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ABSTRACT

Multimodal Large Language Models (MLLMs) have significantly advanced visual
tasks by integrating visual representations into large language models (LLMs).
The textual modality, inherited from LLMs, equips MLLMs with abilities like
instruction following and in-context learning. In contrast, the visual modality
enhances performance in downstream tasks by leveraging rich semantic content,
spatial information, and grounding capabilities. These intrinsic modalities work
synergistically across various visual tasks. Our research initially reveals a persis-
tent imbalance between these modalities, with text often dominating output gener-
ation during visual instruction tuning. This imbalance occurs when using both full
fine-tuning and parameter-efficient fine-tuning (PEFT) methods. We then found
that re-balancing these modalities can significantly reduce the number of trainable
parameters required, inspiring a direction for further optimizing visual instruc-
tion tuning. Hence, in this paper, we introduce Modality Linear Representation-
Steering (MoReS) to achieve the goal. MoReS effectively re-balances the intrinsic
modalities throughout the model, where the key idea is to steer visual represen-
tations through linear transformations in the visual subspace across each model
layer. To validate our solution, we composed LLaVA Steering, a suite of mod-
els integrated with the proposed MoReS method. Evaluation results show that
the composed LLaVA Steering models require, on average, 500 times fewer train-
able parameters than LoRA needs while still achieving comparable performance
across three visual benchmarks and eight visual question-answering tasks. Last,
we present the LLaVA Steering Factory, an in-house developed platform that en-
ables researchers to quickly customize various MLLMs with component-based
architecture for seamlessly integrating state-of-the-art models, and evaluate their
intrinsic modality imbalance. This open-source project enriches the research com-
munity to gain a deeper understanding of MLLMs.

1 INTRODUCTION

Recent advancements in Multimodal Large Language Models (MLLMs) (Liu et al., 2024b; Xue
et al., 2024; Zhou et al., 2024a; Chen et al., 2023) have demonstrated impressive capabilities across
a variety of visual downstream tasks. These models integrate visual representations from pretrained
vision encoders via various connectors (Liu et al., 2024a; Li et al., 2023a; Alayrac et al., 2022)
into LLMs, leveraging the latter’s sophisticated reasoning abilities (Zhang et al., 2024; Abdin et al.,
2024; Zheng et al., 2023a).

To better integrate visual representations into LLMs, the most popular MLLMs adopt a two-stage
training paradigm: pretraining followed by visual instruction tuning. In the pretraining stage, a
connector is employed to project visual representations into the textual representation space. We
define these two modalities—text and vision—as intrinsic to MLLMs, each carrying rich semantic
information that serves as the foundation for further visual instruction tuning on downstream tasks
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Figure 1: Left: Attention score distributions across layers for three MLLM fine-tuning methods
(Full, LoRA, and MoReS), sampled from 100 instances each. Green represents visual represen-
tations, while grey indicates other (primarily textual) representations. Full fine-tuning and LoRA
show strong reliance on textual representations across most layers. In contrast, the proposed MoReS
method demonstrates significantly improved visual representation utilization, particularly in the
middle and lower layers, addressing the intrinsic modality imbalance in MLLMs. Right: Aver-
age visual attention score distribution versus model size for different MLLM fine-tuning methods.
The plot suggests that methods achieving better balanced intrinsic modality tend to require fewer
trainable parameters.

such as image understanding (Sidorov et al., 2020), visual question answering (Goyal et al., 2017a;
Lu et al., 2022; Hudson & Manning, 2019), and instruction following (Liu et al., 2023).

In the visual instruction tuning stage, due to its high computational cost, researchers have pur-
sued two primary strategies. One approach focuses on refining data selection methodologies (Liu
et al., 2024c; McKinzie et al., 2024) to reduce redundancy and optimize the training dataset, though
this process remains expensive and time-consuming. A more common strategy goes to employ
Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA (Hu et al., 2021), aiming to reduce
the number of trainable parameters, thereby making visual instruction tuning more computationally
feasible (Liu et al., 2024a; Zhou et al., 2024a). However, even with PEFT methods like LoRA,
large-scale MLLMs remain prohibitively expensive to fine-tuning.

This raises a critical question: is there any further possibility to reduce more trainable parameters
so that the visual instruction tuning can be further improved? Our research offers a novel viewpoint
by focusing on the intrinsic modality imbalance within MLLMs. A closer analysis uncovers an
imbalance in output attention computation (Chen et al., 2024a), where textual information tends
to dominate the attention distribution during output generation. Specifically, we investigate this
issue by analyzing attention score distributions, which evaluates the balance between text and visual
modalities. As shown in Figure 1, visual representations are significantly underutilized during visual
instruction tuning. More importantly, our analysis reveals that achieving a better balance between
these modalities can substantially reduce the number of trainable parameters required for fine-tuning.
Hereby we suppose that intrinsic modality rebalance is the Midas touch to unlock further reductions
in the number of trainable parameters.

