
On the (5,3)-Grassmannian and the p-Frame
Potentials

Daniel Riley
Department of Mathematics, Tufts University

Medford, Massachusetts 02155
Email: daniel.riley@tufts.edu

Kasso Okoudjou
Department of Mathematics, Tufts University

Medford, Massachusetts 02155
Email: kasso.okoudjou@tufts.edu

Abstract—This paper establishes that the minimizing configura-
tion for the p-frame potentials with 5 points in 3 dimensions is not
the (5,3)-Grassmannian frame for any finite p, and shows that
no configuration can minimize the p-frame potentials for N=5
in d=3 for all sufficiently large p. To prove this, a family of 5-
point configurations parameterized by the value of p is explicitly
constructed, and it is shown to be a smooth interpolation between
the known solution at p=2 and the (5,3)-Grassmannian frame,
evolving under a set of coupled differential equations.

Index Terms—p-frame potentials, frame force, tight frames,
Grassmannian frames, coherence, equiangular tight frames, op-
timization

I. INTRODUCTION

For any finite collection X = {xk}Nk=1 of N -many unit-norm
vectors in Rd and any p ∈ (0,∞], the p-frame potential of X
is defined as

FPp,N,d(X) :=

{∑N
k=1

∑N
ℓ ̸=k |⟨xk, xℓ⟩|p p < ∞

maxk ̸=ℓ |⟨xk, xℓ⟩| p = ∞.
(1)

Note that the p-frame potential of a configuration {xk} is
invariant under multiplication by an orthogonal matrix U , that
is, FPp,N,d({xk}) = FPp,N,d({Uxk}). Similarly, permuting
the order of the elements of a collection leaves the potential
unchanged.

The compactness of the sphere Sd−1 and continuity of the
p-frame potential guarantee that the infimum of the potential
across all such collections X is in fact achieved. The properties
of the optimal configurations, that is, the configurations that
minimize this potential for a given p, N , and d, are of
particular interest. Given the invariance properties mentioned
above, the minimizing configurations are defined up to any
composition of orthogonal transformations and reordering of
its elements.

A finite frame in Rd is any finite collection of vectors whose
span is Rd. For all N ≥ d, the minimizing configuration for
any p ∈ (0,∞] must be a frame, as was shown in [1, Prop.
2.1]. The case of p = 2 was originally studied by Benedetto
and Fickus [2] under the name “frame potential.” They proved
that any local minimizer of the frame potential is also a global
minimizer, and furthermore is a finite unite norm tight frame

(FUNTF). A FUNTF is a collection of N -many unit-norm
vectors {xk}Nk=1 ⊂ Sd−1 such that

N

d
∥x∥2 =

N∑
k=1

|⟨x, xk⟩|2 for all x ∈ Rd. (2)

See [2, Th. 3.1] for details on the constant N
d . As FUNTFs

exist for all N ≥ d, the problem of characterizing the
minimizing configurations of the p-frame potential when p = 2
is completely solved. For a FUNTF {xk}, if some constant
C ≥ 0 satisfies |⟨xk, xℓ⟩| = C for all xk, xℓ ∈ X where
k ̸= ℓ, then the FUNTF is called an equiangular tight frame
(ETF). It is well-known that ETFs cannot exist if N < d or
if N > d(d+1)

2 [3, Th. 12.2]. For a given N and d, if an ETF
exists, it minimizes the p-frame potential for all p ≥ 2 [4],
including p = ∞ [5].

When p = ∞, the quantity FP∞,N,d(X) is referred to as
the coherence of X , and is sometimes denoted c(X). The
minimizing configurations for N ≥ d are called Grassmannian
frames [5]. It is shown in [1, Prop. 2.2] that if a sequence
of configurations {X(p)}p, where each configuration X(p)

minimizes the p-frame potential, has a cluster point X , then
X minimizes the coherence c(X) across all configurations.

