language variants, pre-trained
downstream base model B with parameters θB , and meta-
learner M with parameters (θ, α, β, n).

1: Initialize θ ← θB
2: while not done do
3: Sample a batch of meta-tasks T = {T1, . . . , Tb} ∼
DX� X′

4:
∑
LSX

T ,
∑
LQX′

T = INNER_LOOP(T , θ, α, n)

5: Outer Loop: Update θ ← θ − β∇θ

∑
LQX′

T
6: end while

Algorithm 2 INNER_LOOP
1: function INNER_LOOP(T , θ, α, n)
2: for each Tj = (SX

j , QX′
j ) in T do

3: Initialize θj ← θ
4: for t = 1 . . . n do
5: Evaluate ∂Bθj/∂θj = ∇θjL

SX
j

Tj
(Bθj )

6: Update θj = θj − α∂Bθj/∂θj
7: end for
8: Evaluate query loss LQX′

j

Tj
(Bθj ) and save it for

outer loop
9: end for

10:
∑
LSX

T ←
∑b

j=1 L
SX
j

Tj
(Bθj )

11:
∑
LQX′

T ←
∑b

j=1 L
QX′

j

Tj
(Bθj )

12: return
∑
LSX

T ,
∑
LQX′

T
13: end function

one outer loop by summing over all pre-computed260

gradients and updating θ. Following X-METR-261

ADA (M’hamdi et al., 2021), we perform this al-262

gorithm in two stages: meta-train and meta-valid263

where meta-valid is a replication of meta-train with264

the main difference being the task language variant265

arrangements used to sample the meta-tasks.266

3.3 MAML-Align Algorithm267

The idea behind this extension is to use knowl-268

edge distillation to distill T-MAML to S-MAML269

where T-MAML and S-MAML are replicates of270

MAML and T-MAML is more high-resource than271

S-MAML. Inspired by M’hamdi et al. (2021) work272

which shows that multiple phases of bi-level op-273

timization encourages faster adaptation to low-274

resource languages, we also adopt a gradual ap-275

proach to meta-transfer across different task lan-276

guage variants with the help with knowledge distil-277

lation. Given meta-tasks from DX�Y and DY�Z, the278

goal is to use that shared task language variant of279

transfer Y to align different modes of transfer of se-280

mantic search. We start by executing the two inner281

loops of the two MAMLs (with more inner steps for282

T-MAML than S-MAML), where the support sets283

Algorithm 3 MAML-Align: Knowledge distilla-
tion to align two different MAMLs (X→Y→Z)
Require: Meta-task set distributions DX�Y and DY�Z shar-

ing the same Y , pre-trained downstream base model B
with parameters θB , and meta-learners MX � Y with pa-
rameters (θ, α, β, n) and MY � Z with parameters (θ′, α,
β, n′), where n′ < n.

1: Initialize θ ← θB
2: Initialize θ′ ← θB
3: while not done do
4: Sample batch of tasks T ∼ DX�Y

5: Sample batch of tasks T ′ ∼ DY�Z

6:
∑
LSX

T ,
∑
LQY

T = INNER_LOOP(TX�Y, θ, α, n)

7:
∑
LSY

T ′ ,
∑
LQZ

T ′ = INNER_LOOP (TY�Z, θ′, α, n′)
8: Ltask = (

∑
LQY

T + LQZ

T ′ )/2

9: Lkd = (
∑
LQY

T −
∑
LSY

T ′ )
2

10: Update θ ← θ − β∇θ(Ltask + λLkd)
11: end while

are sampled from X and Y , respectively. Then, we 284

compute, in the optimization process of the outer 285

loop, the weighted combination of Ltask, the aver- 286

age over the task-specific losses on the query sets 287

sampled from Y and Z, and Lkd, the mean-squared 288

error on Y . Figure 2 illustrates a conceptual com- 289

parison between MAML and MAML-Align. 290

4 Experimental Setup 291

In this section, we describe the downstream 292

datasets and models used (§4.1), their formulation 293

as meta-tasks (§4.2), and the different baselines 294

and model variants used in the evaluation (§4.3). 295

4.1 Downstream Benchmarks 296

We evaluate our proposed approaches over the fol- 297

lowing multilingual and bilingual sentence-level 298

semantic search datasets for which we describe the 299

downstream models used:2 300
• Asymmetric Semantic Search. We use 301

LAReQA (Roy et al., 2020), focusing on 302

XQuAD-R, which is a retrieval-based task re- 303

formulated from the span-based question answer- 304

ing XQuAD (Artetxe et al., 2020). This dataset 305

covers 11 languages. In this work, we only use 306

seven languages. Arabic, German, Greek, and 307

Hindi are used for few-shot learning. Russian, 308

Thai, and Turkish are kept for zero-shot evalu- 309

ation. There are less than 1200 questions and 310

1300 candidates for each language.3 We design a 311

Transformer-based triplet-encoder model (modi- 312

fied from the original dual encoder in Roy et al. 313

2More details on the base model architectures can be found
in Appendix B. More experimental details on the datasets
statistics and hyperparameters used in Appendix C.

3We download the data from https://github.com/
google-research-datasets/lareqa.
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Figure 2: A conceptual comparison between MAML-Align and the original meta-learning baseline MAML. A
single iteration of MAML involves one inner loop optimizing over a batch of support sets from a source language
variant of the task followed up by an outer loop optimizing over the batch query sets curated from the target task
variant. In MAML-Align, on the other hand, we curate two support sets and one query set, where the second support
set is used as both a query and support set in T-MAML and S-MAML, respectively. We perform two inner loops.
Then, in the outer loop, we optimize jointly over the distillation and task-specific losses of the query sets.

(2020)) with three towers encoding 1) the ques-314

tion, 2) its answer and its context, and 3) the315

negative candidates and their contexts. Then, we316

use triplet loss (Schroff et al., 2015) to minimize317

the distance between towers 1 and 2 on one hand318

and maximize the distance between towers 1 and319

3 on the other hand.320

• Symmetric Semantic Search. As there is no321

multilingual parallel benchmark for symmetric322

search, we focus, in our few-shot learning ex-323

periments, on a small-scale bilingual benchmark.324

We use STSBMulti from SemEval-2017 Task 1 (Cer325

et al., 2017).4 This is a semantic similarity bench-326

mark, which consists of a collection of sentence327

pairs drawn mostly from news headlines. It328

covers English-English, Arabic-Arabic, Spanish-329

Spanish, Arabic-English, Spanish-English, and330

Turkish-English. There are only 250 sentence331

pairs for each language pair. Each sentence pair332

is scored between 1 and 5 to denote the extent333

of their similarity. We use a Transformer-based334

dual-encoder, which encodes sentences 1 and 2335

in each sentence pair using a shared encoder. We336

then compute the cosine similarity score between337

the encodings of sentences 1 and 2.338

4.2 Meta-Datasets339

Following our formulation of downstream semantic340

search benchmarks, we independently construct the341

support set S in each meta-task by sampling a batch342

of k question/answer/negative candidates triplets343

and sentence pairs in LAReQA and STSBMulti, re-344

spectively. Then, we construct q triplets or sentence345

4Downloaded from https://alt.qcri.org/
semeval2017/task1/index.php?id=data-and-tools.

pairs in the query set Q by picking for each triplet 346

or sentence pair in S either a similar or random 347

triplet or sentence pair.5 348

4.3 Baselines & Model Variants 349

Since we are the first, to the best of our knowledge, 350

to explore meta-learning for bilingual or multilin- 351

gual information retrieval or semantic search, we 352

only compare with respect to our internal variants 353

and design some external non-meta-learning base- 354

lines. We are also the first to explore fine-tuning 355

and meta-learning on extremely small-scale data 356

using cross-validation splits on both benchmarks. 357

This makes it hard to compare with existing ap- 358

proaches, therefore we rely more on our own inter- 359

nal baselines. 360

Baselines. We design the following baselines: 361

• Zero-Shot: This is our initial zero-shot approach 362

based on an off-the-shelf pre-trained language 363

model. Based on our preliminary performance 364

evaluation of different existing and state-of-the- 365

art off-the-shelf language models in Table 5, we 366

use the best model on our 5-fold cross-validation 367

test splits, which is sentence-BERT (S-BERT) as 368

our zero-shot model.6 369

• Fine-tune: On top of our off-the-shelf zero-shot 370

baseline S-BERT, we fine-tune jointly and di- 371

rectly on the support and query sets of each meta- 372

task in both meta-train and meta-valid. This few- 373

shot baseline makes for a fair comparison with 374

the meta-learning approaches. 375

5Details of transfer modes and their support and query set
language arrangements are in Appendix C.2.

