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Abstract
We introduce the first highly multilingual001
speech and American Sign Language (ASL)002
comprehension dataset by extending BELE-003
BELE. Our dataset covers 74 spoken languages004
at the intersection of BELEBELE and FLEURS,005
and one sign language (ASL). We evaluate006
2M-BELEBELE dataset for both 5-shot and007
zero-shot settings and across languages, the008
speech comprehension accuracy is ≈ 2% aver-009
age lower compared to reading comprehension.010

1 Introduction011

From an AI perspective, text understanding and012

generation services are used globally in more than013

a hundred languages, but the scarcity of labeled014

data poses a significant challenge to developing015

functional systems in most languages. Although016

natural language processing (NLP) datasets with017

extensive language coverage, such as FLORES-018

200 (NLLB-Team et al., 2022), are available, they019

mainly concentrate on machine translation (MT).020

Multilingual evaluation benchmarks such as those021

for multilingual question answering (Lewis et al.,022

2020; Clark et al., 2020), natural language infer-023

ence (Conneau et al., 2018), summarization (Hasan024

et al., 2021; Ladhak et al., 2020), and reasoning025

datasets (Ponti et al., 2020; Lin et al., 2021) col-026

lectively cover only about 30 languages. Further-027

more, the extension of such datasets to speech or028

American Sign Language (ASL) is lacking, with029

the exception of FLEURS (Conneau et al., 2022;030

Tanzer, 2024), which is based on FLORES-200.031

The recent BELEBELE benchmark is the first cor-032

pus that addresses text reading comprehension for033

a large number of languages following a multi-way034

parallel approach (Bandarkar et al., 2023). The035

entire BELEBELE text statistics are summarized in036

Table 1. Currently, there are no highly multilingual037

evaluation datasets for natural language understand-038

ing that cover either both speech and text, and/or039

ASL.040

The outstanding performance of some MT and 041

text-to-speech (TTS) models has enabled a rise in 042

the number of works using synthetically generated 043

training data. Furthermore, some recent works pro- 044

pose to also use synthetic data for evaluation; e.g., 045

(Üstün et al., 2024; Seamless-Communication et al., 046

2023; Nguyen et al., 2024; Nachmani et al., 2023). 047

This strategy allows researchers to extend datasets 048

to low-resource languages and to other modalities, 049

such as speech. However, we prove that using 050

synthetic data for evaluation does not provide com- 051

parable conclusions as relying on human speech for 052

the particular task of automatic speech recognition 053

(ASR) and the FLEURS domain (see Appendix 054

D). 055

The evaluation dataset that is closest to the 056

speech comprehension evaluation dataset presented 057

in this paper is the generative QA dataset proposed 058

in (Nachmani et al., 2023). The questions are taken 059

from two sources: the WebQuestions dataset cre- 060

ated by Berant et al. (2013) and a new test set 061

called “LLama Questions.” The dataset covers 300 062

questions in English. In this work, we extend the 063

BELEBELE dataset to speech and sign (Section 064

2). By doing so, we create the first highly mul- 065

tilingual speech and sign comprehension dataset1: 066

2M-BELEBELE. Compared to spoken languages, 067

sign languages are considered low-resource lan- 068

guages for natural language processing (Yin et al., 069

2021). Most popular datasets cover small domains 070

of discourse; e.g., weather broadcasts (Camgoz 071

et al., 2018), which has limited real world applica- 072

tions. There have been previous releases of large 073

scale open domain sign language datasets; e.g., 074

(Albanie et al., 2021; Shi et al., 2022; Uthus et al., 075

2024). However, the results and challenges on such 076

datasets suggest that computational sign language 077

research still requires additional datasets to reach 078

the performance of their spoken language counter- 079

1Appendix A specifies language coverage.
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parts (Müller et al., 2022, 2023). With the release080

of the ASL extension of the BELEBELE dataset,081

we aim to provide additional, high quality sign082

language data with gloss annotations to underpin083

further computational sign language research. Fur-084

thermore, due to the paragraph-level nature of the085

BELEBELE dataset, we enable paragraph-context086

sign language translation, which has been reported087

to improve translation performance (Sincan et al.,088

2023). 2M-BELEBELE is composed of human089

speech recordings covering 74 languages and hu-090

man sign recordings for ASL.091

As a by-product of 2M-BELEBELE, we also ex-092

tend the FLEURS dataset (which is widely used093

to benchmark language identification and ASR) by094

providing recordings for more FLORES-200 sen-095

tences than were previously available and adding096

sign language, creating a new 2M-FLORES. This097

2M-FLORES extends FLEURS by 20%.098

Finally, we provide a very basic set of experi-099

ments that evaluate 2M-BELEBELE and provide100

some reference results on the dataset. We use101

direct and/or cascaded systems to evaluate 2M-102

BELEBELE dataset with direct and/or cascaded sys-103

tems (Section 3). We also list several further ex-104

perimentation that 2M-BELEBELE unblocks. Note105

that the main contribution of this paper is the cre-106

ation of the first highly multilingual speech and107

sign comprehension dataset. The complete set of108

experiments is out of the scope of this paper (see109

Section on Limitations). By open-sourcing our110

dataset, we encourage the scientific community to111

pursue such experimentation.112

2 2M-BELEBELE113

Passages Questions/Answers

Distinct Passages 488 Distinct Q 900
Questions per passage 1-2 Multiple-choice A 4
Avg words (std) 79.1 (26.2) Avg words Q (std) 12.9 (4.0)
Avg sentences (std) 4.1 (1.4) Avg words A (std) 4.2 (2.9)