This paper focuses on dimension d = 3, where several method-
ologies have been used to find the minimizing configurations
of FPp,N,3, so much so that we feel it is necessary to organize
and collect the results in one place. As the case corresponding
to p = 2 is completely known, Table I summarizes the known
minimizing configurations of the p-frame potentials for p ̸= 2
in dimension d = 3 for N ≤ 12.

There are two primary results that we prove in this paper;
in Section II we show that the (5, 3)-Grassmannian frame
is not a minimizing configuration of FPp,5,3 for any finite p
and that there are no configurations that minimize FPp,5,3 for
all sufficiently large p. This situation is notably in contrast
with the optimal configurations of FPp,5,2 [1, Th. 3.7] and
FPp,4,3 and FPp,6,3 (see Table I). In Section III, we show that
each configuration that we constructed to prove the primary
results is a local minimizer of FPp,5,3, at least within machine
precision. Furthermore, the family of configurations solves a
set of coupled differential equations which can physically be



interpreted as the evolution of a known minimizing configura-
tion at p = 2 under the force induced by FPp,5,3 as p increases
to ∞, which smoothly interpolates between the known optimal
configurations at p = 2 and p = ∞.

TABLE I
MINIMIZING CONFIGURATIONS OF FPp,N,3

N p Shape From
1,2,3 (0,∞] (Subset of) orthonormal basis

4 (2,∞] Tetrahedron [4], [5]

5 ∞ Any 5 non-antipodal vertices
of regular icosahedron [5]

6 (0, 2) Two copies of orthonormal basis [6]

6 (2,∞]
Non-antipodal vertices
of regular icosahedron [4], [5]

9 (0, 2) Three copies of orthonormal basis [6]

10 4
Non-antipodal vertices

of regular dodecahedron
[1, Prop. 1.1]

[7]
12 (0, 2) Four copies of orthonormal basis [6]
12 (2, 4] Regular icosahedron [8]

II. LARGE-p BEHAVIOR OF FPp,5,3

Let N = 5 and d = 3. As shown in Table I, there are no
finite values of p (other than p = 2) where the minimizing
configurations of FPp,5,3 are characterized. Denote by X∞ a
collection of 5 non-antipodal vertices of the regular icosahe-
dron, for example, five equally-spaced points on the circle of
intersection of the plane z = 1√

5
with S2. For the known

Grassmannian frames corresponding to N = 4 and N = 6
in Table I, the configurations also minimize FPp,N,3 for all
p greater than some lower bound. One may wonder if such
a lower bound on p exists for the equiangular (but not tight)
frame given by X∞. We show that such a result is impossible
by explicitly constructing a configuration with a lower p-frame
potential for all finite p.

Proposition 1: The Grassmannian frame X∞ for N = 5 is not
a minimizing configuration for the p-frame potential for any
finite p.

Proof: Let 0 < p < ∞ be arbitrary, and let Xt be the set of 5
equally-spaced points on the intersection of S2 with the plane
z = t where 0 ≤ t ≤ 1. An explicit construction is as follows:

Xt = {xk}5k=1, where xk =

cos
(
2kπ
5

)√
1− t2

sin
(
2kπ
5

)√
1− t2

t

 .

Notice that when t = 1√
5

, this is exactly X∞ (again, up to
multiplication by an orthogonal matrix and reordering of its
elements), and when t = 1√

3
, this is a tight frame and thus a

minimizer of the p = 2 frame potential. For any 1 ≤ k, ℓ ≤ 5:

|⟨xk, xℓ⟩|p =

∣∣∣∣ (1− t2
)(

cos

(
2πk

5

)
cos

(
2πℓ

5

)
+ sin

(
2πk

5

)
sin

(
2πℓ

5

))
+ t2

∣∣∣∣p
=

∣∣∣∣(1− t2) cos

(
2π

5
(k − ℓ)

)
+ t2

∣∣∣∣p .

