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ABSTRACT

Fine-tuning large language models (LLMs) on task-specific data provides strong
in-domain performance but limits generalization and requires storage of many
specialized models. Retraining a unified multitask model is often infeasible, as
it demands task-specific training data that may be unavailable, raise privacy con-
cerns, or incur prohibitive computational costs. Model merging has been proposed
as an alternative solution that effectively integrates the distinct strengths of sev-
eral fine-tuned models into a single, comprehensive model. The majority of model
merging approaches rely on performing arithmetic operations directly on model
parameters. Although research in model merging has expanded significantly in re-
cent years, two distinct approaches have become dominant: 1) techniques that mit-
igate interference from redundant parameters and sign conflicts, and 2) techniques
that account for the varying sensitivity of individual parameters. However, these
two approaches operate independently without considering each other’s strengths
and remain disconnected from each other. In this work, we aim to unify these
two well-established yet currently disconnected approaches by integrating insights
from both the approaches. We propose DRIFT-MEDIAN, a unified framework for
merging models that leverages Fisher information to assign appropriate weights
to the task vectors. Our contribution lies in the development of a closed-form so-
lution of loss function grounded in the Fisher-weighted median. The formulation
ensures that parameter contributions reflect both sensitivity and relevance, lead-
ing to more robust model merging. This mechanism prioritizes parameters with
high task-specific sensitivity in the merged representation, while naturally dimin-
ishing the influence of less important parameters. Comprehensive experiments on
Llama-3.1-8B, Llama-3.2-3B, Llama-2-7b, GPT-2, CLIP-ViT-B/32 models across
mathematics, coding, multilingual reasoning, safety, instruction following, GLUE
benchmark and vision tasks demonstrate that DRIFT-MEDIAN outperforms ex-
isting model merging methods.

1 INTRODUCTION

Large Language Models (LLMs) (Radford et al., 2019; Grattafiori et al., 2024; Touvron et al., 2023)
usually require fine-tuning on domain-specific datasets to achieve optimal performance in special-
ized tasks. Although this approach yields strong in-domain performance, it introduces significant
practical challenges in terms of substantial storage, computational costs, and limited data availability
or data privacy constraints. Model merging has emerged as a compelling solution to these challenges
by combining parameters from independently fine-tuned models of identical architecture into a sin-
gle unified model (Ilharco et al., 2022a; Hinton et al., 2006; Yadav et al., 2023; Yu et al., 2024; Yang
et al., 2023), eliminating the need for costly retraining. Existing approaches operate either in the pa-
rameter space (PS), where merging directly manipulates model weights (Jin et al., 2023; Shoemake,
1985; Akiba et al., 2025; Yang et al., 2023), or in data-flow space (DFS), where individual model pa-
rameters remain intact while optimization focuses on inference pathways (Kim et al., 2024). Hybrid
approaches such as Evolutionary Model Merging (Akiba et al., 2025) incorporate elements of both
paradigms. Despite significant progress in this field, there is still considerable scope for improving
the effectiveness of current parameter-space merging methods.

Challenges and Motivation: A comprehensive review of current parameter-space merging tech-
niques highlights two distinct approaches. While each addresses complementary facets of the merg-
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Figure 1: Overview of the steps involved in the proposed model merging approach. (a) θ0 and
θ
(m)
ft (with specific color) represent base model and different fine-tuned models respectively. (b)

In the sign resolution step, task vectors that agree in sign are retained to compute the fine-tuned
parameters θ̂(m)

ft . 1, 2, 3, 4, 5 inside small square boxes represent parameter indices. (c) Diagonal
Fisher matrix is estimated from the fine-tuned parameters. (d) Top-K models are selected at each
coordinate based on distance from the base model, using a specified threshold value. Superscript
and subscript of θ represent respective fine-tuned model and parameter indices. (e) Finally, Fisher-
weighted aggregation yields τ∗, followed by scaling (f) to obtain the merged parameters θmerge.

ing challenge, they fall short of exploiting the synergistic benefits that their integration could offer
- (1) approaches that resolve parameter interference during merging but do not consider parameter
sensitivity to task performance (Yadav et al., 2023; Yu et al., 2024), and (2) methods that account
for individual parameter sensitivity but do not address parameter interference aspects during the
merging process (Matena & Raffel, 2022).

An example of the first type is TIES merging Yadav et al. (2023) that tackles two key sources of
interference namely the sign disagreement, where task vectors exhibit opposing directional updates
that cancel each other during averaging, and redundant parameters, where uninformative updates
dilute the contributions of more significant changes. However, it does not consider individual pa-
rameter sensitivity to task performance, potentially allowing less critical parameters to overshadow
more influential ones during the merging process.

An alternative approach, represented by Fisher merging (Matena & Raffel, 2022), incorporates pa-
rameter sensitivity through Fisher information weighting. It tackles the problem as maximizing the
joint likelihood of the models’ posterior distribution over parameters, demonstrating that parameter
averaging is equivalent to employing an isotropic Gaussian distribution as an approximation for the
posterior in each model. The merged parameter is estimated via weighted averaging over param-
eter’s Fisher information. However, it does not address parameter interference issues, resulting in
redundant parameters contributing to task conflicts and computational overhead during inference.

This separation suggests a potential opportunity, as we hypothesize that effective model merging in-
herently requires both: (a) accounting for parameter sensitivity across individual models to preserve
critical task-specific knowledge, and (b) appropriately managing parameter interference to eliminate
redundancy.

Overview and Contributions: Motivated by aforementioned observations, we propose a method
named DRIFT-MEDIAN, a parameter-space merging framework that unifies insights from both
interference reduction and sensitivity-based merging techniques.

DRIFT-MEDIAN operates through a carefully chosen sequence of operations, as illustrated in Fig-
ure 1. We first compute task vectors (Ilharco et al., 2023) by subtracting base model parameters
from fine-tuned parameters, then perform sign resolution to eliminate directionally conflicting up-
dates by establishing consensus directions at each coordinate. To quantify parameter importance, we
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compute empirical Fisher information matrices that capture the sensitivity of each parameter to task
performance. Unlike prior methods that perform pruning within individual models, we introduce
coordinate-wise Top-K selection that operates across models, retaining only the most informative
task vectors at each parameter position to prevent both parameter crowding and scarcity issues.

The core idea lies in our Fisher-weighted median aggregation, which we formulate as an L1-
minimization problem with a closed-form solution based on the Fisher-weighted median (Gur-
witz, 1990). This approach ensures that parameter contributions reflect both sensitivity and rel-
evance while maintaining robustness to outliers which gives a critical advantage over traditional
Fisher-weighted averaging approaches that can be dominated by extreme values. Through exten-
sive ablation studies, we confirm the importance of each component in our framework, establishing
DRIFT-MEDIAN as a robust and principled approach to parameter-space model merging. Key con-
tributions of our proposed framework are as follows:

• Fisher-weighted median aggregation: We propose DRIFT-MEDIAN, a parameter- space
merging method where we introduce a closed-form solution, based on the Fisher-weighted
median, ensuring that parameter contributions reflect both sensitivity and relevance, leading
to robust and balanced merging.

• Coordinate-wise Top-K selection: Unlike prior methods that prune updates within each
model independently, we perform cross-model coordinate-wise filtering to retain only the
most informative task vectors, reducing noise and ensuring balanced aggregation.

• Comprehensive evaluation: Experiments across mathematics, coding, multilingual rea-
soning, safety, vision tasks and instruction-following demonstrate that DRIFT-MEDIAN
consistently achieves higher performance retain rate (PRR) compared to prior methods,
while ablation studies confirm the importance of each design choice.

