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ABSTRACT

Machine-aided programming tools such as automated type predictors and autocom-
plete are increasingly learning-based. However, current approaches predominantly
rely on supervised learning with task-specific datasets. We propose Contrastive
Code Representation Learning (ContraCode), a self-supervised algorithm for learn-
ing task-agnostic semantic representations of programs via contrastive learning.
Our approach uses no human-provided labels, only the raw text of programs.
ContraCode optimizes for a representation that is invariant to semantic-preserving
code transformations. We develop an automated source-to-source compiler that
generates textually divergent variants of source programs. We then train a neural net-
work to identify variants of anchor programs within a large batch of non-equivalent
negatives. To solve this task, the network must extract features representing the
functionality, not form, of the program. In experiments, we pre-train ContraCode
with 1.8M unannotated JavaScript methods mined from GitHub, then transfer
to downstream tasks by fine-tuning. Pre-training with ContraCode consistently
improves the F1 score of code summarization baselines and top-1 accuracy of type
inference baselines by 2% to 13%. ContraCode achieves 9% higher top-1 accu-
racy than the current state-of-the-art static type analyzer for TypeScript. Finally,
representations learned through a hybrid contrastive and reconstruction objective
transfer in zero-shot to code clone detection with +10% AUROC over a static text
similarity measure and +5% over reconstruction alone.

1 INTRODUCTION

Programmers increasingly rely on machine-aided programming tools to aid software develop-
ment (Kim et al., 2012). However, the wide diversity of programs encountered in practice limits the
generalization of hand-written rules. Catching semantic bugs such as naming errors requires deeper
language understanding, motivating learning-based programming tools. Recent work uses machine
learning for bug detection (Pradel & Sen, 2018) and optimization (Mendis et al., 2019). Consider
predicting the type of the variable declaration “var median = ...;”. Static analysis fails as the type
is underspecified, but the variable name indicates the statement is a float.

Programming language datasets suffer from scarce annotations due to the time and expertise required
to label. State-of-the-art approaches generally rely on either (1) synthetic supervised datasets or (2)
self-supervised pre-training. Synthetic auto-generated labels have been used for method naming (Alon
et al., 2019a;b) and bug detection (Ferenc et al., 2018; Benton et al., 2019; Pradel & Sen, 2018).
However, synthetic code datasets suffer from duplication issues (Allamanis, 2019) and biases (Shin
et al., 2019) which degrade generalization. Moreover, auto-generated data does not cover the diverse
program behaviors encountered in the wild.

In contrast, self-supervised learning can leverage large open-source repositories such as GitHub with
limited or no annotations. Inspired by the success of pre-training in natural language processing,
recent work uses self-supervision to learn code representations. Authors have explored context-based
token embeddings (Ben-Nun et al., 2018) and masked language modeling, where tokens are corrupted
and reconstructed (Feng et al., 2020; Kanade et al., 2020) However, reconstruction focuses on
superficial language reasoning and does not explicitly address the underlying program functionality.
The resulting models attend to program implementation specifics such as variable names.

We hypothesize that programs with the same functionality should have the same underlying repre-
sentation for downstream code understanding tasks, a principle illustrated in Fig. 1. While it is time
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function (len) {
  for (i = 0; i < len, i++) {
    ...
  }
}

function (n) { while (i < n) { ... } }

function (str, len) { return str.slice(0, len); }

function f(n) { return n<2 ? 1 : f(n-1) + f(n-2); }

function (arr) { for (i of arr) { ... } }

Maximize similarity with equivalent programs

Minimize similarity with
functionally different programs

Given a program,

Figure 1: Programs with the same functionality should have the same underlying representation.
ContraCode learns such representations with contrastive learning: the network is trained to find
equivalent programs among many distractors, encoding semantics into the representation.

intensive to identify equivalent programs in a large corpus, it is cheap to leverage static compiler
transformations to automatically generate many equivalent versions of a particular source program.

In this work, we develop ContraCode, a self-supervised representation learning algorithm that uses
source-to-source compiler transformation techniques (e.g., dead code elimination, obfuscation and
constant folding) to generate syntactically diverse but functionally equivalent programs. ContraCode
uses these equivalent programs to construct a challenging discriminative pretext task that requires
the model to identify equivalent programs out of a large dataset of distractors. In doing so, it has to
embed the functionality, not the form, of the code. In essence, the domain knowledge from our code
transformations induces the knowledge of the structure of programs onto learned representations.
The contributions of our work include:

1. the novel use of compiler-inspired transformations as data augmentations for code,

2. the concept of program representation learning based on functional equivalence, and

3. a detailed analysis of architectures, code transforms and pre-train strategies, where
ContraCode improves static type inference top-1 accuracy by 9%, learned inference by 2% –
13%, summarization F1 score by up to 8% and clone detection AUROC by 5% – 10%.

2 RELATED WORK

Self-supervised learning (SSL) is a general representation learning strategy where some dimensions
or attributes of a datapoint are predicted from the remaining parts. These methods are unsupervised
in the sense that they do not rely on labels, but SSL tasks often adapt losses and architectures
designed for supervised learning. Self-supervised pre-training has yielded large improvements in
both NLP (Howard & Ruder, 2018; Devlin et al., 2018; Radford et al., 2018; 2019) and computer
vision (Mahajan et al., 2018) by improving generalization (Erhan et al., 2010; Hao et al., 2019).
Weak visual features, such as orientation (Gidaris et al., 2018), color (Zhang et al., 2016), and
context (Pathak et al., 2016), are meaningful signals for representations (Mahajan et al., 2018).

Contrastive learning unifies many past SSL approaches that compare pairs or collections of similar
and dissimilar items (Hadsell et al., 2006). Rather than training the network to predict labels
or reconstruct data, contrastive methods minimize the distance between the representations of
similar examples (positives) while maximizing the distance between dissimilar examples (negatives).
Examples include Siamese networks (Bromley et al., 1994) and triplet losses (Schroff et al., 2015).
Contrastive predictive coding (Oord et al., 2018; Hénaff et al., 2019) learns to encode chunks of
sequential data to predict of future chunks with the InfoNCE loss, a variational lower bound on
mutual information between views of the data (Tian et al., 2019; Wu et al., 2020) inspired by noise-
constrastive estimation (Gutmann & Hyvärinen, 2010). In instance discrimination tasks (Wu et al.,
2018), views and not pieces of an entire image are compared. SimCLR (Chen et al., 2020a) and
Momentum Contrast (He et al., 2019; Chen et al., 2020b) recently made progress by using many
negatives for dense loss signal. Beyond images, InfoNCE has been applied to NLP (Chuang et al.,
2020; Giorgi et al., 2020), but may require supervision (Fang & Xie, 2020).

Code representation learning There has been substantial work on architectures and tasks for
machine learning on code (Allamanis et al., 2018). We adopt the summarization task of Alon et al.
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function x(maxLine) {
  const section = {
    text: '',
    data
  };

  for (; i < maxLine; i += 1) {
    section.text += `${lines[i]}\n`;
  }

  if (section) {
    parsingCtx.sections.push(section);
  }
}

Original JavaScript method

function x(t) {
  const n = {
    'text': '',
    'data': data
  };
  for (;i < t; i += 1) {
    n.text += lines[i] + '\n';
  }
  n && parsingCtx.sections.push(n);
}

Renamed variables, explicit object style, 
explicit concatenation, inline conditional

function x(t){const 
n={'text':'','data':data};for(;i<t;i+=
1)n.text+=lines[i]
+'\n';n&&parsingCtx.sections.push(n)}

Mangled source with
compressed whitespace

Figure 2: A JavaScript method from the unlabeled training set with two automatically generated
semantically-equivalent programs. The original method is from the StackEdit Markdown editor.