6paraphrase-multilingual-mpnet-base-v2 in https://
huggingface.co/sentence-transformers.
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Internal Variants. We design the following376

meta-learning variants:377

• MAML: On top of S-BERT, we apply MAML378

(Algorithm 1). At each episode, we conduct a379

meta-train followed by a meta-valid stage.380

• MAML-Align: On top of S-BERT, we apply381

MAML-Align (following Algorithm 3).382

External Evaluation. To assess the impact of383

using machine translation models with or without384

meta-learning and the impact of machine trans-385

lation from higher-resourced data, we explore386

Translate-Train (T-Train), where we translate En-387

glish data in SQUADEN
7 and STSBEN

8 to the evalu-388

ation languages. We then either use translated data389

in all languages or in each language separately as a390

data augmentation technique.391

5 Results & Analysis392

This section presents the results obtained using dif-393

ferent meta-learning model variants compared to394

the baselines. Given the extremely small-scaled395

dataset we are working with (Tables 2 and 3),396

all experiments are evaluated using 5-fold cross-397

validation and the mean is reported. Following398

XTREME-R (Ruder et al., 2021) and SemEval-399

2017 (Cer et al., 2017), scores are reported using400

mean average precision at 20 (mAP@20) and Pear-401

son correlation coefficient percentage (Pearson’s r402

× 100) for LAReQA and STSBMulti, respectively.9403

5.1 Multilingual Performance Evaluation404

Table 1 summarizes the multilingual performances405

across different baselines and model variants for406

both semantic search benchmarks. On average, we407

notice that MAML-Align achieves better results408

than MAML or S-BERT zero-shot base model and409

significantly better than Fine-tune. It is worth not-410

ing that we report the results for MAML using411

trans mode, which is trained over a combination412

of mono→bi and bi→multi in the meta-training413

and meta-validation stages, respectively. This sug-414

gests that MAML-Align helps more in bridging415

the gap between those transfer modes. We per-416

form a paired two-sample for means t-Test and417

7We use the translate.pseudo-test provided for
XQuAD dataset by XTREME (Hu et al., 2020)
https://console.cloud.google.com/storage/
browser/xtreme_translations.

8We use the translated dataset from the origi-
nal English STSB https://github.com/PhilipMay/
stsb-multi-mt/.

9 More fine-grained results for all languages and for both
benchmarks can be found in Tables 7 and 8 in Appendix D.

Model LAReQA STSBMulti

Zero-Shot 57.0 81.4
Few-Shot Learning

Fine-tune 47.0 79.9
MAML(*) 57.2 81.3
MAML-Align(*) 57.6 82.4

Machine-Translation
T-Train+Fine-tune 46.1 73.7
T-Train+MAML(*) 57.0 80.9

Table 1: This is a comparison of different zero-shot
baselines, few-shot learning, and machine translation-
enhanced models. Other zero-shot external models (Ta-
ble 5) show sub-optimal results so we don’t include
them. For LAReQA and STSBMulti, we report mAP@20
and Pearson’s r × 100, respectively. All results are aver-
aged over 5-fold cross-validation and multiple language
choices. Models in (*) are our main contribution. We
report the average over many model variants translating
from English to one target language at a time for T-Train
model variants. Best and second-best results for each
benchmark are in bold and underlined, respectively.

find that the gains using MAML-Align are statis- 418

tically significant with p-values of 0.00213 and 419

0.00248 compared to S-BERT and MAML respec- 420

tively on LAReQA, rejecting the null hypothesis 421

with 95% confidence.10 We also observe that fine- 422

tuning baselines are consistently weak compared to 423

different meta-learning model variants, especially 424

for LAReQA. We conjecture that fine-tuning is 425

overfitting to the small amounts of training data, 426

unlike meta-learning approaches which are more 427

robust against that. However, for STSBMulti, the 428

gap between fine-tuning and meta-learning while 429

still existing and in favor of meta-learning is a bit 430

reduced. We hypothesize that even meta-learning 431

models are suffering from meta-overfitting to some 432

degree in this case. 433

We notice that T-Train+MAML on top of 434

machine-translated data doesn’t necessarily boost 435

the performance on LAReQA or STSBMulti on aver- 436

age. This suggest that not all languages used in the 437

machine-translated data provide an equal boost to 438

the performance due to noisy translations for cer- 439

tain languages. While introducing higher quality 440

machine translations could be beneficial in gen- 441

eral, there is a compromise to be made in terms of 442

translation API calls overheads and human labor to 443

evaluate the quality of the translations. The purpose 444

10We obtain p-values results 0.0134 and 7.04e− 10 when
comparing MAML-Align to S-BERT and MAML using paired
t-test on top of bootstrap sampling on the results of each query
before taking the mean. The gains using MAML-Align are
uniformly consistent for different cross-validation splits.
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Figure 3: mAP@20 and Pearson’s r × 100 5-fold cross-validated multilingual performance evaluation evaluated on
LAReQA and STSBMulti in the first and second subplots, respectively. There are consistent gains in favor of MAML
and MAML-Align compared to their fine-tuning and Zero-Shot counterparts for all languages and language-pairs.
Languages in (*) are used for zero-shot evaluation, whereas other languages are included either during Meta-train
and Meta-valid stages or fine-tuned on. Best results for each language or language pair are highlighted in Bold.

of this work is to evaluate in few-shot learning sce-445

narios rather than using data augmentation for that446

effect. We conjecture that based on our observation447

in this few-shot learning setup, meta-learning on448

top of higher-quality machine-translated data could449

boost the performance even more.450

Figure 3 highlights a fine-grained comparison be-451

tween different model categories on all languages452

and language pairs for each benchmark. We notice453

that the gain in favor of meta-learning approaches is454

consistent across different languages and language455

pairs. This confirms our findings that while MAML456

improves a bit over Zero-Shot reducing the impact457

of overfitting that vanilla Fine-tune suffers from,458

MAML-Align boosts the gains of meta-learning on459

all languages and language pairs except for Arabic-460

English and Spanish-English. The gain applies to461

zero-shot languages such as Russian and Turkish.462

5.2 Ablation Studies463
Due to the lack of parallelism in STSBMulti mak-464

ing a multilingual evaluation on it not possible,465

we focus hereafter on LAReQA in the remaining466

analysis and ablation studies. Figure 4 shows the467

results across different modes of transfer for Fine-468

tune and MAML. Among all transfer modes, trans,469

mono→bi, and mono→mono have the best gains,470

whereas bi→multi and mixt are the weakest forms471

of transfer. Trans, which uses mono→bi during472

meta-train and bi→multi during meta-valid, is the473

best transfer mode for MAML while being one of474

the weakest for Fine-tune. This not only shows that 475

curating different transfer modes for different meta- 476

learning processes is beneficial but it also suggests 477

that meta-learning is more effective at multi-stage 478

adaptation than fine-tuning on them jointly. Mixt is 479

weaker than trans and this implies that jointly op- 480

timizing different forms of transfers of meta-tasks 481

in one stage makes it harder for MAML to learn to 482

generalize. MAML-Align is shown to be better for 483

combining different optimization objectives. 484
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30
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Figure 4: mAP@20 multilingual performance aver-
aged over 5-fold cross-validation splits on LAReQA
comparing between different meta-transfer modes for
Fine-tune and MAML models. The gap is large between
Fine-tune and MAML across all meta-transfer modes
and is even larger in favor of MAML when trans mode
(uses mono→bi and bi→multi in the meta-training and
meta-validation, respectively) is used.

Figure 5 shows a multilingual performance com- 485

parison between different sampling modes in meta- 486

tasks constructions. In each meta-task, we either 487

sample the query set that is the most similar to its 488

7



corresponding support set (Similar) or randomly489

(Random). We hypothesize that the sampling ap-490

proach plays a role in stabilizing the convergence491

and generalization of meta-learning. While we492

were expecting that sampling for each support set493

a query set that is the most similar to it would help494

meta-learning converge faster and thus generalize495

better, it generalized worse on the multilingual per-496

formance in this case. On the other hand, random497

sampling generalizes better to out-of-sample test498

distributions leading to lower biases between lan-499

guages in the multilingual evaluation mode.500

57.2
57.6

56.1
55.7

54

55

56

57

58

MAML MAML-Align

m
A
P@
20

Random Similar

Figure 5: mAP@20 multilingual 5-fold cross-validated
performance on LAReQA between different query set
sampling modes in meta-tasks for MAML and MAML-
Align. We notice that random query sampling has better
generalization for both models.

Figure 6 shows the results for different sampling501

modes of negative examples in the triplet loss. For502

each support and query set in each meta-task, we503

either sample random, hard, or semi-hard triplets to504

test the added value of triplet sampling in few-shot505

learning. We follow the same approach outlined506

in Schroff et al. (2015) to sample hard and semi-507

hard triplets.11 While we expect training with more508

hard triplets to help converge the triplet loss in509

MAML, the multilingual performance using this510

type of sampling falls short of random sampling.511

This is due to the fact that more sophisticated ways512

of triplet loss sampling usually require a more care-513

ful hyper-parameter tuning to pick the right amount514

of triplets. For few-shot learning applications, this515

usually results in a significant reduction in the num-516

ber of training examples, which could further hurt517

the generalization performance. In future work, we518

plan to investigate hybrid sampling approaches to519

monitor at which point in meta-learning the train-520

ing should focus more on hard or easy triplets. This521

could be done by proposing a regime for making522

the sampling of meta-tasks dynamic and flexible to523

also combat meta-over-fitting.524

11More details about that can also be found in Appendix B.
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Figure 6: mAP@20 5-fold cross-validated mean multi-
lingual performance over different triplet negative sam-
pling modes on LAReQA tested on different languages
using MAML-Align. Random sampling seems best on
average for few-shot learning, whereas hard sampling is
more stable across cross-validation splits.