To address this challenge, we introduce Modality Linear Representation-Steering (MoReS) to op-
timize visual instruction tuning, significantly reducing the number of trainable parameters while
maintaining equivalent performance. Unlike full fine-tuning, which modifies the entire model, or
other popular PEFT methods such as LoRA (Hu et al., 2021), OFT (Qiu et al., 2023), Adapter
(Houlsby et al., 2019), and IA3 (Liu et al., 2022), MoReS focuses solely on steering the visual
representations. Specifically, our approach freezes the entire LLM during visual instruction tuning
to preserve its capabilities in the textual modality. Instead of fine-tuning the full model, we intro-
duce a simple linear transformation to steer visual representations in each layer. This transformation
operates within a subspace after downsampling, where visual representations encode rich semantic
information in a compressed linear subspace (Zhu et al., 2024; Shimomoto et al., 2022; Yao et al.,
2015). By continuously steering visual representations across layers, MoReS effectively controls
the output generation process, yielding greater attention inclined to visual modality.
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To validate the efficacy of our proposed MoReS method, we integrated it into MLLMs of varying
scales (3B, 7B, and 13B parameters) during visual instruction tuning, following the LLaVA 1.5 (Liu
et al., 2024a) training recipe. The resulting models, collectively termed LLaVA Steering, achieved
competitive performance across three visual benchmarks and six visual question-answering tasks,
while requiring 287 to 1,150 times fewer trainable parameters than LoRA, depending on the specific
training setup.

In our experiments, we observed the need for a comprehensive framework to systematically analyze
and compare various model architectures and training strategies in MLLMs. The wide range of de-
sign choices and techniques makes it difficult to standardize and understand the interplay between
these components. Evaluating each method across different open-source models is time-consuming
and lacks consistency due to implementation differences, requiring extensive data preprocessing and
careful alignment between architectures and training recipes. To address this issue, we developed the
LLaVA Steering Factory, a flexible framework that reimplements mainstream vision encoders, multi-
scale LLMs, and diverse connectors, while offering customizable training configurations across a
variety of downstream tasks. This framework simplifies pretraining and visual instruction tuning,
minimizing the coding effort. Additionally, we have integrated our attention score distribution analy-
sis into the LLaVA Steering Factory, providing a valuable tool to the research community for further
studying intrinsic modality imbalance in MLLMs.

Our work makes the following key contributions to the field of MLLMs:

1. First of all, we propose Modality Linear Representation-Steering (MoReS), a novel method
that addresses intrinsic modality imbalance in MLLMs by steering visual representations
through linear transformations within the visual subspace, effectively mitigating the issue
of text modality dominating visual modality.

2. In addition, we present LLaVA Steering, where with different sizes (3B/7B/13B), three
real-world LLaVA MLLMs consisting of different model components are composed by
integrating the proposed MoReS method into visual instruction tuning. LLaVA Steer-
ing models based on MoReS method achieve comparable performance across three visual
benchmarks and six visual question-answering tasks, while requiring 287 to 1, 150 times
fewer trainable parameters.

3. Last but not least, we develop the LLaVA Steering Factory, a flexible framework designed
to streamline the development and evaluation of MLLMs with minimal coding effort. It of-
fers customizable training configurations across diverse tasks and incorporates tools such as
attention score analysis, facilitating systematic comparisons and providing deeper insights
into intrinsic modality imbalance.

2 RELATED WORK

Integrating Visual Representation into LLMs: To leverage pre-trained large language models
(LLMs) for understanding visual instructions and generating responses, researchers have introduced
cross-attention mechanisms to integrate image information into the language model. Notable exam-
ples include models such as LLaMA 3-V (Dubey et al., 2024), IDEFICS (Laurençon et al., 2023),
and Flamingo (Awadalla et al., 2023; Alayrac et al., 2022). These models typically follow a two-
stage training process: pretraining on large-scale image-text datasets, followed by supervised fine-
tuning (SFT) with carefully curated high-quality data. During this process, the self-attention layers
in the LLM decoder are kept frozen, with only the cross-attention and perceiver layers updated,
ensuring that the text-only performance remains intact.

Another prominent approach employs a decoder-only architecture, as seen in models like the LLaVA
family (Liu et al., 2024b;a; 2023), BLIP (Xue et al., 2024; Li et al., 2023a), and Qwen-VL (team,
2024; Bai et al., 2023). These models also follow the pretraining and visual instruction tuning
paradigm. In the pretraining stage, a randomly initialized connector is trained while keeping the
LLM frozen. However, recent studies (Bai et al., 2023; Chen et al., 2023) have demonstrated sce-
narios where both the projector and vision encoder are jointly trained during pretraining. Given the
limited capacity of adapter modules, it is common to unfreeze the LLM during visual instruction
tuning, while keeping the vision encoder frozen.

3
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NVLM (Dai et al., 2024) represents a hybrid approach, combining elements of both the cross-
attention and decoder-only architectures. In contrast, vision-encoder-free methods, as explored by
models like Fuyu (Bavishi et al., 2023), SOLO (Chen et al., 2024b), and EVE (Diao et al., 2024), di-
rectly integrate visual information into LLMs at the pixel level, foregoing traditional vision encoders
altogether.