Table 1: Statistics for 2M-BELEBELE, which covers 74
spoken languages plus ASL. Average words are com-
puted for English.

FLEURS and BELEBELE passage alignment.114

Since BELEBELE uses passages constructed from115

sentences in the FLORES-200 dataset, and116

FLEURS (Conneau et al., 2022) is a human speech117

version of FLORES-200 for a subset of its lan-118

guages, we create a speech version of BELEBELE119

by aligning its passages with the speech segments120

available in FLEURS. This extension can be done 121

without extra human annotation, just by comput- 122

ing the alignment between FLEURS and BELE- 123

BELE passages. However, such alignment does 124

not cover the entire BELEBELE corpus because 125

FLEURS does not cover the entirety of FLORES- 126

200. There are 74 languages shared between 127

FLEURS and BELEBELE. FLEURS does not 128

cover the same passages as BELEBELE in all those 129

74 languages, which means that some languages 130

have more speech passages than others. In gen- 131

eral, we are able to match almost ≈ 80% of the 132

passages. Figure 1 shows the number of FLEURS 133

paragraphs we can match, thus obtaining the num- 134

ber of paragraphs that must be recorded in order to 135

cover all passages BELEBELE. 136

Figure 1: FLEURS vs New Recordings from 2M-
BELEBELE for sentences in passages.

Speech recordings. We commission human 137

recordings for the part of the BELEBELE dataset 138

that is not covered by existing FLEURS record- 139

ings, as well as for elements of BELEBELE that do 140

not exist in FLEURS (i.e. questions and answers). 141

Recording participants must be native speakers of 142

the languages they record. They must have an im- 143

peccable grasp of the conventions used in their 144

respective languages for the narration of texts. The 145

three tasks that participants are asked to perform 146

are: (1) Read aloud and record the text passages 147

provided (from FLORES-200); (2) Read aloud 148

and record the provided written questions; (3) Read 149

aloud and record the provided written answers. For 150

the task, we provide the participants with (a) the 151

text of the sentences to be recorded in TSV format 152

(the number of passages may differ from language 153

to language), (b) the written questions (900 per lan- 154

guage, and (c) the written answer options (3,600 155

per language). Additional details on the recording 156

guidelines provided to annotators are reported in 157
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the appendix B. We verify the quality of the record-158

ings by randomly selecting 270 recordings (30%159

of sample size) and ensuring that the recordings do160

not contain background or ambient noise and that161

the voices of the participants are clearly audible.162

Sign recordings. To obtain ASL sign recordings,163

we provide translators of ASL and native signers164

with the English text version of the sentences to165

be recorded. The interpreters are then asked to166

translate these sentences into ASL, create glosses167

for all sentences, and record their interpretations168

into ASL one sentence at a time. The glosses are169

subjected to an additional quality check by expert170

annotators to harmonize the glossing format. To171

harmonize the recording conditions and eliminate172

visual bias, the videos are recorded against plain173

monochrome backgrounds (e.g., white or green),174

and signers are requested to wear monochrome175

upper body clothing (e.g., black). All videos are176

captured in 1920x1080p resolution with all of the177

signing space covered in FOV. The recordings are178

done in 60 frames per second to address most of179

the motion blur that happens during signing.180

2M-BELEBELE Statistics. The final dataset is181

composed of 75 languages (74 in speech, 1 in sign).182

Each of the languages’ respective subsets includes183

2,000 utterances organized in 488 distinct passages,184

900 questions, and 4 multiple choice answers per185

question. For our recorded data (the red portion of186

Figure 1 plus questions and answers), we have one187

audio file or two per sentence, depending on the188

number of available participants (one participant189

only in 23 languages, and two participants in 51190

languages). When two speakers are available, we191

request that one should represent a higher-pitch192

range, and the other a lower-pitch range for each193

passage. More details are available in Appendix A.194

In addition, the data set includes video record-195

ings in ASL for 2,000 FLORES sentences (not196

including the test partition) and is similarly orga-197

nized in 488 distinct passages, as well as 900 ques-198

tions and 4 multiple-choice answers for each ques-199

tion (see summary table 1). The ASL dataset was200

recorded by two interpreters, but, contrary to what201

was possible in other languages, each interpreter202

could only cover one-half of the dataset each.203

3 Experiments204

We evaluate 2M-BELEBELE, and compare per-205

formance across modalities. Our comparison is206

limited in number of systems and combination of 207

modalities. 2M-BELEBELE offers the opportunity 208

to check multimodal comprehension by combining 209

speech/text/sign passages; questions and answers. 210

In our case, we only provide results for entire text 211

passages, questions and answers and speech pas- 212

sages, text questions and answers. A more compre- 213

hensive set of experiments is out of the scope of 214

this paper, which aims at unblocking such experi- 215

mentation by open-sourcing the dataset itself. 216

Figure 2: Speech and Text BELEBELE accuracy results
in 39 languages. We compare text performance with
LLAMA-3-CHAT (zero-shot) and speech performance
with WHISPER +LLAMA-3-CHAT (asr+zero-shot).