2 RELATED WORK

Background: Given a base model with parameters θ(0) and a collection of fine-tuned models
{θ(m)}Mm=1 specialized for tasks {t1, t2, . . . , tM}, the objective is to consolidate these specialized
weights into a unified multitask model that maintains strong performance across all constituent do-
mains. The central concept underlying parameter-space merging is the task vector, formally defined
as τ (m) = θ(m) − θ(0), where θ(0) represents the base model parameters and θ(m) denotes the
parameters of a model fine-tuned for task m. Task Arithmetic (Ilharco et al., 2023) demonstrated
that these task vectors effectively encode task-specific knowledge and that their addition to the base
model successfully transfers the corresponding task capabilities. However, naive averaging of task
vectors often leads to destructive interference with conflicting parameter directions, prompting the
development of sophisticated merging techniques.

Parameter Interpolation and Weight Averaging Methods: Early approaches to model merging
focused on linear interpolation techniques, leveraging the observation that despite the inherent non-
linearity of neural networks, linear combinations of their weights can preserve high accuracy when
the constituent models share common optimization trajectories (Choshen et al., 2022; Ilharco et al.,
2022b; Izmailov et al., 2019; Wang et al., 2024; Choi et al., 2024; Daheim et al., 2024). Choshen
et al. (2022) proposed a straightforward weight averaging approach for fusing fine-tuned models,
demonstrating superior performance compared to using pretrained models alone. Building on this
foundation, Wortsman et al. (2022) introduced “model soups”, where multiple models fine-tuned
with different hyperparameters are combined through weight averaging rather than selecting the
single best-performing model based on validation metrics. This approach consistently improves
performance over individual model selection. Similar improvements through weight averaging have
been reported by Ilharco et al. (2022b); Matena & Raffel (2022); Li et al. (2022). More sophisticated
interpolation methods have emerged to address specific challenges in parameter combination. Jin
et al. (2023) developed a technique for determining merged model parameters through closed-form
solutions, formulating the problem as local linear regression for individual layers within the model.
These methods call for advanced merging strategies but typically do not account for parameter im-
portance or interference effects.

Task Vector Arithmetic and Interference Resolution: Ilharco et al. (2023) formalized the concept
of task vectors and demonstrated their effectiveness in model editing through arithmetic operations.
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However, this approach revealed fundamental challenges when task vectors exhibit conflicting up-
date directions, leading to the development of interference-aware methods. TIES merging (Yadav
et al., 2023) addresses these interference issues through two key innovations. First, a trim step
retains only the largest parameter deviations at each coordinate, suppressing redundant or weak up-
dates that dilute informative changes. Second, step ensures directional consistency by choosing the
majority sign across models at each coordinate and zeroing out conflicting updates. While effective
at reducing destructive interference, TIES merging does not incorporate parameter sensitivity con-
siderations, potentially allowing less critical parameters to overshadow more influential ones during
aggregation. DARE (Yu et al., 2024) employs a complementary strategy of randomly dropping delta
parameters with probability p and rescaling the remaining parameters to maintain overall magnitude.
This stochastic approach provides regularization benefits but lacks principled parameter importance
weighting. Recent work such as SCE-merging (Wan et al., 2025) uses variance and magnitude-based
criteria together with sign-consistency rules to identify stable parameters across models, while PCB-
merging (DU et al., 2024) focuses on balancing inter-model and intra-model competition among task
vectors.

Sensitivity-Aware, Domain-Specific and Sparse Model Fusion Methods : Fisher merging
(Matena & Raffel, 2022) formulates merging as maximizing the joint likelihood of models’ pos-
terior distributions over parameters, demonstrating that parameter averaging is equivalent to using
isotropic Gaussian approximations for each model’s posterior. This ensures that parameters with
higher estimated importance exert stronger influence during merging. However, Fisher merging
does not address parameter interference issues, allowing redundant parameters to contribute to task
conflicts and increasing computational overhead as the number of models grows. Recent work
has developed specialized merging techniques for specific application domains. Zhou et al. (2024)
introduced model exclusive task arithmetic for billion-scale models, while Djuhera et al. (2025);
Hammoud et al. (2024) focus on maintaining safety alignment during merging procedures. These
domain-specific approaches highlight the importance of preserving critical model properties beyond
task performance. LoRA merging methods (Shah et al., 2024; Shenaj et al., 2024; Stoica et al.,
2025; Yin et al., 2025) are designed to handle the unique properties of low-rank parameter updates,
which present different challenges compared to full parameter fine-tuning. Similarly, vision-specific
merging techniques (Zhu et al., 2025) have been developed to address the particular characteristics
of computer vision models.

3 PROPOSED METHOD

Suppose θ(0) ∈ RN , and {θ(m)}Mm=1 denote the parameter vectors for the base model, and a col-
lection of fine-tuned models derived from the same base model, respectively. We denote the corre-
sponding task vectors as τ (m) = θ(m) − θ(0), that capture the parameter displacements induced by
fine-tuning. Our objective is to combine these task vectors into a single stable representation that
preserves salient task information (Algorithm 1) while mitigating destructive interference. In our
method, we accomplish this via the following steps - (i) performing sign resolution to eliminate di-
rectionally conflicting updates, (ii) computation of Fisher information to quantify the sensitivity of
each parameter, (iii) applying coordinate-wise Top-K filtering to retain only the strongest displace-
ments, (iv) computing a merged task-vector by applying Fisher-weighted coordinate-wise median
across the filtered task vectors, and (v) scaling on the aggregated neurons to compensate for the lost
neurons during merging. We describe all of these in the subsequent sections.

3.1 SIGN RESOLUTION

Consider a collection of task vectors {τ (1), . . . , τ (M)}, each defined over coordinates i ∈
{1, . . . , d}. At a given coordinate i, the corresponding set of entries is denoted as {τ (1)i , . . . , τ

(M)
i }.

Since these entries may take both positive and negative values, averaging them directly can result in
destructive elimination of directional consistency, thereby discarding potentially stable task-specific
knowledge.

To ensure alignment, we inherit the concept of sign consensus from TIES merging (Ya-
dav et al., 2023). This is determined by the sign of the aggregated update across tasks
as si = sign

(∑M
m=1 τ

(m)
i

)
. The consensus sign si specifies the dominant orientation
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of update at coordinate i. Contributions inconsistent with this orientation are suppressed

via the pruning rule given as follows τ̂
(m)
i =

{
τ
(m)
i , if sign(τ

(m)
i ) = si

0, otherwise
. The result-

ing collection {τ̂ (1), . . . , τ̂ (M)} is therefore sign-consistent by construction. At each coor-
dinate i, only those updates that are aligned with the consensus direction are preserved,
while conflicting contributions are eliminated. This procedure removes destructive interfer-
ence and yields a representation in which all retained task information is coherently oriented.
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Figure 2: (a) In TIES Top-
K selection, only a single
task vector at index 3, while
four are concentrated at in-
dices 1, 2, 4. (b) In contrast,
our inter-model selection dis-
tributes task vectors more
evenly, preventing crowding
at certain parameter indices
and scarcity at others, thereby
ensuring consistent influence
per index and avoiding dilu-
tion during aggregation.

3.2 SENSITIVITY
ANALYSIS VIA DIAGONAL FISHER INFORMATION MATRIX

While directional alignment ensures that task updates no longer
interfere destructively, it does not incorporate the relative impor-
tance of different parameters. Not all coordinates contribute equally
to model behavior in that some parameters are highly sensitive
and strongly influence the predictive distribution, whereas others
are less critical. To account for this, we introduce an importance
weighting scheme based on empirical Fisher information (Matena
& Raffel, 2022). Formally, consider coordinate i in a model m. We
define its empirical Fisher information as

F
(m)
i = E(x,y)∼Dm

[(
∂

∂θ̂i
log p

(
y | x; θ̂(m)

i

))2
]
, (1)

where Dm denotes the data distribution associated with task
m, θ(0) is the reference initialization point (e.g., the pre-trained
parameters), and θ̂

(m)
i is the sign-aligned model weight and

log p
(
y | x; θ̂(m)

i

)
represent corresponding model posterior. In-

tuitively, F (m)
i quantifies the sensitivity of the model’s predictive

likelihood with respect to perturbations in parameter θi. A large
value of F (m)

i indicates that even small changes in θi have a sub-
stantial effect on the likelihood, implying that this coordinate is of
high functional importance for task m.