While these approaches have advanced the integration of visual representations into LLMs, they still
face significant challenges in the computational demands of visual instruction tuning, motivating
further exploration into more efficient methods.

Visual Instruction Tuning: Fine tuning of multimodal large language models (MLLMs) for down-
stream tasks has gained considerable attention, but remains computationally expensive due to large-
scale visual instruction datasets and model sizes (Wang et al., 2022). To tackle this challenge, re-
cent advancements have introduced parameter-efficient fine-tuning (PEFT) methods (Houlsby et al.,
2019; Li & Liang, 2021), such as LoRA (Hu et al., 2021), enabling more efficient visual instruction
tuning.

However, many of these PEFT methods primarily focus on optimizing weights but ignore the intrin-
sic representation imbalance during visual instruction tuning, thus cannot further reduce the required
trainable parameters. This means to look for other novel approaches that can improve the efficiency
and effectiveness of visual instruction tuning.

Representation Steering: Recent studies (Singh et al., 2024; Avitan et al., 2024; Li et al., 2024;
Subramani et al., 2022) have demonstrated that the representations induced by pre-trained language
models (LMs) encode rich semantic structures. Steering operations within this representation space
have shown to be effective in controlling model behavior. Unlike neuron-based or circuit-based
approaches, representation steering manipulates the representations themselves, providing a clearer
mechanism for understanding and controlling the behavior of MLLMs and LLMs. For example,
(Zou et al., 2023) explores representation engineering to modify neural network behavior, shifting
the focus from neuron-level adjustments to transformations within the representation space. Simi-
larly, (Wu et al., 2024a) applies scaling and biasing operations to alter intermediate representations.
Furthermore, (Wu et al., 2024b) introduces a family of representation-tuning methods that allows
for interpretable interventions within linear subspaces.

In this work, we leverage the concept of representation steering to introduce a novel approach,
MoReS, which enhances attention to visual representations, thereby demonstrating superior param-
eter efficiency compared to baseline PEFT methods (Hu et al., 2021; Houlsby et al., 2019; Liu et al.,
2022; Qiu et al., 2023).

3 INTRINSIC MODALITY IMBALANCE

This section explores how the two intrinsic modalities—text and vision—are imbalanced during out-
put generation across each layer in MLLMs, as reflected in the attention score distribution. Further-
more, we demonstrate that addressing this modality imbalance effectively during visual instruction
tuning can guide the design of methods that require fewer trainable parameters.

We begin with calculating the attention score distribution across both modalities in each layer, as
derived from the generated output. In auto-regressive decoding, which underpins decoder-only
MLLMs, output tokens are generated sequentially, conditioned on preceding tokens. The proba-
bility distribution over the output sequence ŷ is formalized as:

p(ŷ) =

L∏
i=1

p(ŷi|ŷ<i, Rtext, Rimage, Rsys) (1)

where ŷi represents the i-th output token, ŷ<i denotes the preceding tokens, Rtext is the textual
representation, Rimage is the visual input representation, Rsys accounts for system-level contextual
information, and L is the output sequence length.

To quantify modality representation imbalance, we calculate the sum of attention scores allocated
to visual representations across all layers in MLLMs. Figure 1 illustrates this imbalance across full
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fine-tuning, LoRA, and our proposed MoReS method. The results indicate that textual representa-
tions often dominate the output generation process in both full fine-tuning and LoRA.

Further examination of this imbalance across multiple PEFT methods reveals an intriguing trend:
methods that make better use of visual representations tend to require fewer trainable parameters
during visual instruction tuning.

To validate this observation, we introduce the Layer-wise Modality Attention Ratio (LMAR), for-
mulated as:

LMARl =
1

N

N∑
i=1

αimage,i
l

αtext,i
l

, (2)

where l denotes the layer index, N is the total number of samples, and αimage,i
l and αtext,i

l are the
mean attention scores allocated to visual and textual tokens, respectively, in layer l for the i-th
sample. LMAR thus provides a robust measure of the attention distribution between modalities,
averaged over multiple samples to capture general trends in modality representation across layers.

In our experiments comparing various existing
PEFT methods and full fine-tuning, IA3 (Liu
et al., 2022) consistently achieves the highest
average LMAR score across all layers while re-
quiring the fewest trainable parameters. IA3’s
superior performance can be attributed to its
unique design, which introduces task-specific
rescaling vectors that directly modulate key
components of the Transformer architecture,
such as the keys, values, and feed-forward lay-
ers.
Unlike methods that introduce complex
adapters or fine-tune all parameters, IA3 op-
timizes a small but crucial set of parameters
responsible for attention and representation
learning. By applying element-wise scaling
to the attention mechanisms, IA3 effectively
re-balances the attention distribution across two
intrinsic modalities. This design is particularly
beneficial during visual instruction tuning, as
it allows the model to dynamically reallocate
more attention to visual representations without
requiring many trainable parameters.