Systems. We use the speech section of the 2M- 217

BELEBELE dataset to evaluate the speech com- 218

prehension task with a cascaded system consist- 219

ing of first speech recognition (ASR) using the 220

WHISPER-LARGE-V3 model (Radford et al., 2022) 221

(hereinafter, WHISPER) and SEAMLESSM4T (cor- 222

responding to SEAMLESSM4T-LARGE V2) model 223

(Seamless-Communication et al., 2023) feeding 224

into LLAMA-32. We also provide results with a 225

unified system SPIRITLM (Nguyen et al., 2024), 226

which is a multimodal language model that freely 227

mixes text and speech. Since the size of this model 228

is 7B and is based on LLAMA-2, we also add a 229

comparison to the LLAMA-2 model. We compare 230

these results with LLAMA-3 and LLAMA-3-CHAT 231

using the BELEBELE text passage as input. For 232

these systems, we report the results in 5-shot in- 233

context learning and zero-shot on 39 languages at 234

the intersection of WHISPER, SEAMLESSM4T and 235

2M-BELEBELE (see Appendix A). 236

Zero-shot Evaluation. We use the same evalua- 237

tion strategy as in (Bandarkar et al., 2023). SPIR- 238

ITLM is not available in chat mode. 239

2https://ai.meta.com/blog/meta-llama-3/

3

https://ai.meta.com/blog/meta-llama-3/


Dataset Model Size Vocab AVG % ≥ 50 % ≥ 70 Eng non-Eng

5-Shot In-Context Learning (examples in English)

BELEBELE LLAMA-3 70B 128K - - - 94.8 -
2M-BELEBELE WHISPER + LLAMA-3 70B 128K 77.1 89.7 71.8 94.4 76.6
2M-BELEBELE SEAMLESSM4T + LLAMA-3 70B 128K 81.7 94.9 92.7 93.5 81.4
2M-BELEBELE WHISPER + LLAMA-2 7B 32K - - - 49.9 -
2M-BELEBELE SPIRITLM 7B 37K - - - 25.9 -

Zero-Shot

BELEBELE LLAMA-3-CHAT 70B 128K 87.0 97.4 94.9 95.8 86.7
2M-BELEBELE WHISPER + LLAMA-3-CHAT 70B 128K 79.1 92.3 76.9 95.7 78.7
2M-BELEBELE SEAMLESSM4T + LLAMA-3-CHAT 70B 128K 84.8 94.9 94.9 95.5 84.5

Table 2: Summary of accuracy results on 2M-BELEBELE compared to BELEBELE across models and evaluation
settings. % ≥ 50/70 refers to the proportion of languages for which a given model performs above 50/70% for
question and answer in text and passage in speech. (*At the time of submission, we were missing LLAMA-3 5-shot results)