(2019a), and the variable type inference task of DeepTyper (Hellendoorn et al., 2018). Other authors
have explored summarization (Movshovitz-Attias & Cohen, 2013; Allamanis et al., 2016; Iyer et al.,
2016) and type inference (Pradel et al., 2019; Pandi et al., 2020; Wei et al., 2020; Allamanis et al.,
2020; Bielik & Vechev, 2020) with different languages and datasets. The tree or graph structure of
code can be exploited to encode invariances in the representation. Inst2vec (Ben-Nun et al., 2018)
locally embeds individual statements in LLVM IR by processing a contextual flow graph with a
context prediction objective (Mikolov et al., 2013). Tree-Based CNN embeds the Abstract Syntax
Tree (AST) nodes of high-level source code. Code2seq (Alon et al., 2019a) embeds AST paths with
an attention-based encoder and LSTM decoder for supervised sequence-to-sequence tasks. Kanade
et al. (2020); Feng et al. (2020) pre-train the Transformer (Vaswani et al., 2017) on code using the
masked language modeling objective (Devlin et al., 2018), an instance of the cloze task (Taylor, 1953)
where the model reconstructs corrupted tokens. Recurrent networks have also been pre-trained on
code (Hussain et al., 2020) as language models (Peters et al., 2018; Karampatsis & Sutton, 2020).
Wang & Christodorescu (2019); Wang & Su (2019) assess the stability of program analyzers under
semi-automated program transformations. Concurrent work by Rabin & Alipour (2020) found that
code2vec and code2seq often change their classifications when statements are permuted, variables
are renamed, or other-semantic preserving transformations are applied.

3 METHOD: CONTRASTIVE CODE REPRESENTATION LEARNING

Understanding program functionality and global structure is important for difficult tasks like summa-
rizing code in natural language. For these problems, learned code representations should be similar
for functionally equivalent programs and dissimilar for non-equivalent programs (Figure 1). The
principle of contrastive learning offers a simple objective for learning such representations if data can
be organized into pairs of positives and negatives. We use each pair to shape representation space,
drawing positives together and pushing negatives apart. However, a major question remains: given an
unlabeled corpus of programs, how do we identify or generate similar programs? We address this
question in Sec. 3.1, then introduce our learning framework in Sec. 3.2.

3.1 COMPILATION AS DATA AUGMENTATION

Modern programming languages afford great flexibility to software developers, allowing them to
implement the same desired functionality in different ways. Crowdsourced datasets mined from
developers, such as GitHub repositories, have many near-duplicates in terms of textual similar-
ity (Allamanis, 2019), and are bound to contain even more functional equivalences for common
tasks. Satisfiability solvers can identify these equivalent programs (Joshi et al., 2002; Bansal &
Aiken, 2006), but functional equivalence is also undecidable in general (Rice, 1953). Also, formal
documentation of semantics is required. Programs can instead be compared approximately using
test-cases (Massalin, 1987), but this is costly and requires executing untrusted code.

Instead of searching for equivalences, we propose correct by construction data augmentation. Our
insight is to apply source-to-source compiler transformations to unlabeled code to generate many
variants with the same functionality. For example, dead-code elimination (DCE) is a common
compiler optimization that removes operations that leave the output of a function unchanged. While
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Code compression Identifier modification
3 Reformatting (R) 3 Variable renaming (VR)
3 Beautification (B) 3 Identifier mangling (IM)
3 Compression (C) Regularization
3 Dead-code elimination (DCE) 3 Dead-code insertion (DCI)
3 Type upconversion (T) 3 Subword regularization (SW)
3 Constant folding (CF) 7 Line subsampling (LS)

3 = semantics-preserving transformation 7 = lossy transformation

Table 1: We augment programs with 11 automated source-to-
source compiler transformations. 10 of the 11 transformations are
correct-by-construction and do not modify operational semantics.
More details are in Section A.3.
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Figure 3: Histogram of the num-
ber of transformed variants per
method during pre-training.

DCE preserves program functionality, Wang & Christodorescu (2019) find that up to 12.7% of the
predictions of current algorithm classification models change after DCE—supervised datasets were
not enough to acquire the domain knowledge that DCE does not matter.

A particular source code sequence, e.g. “W*x + b” is parsed unambiguously into a tree-structured
representation “(+ (* W x) b)”. This tree is then transformed by automated traversal algorithms.
A rich body of prior programming language work explores parsing then tranforming Abstract Syntax
Trees to optimize a program prior to machine code generation. If source code is output rather than
machine code, this is called source-to-source transformation. Source-to-source transformations are
common for optimization and obfuscation purposes in dynamic languages like JavaScript. If each
transformation preserves code functionality, then any composition also preserves code functionality.

We leverage the Babel and Terser compiler infrastructure tools for JavaScript (McKenzie et al., 2020;
Santos et al., 2020) to parse code into an Abstract Syntax Tree (AST) and then perform correctness-
preserving transformations on method bodies. Table 1 and Appendix A.3 list all transformations,
but we broadly group program transformations into three categories. Code compression changes
the syntactic structure of code and performs correct-by-construction transformations such as pre-
computing constant expressions at compile time. Identifier modification substitutes method and
variable names with random tokens, thereby masking part of the semantic information in programs.
Finally, transformations for Regularization improve model generalization by reducing the number
of trivial positive pairs with high text overlap; this group potentially modifies program semantics
through the line subsampling pass.

3.2 CONTRASTIVE PRE-TRAINING

Representations of semantically equivalent programs (positives) should have representations that
each are closer to each other than semantically dissimilar programs (negatives). Contrastive learning
is a natural framework to induce invariances into a model by attracting positives while repelling
negatives. To adapt recent contrastive learning objectives for images to code representation learning,
we leverage the augmentations discussed in Section 3.1.

We extend the Momentum Contrast method (He et al., 2019) that was designed for image represen-
tation learning. Our training procedure is depicted in Figure 4. Each transformation is a function
τ : P → P , where the space of programs P is composed of both the set of valid ASTs and the set
of programs in source form. At the beginning of an iteration, a batch of programs is sampled from
a large database. Each program x in the batch is transformed twice using two different, random
subsets of transformations to derive textually different query programs and key programs according to
Algorithm 1. Unlike computer vision data augmentations such as random cropping that are stochastic,
our compiler-based transformations are deterministic.

To produce a diverse set of transformed programs, we randomly apply a subset of available compiler
passes in a pre-specified order, applying transform τi with probability pi. Intermediate programs
are converted between AST and source form as needed. As all augmentations are precomputed,
we deduplicate programs variants before pre-training. Figure 3 measures this diversity. 89% of
the JavaScript functions in our dataset have more than one alternative after applying 20 random
sequences of transformations. The remaining programs without syntactically distinct alternatives
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function (...) {
    for ...
}

function log() {
    var num = ...
}

function () {... }

Unlabeled
programs

ContraCode
compiler

function (...) {
    while ...
}

function x() {
    var a = ... 
}

function () {... }

Augmented
variants

Sample & tokenize
positives
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Figure 4: ContraCode pre-trains a neural program encoder fq and transfers it to downstream tasks.
A-B. Unlabeled programs are transformed C. into augmented variants. D. We pre-train fq by
maximizing similarity of embeddings of positive program pairs–variants of the same program–and
minimizing similarity with queue of cached negatives. E. fq is fine-tuned on smaller labeled datasets.

include one-line functions that are obfuscated. We apply subword regularization (Kudo, 2018) as
a final transformation to derive different tokenizations every batch, so pairs will still differ. All
transformations are fast; our compiler transforms 300 functions per second on a single CPU core.

To reduce memory consumption during pre-training, we enqueue past batches to cache activations
for negative samples. These cached samples are valid negatives if the queue is smaller than the
dataset size. Following He et al. (2019), the query encoder fq is trained via gradient descent while
the key encoder fk is trained slowly via an exponential moving average (EMA) of the query encoder
parameters. The EMA update stabilizes the pre-computed key embeddings across training iterations.
Since keys are only embedded once per epoch, we use a very large set of negatives, over 100K, with
minimal additional computational cost and no explicit hard negative mining.