Conversely, a small Fisher value suggests that θi is relatively in-
sensitive and thus less critical. Accordingly, when merging task
vectors, the update contribution τ̂

(m)
i should be weighted propor-

tionally to its Fisher information. This ensures that parameters
with high task-specific sensitivity exert stronger influence on the
merged representation, while less important directions are naturally
down-weighted. In combination with directional alignment, Fisher
weighting therefore produces a merged update that is both sign-
consistent and importance-aware, preserving critical task knowl-
edge while suppressing noise from less informative coordinates.
Following common practice, we use the diagonal of the Fisher ma-
trix, which requires O|θ| memory for storage. In contrast, storing
the full Fisher matrix would require O|θ|2 memory, making it impractical for large models.

3.3 COORDINATE-WISE TOP-K SELECTION

After applying directional alignment and importance weighting, many parameters still exhibit small
residual updates. These weak displacements are typically uninformative and can introduce noise
into the merged representation. To mitigate this issue, we retain only the strongest task contribu-
tions on a per-parameter basis using an inter-model Top-K selection strategy. Our motivation for
this coordinate-wise approach follows the perspective of Qu & Horváth (2025), which argues that
model merging fundamentally decomposes into a set of independent one-dimensional estimation

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

problems, one for each parameter. Consequently, interference, variance, and estimator instability
arise per coordinate. In contrast, intra-model (model-wise) Top-K performs sparsification indepen-
dently within each model, ignoring how other models distribute their update mass. This often forces
multiple task vectors to concentrate disproportionately large updates on a small subset of parame-
ters, thereby increasing cross-task interference. Our inter-model Top-K procedure avoids this issue
by directly limiting how many models may influence any given coordinate, ensuring balanced com-
petition across tasks precisely where the merged model must ultimately produce a single parameter
value.

For task m at coordinate i, define the update magnitude d
(m)
i =

∣∣τ̂ (m)
i

∣∣. Among the set
{d(1)i , . . . , d

(M)
i }, we select the K largest values, with K = ⌊κ · M⌋, κ ∈ (0, 1], where

κ denotes the ‘keep-ratio’. Suppose δi = min
(

Top-K{d(1)i , . . . , d
(M)
i }

)
, represent the cut-

off magnitude for retention for coordinate i. Then the set of retained task indices is given by,
Mi = {m ∈ {1, . . . ,M} : d

(m)
i ≥ δi}. Thus, at each coordinate, only those task updates with

sufficiently large magnitude - specifically, the top fraction κ - are preserved. This ensures that the
merged representation emphasizes the most informative displacements while discarding weak or
noisy contributions.

Consequently, our approach leads to a more consistent and conflict-free parameter aggregation. We
illustrate this phenomenon in Figure 2, where TIES selects the Top-K in an intra-model manner,
whereas our method selects the Top-K in an inter-model manner.

3.4 FISHER-WEIGHTED AGGREGATION

After directional alignment, importance weighting, and Top-K filtering, we obtain a refined set of
task-specific displacements at each coordinate. The final step is to merge these retained updates into
a single consensus displacement. This can be formulated directly in parameter space as the solution
of a Fisher-weighted absolute-deviation minimization problem. The objective can be expressed as:

Li(θi) =
∑

m∈Mi

F
(m)
i ·

∣∣θ̂(m)
i − θi

∣∣ (2)

where Mi is the set of retained task indices from the Top-K filtering, and F
(m)
i denotes the empirical

Fisher information of parameter i for task m. For coordinate i, let τi denote the candidate merged
displacement. Since each task-specific parameter vector is expressed as θ̂(m) = θ(0) + τ̂ (m), the
aggregation objective Equation 2 can be expressed in task-vector space as:

Li(τi) =
∑

m∈Mi

F
(m)
i ·

∣∣τ̂ (m)
i − τi

∣∣ (3)

This formulation enforces proximity between the merged displacement τi and the filtered task-
specific values τ̂

(m)
i , while weighting each contribution according to its sensitivity. Parameters

with larger Fisher values exert stronger influence, reflecting their higher functional importance. We
adopt an L1 (absolute-deviation) objective instead of the standard L2 loss because the L1 metric is
more robust to outliers.

Closed-form Fisher-weighted Median

The minimizer of the Fisher-weighted absolute-deviation loss admits a closed-form characterization
in terms of a weighted median. Specifically, the optimal merged displacement τ∗i at coordinate i is
given by the Fisher-weighted median of the retained updates {τ̂ (m)

i : m ∈ Mi}. Formally, τ∗i is
defined as the value satisfying∑

τ̂
(m)
i <τ∗

i

F
(m)
i ≤ 1

2

∑
m∈Mi

F
(m)
i and

∑
τ̂
(m)
i >τ∗

i

F
(m)
i ≤ 1

2

∑
m∈Mi

F
(m)
i . (4)

In other words, the Fisher weights of task-specific updates lying to the left and to the right of the
solution τ∗i each account for at most half of the total weight. This solution possesses a crucial
robustness property: unlike Fisher-weighted means, which are highly sensitive to outliers due to
squaring, the Fisher-weighted median ensures that extreme values cannot dominate the aggregate
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Table 1: Results on GPT-2. The reported values correspond to absolute scores obtained on the
validation set, since the test set is not publicly accessible.

Method COLA MNLI MRPC QNLI QQP RTE SST2 Mean PRR

Fine-tuned Models 76.8 82.1 80.4 88.3 89.6 65.3 91.2 82.0 -
Model Averaging 55.0 55.1 51.0 57.6 76.7 44.8 52.5 56.1 68.5
Task Arithmetic 68.7 68.6 69.6 70.5 81.8 47.3 83.6 70.0 85.0
TIES 68.4 71.4 68.4 69.6 82.4 47.7 81.8 70.0 84.9
Fisher Merging 54.8 58.0 39.5 63.3 81.5 49.1 64.7 58.7 71.4
Localize & Stitch 64.1 76.1 48.0 65.5 83.1 53.1 55.7 63.7 77.9
Ours 69.1 71.3 70.1 83.0 79.3 50.2 77.3 71.5 86.9

Table 2: Results on Llama-3.1-8B models; The results are reported in relative percentage w.r.t. the
fine-tuned models.

Method Maths Multilingual Instruction Coding Safety PRR

Model Averaging (excl. embed) 92.70 96.58 44.13 89.57 74.99 78.84
Model Averaging (incl. embed) 93.18 96.83 42.16 89.56 76.13 78.84
Task Arithmetic 93.85 91.80 56.02 90.92 79.63 82.85
TIES 96.44 95.95 51.53 90.40 83.91 83.75
DARE 91.90 89.84 54.31 87.35 77.55 80.60
Fisher Merging 89.17 96.53 61.19 87.37 88.46 83.07
Localize & Stitch 97.04 97.00 45.26 85.98 61.28 77.32
Ours 85.19 89.44 71.24 94.45 101.47 87.51

unless they are supported by sufficiently large Fisher weight. As a result, the merged displacement is
both importance-aware and resistant to spurious task updates. We obtain the closed-form expression
for the Fisher-weighted median following (Aho & Hopcroft, 1974; Blum et al., 1973; Gurwitz,
1990), and present the derivation in Appendix B.