1 7 13 19 25 31
Layer Number

10 2

10 1

100

LM
AR

Full
LoRA
Adapter

IA3
OFT
MoReS

Figure 2: Layer-wise Modality Attention Ratio
(LMAR) comparison across training methods,
including Full fine-tuning, LoRA, Adapter, IA3,
and our MoReS. Our MoReS method (red line)
consistently demonstrates the highest LMAR
across most layers, with a notable spike in the
final layers. Compared with full fine-tuning and
mainstream PEFT methods, our MoReS needs
the least parameters during visual instruction
tuning while achieving superior modality bal-
ance.

The identified relationship inspires that if the intrinsic modality imbalance can be addressed, the
required number of trainable parameters can be potentially reduced further during visual instruction
tuning. This offers a new direction for future improvements in PEFT methods for MLLMs.

4 MORES METHOD

Based on insights gained from intrinsic modality imbalance, we introduce Modality Linear
Representation-Steering (MoReS) as a novel method for visual instruction tuning which can rebal-
ance visual and textual representations and achieve comparable performance with fewer trainable
parameters.

Our approach is grounded in the linear subspace hypothesis, originally proposed by Bolukbasi et al.
(2016), which suggests that information pertaining to a specific concept is encoded within a linear
subspace in a model’s representation space. This hypothesis has been rigorously validated across
numerous domains, including language understanding and interpretability (Lasri et al., 2022; Nanda
et al., 2023; Amini et al., 2023; Wu et al., 2024c).
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Building upon the intervention mechanisms described in Geiger et al. (2024) and Guerner et al.
(2023), we introduce a simple linear transformation that steers visual representations within sub-
space while keeping the entire LLM frozen during visual instruction tuning. This approach ensures
that the language model’s existing capabilities are preserved, while continuously guiding the MLLM
to better leverage the underutilized visual modality. By steering visual representations across each
layer, MoReS effectively rebalances the intrinsic modality and influences the output generation pro-
cess. Figure 3 provides an illustration of the overall concept and architecture behind MoReS.

Transformer Layer

Transformer Layer

Output

Vision Encoder

Connector
[Output Tokens]

[Visual Tokens] [Textual Tokens]

[Output Tokens]

[Visual Tokens] [Textual Tokens]

Modality Linear Representation-Steering
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Transformer Layer L-1

Transformer Layer L

Down

Linear
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Figure 3: Schematic Overview of Modality Linear Representation-Steering (MoReS): Left: The
architectural diagram depicts the integration of textual and visual tokens through transformer layers,
leading to output token generation. Right: The mathematical formulation of MoReS illustrates the
steering of visual representations within a subspace, highlighting its impact on output generation.
During visual instruction tuning, the parameters of the LLM remain frozen, allowing only the pa-
rameters associated with the linear transformation in the steering mechanism to be trainable. With
MoReS, the distribution of attention scores becomes more balanced, achieving intrinsic modality
balance.

Formally, MoReS method can be formulated as follows: Let H = {hi}Ni=1 ⊂ RD denote the set
of visual representations in the original high-dimensional space. We define our steering function
MoReS as:

MoReS(h) = Wup · ϕ(h) (3)
where h ∈ RD is an input visual representation, ϕ : RD → Rd is a linear transformation function
that steers h into a lower-dimensional subspace Rd (d < D), and Wup ∈ RD×d is an upsampling
matrix that projects from Rd back to RD. The steering function ϕ is defined as:

ϕ(h) = Linear(h)−Wdownh (4)
where Wdown ∈ Rd×D is a downsampling matrix. To preserve the fidelity of the representation
and ensure a bijective mapping between spaces, we impose the following constraint WdownW

T
up =

ID. Notably, this steering method can dynamically be applied to specific visual tokens. Further
exploration of the impact of different steered token ratios is discussed in Section 5.5.

In Section A.1, we further provide theoretical justification that elucidates how MoReS effectively
rebalances the intrinsic modalities while continuously controlling output generation. Additionally,
we provide a preliminary estimation of the trainable parameters involved during visual instruction
tuning.

In the following sections, we first compose real-world MLLMs (i.e., LLaVA Steering) with three
different scales and integrate the proposed MoReS method. Based on the composed real-world
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models, we then evaluate how our MoReS method performs within the composed models across
several popular and prestigious datasets.

5 EXPERIMENTS

We incorporate MoReS into each layer of the LLM during visual instruction tuning, developing
LLaVA Steering (3B/7B/13B) based on the training recipe outlined in (Liu et al., 2024a). During
visual instruction tuning on the LLaVA-665k dataset, we apply MoReS to a specific ratio of the total
visual tokens, specifically using it on only 1% of the tokens.

5.1 EXPERIMENT SETTINGS

5.1.1 LLAVA STEERING ARCHITECTURES

As illustrated in Figure 3, the architecture of the LLaVA Steering models (3B/7B/13B) consists of
three essential components: a vision encoder, a vision connector responsible for projecting visual
representations into a shared latent space, and a multi-scale LLM. The three modules are introduced
below.