5-shot In-Context Learning. The few-shot ex-240

amples are taken randomly from the English train-241

ing set and they are prompted as text format to the242

model. Different from (Bandarkar et al., 2023), we243

do not pick the answer with the highest probabil-244

ity but directly assess the predicted letter of the245

answer.246

For 5-shot and zero-shot settings, our instruction247

prompt is as follows “Given the following passage,248

query, and answer choices, output the letter corre-249

sponding to the correct answer. Do not write any250

explanation. Only output the letter within A, B, C,251

or D that corresponds to the correct answer.” and252

we report the averaged accuracy over 3 runs3.253

Results. 2M-BELEBELE accuracy results per lan-254

guage compared to BELEBELE are shown in Figure255

2. Differences in speech and text vary slightly256

depending on the languages. Low-resource lan-257

guages have a greater variation between text and258

speech BELEBELE. The ten languages with the259

largest gap are: Burmese, Maltese, Assamese, Tel-260

ugu, Javanese, Tajik, Bengali, Shona, Eastern Pan-261

jabi, Yoruba, Gujarati. Table 2 reports the sum-262

mary of the results. The English drop from direct263

text to speech task does not vary much between 5-264

shot and zero-shot strategies, being slightly higher265

in the zero-shot setting (coherently with previous266

LLAMA-3 results that show better performance267

in zero-shot in other tasks4). When comparing268

speech and text comprehension in zero-shot setting,269

we observe that speech decreases performance in270

about 2% average across languages. Table 2 re-271

ports English results for SPIRITLM, a direct multi-272

modal model. One of the reasons SPIRITLM may273

be performing worse is that 5-shot examples are in274

3Random seeds: 0, 1, 2.
4https://ai.meta.com/blog/meta-llama-3-1/ and

https://ai.meta.com/blog/meta-llama-3/

text, while the passage on the asked question is in 275

speech. 276

ASL We know from previous large-scale trans- 277

lation attempts (Albanie et al., 2021; Müller et al., 278

2022) that models struggle to generalize over both 279

individuals/appearance and large domain of dis- 280

course. Compared to speech and text models, sign 281

language models suffer from having to learn gen- 282

eralized representations from high-dimensional in- 283

puts, i.e. videos, without overfitting to limited train- 284

ing dataset. Previous attempts have been made to 285

create a more generalizable abstraction layer in the 286

form of subunits (Camgoz et al., 2020), similar to 287

phonemes for speech, which achieved promising 288

results on a translation task with a small discourse 289

domain. However, this work is yet to be applied to 290

large discourse domain translation tasks. The best 291

results in the FLORES domain have been achieved 292

with close models that are not available (Zhang 293

et al., 2024). Trying (Rust et al., 2024) as an open 294

model did not perform above chance in the final 295

reading comprehension dataset. However, we be- 296

lieve that the release of this new dataset with the 297

additional gloss annotation will help in training 298

models that generalize over individuals better and 299

improve large-scale sign language translation. 300

4 Conclusions 301

The 2M-BELEBELE dataset5 allows to evaluate 302

natural language comprehension in a large number 303

of languages, including ASL. 2M-BELEBELE is 304

purely human-made and covers the BELEBELE pas- 305

sages, questions, and answers for 75 languages: 74 306

in the speech modality and 1 in the sign modality. 307

5Scripts to build the 2M-BELEBELE dataset are available
in Github BLIND

4
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Limitations and ethical considerations308

Our speech annotations do not have the entire set309

completed with two annotators. Due to the high310

volume of the dataset, not every recording has been311

thoroughly verified. Some of the languages in312

2M-BELEBELE are low-resource languages, which313

pose a challenge in sourcing professionals to record.314

Therefore, some of the audios were recorded in315

home settings and may contain minor background316

noise, static noise, echoes, and, occasionally, the317

speech could be slightly muffled or soft. All an-318

notators are native speakers of the target language,319

but they may have regional accents in their speech,320

and their personal speech styles may be present321

in the audio as well. However, the mentioned im-322

perfections should not affect intelligibility; all the323

recordings can be clearly understood by human324

standards. Note that we are planning to release325

more languages as reported in Appendix C.326

We can group the ASL limitations under two327

categories, namely visual and linguistic. For vi-328

sual limitations, ASL sequences are recorded in329

what can be considered laboratory environments330

with few signer variance. This makes it harder for331

models trained on them to generalize to unseen332

environments and signers. For linguistic limita-333

tions, ASL sequences are collected one sentence334

at a time. Although this enables pairwise training335

and evaluation, such as classical text-based NMT,336

the generated sequences may not be fully realistic337

in terms of real-world signing. An example would338

be the use of placement. In sentence-per-sentence339

sequence generation, a signer would refer to an340

entity with their sign each sentence, whereas in341

long-form conversation, a signer would place the342

entity in their signing space after first reference and343

refer them in via use of placement in the following344

sentences.345

Our benchmarking is limited compared to the346

potential capabilities of the dataset. For example,347

since we have spoken questions, passages and re-348

sponses, instead of just using a fix modality (spoken349

passages, text questions and responses), we could350

explore the performance when using all combina-351

tions among modalities (e.g., question in speech,352

answer in speech, passage in speech; or question353

in speech, answer in text, passage in speech; or354

question in speech, answer in speech and passage355

in text.)356

In terms of compute budget, we estimate it as357

47K Nvidia A100 hours by taking into account358

the product of following factors: number of lan- 359

guages (39), number of random seeds (3), number 360

of GPUs required by model (8), number of experi- 361

ment setups (5) and estimated number of hours per 362

experiment (10). 363

Speakers and signers were paid a fair rate. Our 364

recorded data reports self-identified gender by par- 365

ticipant. Each of the speakers and signers signed a 366

consent form agreeing on the dataset and its usage 367

that they were participating in. 368
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España-Bonet, Roman Grundkiewicz, et al. 2022.459
Findings of the first wmt shared task on sign lan-460
guage translation (wmt-slt22). In Proceedings of the461
Seventh Conference on Machine Translation (WMT),462
pages 744–772.463

Eliya Nachmani, Alon Levkovitch, Roy Hirsch, Ju-464
lian Salazar, Chulayuth Asawaroengchai, Soroosh465
Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and466
Michelle Tadmor Ramanovich. 2023. Spo-467
ken question answering and speech continua-468
tion using spectrogram-powered llm. Preprint,469
arXiv:2305.15255.470