ContraCode supports different encoder architectures. We evaluate contrastive pre-training of Trans-
former (Vaswani et al., 2017) and BiLSTM (Schuster & Paliwal, 1997; Huang et al., 2015) architec-
tures, with specific details in Section 4.

Pre-training objective The contrastive objective maximizes the similarity of positives without
collapsing onto a single representation. Like He et al. (2019), we use InfoNCE (Oord et al., 2018),
a tractable objective that frames contrastive learning as a classification task: can the positives be
identified among a batch of sampled negatives? InfoNCE computes the probability of classifying the
positive (transformed program) by taking the softmax of representation similarities across a batch of
negatives. Equation (1) shows the InfoNCE loss for instance discrimination from He et al. (2019), a
function whose value is low when q is similar to the positive key embedding k+ and dissimilar to
negative key embeddings k−. t is a temperature hyperparameter proposed by Wu et al. (2018).

Lq,k+,k− = − log
exp(q · k+/t)

exp(q · k+/t) +∑
k− exp(q · k−/t) (1)

The query representation q = fq(x
q) is computed by the encoder network fq, and xq is a query

program. Likewise, k = fk(x
k) using the EMA key encoder fk. Views xq, xk depend on the specific

domain and pretext task. In our case, the views are tokenized representations of the augmented
programs, and the summation

∑
k− in the normalizing denominator is taken over the queue of

pre-computed negatives as well as other non-matching keys in the batch.

Transfer learning After pre-training converges, the encoder fq is transferred to downstream
tasks. As the output space of the task can differ from the encoder, we add a task-specific MLP or
Transformer decoder after fq , then train the resulting network end-to-end on task data.

4 EXPERIMENTS

We evaluate whether self-supervised pre-training with ContraCode improves JavaScript and Type-
Script code analysis. We benchmark on (1) extreme code summarization (Allamanis et al., 2016)
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Algorithm 1 Stochastic augmentation of programs with two possible encodings (AST or source).
1: Input: Program source x, transformation functions τ1, . . . τk, transform probabilities p1, . . . pk
2: V ← {x}, a set of augmented program variants
3: for SAMPLE i← 1 . . . N do
4: x′ ← x
5: for transform t← 1 . . . k do
6: Sample yt ∼ Bernoulli(pt)
7: if yt = 1 then
8: if REQUIRESAST(τt(·)) and ¬ISAST(x′) then x′ ← PARSETOAST(x′)
9: else if ¬REQUIRESAST(τt(·)) and ISAST(x′) then x′ ← LOWERTOSOURCE(x′)

10: x′ ← τt(x
′)

11: end if
12: end for
13: if ISAST(x′) then x′ ← LOWERTOSOURCE(x′)
14: V ← V ∪ {x′}
15: end for
16: return V

and (2) TypeScript type inference (Hellendoorn et al., 2018). ContraCode improves accuracy on
both tasks. As a baseline self-supervised approach, we pre-train a RoBERTa model with the masked
language modeling (MLM) loss on our augmented dataset, then fine-tune it on each downstream task.
Contrastive pre-training with our compiler-based augmentations outperforms baseline supervised
learning methods as well as MLM self-supervision. To probe the semantic content of representa-
tions learned with MLM, ContraCode, and a hybrid model combining both objectives, we evaluate
zero-shot performance of code clone detection (Kamiya et al., 2002), a binary classification task that
reveals that contrastive and hybrid representations are highly predictive of program functionality
in-the-wild. Further, we find it is better to augment the large set of unlabeled programs during pre-
training rather than augmenting smaller supervised datasets. As ContraCode makes no modifications
to model architecture, we find that contrastive pre-training can be applied to diverse baselines while
improving accuracy across the board.

We pre-train over a large corpus of methods extracted from popular GitHub repositories. The
CodeSearchNet dataset collected by Husain et al. (2019) contains 1,843,099 JavaScript programs.
Only 81,487 methods have both a documentation string and a method name. The asymmetry
between labeled and unlabeled programs stems from JavaScript coding practices where anonymous
functions are widespread. The pre-training dataset described in Section 3.1 is the result of augmenting
CodeSearchNet’s 1.8m programs.

4.1 IMPACT OF CONTRACODE PRE-TRAINING ON TYPE INFERENCE

JavaScript is a dynamically typed language, where variable types are determined at runtime based
on the values they represent. However, annotating code with types helps tools flag possible bugs
before runtime by statically detecting incompatible types. These annotations also help programmers
document and understand code. However, maintaining type annotations is tedious. Type inference
tools automatically predict variable types from context.

To learn to infer types, we use the same annotated dataset of TypeScript programs from Deep-
Typer (Hellendoorn et al., 2018), without GitHub repos that were made private or deleted since
publication. The training set consists of 15,570 TypeScript files from 187 projects with 6,902,642
total tokens. Validation and test sets are from held-out repositories. For additional supervision during
training, additional types are inferred by static analysis to augment user-defined types as targets. All
type annotations are removed from the input to the model. We evaluate a 2-layer Bidirectional LSTM,
as used by DeepTyper, and a 6-layer Transformer, modified from RoBERTa to have a comparable
parameter count. A 2-layer MLP head predicts types from the model’s embedding of each token. We
perform early stopping based on validation set top-1 accuracy.

Benefiting from pre-training is challenging because it requires knowledge transfer across dialects.
Our models are pre-trained on JavaScript, not TypeScript. TypeScript supports a superset of the
JavaScript grammar, adding type annotations and syntactic sugar that must be learned during fine-
tuning. Further, the pre-training dataset consists of methods, while the DeepTyper dataset includes
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Table 2: Type inference accuracy on TypeScript programs in the Hellendoorn et al. (2018) dataset.
ContraCode (BiLSTM) outperforms baseline top-1 accuracies by 2.28% to 13.16%. As ContraCode
does not modify model architecture, contrastive pre-training can be combined with each baseline.
Compared with TypeScript’s built-in type inference, ContraCode improves top-1 accuracy by 8.9%.

Baseline Method Acc@1 Acc@5
(all types) (all types)

Static analysis TypeScript CheckJS (Bierman et al., 2014) 45.11% —
Name only (Hellendoorn et al., 2018) 28.94% 70.07%

Transformer Transformer (supervised) 45.66% 80.08%
with ContraCode pre-training 46.86% 81.85%

RoBERTa Transformer (RoBERTa MLM pre-training) 40.85% 75.76%
with ContraCode pre-training 47.16% 81.44%

DeepTyper
(BiLSTM)

DeepTyper (supervised) 51.73% 82.71%
with RoBERTa MLM pre-training (10K steps) 50.24% 82.85%
with ContraCode pre-training 52.65% 84.60%
with ContraCode pre-training (w/ subword reg. ft.) 54.01% 85.55%

entire modules. Table 2 summarizes results. Contrastive pre-training outperforms all baseline learned
methods, showing meaningful transfer. Our best-performing model (bottom row) achieves +8.3%
higher top-1 accuracy than a supervised Transformer model trained from scratch, +13.2% higher than
a pre-trained RoBERTa model and +2.3% higher than DeepTyper.

ContraCode can also be applied in a drop-in fashion to each of the baselines without modifying model
architecture. Simply pre-training each baseline with our contrastive objective and data augmentations
yields absolute accuracy improvements of +1.2%, +6.3%, +2.3% top-1 and +1.8%, +5.7%, +2.8%
top-5 over the Transformer, RoBERTa, and DeepTyper, respectively. The RoBERTa baseline may
perform poorly since its masked language modeling (MLM) objective focuses on token reconstruction
that is overly sensitive to local syntactic structure. To combine the approaches, we minimized our
loss in addition to MLM as a hybrid local-global objective during pre-training.