In our experiments, we utilize the Phi-2 2.7B model (Li et al., 2023c) alongside Vicuna v1.5 (7B
and 13B) (Zheng et al., 2023b), sourced from our factory, to evaluate the generalizability of our
approach across models of varying scales. For vision encoding, we employ CLIP ViT-L/14 336px
(Radford et al., 2021) and SigLIP-SO400M-Patch14-384 (Zhai et al., 2023), while a two-layer MLP
serves as the connector. Given the inefficiencies of Qformer in training and its tendency to introduce
cumulative deficiencies in visual semantics (Yao et al., 2024), it has been largely replaced by more
advanced architectures, such as the BLIP series (Xue et al., 2024), Qwen-VL series (team, 2024),
and InternVL series (Chen et al., 2024c), which were previously reliant on Qformer.

5.1.2 BASELINE TRAINING METHODS

For comparison, four widely adopted PEFT methods (Adapter, LoRA, OFT and IA3) are selected
as baselines. These methods establish a comparative framework to assess both the performance
and efficiency of our proposed approach. Essentially, our MoReS method replaces these four PEFT
methods during visual instruction tuning in LLaVA Steering.

Adapter: Building on the framework of efficient fine-tuning (Houlsby et al., 2019), we intro-
duce adapter layers within Transformer blocks. These layers consist of a down-projection matrix
Wdown ∈ Rr×d, a non-linear activation function σ(·), and an up-projection matrix Wup ∈ Rd×r,
where d is the hidden layer dimension and r is the bottleneck dimension. The adapter output is
computed as:

Adapter(x) = Wupσ(Wdownx) + x, (5)

where the residual connection (+x) preserves the pre-trained model’s knowledge. This formulation
enables efficient parameter updates during fine-tuning, offering a balance between computational
efficiency and adaptation capacity while minimally increasing the model’s complexity.

LoRA: We employ the low-rank adaptation method (LoRA) proposed by (Hu et al., 2021), which
efficiently updates the network’s weights with a minimal parameter footprint by leveraging a low-
rank decomposition strategy. For a pre-trained weight matrix W0 ∈ Rd×k, the weight update is
achieved through the addition of a low-rank decomposition, as shown in Equation 6:

W0 +∆W = W0 +BA (6)

where B ∈ Rd×r and A ∈ Rr×k are trainable low-rank matrices, and r ≪ min(d, k).

OFT: We utilize the Orthogonal Finetuning (OFT) method, which efficiently fine-tunes pre-trained
models by optimizing a constrained orthogonal transformation matrix (Qiu et al., 2023). For a pre-
trained weight matrix W0 ∈ Rd×n, OFT modifies the forward pass by introducing an orthogonal
matrix R ∈ Rd×d, as illustrated in Equation 7:

z = W⊤x = (R ·W0)
⊤x (7)

7
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where R is initialized as an identity matrix I to ensure that fine-tuning starts from the pre-trained
weights.

IA3: Building on the framework established by (Liu et al., 2022), we introduce three vectors vk ∈
Rdk , vv ∈ Rdv , and vff ∈ Rdff into the attention mechanism. The attention output is computed as:

Attention(Q,K, V ) = softmax
(
Q(vk ⊙KT )√

dk

)
(vv ⊙ V ), (8)

where ⊙ denotes multiplication by element.

5.2 MULTI-TASK SUPERVISED FINE-TUNING

To assess the generality of our method, we compare it with the baselines using the LLaVA-665K
multitask mixed visual instruction dataset (Liu et al., 2024a). Our evaluation covers multiple bench-
marks, including VQAv2 (Goyal et al., 2017b) and GQA (Hudson & Manning, 2019), which test
visual perception through open-ended short answers, and VizWiz (Gurari et al., 2018), with 8,000
images designed for zero-shot generalization in visual questions posed by visually impaired individ-
uals. We also use the image subset of ScienceQA (Lu et al., 2022) with multiple-choice questions
to assess zero-shot scientific question answering, while TextVQA (Singh et al., 2019) measures
performance on text-rich visual questions. MM-Vet (Yu et al., 2023) evaluates the model’s ability
to engage in visual conversations, with correctness and helpfulness scored by GPT-4. Addition-
ally, POPE (Li et al., 2023b) quantifies hallucination of MLLMs. Finally, we apply the MMMU
benchmark (Yue et al., 2024) to assess core multimodal skills, including perception, knowledge, and
reasoning.

Following (Zhou et al., 2024b), we define ScienceQA
as an unseen task, while VQAv2, GQA, and VizWiz
are categorized as seen tasks in LLaVA-665k. To pro-
vide a comprehensive evaluation of our MoReS capa-
bilities, we design three configurations: MoReS-Base,
MoReS-Large, and MoReS-Huge, each based on dif-
ferent ranks.
We present the results in Table 1, where our MoReS
method achieves the highest scores on POPE (88.2)
and MMMU (35.8), as well as the second-best per-
formance on ScienceQA (71.9) and MM-Vet (33.3).
Notably, MoReS accomplishes these results with 287
to 1150 times fewer trainable parameters compared to
LoRA. The scatter plots in Figure 4 further illustrate
that MoReS variants (highlighted in red) consistently
achieve Pareto-optimal performance, offering an ideal
balance between model size and effectiveness.