Tu Anh Nguyen, Benjamin Muller, Bokai Yu, Marta R. 471
Costa-jussa, Maha Elbayad, Sravya Popuri, Paul- 472
Ambroise Duquenne, Robin Algayres, Ruslan Mav- 473
lyutov, Itai Gat, Gabriel Synnaeve, Juan Pino, Benoit 474
Sagot, and Emmanuel Dupoux. 2024. Spirit-lm: 475
Interleaved spoken and written language model. 476
Preprint, arXiv:2402.05755. 477

NLLB-Team, Marta R. Costa-jussà, James Cross, Onur 478
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A Languages579

Table 3 reports details on languages covered by580

FLEURS, TTS and ASR.581

B Annotation Guidelines 582

Recording process. Find a quiet place free from 583

distractions and noises, and choose a headphone 584

that is comfortable to wear and a good quality mi- 585

crophone that will not distort or break your voice. 586

Read aloud and record the scripts in a pleasant tone 587

and at a constant and even pace, as if you were 588

reading a formal document. Try not to speak too 589

quickly or slowly and aim for a natural pace that 590

is easy to follow. The audio files below provide 591

examples of paces that are expected, too fast, or 592

too slow, for the sentence. The hearing also marks 593

the date for the suspect’s right to a rapid trial. 594

To achieve the best sound quality when record- 595

ing, position the microphone close to your mouth 596

so that the voice will sound clear and present, but 597

not too close that it sounds muddy or you can hear 598

a puff of air. Clearly enunciate the words and avoid 599

mumbling. Be sure to provide a 2-second pause be- 600

tween sentences to add clarity and keep the overall 601

pace down. When dealing with long, complicated 602

sentences that contain multiple clauses or phrases, 603

there are several approaches to ensure clarity and 604

a natural flow as follows. Break it down: Separate 605

the sentence into smaller parts or clauses. Prac- 606

tice reading aloud several times before starting the 607

recording. This can help you get a feel for the 608

rhythm and pacing of the sentence. Pace yourself: 609

Try to maintain a steady, even pace. If the sentence 610

is particularly long, it is possible to take a brief 611

pause at a natural breakpoint to catch your breath. 612

You should read the provided passages aloud with- 613

out repairs (a repair is the repetition of a word that 614

was incorrectly pronounced to correct its pronunci- 615

ation). 616

To achieve this, familiarize yourself beforehand 617

with the correct pronunciation of difficult words, 618

proper nouns, and transliterated words, as well 619

as signs and symbols, dates and times, numbers, 620

abbreviations, and punctuation marks. Some ele- 621

ments may have more than one correct pronuncia- 622

tion. In this case, use the one that comes the more 623

naturally to you, as long as it is an accepted pronun- 624

ciation (i.e., it is acknowledged in your language’s 625

dictionaries). Practice reading the passages aloud 626

several times to become more comfortable with 627

the material. Please pay particular attention to the 628

following items: 629

Numbers. Number formats can vary from lan- 630

guage to language; it is important to follow the 631

pronunciation rules in your language. Here are 632
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Language Code Script Family FLEURS ASR 2M-BELEBELE

Mesopotamian Arabic acm Arab Arab Afro-Asiatic
Afrikaans afr Latn Latn Indo-European (1)
Tosk Albanian als Latn Latn Indo-European
Amharic amh Ethi Ethi Afro-Asiatic (2)
North Levantine Arabic apc Arab Arab Afro-Asiatic
Modern Standard Arabic arb Arab Arab Afro-Asiatic
Modern Standard Arabic arb Latn Latn Afro-Asiatic
Najdi Arabic ars Arab Arab Afro-Asiatic
Moroccan Arabic ary Arab Arab Afro-Asiatic
Egyptian Arabic arz Arab Arab Afro-Asiatic (2)
Assamese asm Beng Beng Indo-European (2)
North Azerbaijani azj Latn Latn Turkic (1)
Bambara bam Latn Latn Niger-Congo
Bengali ben Beng Beng Indo-European (2)
Bengali ben Latn Latn Indo-European
Standard Tibetan bod Tibt Tibt Sino-Tibetan
Bulgarian bul Cyrl Cyrl Indo-European (2)
Catalan cat Latn Latn Indo-European (2)
Cebuano ceb Latn Latn Austronesian (1)
Czech ces Latn Latn Indo-European (2)
Central Kurdish ckb Arab Arab Indo-European
Danish dan Latn Latn Indo-European (2)
German deu Latn Latn Indo-European (2)
Greek ell Grek Grek Indo-European (2)
English eng Latn Latn Indo-European (2)
Estonian est Latn Latn Uralic (1)
Basque eus Latn Latn Basque
Finnish fin Latn Latn Uralic (2)
French fra Latn Latn Indo-European (2)
Fulfulde (Nigerian) fuv Latn Latn Atlantic-Congo
Oromo (West Central) gaz Latn Latn Afro-Asiatic ( )
Guarani grn Latn Latn Tupian
Gujarati guj Gujr Gujr Indo-European (1)
Haitian Creole hat Latn Latn Indo-European
Hausa hau Latn Latn Afro-Asiatic ( ) (2)
Hebrew heb Hebr Hebr Afro-Asiatic (2)
Hindi hin Deva Deva Indo-European (2)
Hindi hin Latn Latn Indo-European
Croatian hrv Latn Latn Indo-European (2)
Hungarian hun Latn Latn Uralic (2)
Armenian hye Armn Armn Indo-European (1)
Igbo ibo Latn Latn Atlantic-Congo (1)
Ilocano ilo Latn Latn Austronesian
Indonesian ind Latn Latn Austronesian (2)
Icelandic isl Latn Latn Indo-European (1)
Italian ita Latn Latn Indo-European (2)
Javanese jav Latn Latn Austronesian (1)
Japanese jpn Jpan Jpan Japonic (2)
Jingpho kac Latn Latn Sino-Tibetan
Kannada kan Knda Knda Dravidian
Georgian kat Geor Geor Kartvelian (2)
Kazakh kaz Cyrl Cyrl Turkic (1)
Kabuverdianu kea Latn Latn Indo-European (1)
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Language Code Script Family FLEURS ASR 2M-BELEBELE