Learning outperforms static analysis by a large margin. Overall, ContraCode achieves +8.9% higher
top-1 accuracy than the best static type inference system, the built-in TypeScript CheckJS system,
showing the promise of learned code analysis. Surfacing multiple candidate types can be useful to
users. While CheckJS only produces a single prediction which is often incorrect, one of the top-5
predictions of ContraCode is correct for 85.55% of labeled tokens.

4.2 IMPACT OF CONTRACODE PRE-TRAINING ON EXTREME CODE SUMMARIZATION

The extreme code summarization task asks a model to predict the name of a method given its
body (Allamanis et al., 2016). Tokenized method names often contain a short summary of func-
tionality, such as reverseString(...). Summarization models could explain obfuscated or poorly
documented code. We create a JavaScript summarization dataset using the 81,487 labeled methods in
the CodeSearchNet dataset. The method name is masked in the declaration of the function and then
predicted by a sequence-to-sequence model with an autoregressive decoder trained to maximize log
likelihood of the ground-truth name, a form of abstractive summarization. All models overfit, so we
use early stopping according to validation loss. As proposed by Allamanis et al. (2016), we evaluate
model predictions by precision, recall and F1 scores over the set of method name tokens.

Table 3 shows code summarization results in four settings: (1) supervised training using baseline
tree-structured architectures that analyze the AST (code2vec, code2seq), (2) pre-training on all
1.84M programs using masked language modeling followed by fine-tuning on the labeled programs
(RoBERTa), (3) supervised training from scratch with a Transformer architecture and (4) contrastive
pre-training with all 1.84M programs followed by fine-tuning with augmentations (ContraCode).

Contrastive pre-training with fine-tuning outperforms the prior code2seq model, a competitive
supervised baseline, by 8.2% in test precision, 7.3% in recall, and 7.9% in F1 score. The tree-based
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Table 3: Results for different settings of the code summarization task: supervised training with 81k
functions, masked language model pre-training and contrastive pre-training with fine-tuning.

Method Precision Recall F1

code2vec (Alon et al., 2019b) 10.78% 8.24% 9.34%
code2seq (Alon et al., 2019a) 12.17% 7.65% 9.39%
RoBERTa MLM (Liu et al., 2019) 15.13% 11.47% 12.45%
Transformer (Vaswani et al., 2017) 18.11% 15.78% 16.86%
Transformer + ContraCode + augmentation 20.34% 14.96% 17.24%

code2seq architecture is a way to encode code-specific invariances into the model, while contrastive
pre-training induces domain invariances through data augmentation; reduced inductive biases in the
Transformer model architecture leads to better performance. ContraCode outperforms self-supervised
pre-training with RoBERTa by 4.8% F1. ContraCode also achieves higher performance than the
Transformer learned from scratch with the same network architecture. While this improvement is
relatively smaller, code summarization is a difficult task. Naming conventions aren’t consistent
between programmers, and the metric measures exact token matches.

4.3 PROBING REPRESENTATIONS OF FUNCTIONALITY: ZERO-SHOT CODE CLONE DETECTION

Table 4: Code clone detection results with
cosine similarity probe. Contrastive and hy-
brid representations are predictive of func-
tionality, with +6.2%, +10% AUROC over
textual similarity (edit distance).

Representation AUROC AP

Edit distance heuristic 69.55 73.75
Transformer w/o pre-train 74.28 76.40

+ MLM pre-train 74.41 75.96
+ ContraCode pre-train 75.76 78.16
+ ContraCode + MLM 79.55 81.74

ContraCode learns to match variants of programs with
similar functionality. While these transformations pro-
duce highly diverse token sequences (Section A.4),
they are artificial and do not change the underlying
algorithm. Human programmers can solve a problem
with many data structures, algorithms and program-
ming models. Are pre-trained representations consis-
tent across programs written by different people? We
benchmark on the code clone detection task, a binary
classification task to distinguish pairs of programs solv-
ing the same problem from pairs solving different ones.
This is useful for deduplicating and refactoring code,
or checking approximate code correctness.

Datasets exist like BigCloneBench (Svajlenko et al.,
2014), but to the best of our knowledge, there is no benchmark for the JavaScript programming
language. We collected 274 in-the-wild JavaScript programs correctly solving 33 problems from the
HackerRank interview preparation website. There are 2065 pairs solving the same problem and 70K
pairs solving different problems, which we randomly subsample to 2065 to balance the classes. Since
we probe zero-shot performance, there is no training set. Traditional code analysis methods for clone
detection measure textual similarity. As a baseline heuristic classifier, we threshold the dissimilarity
score (Eq. 2), a scaled edit distance between two normalized and tokenized programs (to exclude
formatting changes). For continuous representations, we threshold cosine similarity uT v/‖u‖‖v‖.
Table 4 shows results according to the area under the ROC curve (AUROC) and average precision (AP,
area under precision-recall). Continuous representation improves clone detection over the heuristic.
However, self-supervision through masked language modeling for nearly 100 epochs of pre-training
does not help, indicating that MLM is a poor fit for representing functionality. Contrastive pre-training
achieves +6.21% higher AUROC than the baseline. A hybrid objective combining both the contrastive
loss and MLM has the best performance with +10% AUROC (+5.14% over MLM alone).

4.4 UNDERSTANDING THE IMPORTANCE OF DATA AUGMENTATION

We first analyze the effect of our proposed augmentations on supervised learning without a pre-training
phase. We then study the importance of individual augmentations during pre-training.

Supervised learning with data augmentation As a baseline, we re-train models from scratch
with compiler transforms during supervised learning rather than pre-training. Data augmentation
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Table 6: Ablating compiler transformations used during contrastive pre-training. The DeepTyper
BiLSTM is pre-trained with constrastive learning for 20K steps, then fine-tuned for type inference.
Augmentations are only used during pre-training. Each transformation contributes to accuracy.

Augmentations used during pre-training Acc@1 Acc@5

All augmentations (Table 2) 52.65% 84.60%
without identifier modification (-VR, -IM) 51.94% 84.43%
without line subsampling (-LS) 51.05% 81.63%
without code compression (-T,C,DCE,CF) 50.69% 81.95%

Table 5: Compiler data augmentations
degrade performance when training su-
pervised models from scratch.

Code summarization F1

Transformer (Table 3) 16.86
w/ LS,SW,VR,DCI aug. 15.65

Type Inference Acc@1

Transformer (Table 2) 45.66
w/ SW reg. 43.96
w/ LS,SW aug. 44.14

DeepTyper (Table 2) 51.73
w/ SW reg. 49.93
w/ LS,SW aug. 50.93
w/ stronger LS,SW aug. 50.33

artificially expands labeled training sets. For sequence-to-
sequence summarization, we apply a variety of augmenta-
tions; these all preserve the method name label. For type
inference, labels are aligned to input tokens, so they must
be realigned after transformation. We apply all token-level
transformations that track label locations.

Table 5 shows results. Compiler-based data augmentations
degrade supervised models, perhaps by creating a training
distribution not reflective of evaluation programs. How-
ever, as shown in 4.1 – 4.3, augmenting during ContraCode
pre-training yields a more robust model. Our contrastive
learning framework also allows learning over large num-
bers of unlabeled programs that supervised learning alone
cannot leverage. The ablation indicates that augmentations
do not suffice, and contrastive learning is important.

Ablating data pre-training augmentations Some data
augmentations may be more valuable than others for learn-
ing a representation via instance discrimination. Empirically, pre-training converges faster with a
smaller set of augmentations at the same batch size since the positives are syntactically more similar,
but this hurts downstream performance. Table 6 shows that type inference accuracy degrades when
different groups of augmentations are removed. Semantics-preserving code compression passes that
require code analysis are the most important, improving top-1 accuracy by 1.95% when included.
Line subsampling serves as a regularizer, but changes program semantics. LS is relatively less
important, but does help accuracy. Identifier modification passes preserve semantics, but remove
potentially useful naming information. Removing these hurts accuracy the least.