6 Related Work 525

Most approaches to bilingual semantic search rely 526

on machine translation to reduce the problem to 527

monolingual search (Lu et al., 2008; Nguyen et al., 528

2008; Jones et al., 2008). However, such systems 529

are inefficient due to error propagation and over- 530

heads from API calls. Moreover, the number of 531

language combinations in the query and content 532

to be retrieved can get prohibitively large (Savoy 533

and Braschler, 2019). Multilingual models M- 534

BERT and XLM are used for semantic search vari- 535

ants (Yang et al., 2020; Hoogeveen et al., 2015; 536

Lei et al., 2016) but are suboptimal necessitat- 537

ing more parallel resources. Cross-lingual meta- 538

transfer learning applications include Gu et al. 539

(2018); Hsu et al. (2020); Winata et al. (2020); 540

Xiao et al. (2021). Meta-distillation learning has 541

been leveraged either to help the teacher trans- 542

fer better to the student (Zhou et al., 2022; Liu 543

et al., 2022) or make meta-learning algorithms 544

more portable (Zhang et al., 2020). Xu et al. (2021) 545

follows a gradual multi-stage process which is dif- 546

ferent from our work in that it uses fine-tuning 547

for domain adaptation to interpolate between in- 548

domain and out-domain data. In contrast, we apply 549

meta-distillation to multilingual semantic search 550

and show that it outperforms gradual fine-tuning.12 551

7 Conclusion 552

In this work, we adapt multilingual meta-transfer 553

learning combining MAML and knowledge dis- 554

tillation to multilingual semantic search. Our 555

experiments show that our multilingual meta- 556

knowledge distillation approach outperforms both 557

vanilla MAML and fine-tuning approaches on top 558

of a strong sentence transformers model. We evalu- 559

ate comprehensively on two types of multilingual 560

semantic search and show improvement over the 561

baselines even on unseen languages. 562

12More detailed related work can be found in Appendix A.
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Limitations563

In this paper, we have focused on improving564

multilingual sentence transformers using meta-565

distillation learning for semantic search. Since566

our approach tests for strong alignment and is567

based at its core on a model-agnostic algorithm568

(MAML), we conjecture that it should be extensi-569

ble to any multilingual task requiring strong align-570

ment. The community is welcome to further inves-571

tigate its performance to other benchmarks such572

as XTREME (Hu et al., 2020) and XTREME-573

R (Ruder et al., 2021).574

All insights and claims from this study are tied575

to the experimental setup that we describe exten-576

sively in the main paper and appendix. We follow a577

consistent configuration of the hyperparameters for578

each of the two downstream tasks which we deem579

to be a fair comparison across all setups and model580

variants. We don’t think that exploring all different581

combinations of languages in the construction of582

the query and the content to be retrieved is feasible.583

So, we leave performing extensive hyperparam-584

eters search for different model variants, modes585

of transfer, and language combinations for future586

exploration.587

We also have memory constraints when it comes588

to training meta-learning algorithms to deal with589

ranking and retrieval of sentences from multiple590

languages at the same time for one query. Our mem-591

ory constraints make it challenging to explore more592

sophisticated state-of-the-art Sentence Transform-593

ers such as sentence-T5 or GPT Sentence Embed-594

dings SGPT (Ni et al., 2022; Muennighoff, 2022).595

Applying MAML as an upstream model on top of596

T5-based downstream model makes it even more597

computationally infeasible. Our main goal is not598

to reach state-of-the-art performance for different599

benchmarks but to showcase the relative advantage600

of meta-distillation in a few-shot learning setup.601

Our upstream approach is model-agnostic and can602

be continuously adapted to novel embedding ap-603

proaches as they evolve.604
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Ivan Vulić. 2019. How to (properly) evaluate cross-680
lingual word embeddings: On strong baselines, com-681
parative analyses, and some misconceptions. In Pro-682
ceedings of the 57th Annual Meeting of the Associa-683
tion for Computational Linguistics, pages 710–721,684
Florence, Italy. Association for Computational Lin-685
guistics.686

Gregory Grefenstette. 1998. Cross language informa-687
tion retrieval. In Proceedings of the Third Confer-688
ence of the Association for Machine Translation in689
the Americas: Tutorial Descriptions, Langhorne, PA,690
USA. Springer.691

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li,692
and Kyunghyun Cho. 2018. Meta-learning for low-693
resource neural machine translation. In Proceed-694
ings of the 2018 Conference on Empirical Methods695
in Natural Language Processing, pages 3622–3631,696
Brussels, Belgium. Association for Computational697
Linguistics.698

Doris Hoogeveen, Karin M. Verspoor, and Timothy699
Baldwin. 2015. Cqadupstack: A benchmark data700
set for community question-answering research. In701
Proceedings of the 20th Australasian Document Com-702
puting Symposium, ADCS 2015, Parramatta, NSW,703
Australia, December 8-9, 2015, pages 3:1–3:8. ACM.704

Timothy M. Hospedales, Antreas Antoniou, Paul Mi-705
caelli, and Amos J. Storkey. 2020. Meta-learning in706
neural networks: A survey. CoRR, abs/2004.05439.707

Jui-Yang Hsu, Yuan-Jui Chen, and Hung-yi Lee. 2020.708
Meta learning for end-to-end low-resource speech709
recognition. In 2020 IEEE International Conference710
on Acoustics, Speech and Signal Processing, ICASSP711
2020, Barcelona, Spain, May 4-8, 2020, pages 7844–712
7848. IEEE.713

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-714
ham Neubig, Orhan Firat, and Melvin Johnson.715
2020. XTREME: A massively multilingual multi-716
task benchmark for evaluating cross-lingual gener-717
alisation. In Proceedings of the 37th International718
Conference on Machine Learning, ICML 2020, 13-18719
July 2020, Virtual Event, volume 119 of Proceedings720
of Machine Learning Research, pages 4411–4421.721
PMLR.722

Gareth Jones, Fabio Fantino, Eamonn Newman, and723
Ying Zhang. 2008. Domain-specific query translation724
for multilingual information access using machine725
translation augmented with dictionaries mined from726

Wikipedia. In Proceedings of the 2nd workshop on 727
Cross Lingual Information Access (CLIA) Addressing 728
the Information Need of Multilingual Societies. 729

Doron Laadan, Roman Vainshtein, Yarden Curiel, Gi- 730
lad Katz, and Lior Rokach. 2019. Rankml: a meta 731
learning-based approach for pre-ranking machine 732
learning pipelines. ArXiv preprint, abs/1911.00108. 733

Anna Langedijk, Verna Dankers, Phillip Lippe, Sander 734
Bos, Bryan Cardenas Guevara, Helen Yannakoudakis, 735
and Ekaterina Shutova. 2022. Meta-learning for fast 736
cross-lingual adaptation in dependency parsing. In 737
Proceedings of the 60th Annual Meeting of the As- 738
sociation for Computational Linguistics (Volume 1: 739
Long Papers), pages 8503–8520, Dublin, Ireland. As- 740
sociation for Computational Linguistics. 741

Hung-yi Lee, Shang-Wen Li, and Thang Vu. 2022. Meta 742
learning for natural language processing: A survey. 743
In Proceedings of the 2022 Conference of the North 744
American Chapter of the Association for Computa- 745
tional Linguistics: Human Language Technologies, 746
pages 666–684, Seattle, United States. Association 747
for Computational Linguistics. 748

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi 749
Jaakkola, Kateryna Tymoshenko, Alessandro Mos- 750
chitti, and Lluís Màrquez. 2016. Semi-supervised 751
question retrieval with gated convolutions. In Pro- 752
ceedings of the 2016 Conference of the North Amer- 753
ican Chapter of the Association for Computational 754
Linguistics: Human Language Technologies, pages 755
1279–1289, San Diego, California. Association for 756
Computational Linguistics. 757

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian 758
Riedel, and Holger Schwenk. 2020. MLQA: Evalu- 759
ating cross-lingual extractive question answering. In 760
Proceedings of the 58th Annual Meeting of the Asso- 761
ciation for Computational Linguistics, pages 7315– 762
7330, Online. Association for Computational Lin- 763
guistics. 764

Chong-En Lin and Kuan-Yu Chen. 2020. A preliminary 765
study on using meta-learning technique for informa- 766
tion retrieval. In Proceedings of the 32nd Conference 767
on Computational Linguistics and Speech Process- 768
ing (ROCLING 2020), pages 59–71, Taipei, Taiwan. 769
The Association for Computational Linguistics and 770
Chinese Language Processing (ACLCLP). 771