Figure 4: Comparison of parameter
count vs. performance for MoReS and
other PEFT methods across four bench-
marks.

Model Method TP* VQAv2 GQA TextVQA SciQA-IMG POPE MM-Vet MMMU Avg

LLaVA Steering-3B

FT 2.78B 79.2 61.6 57.4 71.9 87.2 35.0 38.2 61.5

Adapter 83M 77.1 58.9 53.5 68.1 86.7 29.4 34.2 58.2
LoRA 188.74M 77.6 59.7 53.8 71.6 87.9 33.3 35.6 59.9
OFT 39.3M 75.1 55.3 52.9 69.1 87.6 31.0 35.6 58.3
IA3 0.492M 74.5 52.1 49.3 72.2 86.9 30.9 34.3 57.1

MoReS-B 0.164M 74.1 52.1 48.5 70.0 87.6 30.3 35.3 56.9
MoReS-L 0.328M 74.0 51.6 49.3 71.6 87.2 33.3 34.4 57.3
MoReS-H 0.655M 74.2 51.8 48.3 71.9 88.2 31.1 35.8 57.4

Table 1: Experimental results of Multi-Task Supervised Fine-tuning. For the TP* metric in this
evaluation, we focus solely on the trainable parameters within the LLM. While different training
strategies are applied to the vision encoder and connector across various recipes, we maintain a
consistent training recipe for all models and benchmarks to ensure comparability
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5.3 TASK-SPECIFIC FINE-TUNING

We evaluate the task-specific fine-tuning capabilities of our MoReS method in comparison to other
tuning methods on multiple visual question answering datasets: (1) ScienceQA-Image (Lu et al.,
2022), (2) VizWiz (Gurari et al., 2018), and (3) IconQA-txt and IconQA-blank (Lu et al., 2021).

We present the results in Table 2, showing that MoReS achieves 1200 times fewer trainable parame-
ters compared to LoRA and 3 times fewer than the previous best, IA3, while maintaining comparable
performance or an acceptable decline of less than 3%. These results show that MoReS can succeed
at Task-Specific Fine-tuning, even unseen tasks during its multitask visual instruciton tuning stage.

Model Method TP* SciQA-IMG VizWiz IconQA-txt IconQA-blank

LLaVA Steering-3B

Adapter 83M 92.3 62.9 93.5 95.8
LoRA 188.7M 93.9 61.6 93.9 96.5
OFT 39.32M 86.3 42.0 87.8 42.0
IA3 0.492M 90.2 58.4 84.5 94.7

MoReS-B 0.164M 89.7 59.2 84.0 94.2

LLaVA Steering-7B

Adapter 201.3M 82.7 59.7 72.1 71.6
LoRA 319.8M 87.6 60.6 77.7 70.2
OFT 100.7M 78.3 55.1 19.4 22.7
IA3 0.614M 83.8 54.3 65.1 70.4

MoReS-B 0.262M 83.6 54.2 64.2 70.2

LLaVA Steering-13B

Adapter 314.6M 87.9 61.4 78.2 73.0
LoRA 500.7M 92.1 62.0 80.2 73.2
OFT 196.6M 82.7 59.5 3.4 22.3
IA3 0.963M 90.5 54.6 73.8 71.7

MoReS-B 0.410M 89.5 54.3 74.9 71.5

Table 2: Results of Task-Specific Fine-tuning, where higher
values correspond to better performance.

Scale Method TP* SciQA-IMG VizWiz IconQA

Small

FT 2.78B 33.8 51.2 68.1
Adapter 83M 81.0 57.4 72.4
LoRA 188.74M 84.0 58.5 74.2
OFT 39.32M 79.2 43.2 35.9
IA3 0.492M 79.9 50.5 73.0

MoReS-L 0.328M 78.2 55.0 69.7

Medium

FT 2.78B 78.2 58.9 92.2
Adapter 83M 92.1 60.6 93.2
LoRA 188.74M 92.9 60.5 92.7
OFT 39.32M 86.4 44.4 45.5
IA3 0.492M 91.9 57.1 90.6

MoReS-L 0.328M 92.1 56.6 89.9

Large

FT 2.78B 88.9 59.4 95.7
Adapter 83M 92.4 61.3 95.2
LoRA 188.74M 93.9 61.8 96.0
OFT 39.32M 86.4 44.2 43.7
IA3 0.492M 90.3 57.9 93.8

MoReS-L 0.328M 89.8 57.7 93.5

Table 3: Results of multi-scale
tasks.

5.4 MULTI-SCALE DATA FINE-TUNING

During visual instruction tuning, the scale of specific task datasets can vary significantly. To gain a
comprehensive understanding of our method compared to other training approaches, we follow the
methodology of (Chen et al., 2022) and randomly sample 1K, 5K, and 10K data points from each
dataset, defining these as small-scale, medium-scale, and large-scale tasks, respectively. Given the
limited resources available, we choose MoReS-L for fine-tuning.