Additional results We perform additional ablations in Section A.1 by transferring different parts
of the network to downstream tasks, computing the contrastive objective with representations taken
from different encoder layers, varying architecture, and tuning the pre-training procedure. These
experiments suggest that as many parameters as possible should be transferred to the downstream
task. Details of the pre-training strategy are also important. Computing the contrastive objective using
a “global” representation q summarizing the whole input sequence xq outperforms more a “local”
representation based on aggregating token representations. Further, a large batch size is helpful to
stabilize pre-training. Section A.2 includes qualitative results.

5 CONCLUSIONS

Large-scale unannotated repositories of code like GitHub are a powerful resource for learning
machine-aided programming tools. However, most current approaches to code representation learning
do not leverage unannotated data. We propose ContraCode, a contrastive self-supervised algorithm
that learns representations that are invariant to code transformations. Our method optimizes for this
invariance via novel compiler-based data augmentations for code. ContraCode significantly improves
the accuracy of extreme code summarization baselines (+2.3% to +13.2%), TypeScript type inference
models (up to +7.9% F1) and code clone detection (+5 to +10% AUROC). ContraCode outperforms
self-supervised RoBERTa pre-training. Moreover, contrastive pre-training outperforms supervised
training with our augmentations. As ContraCode makes no modifications to model architecture and
simply adds a training phase, it consistently improves accuracies when applied to diverse baselines.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of code. In
Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2019, pp. 143–153, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450369954. doi: 10.1145/3359591.
3359735.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for extreme
summarization of source code. In International Conference on Machine Learning (ICML), 2016.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):81, 2018.

Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. Typilus: Neural type hints. In
Programming Language Design and Implementation (PLDI), 2020.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. In International Conference on Learning Representations,
2019a.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed represen-
tations of code. Proceedings of the ACM on Programming Languages, 2019b.

Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In Proceedings
of the 12th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, pp. 394–403, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595934510. doi: 10.1145/1168857.1168906.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension: A
learnable representation of code semantics. In NeurIPS, 2018.

Samuel Benton, Ali Ghanbari, and Lingming Zhang. Defexts: A curated dataset of reproducible
real-world bugs for modern jvm languages. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), pp. 47–50. IEEE, 2019.

Pavol Bielik and Martin Vechev. Adversarial robustness for code. CoRR, 2020.

Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In European
Conference on Object-Oriented Programming (ECOOP), 2014.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature
verification using a" siamese" time delay neural network. In Advances in neural information
processing systems, pp. 737–744, 1994.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Macnine Learning,
2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen, Antonio Torralba, and Stefanie Jegelka. Debi-
ased contrastive learning, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Annual Conference of the North
American Chapter of the Association for Computational Linguistics, 2018.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

Hongchao Fang and Pengtao Xie. CERT: Contrastive self-supervised learning for language under-
standing. arXiv preprint arXiv:2005.12766, May 2020.

10



Under review as a conference paper at ICLR 2021

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. CodeBERT: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy. A public unified
bug dataset for Java. In Proceedings of the 14th International Conference on Predictive Models
and Data Analytics in Software Engineering, pp. 12–21, 2018.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

John M. Giorgi, Osvald Nitski, Gary D. Bader, and Bo Wang. DeCLUTR: Deep contrastive learning
for unsupervised textual representations. arXiv preprint arXiv:2006.03659, 2020.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304, 2010.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Visualizing and understanding the effectiveness of bert.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 4134–4143, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. Deep learning type
inference. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 152–162, 2018.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami,
and Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. In
International Conference on Machine Learning, 2019.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp.
328–339, 2018.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
CodeSearchNet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Yasir Hussain, Zhiqiu Huang, Yu Zhou, and Senzhang Wang. Deep transfer learning for source code
modeling. International Journal of Software Engineering and Knowledge Engineering, 30(05):
649–668, May 2020. ISSN 1793-6403. doi: 10.1142/s0218194020500230.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code
using a neural attention model. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2073–2083, 2016.

Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: A goal-directed superoptimizer. In Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementa-
tion, PLDI ’02, pp. 304–314, New York, NY, USA, 2002. Association for Computing Machinery.
ISBN 1581134630. doi: 10.1145/512529.512566.

11



Under review as a conference paper at ICLR 2021

T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions on Software Engineering, 28(7):654–670,
2002. doi: 10.1109/TSE.2002.1019480.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Pre-trained contextual
embedding of source code. ArXiv, abs/2001.00059, 2020.

Rafael-Michael Karampatsis and Charles Sutton. SCELMo: Source code embeddings from language
models. arXiv preprint arXiv:2004.13214, 2020.

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field study of refactoring
challenges and benefits. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, pp. 1–11, 2012.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 66–75, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European Conference on Computer Vision, pp. 181–196, 2018.

Henry Massalin. Superoptimizer: A look at the smallest program. In Proceedings of the Second
International Conference on Architectual Support for Programming Languages and Operating
Systems, ASPLOS II, pp. 122–126, Washington, DC, USA, 1987. IEEE Computer Society Press.
ISBN 0818608056. doi: 10.1145/36206.36194.

Sebastian McKenzie et al. Babel: compiler for writing next generation javascript. https://github.
com/babel/babel, 2020.

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate, portable
and fast basic block throughput estimation using deep neural networks. In International Conference
on Machine Learning, pp. 4505–4515, 2019.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pp. 3111–3119, 2013.

Dana Movshovitz-Attias and William Cohen. Natural language models for predicting programming
comments. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 35–40, 2013.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Irene Vlassi Pandi, Earl T. Barr, Andrew D. Gordon, and Charles Sutton. Opttyper: Probabilistic type
inference by optimising logical and natural constraints, 2020.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug detection.
Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–25, 2018.

12

https://github.com/babel/babel
https://github.com/babel/babel


Under review as a conference paper at ICLR 2021

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. Typewriter: Neural type prediction
with search-based validation. arXiv preprint arXiv:1912.03768, 2019.

Md. Rafiqul Islam Rabin and Mohammad Amin Alipour. Evaluation of generalizability of neural
program analyzers under semantic-preserving transformations, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. ArXiv, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. ArXiv, 2019.

Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 74(2):358–366, 1953.

Fábio Santos et al. Terser: Javascript parser, mangler and compressor toolkit for es6+. https:
//github.com/terser/terser, 2020.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Mike Schuster and Kuldip Paliwal. Bidirectional recurrent neural networks. Signal Processing, IEEE
Transactions on, 45:2673 – 2681, 12 1997. doi: 10.1109/78.650093.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Richard Shin, Neel Kant, Kavi Gupta, Christopher Bender, Brandon Trabucco, Rishabh Singh, and
Dawn Song. Synthetic datasets for neural program synthesis. arXiv preprint arXiv:1912.12345,
2019.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Mohammad Mamun Mia.
Towards a big data curated benchmark of inter-project code clones. In Proceedings of the 2014
IEEE International Conference on Software Maintenance and Evolution, ICSME ’14, pp. 476–480,
USA, 2014. IEEE Computer Society. ISBN 9781479961467. doi: 10.1109/ICSME.2014.77. URL
https://doi.org/10.1109/ICSME.2014.77.

Wilson L Taylor. “Cloze procedure”: A new tool for measuring readability. Journalism Quarterly,
30(4):415–433, 1953.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. CoRR, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Ke Wang and Mihai Christodorescu. COSET: A benchmark for evaluating neural program embed-
dings. arXiv preprint arXiv:1905.11445, 2019.

Ke Wang and Zhendong Su. Learning blended, precise semantic program embeddings. ArXiv, 2019.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. Lambdanet: Probabilistic type inference using
graph neural networks. In International Conference on Learning Representations, 2020.