Robert Litschko, Ivan Vulic, Simone Paolo Ponzetto, 772
and Goran Glavas. 2021. Evaluating multilingual 773
text encoders for unsupervised cross-lingual retrieval. 774
In Advances in Information Retrieval - 43rd Euro- 775
pean Conference on IR Research, ECIR 2021, Virtual 776
Event, March 28 - April 1, 2021, Proceedings, Part I, 777
volume 12656 of Lecture Notes in Computer Science, 778
pages 342–358. Springer. 779

Robert Litschko, Ivan Vulic, Simone Paolo Ponzetto, 780
and Goran Glavas. 2022. On cross-lingual re- 781
trieval with multilingual text encoders. Inf. Retr. J., 782
25(2):149–183. 783

10

http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://doi.org/10.18653/v1/P19-1070
https://aclanthology.org/1998.amta-tutorials.5
https://aclanthology.org/1998.amta-tutorials.5
https://aclanthology.org/1998.amta-tutorials.5
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.1145/2838931.2838934
https://doi.org/10.1145/2838931.2838934
https://doi.org/10.1145/2838931.2838934
http://arxiv.org/abs/2004.05439
http://arxiv.org/abs/2004.05439
http://arxiv.org/abs/2004.05439
https://doi.org/10.1109/ICASSP40776.2020.9053112
https://doi.org/10.1109/ICASSP40776.2020.9053112
https://doi.org/10.1109/ICASSP40776.2020.9053112
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
https://aclanthology.org/I08-6005
https://aclanthology.org/I08-6005
https://aclanthology.org/I08-6005
https://aclanthology.org/I08-6005
https://aclanthology.org/I08-6005
https://aclanthology.org/I08-6005
https://aclanthology.org/I08-6005
https://arxiv.org/abs/1911.00108
https://arxiv.org/abs/1911.00108
https://arxiv.org/abs/1911.00108
https://arxiv.org/abs/1911.00108
https://arxiv.org/abs/1911.00108
https://doi.org/10.18653/v1/2022.acl-long.582
https://doi.org/10.18653/v1/2022.acl-long.582
https://doi.org/10.18653/v1/2022.acl-long.582
https://doi.org/10.18653/v1/2022.naacl-main.49
https://doi.org/10.18653/v1/2022.naacl-main.49
https://doi.org/10.18653/v1/2022.naacl-main.49
https://doi.org/10.18653/v1/N16-1153
https://doi.org/10.18653/v1/N16-1153
https://doi.org/10.18653/v1/N16-1153
https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/2020.acl-main.653
https://aclanthology.org/2020.rocling-1.8
https://aclanthology.org/2020.rocling-1.8
https://aclanthology.org/2020.rocling-1.8
https://aclanthology.org/2020.rocling-1.8
https://aclanthology.org/2020.rocling-1.8
https://doi.org/10.1007/978-3-030-72113-8_23
https://doi.org/10.1007/978-3-030-72113-8_23
https://doi.org/10.1007/978-3-030-72113-8_23
https://doi.org/10.1007/s10791-022-09406-x
https://doi.org/10.1007/s10791-022-09406-x
https://doi.org/10.1007/s10791-022-09406-x


Jihao Liu, Boxiao Liu, Hongsheng Li, and Yu Liu.784
2022. Meta knowledge distillation. ArXiv preprint,785
abs/2202.07940.786

Ilya Loshchilov and Frank Hutter. 2019. Decoupled787
weight decay regularization. In 7th International788
Conference on Learning Representations, ICLR 2019,789
New Orleans, LA, USA, May 6-9, 2019. OpenRe-790
view.net.791

Chengye Lu, Yue Xu, and Shlomo Geva. 2008. Web-792
based query translation for English-Chinese CLIR.793
In International Journal of Computational Linguis-794
tics & Chinese Language Processing, Volume 13,795
Number 1, March 2008: Special Issue on Cross-796
Lingual Information Retrieval and Question Answer-797
ing, pages 61–90.798

Meryem M’hamdi, Doo Soon Kim, Franck Dernon-799
court, Trung Bui, Xiang Ren, and Jonathan May.800
2021. X-METRA-ADA: Cross-lingual meta-transfer801
learning adaptation to natural language understand-802
ing and question answering. In Proceedings of the803
2021 Conference of the North American Chapter of804
the Association for Computational Linguistics: Hu-805
man Language Technologies, pages 3617–3632, On-806
line. Association for Computational Linguistics.807

Niklas Muennighoff. 2022. SGPT: GPT sentence808
embeddings for semantic search. ArXiv preprint,809
abs/2202.08904.810

Pandu Nayak. 2019. Understanding searches better than811
ever before.812

Dong Nguyen, Arnold Overwijk, Claudia Hauff, Dolf813
Trieschnigg, Djoerd Hiemstra, and Franciska de Jong.814
2008. Wikitranslate: Query translation for cross-815
lingual information retrieval using only wikipedia. In816
Evaluating Systems for Multilingual and Multimodal817
Information Access, 9th Workshop of the Cross-818
Language Evaluation Forum, CLEF 2008, Aarhus,819
Denmark, September 17-19, 2008, Revised Selected820
Papers, volume 5706 of Lecture Notes in Computer821
Science, pages 58–65. Springer.822

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant,823
Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang. 2022.824
Sentence-t5: Scalable sentence encoders from pre-825
trained text-to-text models. In Findings of the As-826
sociation for Computational Linguistics: ACL 2022,827
pages 1864–1874, Dublin, Ireland. Association for828
Computational Linguistics.829

Farhad Nooralahzadeh, Giannis Bekoulis, Johannes830
Bjerva, and Isabelle Augenstein. 2020. Zero-shot831
cross-lingual transfer with meta learning. In Proceed-832
ings of the 2020 Conference on Empirical Methods833
in Natural Language Processing (EMNLP), pages834
4547–4562, Online. Association for Computational835
Linguistics.836

Nils Reimers and Iryna Gurevych. 2019. Sentence-837
BERT: Sentence embeddings using Siamese BERT-838
networks. In Proceedings of the 2019 Conference on839
Empirical Methods in Natural Language Processing840

and the 9th International Joint Conference on Natu- 841
ral Language Processing (EMNLP-IJCNLP), pages 842
3982–3992, Hong Kong, China. Association for Com- 843
putational Linguistics. 844

Nils Reimers and Iryna Gurevych. 2020. Making 845
monolingual sentence embeddings multilingual us- 846
ing knowledge distillation. In Proceedings of the 847
2020 Conference on Empirical Methods in Natural 848
Language Processing (EMNLP), pages 4512–4525, 849
Online. Association for Computational Linguistics. 850

Stephen E. Robertson and Hugo Zaragoza. 2009. The 851
probabilistic relevance framework: BM25 and be- 852
yond. Found. Trends Inf. Retr., 3(4):333–389. 853

Uma Roy, Noah Constant, Rami Al-Rfou, Aditya Barua, 854
Aaron Phillips, and Yinfei Yang. 2020. LAReQA: 855
Language-agnostic answer retrieval from a multilin- 856
gual pool. In Proceedings of the 2020 Conference on 857
Empirical Methods in Natural Language Processing 858
(EMNLP), pages 5919–5930, Online. Association for 859
Computational Linguistics. 860

Sebastian Ruder, Noah Constant, Jan Botha, Aditya Sid- 861
dhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie 862
Hu, Dan Garrette, Graham Neubig, and Melvin John- 863
son. 2021. XTREME-R: Towards more challenging 864
and nuanced multilingual evaluation. In Proceedings 865
of the 2021 Conference on Empirical Methods in 866
Natural Language Processing, pages 10215–10245, 867
Online and Punta Cana, Dominican Republic. Asso- 868
ciation for Computational Linguistics. 869

Jacques Savoy and Martin Braschler. 2019. Lessons 870
Learnt from Experiments on the Ad Hoc Multilingual 871
Test Collections at CLEF, pages 177–200. Springer 872
International Publishing, Cham. 873

Florian Schroff, Dmitry Kalenichenko, and James 874
Philbin. 2015. Facenet: A unified embedding for 875
face recognition and clustering. In IEEE Conference 876
on Computer Vision and Pattern Recognition, CVPR 877
2015, Boston, MA, USA, June 7-12, 2015, pages 815– 878
823. IEEE Computer Society. 879

Sebastian Schuster, Sonal Gupta, Rushin Shah, and 880
Mike Lewis. 2019. Cross-lingual transfer learning 881
for multilingual task oriented dialog. In Proceedings 882
of the 2019 Conference of the North American Chap- 883
ter of the Association for Computational Linguistics: 884
Human Language Technologies, Volume 1 (Long and 885
Short Papers), pages 3795–3805, Minneapolis, Min- 886
nesota. Association for Computational Linguistics. 887

Weiting Tan, Kevin Heffernan, Holger Schwenk, and 888
Philipp Koehn. 2023. Multilingual representation 889
distillation with contrastive learning. In Proceed- 890
ings of the 17th Conference of the European Chap- 891
ter of the Association for Computational Linguistics, 892
pages 1477–1490, Dubrovnik, Croatia. Association 893
for Computational Linguistics. 894