Mongolian khk Cyrl Cyrl Mongolic ( ) (2)
Khmer khm Khmr Khmr Austroasiatic (1)
Kinyarwanda kin Latn Latn Atlantic-Congo
Kyrgyz kir Cyrl Cyrl Turkic
Korean kor Hang Hang Koreanic (1)
Lao lao Laoo Laoo Kra-Dai
Lingala lin Latn Latn Niger-Congo
Lithuanian lit Latn Latn Indo-European (2)
Ganda lug Latn Latn Atlantic-Congo (1)
Luo luo Latn Latn Atlantic-Congo (2)
Standard Latvian lvs Latn Latn Indo-European ( ) (2)
Malayam mal Mlym Mlym Dravidian (2)
Marathi mar Deva Deva Indo-European
Macedonian mkd Cyrl Cyrl Indo-European (2)
Maltese mlt Latn Latn Afro-Asiatic
Maori mri Latn Latn Austronesian
Burmese mya Mymr Mymr Sino-Tibetan (2)
Dutch nld Latn Latn Indo-European (2)
Norwegian Bokmål nob Latn Latn Indo-European (2)
Nepali npi Deva Deva Indo-European (2)
Nepali npi Latn Latn Indo-European
Northern Sotho nso Latn Latn Atlantic-Congo
Nyanja nya Latn Latn Afro-Asiatic
Odia ory Orya Orya Indo-European (1)
Eastern Panjabi pan Guru Guru Indo-European (2)
Southern Pashto pbt Arab Arab Indo-European ( ) (1)
Western Persian pes Arab Arab Indo-European ( ) (1)
Plateau Malagasy plt Latn Latn Austronesian
Polish pol Latn Latn Indo-European (2)
Portuguese por Latn Latn Indo-European (2)
Romanian ron Latn Latn Indo-European (2)
Russian rus Cyrl Cyrl Indo-European (2)
Shan shn Mymr Mymr Tai-Kadai
Sinhala sin Latn Latn Indo-European
Sinhala sin Sinh Sinh Indo-European
Slovak slk Latn Latn Indo-European (1)
Slovenian slv Latn Latn Indo-European (2)
Shona sna Latn Latn Atlantic-Congo (2)
Sindhi snd Arab Arab Indo-European (2)
Somali som Latn Latn Afro-Asiatic
Southern Sotho sot Latn Latn Atlantic-Congo
Spanish spa Latn Latn Indo-European (2)
Serbian srp Cyrl Cyrl Indo-European (2)
Swati ssw Latn Latn Atlantic-Congo
Sundanese sun Latn Latn Austronesian
Swedish swe Latn Latn Indo-European (2)
Swahili swh Latn Latn Atlantic-Congo (1)
Tamil tam Taml Taml Dravidian (2)
Telugu tel Telu Telu Dravidian (2)
Tajik tgk Cyrl Cyrl Indo-European (1)
Tagalog tgl Latn Latn Austronesian ( ) (2)
Thai tha Thai Thai Tai-Kadai (2)
Tigrinya tir Ethi Ethi Afro-Asiatic
Tswana tsn Latn Latn Atlantic-Congo
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Language Code Script Family FLEURS ASR 2M-BELEBELE

Tsonga tso Latn Latn Afro-Asiatic
Turkish tur Latn Latn Turkic (1)
Ukranian ukr Cyrl Cyrl Indo-European
Urdu urd Arab Arab Indo-European (2)
Urdu urd Latn Latn Indo-European
Northen Uzbek uzn Latn Latn Turkic
Vietnamese vie Latn Latn Austroasiatic (2)
Waray war Latn Latn Austronesian
Wolof wol Latn Latn Atlantic-Congo (1)
Xhosa xho Latn Latn Atlantic-Congo (1)
Yoruba yor Latn Latn Atlantic-Congo (2)
Chinese zho Hans Hans Sino-Tibetan (2)
Chinese zho Hant Hant Sino-Tibetan ( )
Standard Malay zsm Latn Latn Austronesian ( )
Zulu zul Latn Latn Atlantic-Congo

