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Abstract

Explanation methods for machine learning models tend not to provide any formal
guarantees and may not reflect the underlying decision-making process. In this
work, we analyze stability as a property for reliable feature attribution methods.
We prove that relaxed variants of stability are guaranteed if the model is sufficiently
Lipschitz with respect to the masking of features. We develop a smoothing method
called Multiplicative Smoothing (MuS) to achieve such a model. We show that
MusS overcomes the theoretical limitations of standard smoothing techniques and
can be integrated with any classifier and feature attribution method. We evaluate
MusS on vision and language models with various feature attribution methods, such
as LIME and SHAP, and demonstrate that MuS endows feature attributions with
non-trivial stability guarantees.

1 Introduction

Modern machine learning models are incredibly powerful at challenging prediction tasks but notori-
ously black-box in their decision-making. One can therefore achieve impressive performance without
fully understanding why. In settings like medical diagnosis [1} 2] and legal analysis [3} 4] where
accurate and well-justified decisions are important, however, such power without proof is insufficient.
In order to fully wield the power of such models while ensuring reliability and trust, a user needs
accurate and insightful explanations of model behavior.

One popular family of explanation methods is feature attributions (15,16, 7, 18]. Given a model and
input, a feature attribution method generates a score for each input feature that denotes its importance
to the overall prediction. For instance, consider Figure [} in which the Vision Transformer [9]
classifier predicts the full image (left) as “Goldfish”. We then use a feature attribution method like
SHAP [7]] to score each feature and select the top-25%, for which the masked image (middle) is
consistently predicted as “Goldfish”. However, including a single patch of features (right) alters the
prediction confidence so much that it now yields “Axolot]”. This suggests that the explanation is
brittle [[10], as small changes easily cause it to induce some other class. In this paper, we study how
to overcome such behavior by analyzing the stability of an explanation: an explanation is stable if
adding more features does not change the prediction once the explanatory features are included.

Stability implies that the selected features are enough to explain the prediction [[11,/12}[13]] and that this
selection maintains strong explanatory power even in the presence of additional information [[10} [14].
Similar properties are studied in literature and identified as useful for interpretability [[15], and
we emphasize that our main focus is on analyzing and achieving provable guarantees. Stability
guarantees, in particular, are useful as they allow one to accurately predict how model behavior varies
with the explanation. Given a stable explanation, one can include more features, i.e., adding context
and information, while maintaining confidence in the consistency of the underlying explanatory
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Figure 1: Classification by VisionTransformer [9] on an attribution generated by SHAP [7] with
top-25% selection. A single 28 x 28 pixel patch of difference between the two attributions (marked
) significantly affects prediction confidence and results in a classification flip.

power. Crucially, we observe that such guarantees only make sense when jointly considering the
model and explanation method: the explanation method necessarily depends on the model to yield an
explanation, and stability is then evaluated with respect to the model.

Thus far, existing work on feature attributions with formal guarantees faces computational tractability
and explanatory utility challenges. While some methods take an axiomatic approach [18, [16l], others
use metrics that appear reasonable but may not reliably reflect useful model behavior, a common and
known limitation [17]. Such explanations have been criticized as, at best, a plausible guess and, at
worst, completely misleading [[18]].

In this paper, we study how to construct explainable models with provable stability guarantees. We
jointly consider the classification model and explanation method and present a formalization for
studying such properties that we call explainable models. We focus on binary feature attributions [19]
wherein each feature is either marked as explanatory (1) or not explanatory (0). We present a
method to solve this problem, which is inspired by techniques from adversarial robustness, in
particular randomized smoothing [20} 21]. Our method can take any off-the-shelf classifier and
feature attribution method to efficiently yield an explainable model that satisfies provable stability
guarantees. In summary, our contributions are as follows:

» We formalize stability as a key property for binary feature attributions and study this in the
framework of explainable models. We prove that relaxed variants of stability are guaranteed
if the model is sufficiently Lipschitz with respect to the masking of features.

» To achieve the sufficient Lipschitz condition, we develop a smoothing method called Mul-
tiplicative Smoothing (MuS). We show that MuS achieves strong smoothness conditions,
overcomes key theoretical and practical limitations of standard smoothing techniques, and
can be integrated with any classifier and feature attribution method.