Ishan Tarunesh, Sushil Khyalia, Vishwajeet Kumar, 895
Ganesh Ramakrishnan, and Preethi Jyothi. 2021. 896

11

https://arxiv.org/abs/2202.07940
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/O08-3004
https://aclanthology.org/O08-3004
https://aclanthology.org/O08-3004
https://doi.org/10.18653/v1/2021.naacl-main.283
https://doi.org/10.18653/v1/2021.naacl-main.283
https://doi.org/10.18653/v1/2021.naacl-main.283
https://doi.org/10.18653/v1/2021.naacl-main.283
https://doi.org/10.18653/v1/2021.naacl-main.283
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
https://doi.org/10.1007/978-3-642-04447-2_6
https://doi.org/10.1007/978-3-642-04447-2_6
https://doi.org/10.1007/978-3-642-04447-2_6
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.1007/978-3-030-22948-1_7
https://doi.org/10.1007/978-3-030-22948-1_7
https://doi.org/10.1007/978-3-030-22948-1_7
https://doi.org/10.1007/978-3-030-22948-1_7
https://doi.org/10.1007/978-3-030-22948-1_7
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://aclanthology.org/2023.eacl-main.108
https://aclanthology.org/2023.eacl-main.108
https://aclanthology.org/2023.eacl-main.108


Meta-learning for effective multi-task and multilin-897
gual modelling. In Proceedings of the 16th Con-898
ference of the European Chapter of the Association899
for Computational Linguistics: Main Volume, pages900
3600–3612, Online. Association for Computational901
Linguistics.902

Niels van der Heijden, Helen Yannakoudakis, Pushkar903
Mishra, and Ekaterina Shutova. 2021. Multilingual904
and cross-lingual document classification: A meta-905
learning approach. In Proceedings of the 16th Con-906
ference of the European Chapter of the Association907
for Computational Linguistics: Main Volume, pages908
1966–1976, Online. Association for Computational909
Linguistics.910

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob911
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz912
Kaiser, and Illia Polosukhin. 2017. Attention is all913
you need. In Advances in Neural Information Pro-914
cessing Systems 30: Annual Conference on Neural915
Information Processing Systems 2017, December 4-9,916
2017, Long Beach, CA, USA, pages 5998–6008.917

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang918
Lin, Zihan Liu, Peng Xu, and Pascale Fung. 2020.919
Meta-transfer learning for code-switched speech920
recognition. In Proceedings of the 58th Annual Meet-921
ing of the Association for Computational Linguistics,922
pages 3770–3776, Online. Association for Computa-923
tional Linguistics.924

Yubei Xiao, Ke Gong, Pan Zhou, Guolin Zheng, Xiao-925
dan Liang, and Liang Lin. 2021. Adversarial meta926
sampling for multilingual low-resource speech recog-927
nition. In Thirty-Fifth AAAI Conference on Artificial928
Intelligence, AAAI 2021, Thirty-Third Conference929
on Innovative Applications of Artificial Intelligence,930
IAAI 2021, The Eleventh Symposium on Educational931
Advances in Artificial Intelligence, EAAI 2021, Vir-932
tual Event, February 2-9, 2021, pages 14112–14120.933
AAAI Press.934

Haoran Xu, Seth Ebner, Mahsa Yarmohammadi,935
Aaron Steven White, Benjamin Van Durme, and936
Kenton Murray. 2021. Gradual fine-tuning for low-937
resource domain adaptation. In Proceedings of the938
Second Workshop on Domain Adaptation for NLP,939
pages 214–221, Kyiv, Ukraine. Association for Com-940
putational Linguistics.941

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo,942
Jax Law, Noah Constant, Gustavo Hernandez Abrego,943
Steve Yuan, Chris Tar, Yun-hsuan Sung, Brian Strope,944
and Ray Kurzweil. 2020. Multilingual universal sen-945
tence encoder for semantic retrieval. In Proceedings946
of the 58th Annual Meeting of the Association for947
Computational Linguistics: System Demonstrations,948
pages 87–94, Online. Association for Computational949
Linguistics.950

Min Zhang, Donglin Wang, and Sibo Gai. 2020. Knowl-951
edge distillation for model-agnostic meta-learning.952
In ECAI 2020 - 24th European Conference on Artifi-953
cial Intelligence, 29 August-8 September 2020, San-954
tiago de Compostela, Spain, August 29 - September955

8, 2020 - Including 10th Conference on Prestigious 956
Applications of Artificial Intelligence (PAIS 2020), 957
volume 325 of Frontiers in Artificial Intelligence and 958
Applications, pages 1355–1362. IOS Press. 959

Wei Zhao, Steffen Eger, Johannes Bjerva, and Isabelle 960
Augenstein. 2021. Inducing language-agnostic mul- 961
tilingual representations. In Proceedings of *SEM 962
2021: The Tenth Joint Conference on Lexical and 963
Computational Semantics, *SEM 2021, Online, Au- 964
gust 5-6, 2021, pages 229–240. Association for Com- 965
putational Linguistics. 966

Tao Zhong, Zhixiang Chi, Li Gu, Yang Wang, Yuanhao 967
Yu, and Jin Tang. 2022. Meta-dmoe: Adapting to 968
domain shift by meta-distillation from mixture-of- 969
experts. In NeurIPS. 970

Wangchunshu Zhou, Canwen Xu, and Julian McAuley. 971
2022. BERT learns to teach: Knowledge distillation 972
with meta learning. In Proceedings of the 60th An- 973
nual Meeting of the Association for Computational 974
Linguistics (Volume 1: Long Papers), pages 7037– 975
7049, Dublin, Ireland. Association for Computational 976
Linguistics. 977

Jeffrey Zhu, Mingqin Li, Jason Li, and Cassandra 978
Odoula. 2021. Bing delivers more contextualized 979
search using quantized transformer inference on 980
nvidia gpus in azure. 981

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno 982
Pouliquen. 2016. The United Nations parallel cor- 983
pus v1.0. In Proceedings of the Tenth International 984
Conference on Language Resources and Evaluation 985
(LREC’16), pages 3530–3534, Portorož, Slovenia. 986
European Language Resources Association (ELRA). 987

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp. 988
2018. Overview of the third BUCC shared task: Spot- 989
ting parallel sentences in comparable corpora. In 990
11th Workshop on Building and Using Comparable 991
Corpora - Special Topic: Comparable Corpora for 992
Asian Languages, BUCC@LREC 2018, Miyazaki, 993
Japan, May 8, 2018. European Language Resources 994
Association. 995

A More Related Work 996

Given the scarcity of research on multilingual se- 997

mantic search using meta-learning and knowledge 998

distillation, we analyze independently previous 999

work in the area of semantic search in general, mul- 1000

tilingual semantic search, bilingual meta-transfer 1001

learning, and meta-distillation learning before delv- 1002

ing into some applications of meta-transfer learn- 1003

ing for retrieval ranking and how our work applies 1004

meta-transfer and meta-distillation for multilingual 1005
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Textual Semantic Search Textual semantic1007