Thus for a fixed ℓ,

∑
k ̸=ℓ

|⟨xk, xℓ⟩|p =

4∑
k=1

∣∣∣∣(1− t2) cos

(
2πk

5

)
+ t2

∣∣∣∣p ,
and therefore

FPp,5,3(X
t) = 5

4∑
k=1

∣∣∣∣(1− t2) cos

(
2πk

5

)
+ t2

∣∣∣∣p
= 5

4∑
k=1

∣∣∣∣cos(2πk

5

)
+

(
1− cos

(
2πk

5

))
t2
∣∣∣∣p

= 10

∣∣∣∣∣
√
5− 1

4
+

5−
√
5

4
t2

∣∣∣∣∣
p

+ 10

∣∣∣∣∣−
√
5− 1

4
+

5 +
√
5

4
t2

∣∣∣∣∣
p

.

The first term in absolute values is always positive. The second
term in absolute values is negative when t ≤ 1

51/4
, so

FPp,5,3(X
t) = 10

(√
5− 1

4
+

5−
√
5

4
t2

)p

+ 10

(√
5 + 1

4
− 5 +

√
5

4
t2

)p

.

This is a continuous function of t, whose value at t = 1√
5

agrees with FPp,5,3(X∞). For p > 0, the t-derivative of the
potential, given by d

dt [FPp,5,3(X
t)], is

= 10pt

((√
5− 1

4
+

5−
√
5

4
t2

)p−1
5−

√
5

2

−

(√
5 + 1

4
− 5 +

√
5

4
t2

)p−1
5 +

√
5

2

)
.

(3)

At t = 1√
5

, we have

10p√
5

((
1√
5

)p−1
5−

√
5

2
−
(

1√
5

)p−1
5 +

√
5

2

)
= − 10p

5
p−1
2

< 0.

Thus there exists an ϵ > 0 such that for all t ∈
(

1√
5
, 1√

5
+ ϵ
)

,
we have FPp,5,3(X

t) < FPp,5,3(X∞).

Corollary 1: Let X be any configuration of five points on S2.
There exists a p0 such that X is not a minimizer of FPp,5,3

for all p > p0. In other words, there are no stable minimizing
configurations as p increases.

Proof: If for all k ̸= ℓ, the points xk, xℓ ∈ X satisfy
|⟨xk, xℓ⟩| ≤ 1√

5
, then X = X∞ as shown in [5]. In this

case, we have shown above that X is not a minimizer for all
sufficiently large p.



Otherwise, some k ̸= ℓ and ϵ > 0 satisfy |⟨xk, xℓ⟩| = 1√
5
+ ϵ.

For all p > ln 10
ln(1+ϵ

√
5)

,

FPp,5,3(X) ≥ 2 |⟨xk, xℓ⟩|p = 2

∣∣∣∣ 1√
5
+ ϵ

∣∣∣∣p
> 20

(
1√
5

)p

= FPp,5,3(X∞),

and therefore X is not a minimizer for sufficiently large p.

In the language of [1], another way to interpret Corollary 1 is
that there does not exist a configuration of points and a p0 > 0
such that the configuration is universally optimal for the class
of potentials FPp,5,3 for all p > p0.

III. CONCLUDING REMARKS

We have shown that the minimizer of FPp,5,3 is not equivalent
to X∞ for all p > 0 by exhibiting a configuration X1/

√
5+ϵp

with a lower potential. We now analyze this family of col-
lections by solving for which t minimizes FPp,5,3(X

t) as a
function of p. In doing so, we show that such a configuration is
a local minimizer of FPp,5,3 across all configurations. We then
compare these solutions, parameterized by p, to the known
optimal configurations for p = 2 and p = ∞, and show that
this family of solutions smoothly interpolates between these
known solutions. More interestingly, it is exactly the evolution
as p increases to ∞ of the optimal configuration at p = 2 under
the changing force FPp,5,3, which approaches X∞ in the limit.