* We evaluate MusS on vision and language models along with different feature attribution
methods. We demonstrate that MuS-smoothed explainable models achieve strong stability
guarantees at a small cost to accuracy.

2 Overview

We observe that formal guarantees for explanations must consider both the model and explanation
method. For this, we present in Section[2.T|a pairing that we call explainable models. This formulation
allows us to describe the desired stability properties in Section [2.2] We show in Section [2.3] that
classifiers with sufficient Lipschitz smoothness with respect to feature masking allow us to yield
provable stability guarantees.

2.1 Explainable Models

We first present explainable models as a formalism for rigorously studying explanations. Let X = R"
be the space of inputs, a classifier f : X — [0, 1]™ maps inputs 2 € X to m class probability values
that sum to 1, where the class of f(x) € [0,1]™ is taken to be the largest coordinate. Similarly,



an explanation method ¢ : X — {0,1}" maps an input z € X to an explanation p(z) € {0,1}"
that indicates which features are considered explanatory for the prediction f(z). In particular, we
may pick and adapt ¢ from among a selection of existing feature attribution methods like LIME [6],
SHAP [7]], and many others [S}[8 22} 23] 24], wherein ( may be thought of as a top-k feature selector.
Note that the selection of input features necessarily depends on the explanation method executing or
analyzing the model, and so it makes sense to jointly study the model and explanation method: given
a classifier f and explanation method , we call the pairing (f, ©) an explainable model. Given some
x € X, the explainable model (f, ¢) maps x to both a prediction and explanation. We show this in
Figure[2] where (f, p)(z) € [0,1]™ x {0, 1}" pairs the class probabilities and the feature attribution.
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Figure 2: An explainable model (f, ) outputs both a classification and a feature attribution. The
feature attribution is a binary-valued mask (white 1, black 0) that can be applied over the original
input. Here f is Vision Transformer [9] and ¢ is SHAP [7] with top-25% feature selection.
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For an input = € X, we will evaluate the quality of the binary feature attribution ¢(x) through its
masking on z. That is, we will study the behavior of f on the masked input z ® ¢(z) € X, where ©
is the element-wise vector product. To do this, we define a notion of prediction equivalence: for two
x,2’ € X, we write f(z) & f(a') to mean that f(z) and f(2') yield the same class. This allows us
to formalize the intuition that an explanation (z) should recover the prediction of x under f.

Definition 2.1. The explainable model {f, @) is consistent at x if f(z) = f(x © ¢(x)).

Evaluating f on x ® () this way lets us apply the model as-is and therefore avoids the challenge
of constructing a surrogate model that is accurate to the original [25]. Moreover, this approach
is popular in domains like vision — where one intuitively expects that a masked image retaining
only the important features should induce the intended prediction. Indeed, architectures like Vision
Transformer [9]] can maintain high accuracy with only a fraction of the image present [26].

Particularly, we would like for (f, ¢) to generate explanations that are stable and concise (i.e. sparse).
The former is our central guarantee and is ensured through smoothing. The latter implies that ()
has few ones entries, and is desirable since a good explanation should not contain too much redundant
information. However, sparsity is more difficult to enforce, as this is contingent on the model having
high accuracy with respect to heavily masked inputs.

2.2 Stability Properties of Explainable Models

Given an explainable model (f, ¢) and some x € X, stability means that the prediction does not
change even if one adds more explanatory features to (). For instance, the model-explanation pair
in Figure[l]is not stable, as the inclusion of a single feature group (patch) changes the prediction. To
formalize this notion of stability, we first introduce a partial ordering: for o, o’ € {0,1}", we write

ar o iffa; > af foralli =1,...,n. Thatis, a = o iff a includes all the features selected by o’
Definition 2.2. The explainable model (f, ) is stable at z if f(xr © a) = f(x © p(z)) for all
ar o(x).

Note that the constant explanation ¢(x) = 1, the vector of ones, makes (f, ©) trivially stable at every
x € X, though this is not a concise explanation. Additionally, stability at = implies consistency at x.

Unfortunately, stability is a difficult property to enforce in general, as it requires that f satisfy a
monotone-like behavior with respect to feature inclusion — which is especially challenging for
complex models like neural networks. Checking stability without additional assumptions on f is
also hard: if k = || (z)||; is the number of ones in ¢(z), then there are 2" % possible a = () to
check. This large space of possible o = () motivates us to examine instead relaxations of stability.
We introduce lower and upper relaxations of stability below.