Mike Wu, Chengxu Zhuang, Milan Mosse, Daniel Yamins, and Noah Goodman. On mutual informa-
tion in contrastive learning for visual representations, 2020.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3733–3742, 2018.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European
Conference on Computer Vision, pp. 649–666. Springer, 2016.

13

https://github.com/terser/terser
https://github.com/terser/terser
https://doi.org/10.1109/ICSME.2014.77


Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 ADDITIONAL RESULTS AND ABLATIONS

Code clone detection ROC and PR curves Figure 5 plots true postive rate vs false positive rate
and precision vs recall for different zero-shot classifiers on the code clone detection downstream
tasks. These classifiers threshold a similarity score given by token-level edit distance for the heuristic
approach or cosine similarity for the neural network representations. The hybrid self-supervised
model combining ContraCode’s contrastive objective and masked language modeling achieves better
tradeoffs than the other approaches.
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Figure 5: Receiver Operating Characteristic (ROC, left) and Precision-Recall (PR, right) curves for
zero-shot classifiers on the code clone detection task. Equal F1 score curves are shown on right.

Which part of the model should be transferred? SimCLR (Chen et al., 2020a) proposed using
a small MLP head to reduce the dimensionality of the representation used in the InfoNCE loss
during pre-training, and did not transfer the MLP to the downstream image-classification task. In
contrast, we find it beneficial to transfer part of the contrastive MLP head to type inference, showing
a 2% improvement in top-5 accuracy over transferring the encoder only (Table 7). We believe the
improvement stems from fine-tuning both the encoder and MLP which allows feature adaptation,
while SimCLR trained a linear model on top of frozen features. We only transferred the MLP when
contrasting the mean of token embeddings during pre-training, not the terminal hidden states, as the
dimensionality of the MLP head differs. These representations are compared next.

Table 7: If local representations are learned, transferring part of the Contrastive MLP head improves
type inference. The encoder is a 2-layer BiLSTM (d=512), with a 2-layer MLP head for both
pre-training purposes and type inference. The mean hidden state representation is optimized for 10K
iterations for the purposes of this ablation.

Transferred from pre-training Acc@1 Acc@5

Transfer BiLSTM 49.32% 80.03%
Transfer BiLSTM, 1 layer of MLP 49.15% 82.58%

Should we pre-train global or local representations? We compare pre-training DeepTyper with
two variants of ContraCode. We either use the mean of token hidden states across the program
(averaging local features), or the terminal hidden states as input to the MLP used to extract the
contrastive representation q = fq(x) (global features). Token-level features might capture more
syntactic details, but averaging pooling ignores order. Table 8 shows the accuracy of a BiLSTM
pre-trained with each strategy. Using the global features for pre-training yields significantly improved
performance, +2.38% acc@1 after 10K iterations of pre-training (not converged for the purposes of
ablation). The global pre-training strategy achieves the best results in Table 2.

Do pre-trained encoders help more with shallow decoders? For the sequence-to-sequence code
summarization task, ContraCode only pre-trains the encoder of the Transformer. In Table 9, we
ablate the depth of the decoder to understand how much shallow decoders benefit from contrastive
pre-training of the encoder. Similar experiments were performed in a vision context by Erhan et al.
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Table 8: Contrasting global, sequence-level representations outperforms contrasting local representa-
tions. We compare using the terminal (global) hidden states of the DeepTyper BiLSTM and the mean
pooled token-level (local) hidden states.

Representation Optimization Acc@1 Acc@5

Global InfoNCE with terminal hidden state, 20K steps (Table 2) 52.65% 84.60%
InfoNCE with terminal hidden state, 10K steps 51.70% 83.03%

Local InfoNCE with mean token rep., 10K steps 49.32% 80.03%

Table 9: Training time and decoder depth ablation on the method name prediction task. Longer
pre-training significantly improves downstream performance when a shallow, 1 layer decoder is used.

Decoder Pre-training Supervision Precision Recall F1(1.8M programs) (81k programs)

Transformer, 1 layer MoCo, 10k steps Original set 11.91% 5.96% 7.49%
Transformer, 1 layer MoCo, 45k steps Original set 17.71% 12.57% 13.79%
Transformer, 4 layers MoCo, 45k steps Original set 18.21% 13.21% 14.56%

(2010), where different numbers of layers of a classifier are pretrained. After 45k pre-training steps,
the 4-layer decoder achieves 0.50% higher precision, 0.64% higher recall and 0.77% higher F1 score
than the 1-layer model, so additional decoder depth is helpful for the downstream task. The 1-layer
decoder model also benefits significantly from longer pre-training, with a 6.3% increase in F1 from
10k to 45k iterations. This large of an improvement indicates that ContraCode could be more helpful
for pre-training when the number of randomly initialized parameters at the start of fine-tuning is
small. For larger decoders, more parameters must be optimized during-finetuning, and the value of
pre-training is diminished.

Top 5 accuracy

1x queue fill rate
12x queue fill rate

Figure 6: Pre-training
quickly converges if nega-
tive programs in the queue
are frequently changed.

Contrastive representation learning strategies In Figure 6, we
compare two strategies of refreshing the MoCo queue of key embed-
dings (the dictionary of negative program representations assumed to
be non-equivalent to the batch of positives). In the first strategy, we
add 8 items out of the batch to the queue (1×), while in the second
we add 96 items (12×). In addition, we use a larger queue (65k versus
125k keys) and a slightly larger batch size (64 versus 96). We observe
that for the baseline queue fill rate, the accuracy decreases for the first
8125 iterations as the queue fills. This decrease in accuracy is expected
as the task becomes more difficult due to the increasing number of neg-
atives during queue warmup. However, it is surprising that accuracy
grows so slowly once the queue is filled. We suspect this is because the
key encoder changes significantly over thousands of iterations: with a
momentum term m = 0.999, the original key encoder parameters are
decayed by a factor of 2.9× 10−4 by the moving average. If the queue
is rapidly refreshed, queue embeddings are predicted by recent key
encoders, not old parameters. This also indicates that a large diversity
of negative, non-equivalent programs are helpful for rapid convergence
of ContraCode pre-training.

A.2 QUALITATIVE RESULTS

t-SNE visualization of representations We qualitatively inspect the structure of the learned rep-
resentation space by visualizing self-supervised representations of variants of 28 programs using
t-SNE (Maaten & Hinton, 2008) in Figure 7. Representations of transformed variants of the same
program are plotted with the same color. ContraCode (BiLSTM) clusters variants closely together.
Indeed, contrastive learning learns representations that are invariant to a wide class of automated
compiler-based transformations. In comparison, the representations learned by masked language mod-
eling (RoBERTa) show more overlap between different programs, and variants do not cleanly cluster.
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Figure 7: t-SNE (Maaten & Hinton, 2008) plot of program representations learned with masked
language modeling (RoBERTa), contrastive learning (ContraCode), and a hybrid loss (RoBERTa +
ContraCode). Transformed variants of the same program share the same color, though colors may be
similar across different programs.

With a hybrid loss combining masked language modeling and contrastive learning, representations of
variants of the same program once again cluster.

Code summaries Figure 8 shows a qualitative example of predictions for the code summarization
task. The JavaScript method is not seen during training. A Transformer pretrained with ContraCode
predicts the correct method name as the most likely decoding through beam search. The next four
predictions are reasonable, capturing that the method processes an image. The 2nd and 3rd most likely
decodings, getImageItem and createImage, use get and create as synonyms for load, though the
final two unlikely decodings include terms not mentioned in the method body.

function x(url, callback, error) {
var img = new Image();
img.src = url;
if(img.complete){
return callback(img);

}
img.onload = function(){
img.onload = null;
callback(img);

};
img.onerror = function(e){
img.onerror = null;
error(e);

};
}

Ground truth: loadImage
Prediction: loadImage

Other predictions:

1. getImageItem

2. createImage

3. loadImageForBreakpoint

4. getImageSrcCSS

Figure 8: A JavaScript program from the CodeSearchNet dataset not seen during training and the
predicted method names from a Transformer pre-trained with ContraCode. ContraCode predicts the
correct method name as its most likely decoding.