Table 3 demonstrates that MoReS exhibits strong capabilities across all scales. Notably, in small-
scale tasks, MoReS outperforms full fine-tuning performance while using only 575 times fewer
parameters than LoRA and 8,475 fewer than full fine-tuning. In contrast, methods like OFT and
IA3 fail to surpass full fine-tuning despite utilizing significantly more parameters. This result under-
scores the practicality of MoReS in real-world scenarios where data collection can be challenging,
suggesting that MoReS is suitable for multi-scale visual instruction tuning.

5.5 ABLATION STUDIES

To gain deeper insights into our MoReS method, we conduct ablation studies focusing on its sub-
space choice and steered visual token ratio. We use LLaVA Steering-3B model as our baseline for
comparison. Table 4 summarizes the results of two types of ablations.

First, concerning the choice of subspace rank, we found that a rank of 1 achieves the highest average
performance of 81.8 across four visual tasks while also requiring the fewest parameters, specifically
0.164M. Second, regarding the steered visual token ratio, we varied this parameter from 100%
(dense steering) to 1% (sparse steering). The results indicate that a ratio of 1% is optimal, yielding
the best or near-optimal performance on four benchmarks while also significantly reducing inference
overhead due to its sparse steering approach.

6 LLAVA STEERING FACTORY

We identified a pressing need for a comprehensive framework to systematically analyze and compare
various model architectures and training strategies in MLLMs. The diversity of design choices and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Subspace Rank TP* SciQA-IMG VizWiz IconQA-txt IconQA-blank Avg
1 0.164M 89.6 59.2 84.0 94.2 81.8
2 0.328M 89.7 59.2 83.9 94.0 81.7
4 0.655M 89.5 58.7 83.8 94.1 81.5
8 1.340M 89.6 58.9 83.7 93.9 81.5

Steered Visual Token Ratio SciQA-IMG VizWiz IconQA-txt IconQA-blank
1% 89.7 59.2 84.0 94.1
25% 89.9 59.0 80.2 93.8
50% 88.9 59.0 79.8 92.6

100% 85.8 60.5 67.7 87.8

Table 4: Results of the subspace rank choice and steered visual token ratio. The grey shading
indicates the best results and our selected parameters.

techniques complicates the standardization and understanding of how these components interact.
Evaluating each method across different open-source models is often time-consuming and inconsis-
tent due to implementation differences, which necessitate extensive data preprocessing and careful
alignment between architectures and training recipes.

In the LLaVA Steering Factory, we establish standardized training and evaluation pipelines, along
with flexible data preprocessing and model configurations. Our framework allows researchers to
easily customize their models with various training strategies without the need for additional cod-
ing. We implement all mainstream LLMs and vision encoders, including multiple PEFT methods
and our proposed MoReS technique. Furthermore, we support a wide range of benchmarks and
integrate our intrinsic modality imbalance evaluation. The goal of the LLaVA Steering Factory is
to facilitate research in MLLMs, particularly in addressing intrinsic modality imbalance to optimize
visual instruction tuning.

An overview of the main components of the LLaVA Steering Factory is provided in Figure 5.

LLaVA Steering Factory

LLMs

PEFT

LoRA QLoRA IA3

OFT Adapter MoReS

Benchmark

CLIP DINO SigLIP MoF

Vision Encoder

Phi Llama Vicuna Gemma Qwen

SQAGQAVQATQA

VizWizPOPEMM-VetMMMU

Figure 5: Architectural overview of the proposed LLaVA Steering Factory: A Modular Codebase
for MLLMs.

7 CONCLUSION

This paper introduces Modality Linear Representation-Steering (MoReS), a novel method to sig-
nificantly reduce the required number of trainable parameters during visual instruction tuning. The
key idea behind MoReS is to re-balance visual and textual representations while still maintaining
strong performance across a variety of downstream tasks. By integrating MoReS into LLaVA family
models, comprehensive evaluation results confirm the effectiveness of the proposed solution. Hence,
it further confirms our assertion that intrinsic modality rebalance would represent a promising new
approach to optimizing visual instruction tuning.

To facilitate future research in the community, we also present the LLaVA Steering Factory, a versa-
tile framework designed to enhance the development and evaluation of MLLMs with minimal coding
effort. This framework enables customizable training configurations for various tasks and integrates
analytical tools, such as attention score distribution analysis. This facilitates systematic comparisons
among different methods and offers deeper insights into the intrinsic modality imbalance, ultimately
contributing to more effective visual instruction tuning.
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A APPENDIX

A.1 THEORETICAL JUSTIFICATION

Let xtext ∈ Rdt be the text input embedding, ximage ∈ Rdv be the visual input embedding, Rtext ∈
RD be the hidden representation for text, and Rimage ∈ RD be the hidden representation for the
visual input. Define Wq,Wk,Wv ∈ RD×D as the query, key, and value projection matrices, and
Wo ∈ RD×D as the output projection matrix. Let A ∈ RN×N represent the attention matrix, and
y ∈ RV be the output logits.