Definition 2.3. The explainable model {f, @) is incrementally stable at x with radius r if f(x ® ) =
flx® p(x)) for all « = p(x) where ||a — p(z)||1 < r.



Incremental stability is the lower relaxation since it considers the case where the mask « has only
a few features more than o (z). For instance, if one can provably add up to r features to a masked
x ® p(z) without altering the prediction, then (f, ¢) would be incrementally stable at  with radius
r. We next introduce the upper relaxation that we call decremental stability.

Definition 2.4. The explainable model (f, @) is decrementally stable at x with radius r if f(z ® o) =
f(z© @(x)) forall a = p(x) where |1 — a1 <.

Decremental stability is a subtractive form of stability in contrast to the additive nature of incremental
stability. Particularly, decremental stability considers the case where a has much more features than
©(z). If one can provably remove up to r non-explanatory features from the full = without altering
the prediction, then (f, ) is decrementally stable at 2 with radius . Note that decremental stability
necessarily entails consistency of (f, ¢), but for simplicity of definitions, we do not enforce this
for incremental stability. Finally, note that for sufficiently large radius of r = [(n — ||¢(2)|l1)/2],
incremental and decremental stability together imply stability.

Remark 2.5. Similar notions to the above have been proposed in the literature, and we refer to [15]]
for an extensive survey. In particular, for [15)], consistency is akin to preservation, and stability is
similar to continuity, except we are concerned with adding features. Also, incremental stability is
most similar to incremental addition and decremental stability to incremental deletion.

2.3 Lipschitz Smoothness Entails Stability Guarantees

If f: X — [0,1)™ is Lipschitz with respect to the masking of features, then we can guarantee
relaxed stability properties for the explainable model (f, ). In particular, we require for all z € X
that f(x @ «) is Lipschitz with respect to the mask « € {0, 1}"™. This allows us to present our main
results in smoothness and stability, which we formalize in Section[3.1] A sketch of the stability result
is first given below in Remark 2.6}

Remark 2.6 (Sketch of main result). Consider an explainable model {f, p) where for all x € X the
function g(z,a) = f(z ® «) is A\-Lipschitz in o € {0, 1}™ with respect to the £* norm. Then at any
x, the radius of incremental stability ri,. and radius of decremental stability r 4. are respectively:

Tinc = [QA($7 90(56)) - 93(1‘7 90(1‘))]/(2>‘)7 Tdec = [QA(‘T? 1) - gB(l’, 1)}/(2)‘)7

where g — gp is called the confidence gap, with ga, gp the top-two class probabilities:

gA(xa Oé) = Gk~ ((L’, 04)7 gB(‘ra Oé) = maxgi(x7 OZ), k* = argmaxgk(x, O[) (1)
i#k* 1<k<m

Observe that Lipschitz smoothness is a stronger assumption than necessary, as besides a = ¢(x),
it also imposes guarantees on o < (). Nevertheless, Lipschitz smoothness is one of the few
properties that can be guaranteed and analyzed at scale on arbitrary models [21] 27]. Importantly,
we may apriori pick the Lipschitz constant A for our smoothed classifier, allowing us to establish
known guarantees before test time. The details for establishing the Lipschitz constant through our
randomized smoothing method are described in Theorem [3.1]

3 Multiplicative Smoothing for Lipschitz Constants

In this section we present our main technical contribution in Multiplicative Smoothing (MuS).
The goal is to transform an arbitrary base classifier h : X — [0,1]™ into a smoothed classifier
f X — [0,1]™ that is Lipschitz with respect to the masking of features. This then allows one
to appropriately couple an explanation method ¢ with f to form an explainable model (f, ©) with
provable stability guarantees. Appendix [A]gives an extended discussion of results.