search is the task of retrieving semantically rel-1008

evant content for a given query. Unlike tradi-1009

tional keyword-matching information retrieval, se-1010

mantic search seeks to improve search accuracy1011

by understanding the searcher’s intent and disam-1012

biguating the contextual meaning of the terms in1013

the query (Muennighoff, 2022). Semantic search1014

has broad applications in search engines such as1015

Google (Nayak, 2019), Bing (Zhu et al., 2021), etc.1016

They rely on Transformers (Vaswani et al., 2017)1017

as their dominant architecture going beyond non-1018

semantic models such as BM25 (Robertson and1019

Zaragoza, 2009).1020

Multilingual Semantic Search Previous work1021

which extends semantic search to different lan-1022

guages is often focused on cross-lingual informa-1023

tion retrieval. Progress in cross-lingual information1024

retrieval (CLIR) or semantic search has seen multi-1025

ple waves (Grefenstette, 1998). Traditionally, when1026

we think of CLIR we automatically think of ma-1027

chine translation (MT) as if they are two faces to1028

the same coin. The only difference is that transla-1029

tion tools are used to render documents readable in1030

the case of MT whereas CLIR focuses on rendering1031

them searchable if at the very core translation tech-1032

nology is what is used for CLIR and MT rather than1033

other paradigms such as transfer learning. Most1034

approaches that fall into this category translate1035

queries into the language of the documents and1036

then perform monolingual search (Lu et al., 2008;1037

Nguyen et al., 2008; Jones et al., 2008). While this1038

is an efficient option, that might not be the most1039

effective approach as queries can be so short and1040

ungrammatical making them hard to translate ac-1041

curately. So, in this case, translating all documents1042

or sentences to the target languages can be used1043

leading to better accuracy but less efficiency. This1044

translation form is even more inefficient in the case1045

of multilingual semantic search where the num-1046

ber of possible language combinations that can be1047

used in the source and target languages can grow1048

exponentially. Those pipeline approaches suffer1049

from error propagation of the machine translation1050

component into the downstream semantic search,1051

especially for low-resource languages.1052

More prominent approaches include transfer1053

learning where both query and documents or sen-1054

tences are encoded into a shared space. The first1055

class of approaches in this category use pre-trained1056

language models where both the query and the1057

documents are encoded into a shared space. The 1058

cross-lingual ability of models like M-BERT and 1059

XLM has been analyzed for different retrieval- 1060

based downstream applications including question- 1061

answer retrieval (Yang et al., 2020), bitext min- 1062

ing (Ziemski et al., 2016; Zweigenbaum et al., 1063

2018), and semantic textual similarity (Hoogeveen 1064

et al., 2015; Lei et al., 2016). Litschko et al. (2022) 1065

systematic empirical study focused on the suitabil- 1066

ity of SOTA multilingual encoders for cross-lingual 1067

document and sentence retrieval tasks across a num- 1068

ber of diverse language pairs. They benchmark 1069

the performance in unsupervised ad-hoc (setup 1070

with no relevance judgments for IR-specific fine- 1071

tuning) and supervised sentence and document- 1072

level CLIR. In other words, they profile the suit- 1073

ability of SOTA pre-trained multilingual encoders 1074

for different CLIR tasks and diverse language pairs 1075

across unsupervised, supervised and transfer setups. 1076

They also propose localized relevance matching for 1077

document-level CLIR (independently score a query 1078

against document). For unsupervised document- 1079

level CLIR, they show that pre-trained multilingual 1080

encoders on average fail to significantly outper- 1081

form earlier models based on CLWEs. They also 1082

show that the performance of those multilingual 1083

encoders crucially depends on how one encodes se- 1084

mantic information with the models (treating them 1085

as sentence/document encoders directly versus av- 1086

eraging over constituent words and/or subwords). 1087

Multilingual sentence encoders fine-tuned on la- 1088

beled data from sentence pair tasks like natural lan- 1089

guage inference or semantic text similarity as well 1090

as using parallel sentences on the other hand are 1091

shown to substantially outperform general-purpose 1092

models in sentence-level CLIR. The second class 1093

focuses on training training models with informa- 1094

tion retrieval objectives but it is not clear how they 1095

generalize to new languages. In our work, we in- 1096

vestigate ways to further improve the transfer of 1097

these off-purpose sentences on top of semantic spe- 1098

cialization in a data-efficient manner. 1099

Multilingual Meta-Transfer Learning Meta- 1100

learning has gained the attention of the NLP com- 1101

munity recently with applications in cross-domain, 1102

cross-problem, and cross-lingual transfer learn- 1103

ing (Lee et al., 2022). Meta-learning has been 1104

leveraged for semantic search-related tasks but only 1105

monolingually. Lin and Chen (2020) is the first 1106

work of its kind to device a meta-learning algo- 1107

rithm for information retrieval tasks. They lever- 1108
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age model-agnostic meta-learner (MAML) to learn1109