Scaling Since sign pruning and Top-K filtering reduce the effective magnitudes of task displace-
ments, a rescaling step is applied to restore the overall adaptation strength (Ilharco et al., 2023;
Yadav et al., 2023; Yu et al., 2024). For each coordinate, the merged displacement is given by
τmerge
i = λ ·τ∗i , where λ > 0 is a global scaling factor. After all these steps, the final merged model

is then constructed as follows: θmerge = θ(0) + τmerge. The scaling factor λ serves as a tunable con-
trol that balances the contributions of the pre-trained model θ(0) and the aggregated task updates. A
larger value of λ increases the influence of task-specific displacements, causing the merged model to
drift further from the base model, while smaller values preserve closer adherence to the pre-trained
initialization. Further discussion on the implementation details and design choices is provided in
Appendix C.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Baseline Methods We compare DRIFT-MEDIAN with seven different base-line methods, namely:
Simple Averaging or Model Averaging (Wortsman et al., 2022; Choshen et al., 2022), Task Arith-
metic (Ilharco et al., 2023), TIES (Yadav et al., 2023), DARE (Yu et al., 2024), Localize-and-Stitch
(He et al., 2025a), Fisher merging (Matena & Raffel, 2022), and PCB-merging (DU et al., 2024).
Hyperparameters detail are given in Appendix E.

Models and Datasets We conduct experiments on three different types of model architectures: 1)
Llama family of models with various number of model parameters (Llama-3.1-8B, Llama-3.2-3B,
Llama-2-7b), 2) GPT-2, and 3) CLIP-ViT Model. We evaluate DRIFT-MEDIAN on various diverse
datasets. We refer the readers to Appendix D for more details.

Evaluation Metric When each task or domain includes multiple evaluation benchmarks of varying
difficulty levels, a direct comparison of raw scores across tasks can be misleading. To obtain a
fair comparison, we consider Performance Retain Rate (PRR) (He et al., 2025b) as evaluation
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Table 3: Results on Llama-3.2-3B models; The results are reported in relative percentage w.r.t. the
fine-tuned models.

Method Maths Multilingual Instruction Coding Safety PRR

Model Averaging (excl. embed) 63.08 101.69 56.81 88.11 57.81 73.50
Model Averaging (incl. embed) 64.83 101.79 51.74 86.36 56.46 72.24
Task Arithmetic 72.40 100.78 83.20 94.98 68.19 83.91
TIES 48.44 102.04 71.19 88.24 64.07 74.80
DARE 70.34 100.49 84.20 96.31 69.11 84.09
Fisher Merging 61.86 101.43 65.56 87.00 62.82 75.73
Localize & Stitch 68.59 101.63 56.81 86.36 49.00 72.48
Ours 65.77 99.96 100.49 93.80 72.39 86.48

Table 4: Results on Llama-2-7b models; The reported results for CMMLU, GSM8K and HumanEval
are absolute values obtained from corresponding evaluation set.

Method CMMLU GSM8K HumanEval PRR

Fine-tuned Models (DU et al., 2024) 38.6 65.6 17.1 -
Model Averaging 35.6 47.8 8.5 71.60
Task Arithmetic 35.5 46.1 10.4 74.35
TIES 36.4 53.4 14 85.86
PCB-Merging 36.4 53.8 16.5 90.93
Fine-tuned models (Ours) 35.2 61.9 16.5 -
Ours 35.8 42.2 19.5 96.02

metric. PRR measures how much of the original performance of the task-specific fine-tuned model
is retained by the merged model. Formally, for each task t, the PRR is defined as

PRR(t) =
1

Nt

Nt∑
i=1

Perf(θmerge, Dt,i)

Perf
(
θ(t), Dt,i

) × 100,

where Nt is the number of evaluation benchmarks datasets for task t, Dt,i denotes the i-th bench-
mark dataset for task t, Perf(θ,D) is the performance of model θ on dataset D, θmerge denotes the
merged model, and θ(t) denotes the fine-tuned model on task t. This formulation normalizes the
performance of the merged model against the best achievable performance for each benchmark (i.e.,
the fine-tuned baseline), and then averages across benchmarks within the task. By doing so, it avoids
bias introduced by benchmarks of varying difficulty or scale, which would otherwise distort the re-
sults if raw scores were averaged directly. Thus, PRR(t) provides a task-level measure of the degree
to which the merged model retains the capabilities of the specialized fine-tuned models. Finally, we

compute the mean PRR as PRR = 1/T
T∑

t=1
PRR(t) where T is the total number of tasks. This over-

all score reflects the average retention of task-specific performance by the merged model, providing
a single metric for multi-task evaluation.

4.2 RESULTS AND ANALYSIS

Merging Fully fine-tuned GPT-2 Based Models: For text classification, we adhere to the ex-
perimental setup of (Tang et al., 2024) for data and models. The setting considers a variety of
text-classification tasks. We specifically consider 7 text-classification task (CoLA, MNLI, MRPC,
QNLI, QQP, RTE, SST2) and report the experiments result in (Table 1). Individual cell except the
last two columns of this table represents absolute accuracy. Last column represents the evaluation
metric mean Performance Retain Rate. We also report mean accuracy of respective merging method
to make a fair comparison with (Tang et al., 2024). Notably, DRIFT-MEDIAN outperforms all the
baseline method and exceeds the best baseline method by 1.9 margin in mean PRR.

Merging Fully fine-tuned Llama Based Models: For generation tasks we consider Llama-3.1-
8B, Llama-3.2-3B and Llama-2-7b model, we report experimental results in Table 2, Table 3 and
Table 4 respectively. For Llama-3.1-8B and Llama-3.2-3B, we replicate the experiments of (He
et al., 2025b) for respective data and models. In these two tables (Table 3 and Table 4), we consider

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 different task domains (Mathematics, Multilingual, Instruction, Coding, and Safety) with varying
level of complexity. Each domain has multiple benchmarks. We first evaluate the fine-tuned model
on the test set of corresponding benchmark. Detailed individual benchmark accuracies can be found
out in Appendix F. Since each task includes multiple evaluation benchmarks of varying difficulty
levels, so we represent the score in corresponding cell by its PRR. Finally, we compare the merging
methods by mean PRR. Our model improves the baseline method by 3.76% and 2.39% for Llama-
3.1-8B and Llama-3.2-3B, respectively. Note, in some cases multitasking models (here merged
model) can exhibit slightly better performance than the individual fine-tuned model. Therefore,
this may result in a PRR exceeding 100 in certain cases. In Table 4, we compare our method with
the baseline method PCB-merging (DU et al., 2024). When we evaluate the fine-tuned models in
respective task (sixth row), we get slightly different numbers than reported (first row) in the paper.
So, for a fair comparison, first five rows in this table are copied from the paper (DU et al., 2024) and
then we evaluate the merged methods in terms of mean PRR. In particular, our method outperforms
PCB-merging by 5.09%.

Merging Fully fine-tuned CLIP-ViT-B/32 Models For image classification, we evaluate multi-
task model merging across eight image classification datasets. Following (DU et al., 2024), we use
the CLIP model (Radford et al., 2021) with ViT-B/32 as visual encoders. We have adopted same
experimental configurations as Tang et al. (2024). We display our result in Table 5. While certain
baseline methods occasionally outperform our approach on individual datasets, our method achieves
superior overall performance compared with the leading baselines.

Table 5: Model Performance on Vision Tasks

Method SUN397 CARS RESISC45 Eurosat SVHN GTSRB MNIST DTD Average PRR

Skyline(s) 74.86 78.52 95.14 99.07 97.27 98.91 99.58 79.68 90.38
Task Arithmetic 64.30 61.30 70.56 78.26 73.89 62.77 93.02 51.91 69.50 76.88
TIES 64.97 62.87 72.29 76.19 82.19 73.90 96.33 52.61 72.67 80.21
Adamerging 59.63 57.92 71.30 80.15 68.98 53.53 97.29 55.21 68.00 75.16
PCB 62.00 61.31 71.79 75.41 85.92 79.76 97.74 51.38 73.16 80.51
Ours 65.01 66.17 71.38 76.19 88.05 64.33 97.55 58.35 73.38 81.22
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Figure 3: Sensitivity of λ on
in-domain and out-domain perfor-
mance; Initially in-domain per-
formance increases with increase
in λ, reaching a saturation point
then starts to decrease. The out-
domain performance decrease with
increase in λ.