3.1 Technical Overview of MuS

Our key insight is that randomly dropping (i.e., zeroing) features attains the desired smoothness. In
particular, we uniformly drop features with probability 1 — A by sampling binary masks s € {0,1}"
from some distribution D where each coordinate is distributed as Pr[s; = 1] = . Then define:

flx) = ED h(z ® s), such that s; ~ B(\) fori =1,...,n, )
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Figure 3: Evaluating f(z) is done in three stages. (Stage 1) Generate N samples of binary masks
sW s e {0,1}", where each coordinate is Bernoulli with parameter A (here A = 1/4).
(Stage 2) Apply each mask on the input to yield z © s() fori = 1,..., N. (Stage 3) Average over
h(z ® %)) to compute f(x), and note that the predicted class is given by a weighted average.
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where B()\) is the Beronulli distribution with parameter A € [0, 1]. We give an overview of eval-
uating f () in Figure 3] Importantly, our main results of smoothness (Theorem [3.1)) and stability
(Theorem 3.2)) hold provided each coordinate of D is marginally Bernoulli with parameter A, and so
we avoid fixing a particular choice for now. However, it will be easy to intuit the exposition with
D = B™()), the coordinate-wise i.i.d. Bernoulli distribution with parameter A.

We can equivalently parametrize f using the mapping g(z,a) = f(x © «), where it follows that:

g(z,a) = IEDh(xQ&), a=a0s. 3)

Note that one could have alternatively first defined g and then f due to the identity g(x,1) = f(z).
We require that the relationship between f and g follows an identity that we call masking equivalence:
gz a,1) = f(zr©a)=g(z,a)forallz € X and « € {0, 1}"™. This follows by the definition of
g, and the relevance to stability is this: if masking equivalence holds, then we can rewrite stability
properties involving f in terms of ¢g’s second parameter as follows:

flzoa)=g(x,a) 2 g(z,o(x)) = flzOe(x)) forall & > ¢(z), (c.f. Definition[2.2)

where incremental and decremental stability may be analogously defined. This translation is useful,
as we will prove that g is A-Lipschitz in its second parameter (Theorem [3.1), which then allows us to
establish the desired stability properties (Theorem [3.2)). Importantly, we are motivated to develop
MusS because standard smoothing techniques, namely additive smoothing [20} 21], may fail to satisfy
masking equivalence. This is further explained in Section[A.T]

3.2 Certifying Stability with Lipschitz Classifiers

Our core technical result shows that f as defined in (2)) is Lipschitz to the masking of features. We
present MusS in terms of g, where it is parametric with respect to the distribution D. In particular, D
is usable with MusS so long as it satisfies a coordinate-wise Bernoulli condition.

Theorem 3.1 (MuS). Let D be any distribution on {0,1}"™ where each coordinates of s ~ D is
distributed as s; ~ B(\). Consider any h : X — [0, 1] and define g : X x {0,1}" — [0,1] as

g(z,a) = IEDh(Jc(DOE)7 a=a®s.
Then the function g(x,-) : {0,1}"™ — [0, 1] is A-Lipschitz in the £* norm for all x € X.

The strength of this result is in its weak assumptions. First, the theorem applies to any model h and
input € X. It further suffices that each coordinate is distributed as s; ~ B(\), and we emphasize
that statistical independence between different s;, s; is not assumed. This allows us to construct D
with structured dependence in Section such that we may exactly and efficiently evaluate g(z, o)
at a sample complexity of N <« 2". A low sample complexity is important for the practicality of
MusS, as otherwise, one must settle for the expected value subject to probabilistic guarantees. For
instance, simpler distributions like B (\) do satisfy the requirements of Theorem — but may
cost 2" samples because of coordinate-wise independence. Whatever choice of valid D, one can
guarantee stability so long as g is Lipschitz in its second argument.



Theorem 3.2 (Stability). Consider any h : X — [0, 1]™ with coordinates hy, ..., hp,. Fix X\ € [0, 1]
and let g1, ..., gm be the respectively smoothed coordinates as in Theorem [3.1} using which we
analogously define g : X x {0,1}™ — [0, 1]™. Also define f(x) = g(x,1). Then for any explanation
method  and input © € X, the explainable model (f, ) is incrementally stable with radius ri,. and
decrementally stable with radius rqec:

Tinc = [gA(a?, (P(x)) - gB(‘Ta @(I))]/(2)‘)7 Tdec = [gA(xv 1) - gB(‘ra 1)} /(2/\)v
where g4, gp are the first and second largest class probability values as in (I)).