American Sign Language ase - Sign Language (2)

Table 3: Languages details. Column FLEURS reports the languages covered by Speech BELEBELE v1. Column
ASR shows the languages reported in the experiment section, note that Hausa is covered by WHISPER-LARGE-V3
but not for SEAMLESSM4T. The number in brackets shows the number of annotations per language.

some general guidelines and examples: Decimal633

numbers: Read the whole part of the number as634

a whole number and then individually read every635

number after the decimal point. For example, in636

English, the decimal number 3.14 should be read637

as ”three point one four.” Different languages may638

have different rules, and you should follow the rules639

that are appropriate for your language. Cardinal640

numbers represent quantities or amounts. Ordinal641

numbers represent positions or ranks in sequential642

order and should be read with the appropriate suffix.643

For example, in English, the ordinal number 1st644

is read ”first” (not ”onest”) and 5th is read ”fifth”645

(not ”fiveth”). Different languages may have dif-646

ferent rules, and you should follow the rule that is647

appropriate for your language.648

Roman numerals are a collection of seven sym-649

bols that each represent a value: I = 1, V = 5, X650

= 10, L = 50, C = 100, D = 500, and M = 1,000.651

The can be pronounced in slightly different ways652

depending on the context, but they are never pro-653

nounced as individual letters. For example, in En-654

glish, VIII in Henry VIII is pronounced ”Henry the655

eighth”, while Superbowl LVIII is pronounced ”Su-656

perbowl fifty-eight”, but they are never pronounced657

”Henry v i i i” or ”Superbowl l v i i i”. Different658

languages may have different rules, and you should659

follow the rules that are appropriate for your lan-660

guage. Punctuation marks: As a general rule, punc-661

tuation marks should not be pronounced, except662

quotation marks.663

For example, in English, punctuation marks such664

as periods, commas, colons, semicolons, question 665

marks, and exclamation points are typically not 666

pronounced. For example, the sentence. As a result 667

of this, a big scandal arose. will be pronounced 668

”As a result of this a big scandal arose” - not ”As 669

a result of this comma a big scandal arose period”. 670

However, in formal-register English (in the news, 671

for example), a difference is made between content 672

created by the news team and content that should 673

be attributed to someone else by explicitly pro- 674

nouncing quotation marks. For example, the news 675

transcript The fighter said: ”I am here to try to win 676

this.” will be pronounced: ”The fighter said, quote, 677

I am here to try to win this. End of quote.” In this 678

case, different languages may have different rules, 679

and you should follow the rules that are appropriate 680

for your language. Signs and symbols. Signs and 681

symbols need to be pronounced as they would be 682

heard in a speech-only setting. Attention should be 683

paid: (a) to potential number or gender agreement 684

(for example, in English, ”40%” should be read 685

as ”forty percent” — not ”forty percents”) (b) to 686

potential differences between the place of the sign 687

or symbol in writing and in speech (for example, 688

in English, the ”$” sign should be read as ”dollar” 689

and should be read after the number it precedes; 690

i.e. ”$22” should be read as ”twenty-two dollars” 691

— not ”dollars twenty-two”) (c) to the way the sign 692

or symbol gets expanded in speech (for example, 693

in English, ”Platform 9 ¾” should be read ”plat- 694

form nine and three quarters” — not ”platform nine 695

three quarters”). Similarly, 50 km/h would be pro- 696
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nounced ”fifty kilometers per hour” — not ”fifty697