Ablation of DRIFT-MEDIAN Components: We system-
atically conduct ablation studies on each component of
DRIFT-MEDIAN to evaluate their individual contributions.
Beginning with the complete DRIFT-MEDIAN approach, we
systematically eliminate or replace individual components and
measure test set performance for the full model merging pro-
cess. When we remove sign resolution step, we can clearly see
the performance dip from 87.51% to 86.16%. In the Fisher
weighted aggregation step of our method, if we consider mean
instead of median we lose 2.29% of performance gain. If
we eliminate the Top-K selection component, performance
drops drastically (2.41%). Further, we conducted an analy-
sis on the first five GLUE tasks using GPT-2 (CoLA, MNLI,
MRPC, QNLI, QQP). With a keep ratio of 60%, intra-model
Top-K + sign election (as in TIES) leaves 5.89% of parameters
with no surviving task update- i.e., no task contributes at those
coordinates, forcing a fallback to the base model (parameter
scarcity). In contrast, sign election + inter-model Top-K re-
duces this to 2.06%, meaning far fewer coordinates are left un-
used. This demonstrates that inter-model Top-K more closely
matches the per-coordinate merging objective, reduces update scarcity, and more effectively utilizes
the available task information. Finally, if we take out scaling step, we lose 1.74% performance.
Table 6 demonstrates that each component of the method is essential for achieving optimal perfor-
mance.

Ablation on Hyperparameter λ: For this ablation, we consider the same experimental setup and
tasks given in the Table 2 for merging. We use a fixed keep ratio of 60% in this experiment. In
Figure 3, we plot our model performance with respect to DRIFT-MEDIAN hyperparameter λ. It
highlights the trade-off between in-domain specialization and out-domain generalization perfor-
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Table 6: Ablation study on Llama-3.1-8B models; The results are in relative percentage w.r.t. the
fine-tuned models.

Method Maths Multilingual Instruction Coding Safety PRR

- With Top-K, Sign Resolution and Median 85.19 89.44 71.24 94.45 101.47 87.51
- w/o Sign Resolution 86.66 91.40 63.09 93.22 101.18 86.16
- Mean instead of Median 88.82 91.88 57.68 93.61 97.19 85.22
- w/o Top-K 88.25 96.10 68.54 88.08 92.40 85.10
- w/o Scaling 87.73 94.01 59.31 93.40 100.67 85.77

mance of our merged model with respect to λ. Here, λ = 0 signifies base model. Initially, with
increase in λ value, in-domain performance increases, reaching a saturation point then starts to de-
crease. The out-domain performance decrease with increase in λ. After certain value of λ, merging
becomes unstable and performance of merged model drops significantly for in-domain and as well
as out-domain. Our intended goal is to maximize performance on the known, in-domain tasks, and
the out-domain results are reported primarily for completeness. If out-domain robustness were also
an objective, one possible direction would be to adjust the trade-off parameter λ. Detailed descrip-
tions of the specific task configurations for out-domain is given as General Domain paragraph in
Appendix D.
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Figure 4: Sensitivity of the hyperparameters K and λ
in DRIFT-MEDIAN on CLIP based tasks. The best
performance is obtained on top-7 models with 1.5 as
the scaling factor. The values near to the optimal hy-
perparameter have similar performance.

Hyperparameter Sensitivity

To better understand the interaction be-
tween the Top-K and the scaling coeffi-
cient λ, we conduct a sensitivity study
whose results are shown in Figure 4. The
heatmap illustrates how different config-
urations of Top-K and λ jointly affect
mean PRR. As Top-K increases, more
low-magnitude task deltas are included in
the aggregation pool. These small updates,
which lie very close to the base model, pull
the merged parameter back toward the pre-
trained initialization. Consequently, con-
figurations with higher Top-K values gen-
erally require a higher scaling coefficient
λ to counterbalance this pull and ensure
that task-relevant updates maintain suffi-
cient influence during aggregation. For
this ablation, we consider the same experi-
mental setup and tasks given in the Table 5
for merging.

5 CONCLUSIONS

We propose DRIFT-MEDIAN, a task-aware model merging framework that combines task-vector
sign resolution, coordinate-wise Top-K selection, and Fisher-weighted median aggregation. By
explicitly addressing sign disagreements and redundant-parameter interference, and incorporating
parameter-sensitivity considerations, our method enables conflict-free parameter fusion while re-
taining task-specific knowledge. Experiments across mathematics, multilingual reasoning, coding,
instruction following, and safety tasks demonstrate that DRIFT-MEDIAN consistently outperforms
prior parameter-space merging methods such as TIES and Fisher merging. Potential directions for
future work include the use of dynamic hyperparameters, where λ and κ adapt across models or even
layers.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a comprehensive description of our methodology together
with derivation and a clear presentation of the proposed algorithm. Our work relies exclusively
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on publicly available resources: all datasets, evaluation benchmarks, and pretrained model check-
points used in this study are openly accessible to the research community. Upon acceptance, we will
release the full source code, including training and evaluation scripts as well as detailed documen-
tation, to facilitate independent verification and extension of our results. Furthermore, we specify
all experimental details including hyper-parameters in Appendix D and Appendix E, ensuring that
every component of our pipeline can be faithfully reproduced.

ETHICS STATEMENT

The datasets utilized in this research are openly accessible and linked to open license terms (CC-BY-
2.0, CC-BY-4.0, MIT, Apache 2.0, Open Data Commons Attribution License, and Public Domain
Dedication and License), which are suitable for research purposes. The datasets and models utilized
in our experiments are explicitly cited and detailed in their corresponding sections. Models are
downloaded from Huggingface. We acknowledge that we used LLMs in a limited capacity, solely
for the purpose of grammatical refinement and sentences paraphrasing.
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A ALGORITHM

Algorithm 1 Fisher-Weighted Model Merging with Sign Resolution and Coordinate-wise Top-K
Selection

Input: Base parameters θ(0) ∈ RN , candidate models {θ(m)}Mm=1, Data {Dm}Mm=1, scaling factor
λ, Keep ratio - κ

Return: Merged model θmerge

1: Compute task vectors τ (m) ← θ(m) − θ(0)

2: Compute directional sign si ← sign
(∑M

m=1 τ
(m)
i

)
for all i ▷ Resolve sign step From TIES

3: for each m = 1 to M do

4: τ̂
(m)
i =

τ
(m)
i , if sign(τ

(m)
i ) = si,

0, otherwise.

5: θ̂(m) ← θ(0) + τ̂ (m)

6: Compute Fisher F (m) via empirical Fisher:

F (m) = Ex∼Dm

[(
∂

∂θ̂(m)
log p(y | x; θ̂(m))

)2
]

7: end for
8: K = ⌊κ ·M⌋ ▷ Number of models to keep at each coordinate
9: for each coordinate i do

10: δi = min

(
Top-K

({∣∣∣τ̂ (m)
i

∣∣∣}M

m=1

))
▷ Minimum deviation for consideration in merging

11: Mi :=
{
m ∈ {1, . . . ,M} :

∣∣∣τ̂ (m)
i

∣∣∣ ≥ δi

}
12: L(τi) =

∑
m∈Mi

F
(m)
i ·

∣∣∣τ̂ (m)
i − τi

∣∣∣
13: τ∗i = argminτi L(τi) ▷ Closed form solution in Equation 4
14: θmerge

i ← θ
(0)
i + λ · τ∗i

15: end for
16: Return final expert: θmerge

B CLOSED-FORM SOLUTION FOR WEIGHTED L1 LOSS: WEIGHTED MEDIAN

We are given the objective function:

L(τi) =
∑

m∈Mi

F
(m)
i ·

∣∣∣τ̂ (m)
i − τi

∣∣∣ ,
where τ̂

(m)
i are fixed scalar values and F

(m)
i ≥ 0 are associated weights. Our goal is to find a value

of τi that minimizes L(τi).