Note that non-trivial stability guarantees exist only in the case where the radius > 1. As each g, has
range [0, 1], one needs A < 1/2 for non-trivial guarantees.
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Figure 4: (Left; Middle) Consistency and incremental (resp. decremental) stability. Property hold
rate is the fraction of images that are consistent and stable up to radius » when using a mask from
SHAP-top25%. Recall that every (f, o) is trivially stable at radius r = 0. (Right) Overall accuracy
vs the radius of decremental stability. Certified accuracy is the fraction of images for which f predicts
the true label on the entire unmasked x while achieving decremental stability at radius 7.

4 Empirical Evaluations

(Experimental Setup) We highlight a subset of our results and refer to our extended manuscript [28]
for comprehensive experiments. In this section, we show results with Vision Transformer [9] and
ImageNet1K [29]. We group features on the 3 x 224 x 224 dimensional input into n = 64 superpixels,
and report stability radii r as a fraction of the features, i.e. 7/n. For methods, we use SHAP [[7] with
top-25% feature selection. All experiments here use ImageNet1K with a sample size of N = 2000.

4.1 (E1) How Good are the Stability Guarantees?

We measure the radius to which one can certify incremental and incremental stability. To do this, we
measure the rate at which stability and consistency holds at some radius r (expressed as r/n). We
show our results in Figure f] where we show consistent and incremental stability (left) and consistent
and decremental stability (middle).

4.2 (E2) What is the Cost of Smoothing?

To increase the radius of provable stability, we decrease A\. However, this A decrease means that fewer
features are seen in the smoothing process. To study the stability-accuracy trade-off, we plotted the
accuracy attained by the smoothed classifier vs. the radius of decremental stability and show the
results in Figure |4 (right), where as expected the clean accuracy (in parentheses) decreases with \.
For Vision Transformer we see that the accuracy remains high even under non-trivial noise.

5 Conclusion

We study provable stability guarantees for binary feature attribution methods through the framework
of explainable models. A selection of features is stable if the additional inclusion of other features
does not alter its explanatory power. We show that if the classifier is Lipschitz with respect to the
masking of features, then one can guarantee relaxed variants of stability. To achieve this Lipschitz
condition we develop a smoothing method called Multiplicative Smoothing (MuS). We show that
MusS yields strong stability guarantees at only a small cost to accuracy.
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A Extended Results for Section

We give an extended discussion of content from Section 3]

A.1 Standard Smoothing Does Not Satisfy Masking Equivalence

We are motivated to develop MuS because standard smoothing techniques, namely additive smooth-
ing [20} [21]], may fail to satisfy masking equivalence. Additive smoothing is by far the most popular
smoothing technique, and differs from our scheme (3) in how noise is applied, where let D,4q and
Dot be any two distributions on R™:

_ - a+s, s~ Daaq
g(z,a) ) (r®a), & {a Os 5D

where D,qq denotes additive smoothing, and D,,,,;;; denotes multiplicative smoothing. Particularly,
additive smoothing has counterexamples to masking equivalence.

Proposition A.1. There exists h : X — [0, 1] and distribution D, where for
gt (z,a) = IEDh(xG)d), a=a+s,

we have g™ (z,a) # g% (z ® a, 1) for some v € X and o € {0,1}™.

Proof. Observe that it suffices to have h, z, a such that h(z © (a + s)) > h((x ® a) © (1 + s)) for
a non-empty set of s € R™. Let D be a distribution on these s, then:

g'(x,0)= E h(zo(a+s)> E h((z0a)0(1+s) =g (z0a,1)
O

Intuitively, this occurs because additive smoothing primarily applies noise by perturbing feature
values, rather than completely masking them. As such, there might be “information leakage” when
non-explanatory bits of « are changed into non-zero values. This then causes each sample of h(z ® &)
within g(z, ) to observe more features of = than it would have been able to otherwise.