We present a theoretical analysis of the MoReS transformation and its effect on attention redistri-
bution in multimodal models. The hidden representations for text and image inputs are computed
as:

htext = ftext(xtext), himage = fimage(ximage) (9)

where ftext and fimage are encoding functions. The attention mechanism is characterized by scores:

Aij = softmax
(
(hiWq)(hjWk)

T

√
D

)
(10)

with Wq,Wk ∈ RD×D being query and key projection matrices. Output generation follows:

y = Wo(Ctext + Cimage) (11)

where Ctext =
∑

i Ai,text(hiWv) and Cimage =
∑

i Ai,image(hiWv).

The core of our approach is the MoReS transformation, defined as:

MoReS(h) = Wup · ϕ(h), where ϕ(h) = Linear(h)−Wdownh (12)

Here, Wup ∈ RD×d, Wdown ∈ Rd×D, and d < D. When applied to the image representation, we
obtain h′

image = MoReS(himage) + himage, leading to updated attention scores:

A′
i,image = softmax

(
(hiWq)(h

′
imageWk)

T

√
D

)
(13)

This transformation is key to redistributing attention towards visual inputs. The effect of MoReS on
the output can be quantified by examining the change magnitude:

∥∆y∥2 = ∥Wo(C
′
image − Cimage)∥2 ≤ ∥Wo∥2∥C ′

image − Cimage∥2 (14)

where C ′
image =

∑
i A

′
i,image(h

′
imageWv). The significance of this change stems from the MoReS

transformation’s ability to amplify key visual features. Specifically, ϕ(h) extracts salient visual
information in a subspace, which is then amplified by Wup in the original space. This process
ensures ∥h′

image∥2 > ∥himage∥2, leading to increased A′
i,image values for relevant visual features and

larger magnitudes for (h′
imageWv) terms in C ′

image.

To ensure stability while allowing for this significant attention redistribution, we consider the Lips-
chitz continuity of the model:

∥f(h′
image)− f(himage)∥2 ≤ L∥h′

image − himage∥2 (15)

where L is the Lipschitz constant. This property bounds the change in the model’s output, guaran-
teeing that the attention redistribution, while substantial, remains controlled and does not destabilize
the overall model behavior.
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A key advantage of the MoReS approach lies in its parameter efficiency. The transformation intro-
duces O(Dd) parameters, primarily from Wup, Wdown, and the linear transformation in ϕ(h). This
is significantly less than the O(D2) parameters required for fine-tuning all attention matrices in tra-
ditional approaches. The reduction in trainable parameters not only makes the optimization process
more efficient but also mitigates the risk of overfitting, especially in scenarios with limited training
data.

In conclusion, our theoretical analysis demonstrates that our MoReS effectively redistributes atten-
tion to visual inputs by operating in a carefully chosen subspace. This approach achieves a signifi-
cant change in output generation while maintaining model stability and requiring fewer parameters
than full fine-tuning, offering a balance between effectiveness and efficiency in enhancing visual
understanding in MLLMs.

A.2 IMPLEMENTATION DETAIL

Steered Visual Token

+𝑈𝑃!"#$!(𝐿𝑖𝑛𝑒𝑎𝑟 							 − 𝐷𝑜𝑤𝑛!"#$!(							))=

sys vision question

MoReS

Figure 6: MoReS module flowchart.

Regarding the implementation, we have adopted a highly modular design for the LLM, integrating
it with MoReS to enable precise steering at specific token locations. This modular approach ensures
that the steering process operates with minimal computational overhead, making it both efficient
and scalable. Additionally, the modular nature of this design allows for seamless integration with
existing architectures and enables easy customization of steering strategies tailored to specific down-
stream tasks. To provide further clarity, we include a MoReS module flowchart (Figure 6) and an
UML diagram (Figure 7) here, which detail the implementation process.

A.3 FULL ATTENTION MAPS

In this section, we provide the attention maps (Figure 8) during the decoding process across each
layer. Notably, the distribution of visual attention remains sparse in these layers, with only a few to-
kens carrying the majority of the attention. This sparsity presents an opportunity for token pruning
strategies, which can be leveraged to reduce inference overhead and improve computational effi-
ciency. By selectively pruning tokens with lower attention scores, unnecessary computations can be
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Figure 7: The UML diagram for MoReS

avoided, leading to faster and more efficient inference while maintaining the essential information
needed for accurate predictions.
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Figure 8: Full Attention Maps of Each Layer

21


	Introduction
	Related Work
	Intrinsic Modality Imbalance
	MoReS Method
	Experiments
	Experiment Settings
	LLaVA Steering Architectures
	Baseline Training Methods

	Multi-Task Supervised Fine-tuning
	Task-Specific Fine-tuning
	Multi-scale Data Fine-tuning
	Ablation Studies

	LLaVA Steering Factory
	Conclusion
	Appendix
	Theoretical Justification
	Implementation Detail
	Full Attention Maps