an initialization of model parameters for the re-1110

ranker of documents by reformulating the problem1111

as a N-way K-Shot setup where query is a cate-1112

gory and the document corresponding to it as a1113

positive example and four documents not related1114

to the query. They show that their approach im-1115

proves over baselines involving vanilla DSSM and1116

Vector Space Models. They also show that fine-1117

tuning in addition to meta-learning lead to more1118

gains. However, they use meta-learning just at the1119

level of the ranker and not for other components1120

like searcher in which they only use traditional ap-1121

proaches like Match 25 to calculate the relationship1122

between query documents and retrieval documents.1123

It is not clear whether meta-learning can be used1124

more in an end-to-end fashion or to improve other1125

components. Other meta-learning work which fo-1126

cus on the re-ranking component include Laadan1127

et al. (2019); Carvalho et al. (2008) but they all1128

follow a pipelined approach.1129

Since there is no prior work leveraging meta-1130

learning for cross-lingual or multilingual semantic1131

search, to the best of our knowledge, we describe1132

in this section. The first work of its kind using1133

meta-learning for cross-lingual transfer learning1134

is Gu et al. (2018), which is applied to neural ma-1135

chine translation. They extend MAML(Finn et al.,1136

2017) to transfer from multilingual high-resource1137

language tasks to to low-resource languages. They1138

show the competitive advantages of cross-lingual1139

meta-transfer learning compared to other multilin-1140

gual baselines. Other applications include speech1141

recognition (Hsu et al., 2020; Winata et al., 2020;1142

Chen et al., 2020; Xiao et al., 2021), Natural Lan-1143

guage Inference(XNLI) (Conneau et al., 2018) and1144

Multilingual Question Answering(MLQA) (Lewis1145

et al., 2020) using X-MAML (Nooralahzadeh et al.,1146

2020), task-oriented dialog (Schuster et al., 2019)1147

and TyDiQA (Clark et al., 2020) using X-METRA-1148

ADA (M’hamdi et al., 2021), dependency pars-1149

ing (Langedijk et al., 2022).1150

Most recent work adapting meta-learning to ap-1151

plications involving different languages focus on1152

cross-lingual meta-learning. Multilingual meta-1153

learning differs from cross-lingual meta-transfer1154

learning in its support for multiple languages1155

jointly. M’hamdi et al., for example, propose X-1156

METRA-ADA which performs few-shot learning1157

on one single target language at a time and also en-1158

able zero-shot learning on target languages not seen1159

during meta-training or meta-adaptation. Their ap-1160

proach shows gains compared to naive fine-tuning 1161

in the few-shot more than the zero-shot learning 1162

scenario. Tarunesh et al. (2021) propose a meta- 1163

learning framework for both multi-task and multi- 1164

lingual transfer leveraging heuristic sampling ap- 1165

proaches. They show that a joint approach to multi- 1166

task and multilingual learning using meta-learning 1167

enables effective sharing of parameters across mul- 1168

tiple tasks and multiple languages thus benefits 1169

deeper semantic analysis tasks such as QA, PAWS, 1170

NLI, etc. van der Heijden et al. (2021) propose 1171

a meta-learning framework and show its effective- 1172

ness in both the cross-lingual and multilingual train- 1173

ing adaptation settings of document classification. 1174

However, their multilingual evaluation is focused 1175

on the scenario where the same target languages 1176

during meta-testing can be also used as auxiliary 1177

languages during meta-training. This motivates us 1178

to investigate in this paper more in the direction 1179

of multilingual meta-transfer learning, where we 1180

test the generalizability of our meta-learning model 1181

when it is learned by taking into consideration mul- 1182

tiple languages jointly for semantic search. 1183

Meta-Distillation Learning Previous works at 1184

the intersection of meta-learning and knowledge 1185

distillation either use meta-learning as a more ef- 1186

fective alternative to the more traditional knowl- 1187

edge distillation methods. Recently, more work 1188

has started adopting a meta-learning approach to 1189

knowledge distillation by consolidating a feedback 1190

loop between the teacher and the student networks 1191

where the teacher can learn to better transfer knowl- 1192

edge to the student network (Zhou et al., 2022) or 1193

by meta-learning the distillation hyperparameter 1194

tuning (Liu et al., 2022). Knowledge distillation 1195

has also been leveraged to enhance the portability 1196

of MAML networks (Zhang et al., 2020). It has 1197

been shown that a portable MAML with a smaller 1198

capacity can further boost few-shot learning better 1199

than vanilla MAML. To the best of our knowledge, 1200

we are the first to explore knowledge distillation 1201

to bridge the gap between different cross-lingual 1202

meta-transfer learning models and to enhance the 1203

alignment between them. 1204

B More Details on Base Models 1205

For asymmetric semantic search, we use a 1206

Transformer-based triplet-encoder model. In the 1207

original paper on the asymmetric benchmark we 1208

evaluate on (Roy et al., 2020), a dual-encoder 1209

model is trained using contrastive loss in the form 1210

14



of an in-batch sampled softmax loss. This format1211

reuses for each question answers from other ques-1212

tions in the same batch (batched randomly) as nega-1213

tive examples. Instead, we use triplet loss (Schroff1214

et al., 2015), which was also shown to outper-1215

form contrastive loss in general. Triplet loss is1216

shown to surpass contrastive loss in general.13 Its1217

strength derives not just from the nature of its func-1218

tion but also from its sampling procedure. This1219

sampling procedure which merely requires posi-1220

tive instances to be closer to negative instances1221

doesn’t require gathering as many positive ex-1222

amples as contrastive loss requires. This makes1223

triplet loss more practical in our few-shot learning1224

multilingual/cross-lingual scenario, as it provides1225

more freedom in terms of constructing negative1226

candidates to tweak different sampling techniques1227

from different languages. We thus define a triplet1228

encoder model (shown in Figure 7) with three tow-1229

ers encoding the question, its answer combined1230

with its context, and the negative candidates and1231

their contexts. While those towers are encoded1232

separately, they still share the same Transformer1233

encoder model which is initialized with pre-trained1234

Sentence Transformers. On top of that, two dot1235

products d(q, p) and d(q, n) are computed. d(q, p)1236

is the dot product between the question q and its1237

answer p, whereas d(q, n) is between q and its1238

non-answer candidate. Triplet loss is computed1239

as : L = max (d(q, p)− d(q, n) +margin, 0)1240

where margin is a tun-able hyperparameter to1241

eventually make each triplet an easy one by push-1242

ing the distance d(a, p) closer to 0 and d(a, n) to1243

d(a, p) +margin.1244

Triplets (q, p, n) can be sampled with different1245

levels of difficulty, as follows:1246

• Easy triplets: d(q, p) +margin < d(q, n).1247

• Hard triplets: d(q, n) < d(q, p).1248

• Semi-hard triplets: d(q, p) < d(q, n) <1249

d(q, p) +margin.1250

For symmetric search, we use a Transformer-1251

based dual-encoder model (shown in Figure 8),1252

which encodes sentence 1 and sentence 2 in each1253

sentence pair separately using the same shared en-1254

coder. Then, the cosine similarity score is com-1255

puted for each sentence pair and the mean squared1256

error (squared L2 norm) is computed between that1257

and the golden score. This is not a retrieval-based1258

task, but a semantic similarity task.1259

13As posited in https://shorturl.at/ktvx9.
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Figure 7: Architecture of Transformer-based triplet
encoder for asymmetric semantic search.
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Figure 8: Architecture of Transformer-based dual-
encoder for symmetric semantic search.

C More Experimental Setup Details 1260

C.1 Downstream Datasets 1261

Tables 2 and 3 show a summary of the statistics 1262

of LAReQA and STSBMulti per language and split, 1263

respectively. XQuAD-R in LAReQA has been dis- 1264

tributed under the CC BY-SA 4.0 license, whereas 1265

STSBMulti has been released under the Creative 1266

Commons Attribution-ShareAlike 4.0 International 1267

License. The translated datasets from SQUADEN 1268

and STSBEN are shared under the same license 1269

as the original datasets. SQUADEN is shared un- 1270

der XTREME benchmark Apache License Version 1271

2.0. STSBEN scores are under Creative Commons 1272

Attribution-ShareAlike 3.0 Unported (CC BY-SA 1273

3.0) and sentence pairs are shared under Com- 1274

mons Attribution - Share Alike 4.0 International 1275

License). 1276

C.2 Upstream Meta-Tasks 1277

We detail in Table 4 the arrangements of lan- 1278

guages for the different meta-tasks used in the 1279

meta-training Dmeta-train, meta-validation Dmeta-valid, 1280

and meta-testing Dmeta-test datasets. To make the 1281

comparison fair and consistent across different 1282
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Language ISO Train Dev Test
#Q #C #Q #C #Q #C

Arabic AR 696 783 220 255 274 184
German DE 696 812 220 256 274 208
Greek EL 696 788 220 254 274 192
Hindi HI 696 808 220 252 274 184
Russian RU 696 774 220 262 274 183
Thai TH 696 528 220 178 274 146
Turkish TR 696 732 220 248 274 187

Table 2: Statistics of LAReQA in each 5-fold cross-
validation split. #Q denotes the number of question
whereas #C denotes the number of candidates.

Language Pair ISO # Sentence Pairs
Train Dev Test

English-English EN-EN 150 50 50
Spanish-Spanish ES-ES 150 50 50
Spanish-English ES-EN 150 50 50
Arabic-Arabic AR-AR 150 50 50
Arabic-English AR-EN 150 50 50
Turkish-English* TR-EN 150 50 50

Table 3: Statistics of the STSBMulti from SEM-Eval2007
in each 5-fold cross-validation split. * means that for
Turkish-English, there are only 250 ground truth sim-
ilarity scores, while there are 500 sentence pairs. We
assume that the ground truth scores are only for the first
250 sentence pairs. In addition to that, we use 5749
train, 1500 dev, and 1379 test splits from the STSB orig-
inal English benchmark.

transfer modes, we use the same combination of1283

languages and tweak them to fit the transfer mode.1284

By picking a high number of meta-tasks during1285

meta-training, meta-validation, and meta-testing,1286

we make sure that all transfer modes are exposed1287

to the same number of questions and candidates.1288

We use Train and Dev splits are used to sample1289

Dmeta-train and Dmeta-valid, respectively1290

C.3 Hyperparameters1291

Based on our prior investigation of different1292

sentence-transformer models in Table 5, we no-1293

tice that paraphrase-multilingual-mpnet-base-v214,1294

which maps sentences and paragraphs to a 768-1295

dimensional dense vector space, performs the best1296

for LAReQA, so we use it in our S-BERT experi-1297

ments on that dataset. The good initial performance1298

of this pre-trained model is not surprising since it1299

was trained on parallel data and is recommended1300

for use in tasks like clustering or semantic search.1301

For pre-processing LAReQA and SQUADEN, we1302

truncate/pad all questions to length 96 and all an-1303

swer or negative candidates concatenated with their1304

14https://huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2.

contexts to 256. For pre-processing STSBMulti and 1305

STSBEN, we pad or truncate each sentence to fit the 1306

maximum length of 100. 1307

For both benchmarks, for Fine-tune baselines, 1308

following XTREME-R, we use AdamW optimizer 1309

(Loshchilov and Hutter, 2019). We use a learning 1310

rate of lr = 5e− 5, ϵ = 1e− 8 and a weight decay 1311

of 0, with no decay on the bias and LayerNorm 1312

weights. We use a batch size of 8 triplets or sen- 1313

tence pairs. For LAReQA, we sample 3 negative 1314

examples per anchor and then project those to 3 1315

triplets with one negative example and use a margin 1316

of 1. In STSBMulti, we use just sets of sentence pairs 1317

composed of one source and one target sentence 1318

each, where we don’t have negative examples so 1319

we don’t need to flatten the dimensions of the nega- 1320

tive examples. We sample 7,000, 2,000, and 1,000 1321

meta-tasks in the meta-training, meta-validation, 1322

and meta-testing phases respectively. We use meta- 1323

batches of size 4. In each meta-task, we randomly 1324

sample k = 8 and q = 4 support and query triplets 1325

respectively. We use the same meta-tasks and sam- 1326

pling regime in Fine-tune as well. 1327

For MAML and MAML-Align in both bench- 1328

marks, we use learn2learn (Arnold et al., 2020) 1329

implementation to handle gradient updates, espe- 1330

cially in the inner loop. For the inner loop, we use 1331

learn2learn pre-built optimizer with a learning rate 1332

α = 1e − 3. The inner loop is repeated n = 5 1333

times for meta-training and meta-validation and 1334

meta-testing. For the outer loop, we use the same 1335

optimizer with the same learning rate β = 1e− 5 1336

that we used in the Fine-tune model. At the end of 1337

each epoch, we perform meta-validation similarly 1338

to meta-training with the same hyperparameters de- 1339

scribed before. We use the same hyperparameters 1340

for MAML-Align for both T-MAML and S-MAML 1341

except that we run the gradient updates in the inner 1342

loop in S-MAML just once, whereas for T-MAML 1343

we perform n = 5 inner loop gradient updates. 1344

We jointly optimize the outer loop losses weight- 1345

ing the knowledge distillation by λ = 0.5. We 1346

don’t use meta-testing but keep it for evaluation 1347

purposes. For a consistent comparison, we don’t 1348

use meta-testing for our main evaluation as we use 1349

standard testing cross-validation splits, but we will 1350

include those meta-testing datasets to encourage 1351

future work on few-shot learning. All experiments 1352

are run for one fixed initialization seed using a 5- 1353

fold cross-validation. We observe a variance with 1354

respect to different seeds smaller than the variance 1355

with respect to 5-fold cross-validation, so we re- 1356
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Transfer Mode Phase Support→Query/Support1→Support2→Query
LAReQA STSBMulti

mono→mono All
EL_EL→AR_AR
HI_HI→DE_DE

(EN_EN,AR_AR,ES_ES)→(EN_EN,AR_AR,ES_ES)

mono→bi All
EL_EL→EL_AR
HI_HI→HI_DE

[EN_EN,AR_AR,ES_ES]→[AR_EN,ES_EN,TR_EN]

mono→multi All
EL_EL→EL_{AR,EL}
HI_HI→HI_{DE,HI}

Not Applicable

bi→multi All
EL_AR→EL_{AR,EL}
HI_DE→HI_{DE,HI}

Not Applicable

mixt All

mono→mono
mono→bi
mono→multi
bi→multi

Not Applicable

trans
Meta-train mono→bi

Not Applicable
Meta-valid bi→multi

mono→bi→multi All
EL_EL→EL_AR→EL_{AR,EL,HI}
HI_HI→HI_DE→HI_{AR,DE,HI}

EN_EN→AR_EN→EN_{AR,EN,ES}
AR_AR→AR_ES→AR_{AR,EN,ES}
ES_ES→ES_AR→ES_{AR,EN,ES}

Table 4: Arrangements of languages for the different modes of transfer and meta-learning stages for two standard
benchmark datasets LAReQA and STSBMulti. X→Y denotes transfer from an X model (for example a monolingual
model) used to sample the support set to a Y model (for example bilingual model) used to sample the query set. We
denote a support or query set in LAReQA by x_y where x and y are the ISO language codes of the question and the
candidate answers and x_y in STSBMulti where x and y are the ISO language codes of sentence 1 and 2 respectively.
We use parenthesis to mean that the same language pairs cannot be used in both support and query sets, brackets to
denote non-exclusivity (or in other words the language pairs used as a support can also be used as a query), and
curled braces to mean the query set may be sampled from more than one language. We do not experiment with
mono→multi, bi→multi, mixt, and trans for STSBMulti, since it is not a multilingual parallel benchmark, but we still
experiment with mono→bi→multi using machine-translated data in that case.