A.2 Exploiting Structured Dependency

We now present L, (), a distribution on {0, 1}" that allows for efficient and exact evaluation of a
MuS-smoothed classifier. Our construction is an adaption of [27] from uniform to Bernoulli noise,
where the primary insight is that one can parametrize n-dimensional noise using a single dimension
via structured coordinate-wise dependence. In particular, we use a seed vector v, where with an
integer quantization parameter ¢ > 1 there will only exist ¢ distinct choices of s ~ L4, (A). All
the while, we still enforce that any such s is coordinate-wise Bernoulli with s; ~ B()\). Thus for a
sufficiently small quantization parameter (i.e. ¢ < 2™) we may tractably enumerate through all ¢
possible choices of s and thereby evaluate a MuS-smoothed model with only ¢ samples.
Proposition A.2. Fix integer ¢ > 1 and consider any vector v € {0,1/q,...,(q¢ — 1)/q}"™ and
scalar X € {1/q, ...,q/q}. Define s ~ L4, () to be a random vector in {0, 1}™ with coordinates
given by

s; =1It; < A, ti = U; + Spase mod 1,
where Spase ~ U({1/q,...,q/q})—1/(2q). Then there are q distinct values of s and each coordinate
is distributed as s; ~ B(\).

Proof. First, observe that each of the ¢ distinct values of sy,se defines a unique value of s, since
we have assumed v and A to be fixed. Next, observe that each ¢; has ¢ unique values uniformly
distributed as t; ~ U(1/q,...,q/q}) — 1/(2q). Because A\ € {1/q,...,q/q} we therefore have
Pr[t; < A] = A, which implies that s; ~ B(}\). O

The seed vector v is the source of our structured coordinate-wise dependence and the one-dimensional
source of randomness Spage 18 used to generate the n-dimensional s. Such s ~ L, () then satisfies
the conditions for use in MuS (Theorem 3.1)), and this noise allows for an exact evaluation of the
smoothed classifier in ¢ samples. We have found ¢ = 64 to be sufficient in practice and values as
low as ¢ = 16 to also yield good performance. We remark that one drawback is that one may get an
unlucky seed v, but we have not yet observed this in our experiments.



B Proofs and Extensions
Here we present the proofs of our main results, as well as some extensions to MuS.

B.1 Proof of Theorem 3.1]

Proof. By linearity we have:

g(z,a) —g(z,a') = Eph(mc)o?)—h(w@d'), a=a®s, a'=d os,
so it suffices to analyze an arbitrary term by fixing some s ~ D. Consider any x € X, let
a,a’ € {0,1}", and define 6 = o — o’. Observe that &; # &, exactly when |§;| = 1 and s; = 1.
Since s; ~ B(\), we thus have Pr[a; # &;] = A|d;|, and applying the union bound:

U ay # ag] < Z)\|5i| = Alld]]1,

Pr [a#d']= Pr

s~D s~D N
i=1 i=1
and so:
l9(@,0) = g(@,0)| = | E_[h(z ©d) b © &)
= Pg)[d;&d’] IED[h(an)—h(xQd’Hd;éd’]

<1 because h(-) € [0, 1]
< Pr (6] <Ald]h.

iy

Thus, g(x, -) is A-Lipschitz in the ¢! norm. O

B.2 Proof of Theorem [3.2]

Proof. We first show incremental stability. Consider any = € X, then by masking equivalence:

fl@oe(x) =gz e(),1) = g(z, o(z)),
and let g4, g be the top two class probabilities of ¢ as defined in (I). By Theorem[3.1] both g4, g5
are Lipschitz in their second parameter, and so for all « € {0,1}™:

lga(z, o(x)) = galz, a)li < Mle(z) — ol
lgB(z,0(x)) — g5(z, @)lly < Alp(z) —ally
Observe that if « is sufficiently close to p(z), i.e.:
2\[p(x) = ally < ga(z,¢(x)) — gp(z, ¢(x),
then the top class probability index of g(x,¢(x) and g(x,«) are the same. This means that

g(x,p(x)) = g(z,a) and thus f(z © p(z)) = f(z © «), thus proving incremental stability with
radius d(x, p(x))/(2X).

The decremental stability case is similar, except we replace ¢(z) with 1. [

B.3 Feature Grouping

We have so far assumed that X = R, but sometimes it may be desirable to group features together,
e.g. color channels of the same pixel. Our results also hold for more general X = R x ... x R,
where for such z € & and a € R™ we lift © as:

O: X XR" = A, (@ a); =z; - Ia; = 1] € R%.

All of our proofs are identical under this construction, with the exception of the dimensionalities of
terms like (x ® «). An example of feature grouping is given in Figure
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