PIECEWISE LINEARITY AND SUBGRADIENT

Each term
∣∣∣τ̂ (m)

i − τi

∣∣∣ is convex and piecewise linear in τi, with a non-differentiable point at τi =

τ̂
(m)
i . Thus, L(τi) is convex and piecewise linear overall.

The subgradient with respect to τi is given by

∂

∂τi
F

(m)
i ·

∣∣τ̂ (m)
i − τi

∣∣ =

−F (m)

i if τi < τ̂
(m)
i ,

[−F (m)
i , F

(m)
i ] if τi = τ̂

(m)
i ,

+F
(m)
i if τi > τ̂

(m)
i .

When τi does not coincide with any τ̂
(m)
i , the function is differentiable and its derivative is given

by:
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dL
dτi

= −
∑

τ̂
(m)
i <τi

F
(m)
i +

∑
τ̂
(m)
i >τi

F
(m)
i .

Setting the derivative to zero yields:

−
∑

τ̂
(m)
i <τi

F
(m)
i +

∑
τ̂
(m)
i >τi

F
(m)
i = 0,

⇒
∑

τ̂
(m)
i <τi

F
(m)
i =

∑
τ̂
(m)
i >τi

F
(m)
i =

1

2

∑
m

F
(m)
i .

This condition defines the weighted median.

WHEN τ∗ = τ̂m

For any τ (not necessarily median), let

A =
∑

τ̂(m)<τ

F (m), B =
∑

τ̂(m)=τ

F (m), C =
∑

τ̂(m)>τ

F (m),

so A+B + C = T .

Each term is convex, so

∂L(τ) =
∑

τ̂(m)<τ

(−F (m)) +
∑

τ̂(m)=τ

[−F (m), F (m)] +
∑

τ̂(m)>τ

F (m) = [−A+C−B, −A+C+B].

Hence 0 ∈ ∂L(τ) iff

−A+ C −B ≤ 0 ≤ −A+ C +B ⇐⇒ |A− C| ≤ B.

SHOWING WEIGHTED MEDIAN SATISFIES THE CRITERIA

A point τ∗ is called a weighted median if

A ≤ T

2
and C ≤ T

2
.

We show this implies |A− C| ≤ B:

1. A ≤ T
2 implies:

A ≤ A+B + C

2
⇒ 2A ≤ A+B + C

⇒ A ≤ B + C

⇒ A− C ≤ B.

2. C ≤ T
2 implies:

C ≤ A+B + C

2
⇒ 2C ≤ A+B + C

⇒ C ≤ A+B

⇒ C −A ≤ B.

3. Combining the two, we get:
|A− C| ≤ B.

Since |A− C| ≤ B is exactly the condition for optimality, the weighted median minimizes L(τ).
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C IMPLEMENTATION DETAILS

A central design consideration in DRIFT-MEDIAN is the placement of different components in the
merging pipeline. The calculation of the Fisher information matrix constitutes the primary com-
putational bottleneck of our approach. To make the method practical, we decouple operations that
require repeated hyperparameter tuning from those that do not. Specifically, the Sign Resolution step
is performed prior to Fisher Information Estimation, since it does not involve any tunable parameters
and can be fixed once for all runs. In contrast, the two hyperparameters of our method – keep ratio
κ for top-K selection and scaling factor λ —directly affect the aggregation and scaling stages. We,
therefore, design the method such that these choices come after Fisher information estimation. This
ensures that once the Fisher matrix is computed, it can be re-used efficiently for any combination of
κ and λ without additional estimation overhead.

This design differs from prior work Lee et al. (2025), who perform scaling before Fisher merging
and search over λ across different models. While their approach is effective, it was applied primarily
to much smaller models, where repeated Fisher estimation is less of a burden. In contrast, our design
explicitly targets large-scale LLMs, where recomputing the Fisher matrix even a few times would be
prohibitively expensive. By fixing Fisher estimation early and allowing hyperparameter flexibility
afterward, DRIFT-MEDIAN achieves both scalability and adaptability.

D EVALUATION BENCHMARKS

We evaluate large language models (LLMs) across multiple domains using a diverse suite of bench-
marks, each with carefully designed test sets. We evaluate DRIFT-MEDIAN on the following
benchmark datasets: Minerva (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), Harmbench
(Mazeika et al., 2024), DAN (Shen et al., 2024), XSTest (Röttger et al., 2024), WildguardTest (Han
et al., 2024), IFEval (Zhou et al., 2023), CMMLU (Li et al., 2024), 3 Multilingual Understanding
tasks (Lai et al., 2023) (M ARC, M MMLU and M HellaSwag), MBPP+ (Austin et al., 2021), HU-
MANEVAL+ (Chen et al., 2021), and 7 GLUE (Wang et al., 2018; Warstadt et al., 2019) tasks (QQP,
QNLI, RTE, CoLA, MRPC, MNLI and SST-2).

Mathematics. We consider two variants of the GSM8K (Cobbe et al., 2021) test set from the
lm-eval-harness, namely GSM8K (5-shot) and GSM8K-CoT (8-shot). Since the test items
(and gold answers) are identical, but model performance can vary depending on whether direct or
chain-of-thought prompting is used, we report the best score across the two settings for each model.
The GSM8K test set contains approximately 1.3k grade-school math word problems requiring multi-
step reasoning and exact numeric answers. In addition, we include the Minerva Math (Lewkowycz
et al., 2022) test set in a 4-shot setting, which consists of STEM-focused quantitative problems
curated from the MATH benchmark (Hendrycks et al., 2021).

Multilingual Understanding. For cross-lingual evaluation, we employ translated test sets from
three widely used benchmarks: M ARC, M MMLU, and M HellaSwag (Lai et al., 2023). These
test sets are direct multilingual extensions of the original English benchmarks, created via high-
quality machine translation and covering multiple languages. We restrict evaluation to four repre-
sentative languages: French (fr), German (de), Russian (ru), and Spanish (es) to assess reasoning
and commonsense understanding across diverse linguistic settings. The test sets retain the multiple-
choice structure of their English counterparts: M ARC for science question answering, M MMLU
for multi-domain knowledge across 57 subjects, and M HellaSwag for adversarial commonsense
reasoning. To evaluate performance on Chinese on Llama2-7b models, we use the CMMLU (Li
et al., 2024) benchmark .

Instruction Following. We evaluate using the IFEval (Zhou et al., 2023) test set, which contains
541 prompts covering 25 categories of verifiable instructions. Each prompt specifies explicit and
automatically checkable constraints (e.g., output length, language, or formatting). In line with the
original protocol, we report both prompt-level strict accuracy, which requires that all constraints be
satisfied exactly, and prompt-level loose accuracy, which allows multiple post-processing transfor-
mations of the model output and considers a response correct if any transformed version meets all
specified criteria.
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Code Generation. We adopt the HumanEval+ (Chen et al., 2021) and MBPP+ (Austin et al.,
2021) test sets from the EvalPlus framework, which augment the original HumanEval and MBPP
problems with substantially more hidden test cases (approximately 80× more for HumanEval and
35× more for MBPP). We report the Pass@1 metric across these test sets. For consistency with
prior work on PCB merging, we evaluate Llama-2-7b using the original HumanEval test set of 164
handwritten programming tasks, ensuring comparability with published results.