Sentence Transformers Model mAP@20
LASER 13.5 ± 0.7
LaBSE 48.7 ± 2.6
M-BERT+SQUADEN 37.9 ± 3.4
distilbert-multilingual-nli-stsb-quora-ranking 44.1 ± 0.9
use-cmlm-multilingual 36.8 ± 2.6
distiluse-base-multilingual-cased-v2 46.9 ± 2.5
paraphrase-multilingual-MiniLM-L12-v2 49.6 ± 2.7
multi-qa-distilbert-dot-v1 6.4 ± 0.3
paraphrase-multilingual-mpnet-base-v2 57.0 ± 2.9

Table 5: Comparison of mAP@20 multilingual 5-fold
cross-validation evaluation of different S-BERT models
compared to M-BERT model. Best results are high-
lighted in bold.

port the latter to have a better upper bound of the1357

variance.1358

All experiments are conducted on the same com-1359

puting infrastructure using one NVIDIA A40 GPU1360

with 46068 MiB memory and one TESLA P100-1361

PCIE with 16384 MiB memory of CUDA version1362

11.6 each. We use Pytorch version 1.11.1, Python1363

version 3.8.13, learn2learn version 0.1.7, Hugging1364

Face transformers version 4.21.3 and Sentence-1365

Transformers 2.2.2. For paraphrase-multilingual-1366

mpnet-base-v2 used in the experiments in the main 1367

paper, there are 278,043,648 parameters. For 1368

asymmetric and symmetric semantic search bench- 1369

marks, there are three and two encoding towers, 1370

respectively. Therefore, there are 834,130,944 and 1371

556,087,296 parameters used for asymmetric and 1372

symmetric semantic search benchmarks, respec- 1373

tively. 1374

For all experiments and model variants, we train 1375

for up to 20 epochs maximum and we implement 1376

early stopping, where we run the experiment for as 1377

long as there is an improvement on the Dev set per- 1378

formance. After 50 mini meta-task batches of no 1379

improvement on the Dev set, the experiment stops 1380

running. We use the multilingual performance on 1381

the Dev set averaged over all languages of the query 1382

set as the early stopping evaluation criteria. Based 1383

on this early stopping policy, we report in Table 6 1384

the typical runtime for each upstream model variant 1385

and baseline. 1386
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Model Runtime
Fine-tune 2 h 18 min
MAML 3 h 19 min
MAML-Align 19 h 29 min

Table 6: Runtime per model variant excluding evalua-
tion.

D More Results1387

Tables 7 and 8 show full fine-grained results for1388

all languages and language pairs for both semantic1389

search benchmarks.1390
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Model Train Language(s)
Configuration

Testing Languages
Few-Shot Languages Zero-Shot Languages

Arabic German Greek Hindi Russian Thai Turkish
Mean

AR DE EL HI RU TH TR

Zero-Shot Baselines
LASER - 13.2 15.1 14.6 9.4 14.9 13.0 14.1 13.5
LaBSE - 44.7 47.9 53.0 53.4 53.1 49.8 48.1 50.0
S-BERT - 56.3 54.6 58.2 57.2 58.7 60.2 54.1 57.0

+Few-Shot Learning

S-BERT+Fine-tune

mono→mono 45.9 46.3 47.9 45.4 48.9 49.7 45.1 47.0
mono→bi 45.8 46.5 48.6 45.0 48.9 49.4 45.0 47.0
mono→multi 40.4 42.5 43.1 37.8 44.1 44.3 41.1 41.9
bi→multi 33.8 35.6 35.2 32.4 37.1 37.2 34.4 35.1
mixt 38.3 39.8 40.7 39.3 41.9 41.7 38.7 40.1
trans 38.7 39.9 41.8 40.1 42.6 42.6 39.4 40.7

S-BERT+MAML

mono→mono 56.3 54.5 58.5 57.0 59.3 59.6 53.8 57.0
mono→bi 55.9 55.0 58.4 56.9 58.8 59.9 54.2 57.0
mono→multi 54.9 53.6 57.0 55.8 57.7 58.7 53.1 55.9
bi→multi 54.5 53.6 56.6 55.5 57.3 58.5 52.8 55.5
mixt 55.0 53.9 57.2 55.3 57.6 58.7 52.9 55.8
trans 56.0 54.8 59.1 57.0 59.1 59.9 54.4 57.2

S-BERT+MAML-Align mono→bi→multi 57.0 55.1 59.2 57.7 59.5 60.2 54.6 57.6
+Machine Translation

S-BERT+T-Train+Fine-tune

AR_AR→AR_AR 46.6 45.8 48.8 46.8 49.3 48.6 44.9 47.3
DE_DE→DE_DE 45.9 45.1 48.2 45.8 49.0 48.8 44.5 46.8
EL_EL→EL_EL 43.5 43.1 43.8 43.4 46.5 45.0 41.7 43.8
HI_HI→HI_HI 46.5 44.8 47.1 45.9 48.4 49.6 43.7 46.6
All test languages 44.8 43.5 46.9 44.0 47.0 46.4 42.1 45.0

S-BERT+T-Train+MAML

AR_AR→AR_AR 57.3 55.3 59.3 58.3 60.2 60.7 54.8 58.0
DE_DE→DE_DE 56.1 54.4 58.3 57.1 58.8 59.8 54.1 56.9
EL_EL→EL_EL 55.9 53.1 57.4 56.3 58.5 59.2 52.8 56.2
HI_HI→HI_HI 56.7 54.0 58.5 57.1 58.9 60.3 53.7 57.0
All test languages 55.9 53.8 58.0 56.6 58.1 59.2 53.4 56.4

Table 7: mAP@20 multilingual 5-fold cross-validated performance tested for different languages. Best and
second-best results for each language are highlighted in bold and italicized respectively, whereas best results across
categories of models are underlined. Gains from meta-learning approaches are consistent across few-shot and
zero-shot languages.

Model Train Language(s)
Configuration

Testing Languages
Arabic-Arabic Arabic-English Spanish-Spanish Spanish-English English-English Turkish-English

Mean
AR-AR AR-EN ES-ES ES-EN EN-EN TR-EN

Zero-Shot Learning
LASER - 22.5 ± 8.5 21.6 33.1 15.3 31.1 21.2 24.1
LaBSE - 71.6 73.2 83.2 68.7 76.3 74.9 74.6
S-BERT - 77.6 81.3 84.6 83.7 85.5 75.7 81.4

+Few-Shot learning
S-BERT+Fine-tune mono→bi 77.2 77.8 86.2 79.6 85.0 73.7 79.9
S-BERT+MAML mono→bi 77.6 80.9 85.1 83.5 85.6 75.5 81.3
S-BERT+MAML-Align mono→bi→multi 79.0 80.6 86.6 81.5 90.6 76.3 82.4

+Machine Translation

S-BERT+T-Train+Fine-tune

AR_AR→AR_AR 59.5 50.6 82.7 70.1 82.4 62.5 68.0
EN_EN→EN_EN 72.6 73.1 82.4 72.2 80.3 68.8 74.9
ES_ES→ES_ES 74.2 72.3 82.3 66.8 79.7 68.5 73.9
TR_TR→TR_TR 73.9 74.6 85.9 79.6 84.3 68.5 77.8
All test languages 65.8 63.0 82.5 75.8 83.0 67.8 73.0

S-BERT+T-Train+MAML

AR_AR→AR_AR 75.5 80.5 85.8 83.1 85.6 75.0 80.9
EN_EN→EN_EN 77.8 81.7 85.1 83.8 85.7 75.8 81.6
ES_ES→ES_ES 76.4 79.4 86.9 80.4 84.7 74.1 80.3
TR_TR→TR_TR 77.2 79.8 87.3 81.6 84.5 74.2 80.8
All test languages 77.6 81.8 84.7 83.6 85.6 75.9 81.5

Table 8: Pearson correlation Pearson’s r × 100 5-fold cross-validated performance on STSBMulti benchmark using
different models few-shot learned on STSBMulti or its translation. Best and second-best results for each language are
highlighted in bold and italicized respectively, whereas best results across categories of models are underlined.
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