Let Xt be as before. It was demonstrated earlier that
d
dt [FPp,5,3(X

t)]t= 1√
5

< 0. This function of t is minimized

locally at t = tp when Equation 3 is zero and 1√
5
< tp ≤ 1

51/4
.

As p > 0 by assumption and it is easily shown that tp = 0
cannot be a minimizer, we have(√

5− 1 + (5−
√
5)t2p

)p−1

(5−
√
5)

=
(√

5 + 1− (5 +
√
5)t2p

)p−1

(5 +
√
5).

This implies(
5−

√
5

5 +
√
5

) 1
p−1

=
5 +

√
5− (5

√
5 +

√
5)t2p

5−
√
5 + (5

√
5−

√
5)t2p

. (4)

Define a(p) :=
(

5−
√
5

5+
√
5

) 1
p−1

, f(t) :=
√
5(1− t2), and g(t) :=

√
5(1− 5t2). In this new shorthand, Equation 4 becomes

a(p) =
f(tp) + g(tp)

f(tp)− g(tp)
.

Define b(p) := a(p)+1
a(p)−1 , so b(p) =

f(tp)
g(tp)

. Thus

f(tp)− b(p)g(tp) = 0.

We therefore have(√
5− b(p)

)
−
(√

5− 5b(p)
)
t2p = 0,

and thus

tp =

√ √
5− b(p)√
5− 5b(p)

.

In other words,

tp =

√√√√ √
5− a(p)+1

a(p)−1√
5− 5a(p)+1

a(p)−1

=

√√√√√√√√√√
√
5−

(
5−

√
5

5+
√

5

) 1
p−1 +1(

5−
√

5

5+
√

5

) 1
p−1 −1

√
5− 5

(
5−

√
5

5+
√

5

) 1
p−1 +1(

5−
√

5

5+
√

5

) 1
p−1 −1

.

As we assumed tp ≤ 1
51/4

, this formula is only valid for
p ≥ 1 (by continuity it holds in the limit as p → 1),
it is monotone decreasing in p, and limp→∞ tp = 1√

5
. As

t2 = 1√
3

, the family of configurations given by {Xtp}p
smoothly interpolates between a FUNTF at p = 2 and the
Grassmannian frame as p → ∞.

A necessary – but not sufficient – condition for a configuration
X to be a minimizer of FPp,5,3 for p > 1 is that it needs to
be at equilibrium under the conservative force that induces
the p-frame potential. In [6, Lem. 2.5], it is shown that the
conservative force acting on a, b ∈ Sd−1 is given by Fp =
fp(∥a− b∥)(a− b), where

fp(x) =

p
(
1− x2

2

)p−1

|x| ≤
√
2,

−p
(

x2

2 − 1
)p−1

otherwise.

The effective p-frame force on each point in the configuration
can be computed using a method which exactly parallels the
case p = 2 that is discussed in [3, Ch. 6.15]. For a given
p ≥ 1, the configuration Xtp can be shown within machine
error to be at equilibrium under the conservative force, see [9]
to download the code supports this claim.

While the effective p-frame force on each point in the config-
uration Xtp remains (within machine precision of) 0, one can
take the p-derivative of the family of conservative forces fp
to determine in what direction the conservative force would
exert on each point xk if the configuration were to remain
fixed while p increased infinitesimally. Computing this for
each point xk(p) in the configuration Xtp , within machine
precision this is exactly the direction that the p-derivative
of xk(p) is pointing; see [9] to download the Mathematica
code which supports this claim. In other words, denoting
the effective p-frame force of a configuration X on each
point xk ∈ X by EFFp(X,xk), one could consider this
family of configurations as a solution to the set of coupled
vector differential equations d

dpEFFp({xℓ(p)}5ℓ=1, xk(p)) =
d
dpxk(p) for all k ∈ {1, 2, 3, 4, 5} with boundary condition
{xk(2)}5k=1 = Xt2 .
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