Safety and Robustness. To assess safety, we employ several adversarial and red-teaming test
sets. The WildGuardTest (Han et al., 2024) set contains ∼5k human-annotated examples from
WildGuardMix, labeled across 13 harm categories and evaluated for prompt harmfulness, response
harmfulness, and refusal detection. The HarmBench (Mazeika et al., 2024) test suite provides a
standardized set of adversarial prompts for automated red-teaming, enabling direct measurement
of attack success rates and robust refusal behavior. In addition, we include adversarial jailbreak
prompts from the DAN (Do Anything Now) (Shen et al., 2024) family, which are widely used to
probe model vulnerabilities in controlled settings. Finally, we use the XSTest (Röttger et al., 2024)
benchmark, which comprises 250 safe prompts and 200 unsafe prompts designed to evaluate both
over-refusal (failing to answer benign queries) and under-refusal (incorrectly answering harmful
queries).

Natural Language Understanding (GLUE). For GPT2, we evaluate models on the GLUE
benchmark (Wang et al., 2018). Specifically, we include the following tasks: CoLA (linguistic ac-
ceptability), MNLI (multi-genre natural language inference), MRPC (paraphrase detection), QNLI
(Question Natural Language Inference), QQP (Quora question pairs), RTE (textual entailment), and
SST-2 (Stanford Sentiment Treebank). We use the fine-tuned checkpoints from Fusion-Bench (Tang
et al., 2024) library.

Vision Datasets Following PCB merging (DU et al., 2024), we consider multi-task model merging
across eight image classification datasets. SUN397 (Xiao et al., 2016) comprises of 397 classes of
scene images. Stanford Cars (Krause et al., 2013) is car classification dataset consisting of 196
car classes. RESISC45 (Cheng et al., 2017) consist of 45 classes of remote sensing image scenes.
EuroSAT (Helber et al., 2019) includes 10 classes of geo-referenced satellite images. SVHN (Netzer
et al., 2011) contains 10 classes of real-world digital classification images. GTSRB (Stallkamp et al.,
2011) features 43 classes of traffic signs. MNIST (LeCun, 1998) consists of grayscale handwritten
digits across 10 classes. Finally, DTD (Cimpoi et al., 2014)is a texture classification dataset with 47
classes.

General Domain To assess broader reasoning and domain generalization, we include several
widely used benchmarks: CoQA (Reddy et al., 2019), MMLU (Hendrycks et al., 2021), PubMedQA
(Jin et al., 2019), SQuADv2 (Rajpurkar et al., 2018), and TriviaQA (Joshi et al., 2017). CoQA mea-
sures conversational question answering with context-dependent reasoning, while MMLU evaluates
multi-domain expert knowledge across 57 subjects. PubMedQA focuses on biomedical question
answering, enabling evaluation in a specialized scientific domain. SQuADv2 extends extractive QA
with unanswerable questions, testing robustness in distinguishing relevant from irrelevant contexts.
TriviaQA probes open-domain QA with a mix of factoid and reasoning-intensive queries. Together,
these benchmarks capture general-purpose reasoning, knowledge retrieval, and robustness across
domains.

E HYPERPARAMETERS AND COMPUTATION REQUIREMENTS

To identify suitable hyperparameter configurations for our proposed DRIFT-MEDIAN framework,
we initially conducted exploratory searches on GPT-2, owing to its relatively small size and faster
training and inference cycles. In this setting, we varied the Top-K parameter from Top-1 through
Top-7, and also evaluated the keep-above-mean and keep-above-median strategies. The sweep over
λ was deliberately non-uniform: we first sampled random values across the full interval [0.3, 3.0] and
observed that the strongest performance consistently occurred when λ lay in the narrower band of
approximately 1.1–1.5. We then performed a denser search within this region using 0.05 increments.
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From these experiments, we found that the best configuration on GPT-2 corresponded not to a fixed
Top-K selection, but rather to a thresholding strategy, where all coordinates above the mean are
retained, combined with a scaling value of λ = 1.35. For larger LLMs, we subsequently searched
in the neighborhood of these optimal GPT-2 values. For Llama-3.1-8B, the best performance was
achieved with Top-3 and λ = 1.45, while for Llama-3.2-3B, the best performance was obtained
with Top-3 and λ = 1.30. For Llama-2-7b, the best configuration was Top-2 with λ = 1.20. It is
important to note that aggressive hyperparameter search is not required. DRIFT-MEDIAN maintains
good performance even when λ and K are set near the optimal values, demonstrating that the method
is robust and not overly sensitive to hyperparameter choices. For baseline comparisons, we adopt
the hyperparameter settings recommended by MergeBench He et al. (2025b) for Llama-3.2-3B and
Llama-3.1-8B models. Specifically, for TIES we use Top-K = 0.3 and a scaling factor of λ = 0.4,
for DARE we set the sparsity to 0.9 with λ = 0.4, and for L&S we use a sparsity of 0.1. Since
we were unable to reproduce the with-data version of L&S due to hardware constraints, we report
results for the dataless variant.

The most expensive step in our pipeline is the computation of Fisher information matrices. For
GPT-2, we use 256 examples, while for larger LLMs we use 1000 examples, which is the maximum
available from the validation data. On a single NVIDIA A100 80GB GPU, Fisher estimation for
the 8B model takes approximately one hour per domain, which results in about five hours of com-
putation for five tasks. Crucially, this cost is incurred only once per task since Fisher estimation is
independent of hyperparameters. Once the Fisher values are computed, they can be reused for all
subsequent searches over λ and K, significantly reducing the overhead of iterative experimentation.
Moreover, Fisher computation is naturally parallelizable: different tasks’ Fisher information can be
computed simultaneously, and multi-GPU setups can further accelerate the process. While we did
not explore these parallelization strategies in this work, they represent a clear avenue for further
speedup in large-scale deployments.

F DETAILED RESULTS

Table 7: Model Performance: Mathematics, Multilingual, and Instruction Following Tasks on
Llama-3.1-8B

Model Name GSM8K Minerva M MMLU M ARC M Hellaswag IFEval (strict) IFEval (loose)

Base Model 55.72 18.00 53.28 44.75 63.08 18.70 20.10
Skyline(s) 70.43 33.22 54.02 47.62 65.35 57.70 63.60
Averaging (only layers.) 71.27 25.40 52.68 43.51 65.90 24.80 28.80
Averaging (All) 71.49 25.76 52.70 43.81 65.94 23.80 27.40
Task Arithmetic 75.66 28.02 49.08 41.22 64.03 30.90 37.20
TIES 76.72 28.22 52.26 43.02 65.83 28.80 33.80
DARE 75.06 27.02 47.32 40.86 62.81 30.10 35.90
Fisher merging 67.32 22.60 52.67 43.62 65.66 34.60 39.70
L&S 76.12 28.60 53.49 44.04 65.01 24.20 30.90
Ours 64.67 23.28 47.67 40.22 62.48 40.30 46.20

Table 8: Model Performance: Coding and Safety Tasks on Llama-3.1-8B

Model Name HumanEval+ MBPP+ WildguardTest Harmbench DAN XSTest

Base Model 31.70 51.30 42.19 24.69 29.67 34.22
Skyline(s) 57.30 54.80 78.37 81.56 71.33 69.11
Averaging (only layers.) 46.30 54.00 58.88 44.06 59.67 60.22
Averaging (All) 44.50 55.60 60.35 41.87 58.00 65.56
Task Arithmetic 49.40 52.40 59.81 48.75 58.33 69.56
TIES 46.30 54.80 61.82 56.25 67.67 64.22
DARE 45.10 52.60 60.35 50.73 51.33 68.44
Fisher merging 44.50 53.20 68.89 57.50 77.00 60.45
L&S 42.70 53.40 51.27 40.31 42.00 49.33
Ours 52.40 53.40 75.83 75.62 78.67 73.33
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Table 9: Model Performance: Mathematics, Multilingual, and Instruction Following Tasks on
Llama-3.2-3B