kilometers hour”). Different languages may have698

different rules, and you should follow the rules that699

are appropriate for your language.700

Proper nouns and foreign expressions. Even701

the same language may have at least 2 different702

ways to pronounce foreign expressions of proper703

nouns: (a) one way is to try to approach the way704

they would sound in the foreign language from705

which they come (for example, in English, Louis706

in Louis XIV is pronounced ”lewee” as it would be707

in French); (b) the other way is to pronounce them708

according to the rules of the adopting language (for709

example, in English, Louis in the City of St Louis is710

pronounced as in the English proper noun ”Lewis”)711

Abbreviations. Abbreviations should be ex-712

panded as much as possible. However, it is sug-713

gested to refrain from expanding them if their ex-714

pansion results in unnatural speech. For example,715

in English, abbreviations such as Dr. or etc. are716

pronounced ”doctor” and ”et cetera”, respectively717

(not ”d r” nor ”e t c”). However, abbreviations such718

as AM or PhD are pronounced as a sequence of719

letters without being expanded (”a m” and ”p h720

d”, respectively - not ”ante meridiem” nor ”philos-721

ophy doctorate”). Different languages may have722

different conventions, and you should follow the723

conventions that are appropriate for your language.724

C Extra languages pending for collection725

We plan to collect in total 91 languages with both726

high-pitched and low-pitched. This is the list of all727

the languages in planning.728

• Central Kurdish729

• Nigerian Fulfulde730

• West Central Oromo731

• Kannada732

• Kyrgyz733

• Lao734

• Lingala735

• Marathi736

• Maltese737

• Maori738

• Northern Sotho 739

• Chewa 740

• Somali 741

• Ukrainian 742

• Northern Uzbek 743

• Malay 744

• Zulu 745

D Ablation study: Synthetic extension in 746

speech evaluation datasets 747

In this part of our work, we aim to analyze the feasi- 748

bility of synthetically extending text benchmarks to 749

speech using TTS systems, thereby creating multi- 750

modal datasets. Our goal is to understand if it 751

would have been feasible to obtain the speech ver- 752

sion of BELEBELE by using state of the art TTS 753

systems, instead of human recordings. 754

For this study we use FLEURS dataset, that 755

contains ASR data in the same domain as BELE- 756

BELE. We chose to perform this study in the ASR 757

task because it is simpler compared to other speech 758

tasks, due to its monotonic alignment process and 759

minimal need for reasoning. This ensures that the 760

overall model performance and the complexity of 761

the task are less likely to influence the results. 762

For our experiments, we generate a synthetic 763

copy of the FLEURS dataset using the MMS TTS 764

(Pratap et al., 2024) system on the FLEURS tran- 765

scripts. Then, we benchmark state-of-the-art mod- 766

els (WHISPER, SEAMLESSM4T and MMS ASR) 767

on both the original and synthetic datasets and an- 768

alyze whether the conclusions remain consistent 769

across both datasets. 6 770

It is important to note that a decrease in sys- 771

tem performance is expected when using synthetic 772

data. However, if this decrease occurs proportion- 773

ally across all models, the synthetic data could still 774

be useful to benchmark models. Conversely, if 775

the model performance ranking changes, we can 776

conclude that synthetic data is not reliable when 777

benchmarking models. 778

To measure the variability in model rankings be- 779

tween the original and the synthetic data, we track 780

the inversions that occur in the order of the models 781

in the two settings. We define an inversion as a 782

6Note that we perform the study on the FLEURS lan-
guages that are covered by all MMS, WHISPER and SEAM-
LESSM4T.

11



swap between two models that appear in adjacent783

positions on the list. We count how many swaps784

are needed in the ranking obtained using synthetic785

data to match the ranking from the original dataset.786

SEAMLESSM4T WHISPER MMS
Hum Syn Hum Syn Hum Syn Inv

Bengali 14.1 21.1 114.7 105.8 14.6 25.0
Catalan 8.2 13.2 6.7 16.4 10.3 21.8
Dutch 9.9 20.0 8.5 19.7 12.4 28.3
English 6.0 11.7 4.5 9.8 12.3 19.2
Finnish 20.1 20.8 12.5 18.9 13.1 18.4
French 9.5 10.8 6.7 11.3 12.4 16.6
German 8.5 13.9 5.2 12.3 10.5 20.8
Hindi 11.9 13.4 33.5 28.7 11.1 18.3
Indonesian 12.1 12.8 8.7 14.2 13.2 21.9
Korean 25.7 40.3 15.4 29.9 47.8 61.2
Polish 13.0 14.7 8.1 13.3 11.6 18.1
Portuguese 9.0 8.0 4.1 6.9 8.7 10.4
Romanian 12.6 11.7 13.5 25.4 12.0 15.4
Russian 10.2 18.6 5.6 17.4 18.8 34.3
Spanish 6.3 9.1 3.4 10.0 6.4 10.8
Swahili 19.5 19.0 64.2 58.4 14.2 19.0
Swedish 15.4 20.1 11.3 19.1 21.0 27.8
Telugu 27.4 28.0 132.2 133.9 24.2 27.8
Thai 127.8 135.5 104.0 121.3 99.8 99.9
Turkish 18.6 23.0 8.4 16.5 19.2 30.3
Ukrainian 15.0 23.5 9.8 21.8 18.1 34.7
Vietnamese 16.0 20.1 10.2 14.2 25.8 25.3

Table 4: WER(↓) results on the ASR task. Last column
marks if the language has at least 1 inversion in ASR
performance ranking comparing human vs TTS inputs.

In Table 4 we see that in the ASR setting, con-787

clusions regarding model performance can vary788

depending on whether human or synthetic data is789

used. Although these conclusions are specific to790

the evaluated tasks and datasets, we demonstrate791

that even with the outstanding performance of cur-792

rent TTS methods, this does not guarantee the re-793

liability of the data they generate when it comes794

to evaluation purposes. This is true not only for795

low-resource languages, but also for high-resource796

languages such as French or Spanish. These find-797

ings show that speech benchmarks might not be798

reliable if synthetically generated even in widely799

researched areas, further supporting the creation of800

evaluation datasets by humans.801
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