Type inferences We can also visualize outputs of the type inference model. Figure 9 shows two
TypeScript programs from the held-out test set. User-provided type annotations are removed from
the programs, and the model is provided with a tokenized form without access to dependencies. We
visualize predictions from a variant of DeepTyper pretrained with ContraCode, the best-performing
model in Table 8. In the first program, our model consistently predicts the correct return and
parameter type. While a tool based on static analysis could infer the void return types, the type
of the message argument is ambiguous without access to the imported write method signature.
Still, the model correctly predicts with high confidence that the variable message is a string. In the
second program, ContraCode correctly predicts 4 of 8 types including the ViewContainerRef and
ChangeDetectorRef types, each imported from the AngularJS library. As this sample is held-out
from the training set, these predictions show generalization from other repositories using AngularJS.
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import {
  write,
  categories,
  messageType
} from "s";
export const animationsTraceCategory = "s";
export const rendererTraceCategory = "s";
export const viewUtilCategory = "s";
export const routerTraceCategory = "s";
export const routeReuseStrategyTraceCategory = "s";
export const listViewTraceCategory = "s";
export function animationsLog ( message: string 100.0% ): void 99.9% {
  write(message, animationsTraceCategory);
}
export function rendererLog (msg): void 53.7% {
  write(msg, rendererTraceCategory);
}
export function rendererError ( message: string 99.5% ): void 99.7% {
  write(message, rendererTraceCategory, messageType.error);
}
export function viewUtilLog (msg): void 100.0% {
  write(msg, viewUtilCategory);
}
export function routerLog ( message: string 99.9% ): void 100.0% {
  write(message, routerTraceCategory);
}
export function routeReuseStrategyLog ( message: string 99.8% ): void 99.98% {
  write(message, routeReuseStrategyTraceCategory);
}
export function styleError ( message: string 99.97% ): void 100.0% {
  write(message, categories.Style, messageType.error);
}
export function listViewLog ( message: string 100.0% ): void 100.0% {
  write(message, listViewTraceCategory);
}
export function listViewError ( message: string 99.93% ): void 100.0% ...

import {
  ComponentRef,
  ComponentFactory,
  ViewContainerRef,
  Component,
  Type,
  ComponentFactoryResolver,
  ChangeDetectorRef
} from "s";
import {
  write
} from "s";
export const CATEGORY = "s";

function log( message: string 56.95 ) {
  write(message, CATEGORY);
}
@ Component({
  selector: "s",
  template: `template`
}) export class DetachedLoader {
  constructor(private resolver: ViewContainerRef 63.85% (GT: ComponentFactoryResolver) ,
              private changeDetector: ChangeDetectorRef 100.0% ,
              private containerRef: ViewContainerRef 100.0% ) {}
  private loadInLocation (
      componentType<any>: TemplateRef 99.6% (GT: Type)) <ComponentRef<any>>: Promise 100.0% {
    const factory = this.resolver.resolveComponentFactory(componentType);
    const componentRef = this.containerRef.createComponent(
      factory, this.containerRef.length, this.containerRef.parentInjector);
    log("s");
    return Promise.resolve(componentRef);
  }
  public detectChanges() {
    this.changeDetector.markForCheck();
  }
  public loadComponent (
      componentType<any>: TemplateRef 99.9% (GT: Type)) <ComponentRef<any>>: Promise 100.0% {
    log("s");
    return this.loadInLocation(componentType);
  } ...

Figure 9: Our model, a variant of DeepTyper pretrained with ContraCode, generates type annotations
for two programs in the held-out set. The model consistently predicts the correct return type
of functions, and even predicts project-specific types imported at the top of the file. The model
corresponds to the top row of Table 8, though is not our best performing model.
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A.3 PROGRAM TRANSFORMATION DETAILS

We use the Babel compiler infrastructure (McKenzie et al., 2020) and the terser JavaScript library for
AST-based program transformations. We perform variable renaming and dead code insertion (variable
declaration insertion) using custom Babel transforms, subword regularization with sentencepiece
Python tokenization library, line subsampling using JavaScript string manipulation primatives and
other transformations with terser. Terser has two high-level transformation modes, mangling and
compression, each with finer grained controls such as formatting, comment and log removal, and dead
code elimination. We show an example merge sort with example equivalent variants in Figure 11.

Reformatting, beautification, compression (R, B, C): Personal coding conventions do not affect
the semantics of code; auto-formatting normalizes according to a style convention.

Dead-code elimination (DCE): In this pass, all unused code with no side effects are removed.
Various statements can be inlined or removed as stale or unneeded functionality.

Type upconversion (T): In JavaScript, some types are polymorphic & can be converted between
each other. As an example, booleans can be represented as true or as 1.

Constant folding (CF): During constant folding, all expressions that can be pre-computed at compi-
lation time can be inlined. For example, the expression (2 + 3) * 4 is replaced with 20.

Variable renaming, identifier mangling (VR, IM): Arguments can be renamed with random word
sequences and identifiers can be replaced with short tokens to make the model robust to naming
choices. Program behavior is preserved despite obfuscation.

Dead-code insertion (DCI): Commonly used no-ops such as comments and logging are inserted.

Subword regularization (SW): From Kudo (2018), text is tokenized in several different ways, with
a single word (_function) or subtokens (_func tion).

Line subsampling (LS): We randomly sample (p = 0.9) lines from a method body. While not
semantics-preserving, line subsampling serves as a regularizer.

While compilers are generally deterministic, we require a variety of alternatives to each program for
contrastive representation learning. Algorithm 1 samples N augmented variants of a source program
x using a set of deterministic compiler transformations τi. Stochasticity is introduced by randomly
toggling each transformation according to Bernoulli samples with probabilities pi. When adding a
program to the set of variants V , uniqueness is determined by string comparison.

A.4 HOW SIMILAR ARE TRANSFORMED PROGRAMS?

To understand the diversity created by program transformations, we compute the Levenshtein mini-
mum edit distance between positive pairs in the precomputed pre-training dataset, i.e. transformed
variants of the same source method. For comparison, we also compute the edit distance between
negative pairs, i.e. transformed variants of different programs. The edit distance D(xq, xk) computes
the minimum number of token insertions, deletions or substitutions needed to transform the tokenized
query progrm xq into the key program xk. To normalize by sequence length | · |, let

dissimilarityD(xq, xk) =
D(xq, xk)

max(|xq|, |xk|)
(2)

Dissimilarity ranges from 0% for programs with the same token sequence such as positives before
applying our transformations, to 100% for programs without any shared tokens. Note that whitespace
transformations do not affect the metric because the tokenizer collapses repeated whitespace. For the
positives, we estimate dissimilarity by sampling one pair per source program in the CodeSearchNet
dataset (1.6M source programs with at least one pair). We sample the same number of negative pairs.

Figure 10 shows a histogram of token dissimilarity. Positive pairs have 65% mean dissimilarity, while
negatives have 86% mean dissimilarity. Negatives are more dissimilar on average as source sequences
could have different lengths, idioms and functionality. Still, the transformations generated quite
different positive sequences, with less than half of their tokens shared. The 25th, median and 75th
percentile dissimilarity is 59%, 66% and 73% for positives, and 82%, 87% and 90% for negatives.
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Figure 10: Histogram of pairwise token dissimilarity for contrastive positives (transformed variants
of the same method) and negatives (transformed variants of different methods). Code transformations
produce positives with dissimilar token sequences.