Model Name GSM8K Minerva M MMLU M ARC M Hellaswag IFEval (strict) IFEval (loose)

Base Model 28.66 8.04 45.32 36.75 55.45 20.0 21.6
Skyline(s) 55.50 23.68 44.12 39.19 56.45 37.9 43.8
Averaging (only layers.) 40.86 12.44 45.83 38.94 57.49 21.6 24.8
Averaging (All) 41.77 12.88 45.87 39.00 57.52 19.4 22.9
Task Arithmetic 44.45 15.30 44.27 39.22 57.54 32.0 35.9
TIES 31.46 9.52 45.43 39.66 57.55 27.4 30.7
DARE 43.44 14.78 43.89 39.34 57.36 32.5 36.2
Fisher merging 40.26 12.12 45.98 38.64 57.28 24.6 29.0
L&S 42.76 14.24 45.20 39.73 57.05 21.6 24.8
Ours 40.33 13.94 44.33 38.51 57.10 38.1 44.0

Table 10: Model Performance: Coding and Safety Tasks on Llama-3.2-3B

Model Name HumanEval+ MBPP+ WildguardTest Harmbench DAN XSTest

Base Model 25.0 39.4 26.70 26.25 29.33 28.67
Skyline(s) 38.4 45.8 85.71 88.75 90.67 38.67
Averaging (only layers.) 31.7 42.9 37.38 35.62 37.33 41.11
Averaging (All) 31.7 41.3 37.92 34.37 37.33 39.33
Task Arithmetic 34.8 45.5 51.67 39.37 34.67 50.22
TIES 32.3 42.3 47.00 40.94 46.00 40.44
DARE 35.4 46.0 49.00 37.19 33.67 54.22
Fisher merging 31.1 42.6 48.06 39.06 48.00 38.00
L&S 31.7 41.3 30.71 27.81 26.67 38.44
Ours 35.4 43.7 56.74 37.81 46.67 50.00

G SCALABILITY OF DRIFT-MEDIAN

The proposed method should be applicable to larger sized models. Computing the diagonal Fisher
information matrix requires only forward–backward passes over a small validation set and does not
demand more resources than a brief fine-tuning run. In practice, we did not conduct such exper-
iments due to two limitations: (i) a lack of computational resources to load the models, and (ii)
the absence of large, publicly available fine-tuned checkpoints built on the same base model, which
makes controlled comparisons difficult. Further, understanding how performance behaves as the
number of merged tasks increases is an important question for evaluating the robustness of any
parameter-space merging method. However, this behavior does not depend solely on the task count;
it is shaped by several interacting factors, including task similarity, parameter-space overlap, sparsity
patterns of the task vectors, and the curvature or variance induced by each task. As noted in Wang
et al. (2025), the effective parameter space can saturate as more experts are merged due to Gaussian
Width concavity and redundancy constraints. This implies that performance may plateau or even
degrade when the additional tasks introduce conflicting or redundant update directions, independent
of their absolute number. A faithful study of this phenomenon requires a carefully controlled setting
that isolates these effects, which is beyond the scope of the present work.

H CORRELATION WITH TASK-VECTOR MAGNITUDE

To better understand whether the degree of parameter deviation in each task influences the final
merged performance, we compare the difference between our method and the Skyline(s) baseline
with the mean absolute magnitude of the corresponding task vectors. The performance difference
is computed as Ours – Skyline, capturing how much accuracy is lost relative to the ideal single-
task fine-tuned models. The mean task-vector magnitude reflects the average absolute parameter
shift introduced by each task relative to the pretrained backbone. Figure 5 summarizes these two
quantities across all eight datasets. The performance differences span a much wider range, from
modest degradation (e.g., MNIST) to substantial drops (e.g., GTSRB and RESISC). Importantly,
datasets with relatively higher task-vector magnitudes do not consistently exhibit lower deviations
from Skyline performance, and tasks with lower magnitudes do not show systematically higher
gaps. Overall, this analysis indicates that the magnitude of the task-vector updates is not strongly
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Figure 5: Relationship between task-vector magnitude and performance degradation in the merged
model. Despite small variations in the average parameter shift across tasks, no meaningful correla-
tion emerges, indicating that other factors such as dataset difficulty or task conflicts may dominate
the observed performance differences.

correlated with the degradation observed when merging models. The variation in performance across
datasets is therefore more likely driven by dataset-specific difficulty or inherent conflicts between
task objectives rather than by simple differences in the size of the underlying task vectors.

I DOMAIN SENSITIVITY OF DRIFT-MEDIAN

Table 11: Model Performance on Different Domain Data for Fisher Estimation

Validation Data SUN397 CARS RESISC45 Eurosat SVHN GTSRB MNIST DTD Average PRR

Unchanged 65.01 66.17 71.38 76.19 88.05 64.33 97.55 58.35 73.38 81.22
MNIST→ KMNIST 65.17 66.45 71.11 75.96 86.83 64.31 98.06 58.09 73.25 81.09
MNIST→ KMNIST & SVHN→MNIST 65.33 66.92 71.98 77.19 77.43 64.65 97.36 58.35 72.40 80.25

To further analyze the robustness of DRIFT-MEDIAN, we additionally study the effect of domain
mismatch in the Fisher estimation stage. Specifically, we replace the MNIST validation data with
KMNIST, a visually distinct digit-recognition dataset where the characters correspond to Japanese
cursive hiragana Clanuwat et al. (2018). Despite the significant visual shift from English numerals,
performance across domains remains relatively stable, demonstrating that DRIFT-MEDIAN toler-
ates moderate domain shifts. We chose KMNIST because both MNIST and KMNIST share the
same label space (0 to 9).

In the last row of Table 11, we perform a more extreme modification by replacing SVHN (Street
View House Numbers), which contains real-world RGB street-number images, with MNIST
grayscale digits. In this case, we observe a substantial performance drop on SVHN, while the other
domains remain consistent. This behavior is expected because SVHN contains cluttered and noisy
backgrounds and RGB images whereas MNIST contains grayscale images. Together, these results
show that DRIFT-MEDIAN is robust to moderate domain shifts in the Fisher estimation data but can
degrade when the substitute domain differs too drastically from the target distribution. Importantly,
in Table 2 and Table 3, we use validation data that do not exactly match the downstream evaluation
tasks. For example, we use multilingual instruction-following data to compute Fisher information,
while the evaluation is performed on tasks such as ARC, HellaSwag, and MMLU. Similarly, for
other LLM benchmarks, including MBPP, Humaneval, and GSM8K, there are no official validation
sets available. In all the cases, we rely on datasets whose topical focus may be broadly related,
but whose style and distributions differ substantially from the downstream tasks. Even though these
datasets differ from the evaluation sets, DRIFT-MEDIANmaintains strong performance for all mod-
els.

In conclusion, DRIFT-MEDIAN is generally resilient to reasonable domain mismatch and can op-
erate effectively even when the Fisher estimation data and evaluation data come from different dis-
tributions. However, extremely mismatched domains such as replacing SVHN with MNIST can
negatively impact performance.
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J USE OF LARGE LANGUAGE MODELS

In adherence to ICLR 2026 policy, we disclose our use of Large Language Models (LLMs) during
the preparation of this manuscript. ChatGPT (OpenAI et al., 2024) was utilized in a limited capacity
as a general-purpose writing assistant for grammatical refinement and sentence paraphrasing. The
core research ideas, experimental design, results, and their interpretation were conceived and formu-
lated entirely by the authors. The LLM’s role was strictly limited to language refinement and did not
contribute to the scientific ideation or analysis presented in this work. The authors have reviewed all
content and take full responsibility for the final manuscript.
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