A.5 EXPERIMENTAL SETUP

Architectures The Transformer has 6 encoder layers (23M parameters) in all experiments, and 4
decoder layers for method name prediction in Table 3. We leverage the default positional embedding
function (sin, cos) as used in the original Transformer architecture. The network originally proposed
in DeepTyper (Hellendoorn et al., 2018) had 11M parameters with a 300 dimensional hidden state.
We increase the hidden state size to 512 to increase model capacity, so our BiLSTM for type
prediction has 17.5M parameters. During fine-tuning, across all experiments, we optimize parameters
using Adam with linear learning rate warmup and decay. For the Transformer, the learning rate is
linearly increased for 5,000 steps from 0 to a maximum of 10−4. For the bidirectional LSTM, the
learning rate is increased for between 2,500 and 10,000 steps to a maximum of 10−3. Type inference
hyperparameters are selected by validation top-1 accuracy.

ContraCode pretraining The InfoNCE objective (1) is minimized with temperature t = 0.07
following He et al. (2019). Also following He et al. (2019), the key encoder’s parameters are
computed with the momentum update equation θk ← mθk + (1−m)θq, equivalent to an EMA of
the query encoder parameters θq . To pretrain a Transformer using the ContraCode objective, we first
embed each token in the program using the Transformer. However, the InfoNCE objective is defined
in terms of a single embedding for the full program. The ContraCode Transformer is pretrained
with a batch size of 96. Our model averages the 512-dimensional token embeddings across the
sequence, then applies a two-layer MLP with 512 hidden units and a ReLU activation to extract a
128-dimensional program embedding for the loss.

The DeepTyper bidirectional LSTM architecture offers two choices for extracting a global program
representation. We aggregate a 1024-dimensional global representation of the program by concate-
nating its four terminal hidden states (from two sequence processing directions and two stacked
LSTM layers), then apply the same MLP architecture as before to extract a 128-dimensional program
representation. Alternatively, we can average the hidden state concatenated from each direction across
the tokens in the sequence before applying the MLP head. We refer to the hidden-state configuration
as a global representation and the sequence averaging configuration as a local representation in
Table 8. We pre-train the BiLSTM with large batch size of 512 and apply weight decay.

Type prediction Following DeepTyper (Hellendoorn et al., 2018), our regenerated dataset for
type prediction has 187 training projects with 15,570 TypeScript files, totaling 6,902,642 tokens.
We tune hyperparameters on a validation set of 23 distinct projects with 1,803 files and 490,335
tokens, and evaluate on a held-out test set of 24 projects with 2,206 files and 958,821. The training
set is smaller than originally used in DeepTyper as several projects were made private or deleted
from GitHub before May 2020 when we downloaded the data, but we used the same commit hashes
for available projects so our splits are a subset of the original. We have released the data with our
open-source code to facilitate further work on a stable benchmark as more repositories are deleted
over time. We perform early stopping to select the number of training epochs. We train each model
for 100 epochs and select the checkpoint with the minimum accuracy@1 metric (all types, including
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Original merge sort program

// Split the array into halves and merge them recursively
function mergeSort (arr) {
if (arr.length === 1) {
// return once we hit an array with a single item
return arr

}
const middle = Math.floor(arr.length / 2)
// get the middle item of the array rounded down
const left = arr.slice(0, middle)
// items on the left side
const right = arr.slice(middle)
// items on the right side
return merge(
mergeSort(left),
mergeSort(right)

)
}

After variable renaming, comment removal, reformatting (mangling)

function mergeSort(e) {
if (e.length === 1) {
return e;

}
const t = Math.floor(e.length / 2);
const l = e.slice(0, t);
const n = e.slice(t);
return merge(mergeSort(l), mergeSort(n));

}

After combining variable declarations, inlining conditional (mangling and compression)

function mergeSort(e) {
if (1 === e.length) return e;
const t = Math.floor(e.length / 2), r = e.slice(0, t), n = e.slice(t);
return merge(mergeSort(r), mergeSort(n));

}

Figure 11: Given a JavaScript code snippet implementing the merge sort algorithm, we apply
semantics-preserving transformations to produce functionally-equivalent yet textually distinct code
sequences. Compression passes eliminates unnecessary characters such as redundant variable decla-
rations and brackets, while mangling passes can change variable names.

any) on the validation set. Except for the model learned from scratch, the Transformer architectures
are pre-trained for 240K steps. Models with the DeepTyper architecture converge faster on the
pre-training tasks and are pre-trained for 20K iterations (unless otherwise noted).

Extreme code summarization by method name prediction We train method prediction models
using the labeled subset of CodeSearchNet. Neither method names nor docstrings are provided as
input to the model: the docstring is deleted, and the method name is replaced with the token ‘x’. Thus,
the task is to predict the method name using the method body and comments alone. To decode method
names from all models except the code2vec and code2seq baselines which implement their own
decoding procedures, we use a beam search with a beam of size 5 and a maximum target sequence
length of 20 subword tokens. We detail the cumulative distribution of program lengths in Figure 12.
The ContraCode summarization Transformer only needed to be pre-trained for 20K iterations, with
substantially faster convergence than RoBERTa (240K iterations). During fine-tuning, we apply the
LS,SW,VR,DCI augmentations to ContraCode.
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Figure 12: CodeSearchNet code summarization dataset statistics: (a) The majority of code sequences
are under 2000 characters, but there is long tail of programs that span up to 15000 characters long,
(b) JavaScript method names are relatively short compared to languages like C] and Java.

A.6 BASELINES

Baselines for code summarization and type prediction trained their models on an inconsistent set of
programming languages and datasets. In order to normalize the effect of datasets, we selected several
diverse state-of-the-art baselines and reimplemented them on the JavaScript dataset.

AST-based models The authors of code2vec (Alon et al., 2019b) and code2seq (Alon et al., 2019a),
AST-based code understanding models, made both data and code available, but train their model
on the Java programming language. In order to extend the results in their paper to JavaScript for
comparison with our approach, we generated an AST path dataset for the CodeSearchNet dataset.
The sensitivity of path-mining embeddings to different datasets is documented in prior work, so
published F1 scores are not directly comparable; F1 scores for code2vec (Alon et al., 2019b) vary
between 19 (Alon et al., 2019a) and 43 (Alon et al., 2019b) depending on the dataset used. Therefore,
we use the same dataset generation code as the authors for fair comparison. We first parse the source
functions using the Babel compiler infrastructure. Using the original code on these ASTs, up to 300
token-to-token (leaf-to-leaf) paths are extracted from each function’s AST as a precomputed dataset.
Then, we generate a token and AST node vocabulary using the same author-provided code, and train
the models for 20 epochs, using early stopping for code2seq. We observed that code2vec overfits
after 20 epochs, and longer training was not beneficial.

DeepTyper (Hellendoorn et al., 2018) DeepTyper uses a two layer GRU with a projection over
possible classes, with an embedding size of 300 and hidden dimension of 650. However, we found
improved performance by replacing the GRU with a bidirectional LSTM (BiLSTM). We normalize
the LSTM parameter count to match our model, and therefore use a hidden dimension size of 512.
We also use subword tokenization rather than space delimited tokens according to Kudo (2018), as
subword tokenization is a key part of state-of-the-art models for NLP (Sennrich et al., 2015).

RoBERTa We pre-trained an encoder using RoBERTa’s masked language modeling loss on our
augmented version of CodeSearchNet, the same data used to pretrain ContraCode. This model is
then fine-tuned on downstream datasets. Unlike the original BERT paper which cuBERT (Kanade
et al., 2020) is based on, hyperparameters from RoBERTa have been found to produce better results
during pre-training. RoBERTa pre-trains using a masked language modeling (MLM) objective, where
15% of tokens in a sentence are masked or replaced and are reconstructed by the model. We did not
use the BERT Next Sentence Prediction (NSP) loss which RoBERTa finds to be unnecessary. We
normalize baseline parameter count by reducing the number of Transformer layers from 24 to 6 for a
total of 23M parameters.
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