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Reproducibility Summary

Scope of Reproducibility — This paper aims to reproduce the study FairCal: Fairness Calibra-
tion for Face Verification by Salvador et al.[1], focused on verifying threemain claims: Fair‐
Cal (introduced by the authors) achieves state‐of‐the‐art (i) global accuracy, (ii) fairness‐
calibratedprobabilities and (iii) equality in false positive rates across sensitive attributes
(i.e. predictive equality). The sensitive attribute taken into account is ethnicity.

Methodology — Salvador et al. provide partial code via a GitHub repository [2]. Additional
code to generate image embeddings from three pretrained neural networkmodels were
based on [3] and [4]. All code was refactored to fit our needs, keeping extendability and
readability inmind. Two datasets were used, namely, Balanced Faces in theWild (BFW) [5]
and Racial Faces in the Wild (RFW) [6]. Additional experiments using Gaussian mixture
models instead of K‐means clustering for FairCal validate the use of unsupervised clus‐
tering methods. The code was run on an AMD Ryzen 7 2700X CPU and NVIDIA GeForce
GTX1080Ti GPU with a total runtime of around 3 hours for all experiments.

Results — In most cases, we were able to reproduce results from the original paper to
within 1 standard deviation, and observe similar trends. However, due to missing infor‐
mation about image pre‐processing, we were unable to reproduce the results exactly.

What was easy — The original paper is clear and understandable. Furthermore, the au‐
thors provided a mostly working version of the code. Though the datasets are not freely
available to the public, their authors supplied these to us swiftly after contacting them.

What was difficult —While most of the code worked with slight changes, it was assumed
there were files containing image embeddings available for both datasets, which the
authors neither provided nor gave details about. We therefore pre‐processed and gener‐
ated embeddings independent of the authors, whichmakes it more difficult to judge the
overall reproducibility of their method. Additionally, we encountered difficulties while
improving the efficiency and extendability of the code.

Copyright © 2023 M. Don et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Marga Don (margajdon@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/margajdon/reproduction-FAIRCAL – DOI 10.5281/zenodo.7941382. – SWH
swh:1:dir:875537f11cad3f77fcd8fc7b313d27605118a634.
Open peer review is available at https://openreview.net/forum?id=uVHUy7CWCL.
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Communication with original authors —We emailed the first author of the paper twice. First
at the beginning of our undertaking, they were enthusiastic about our attempt, and
clarified a few initial doubts about their implementation, the embeddings, and missing
files. As per the writing of this paper, they have not responded to the second email.

1 Introduction

In recent years, facial recognition (FR) systems have become increasingly important [7].
One sub‐area of FR, face verification, attempts to determine whether two faces belong to
the same person. However, these methods were repeatedly shown to be biased against
certain demographic subgroups defined by attributes such as ethnicity, age or gender
[8, 9]. This was especially frequent when considering how often a face in incorrectly
interpreted as amatch, i.e. false positive rate (FPR). This has serious ethical implications
in contexts such as law enforcement, security and privacy.
Often, these methods use a deep neural network to generate representations of images
called embeddings. The images are said to be of the same person if the cosine similarity
of their embeddings exceeds a certain threshold. However, as Salvador et al. [1] show,
this ‘baseline’ method does not provide the same accuracy for all ethnic subgroups. One
approach to reduce the bias has been to simply learn less biased representations [10, 11],
which generally also results in lower accuracy [12], requires re‐training of the model,
and/or requires the information about the sensitive attribute.
In an effort to alleviate this bias, Salvador et al. propose the FairCal calibration method.
FairCal is a post‐processingmethod that clusters image embeddings using K‐means clus‐
tering and calibrates the cosine similarity scores between the images based on their clus‐
termembership. Amore detailed description of FairCal can be found in section 3.1. The
authors claim that FairCal is fairly calibrated, achieves equal false positive rates (FPRs)
across subgroups (i.e. fewer incorrect matches), while achieving state‐of‐the‐art (SOTA)
accuracy, all without the need for retraining or knowledge about sensitive attributes
such as ethnicity. This paper aims to reproduce their results.

2 Scope of reproducibility

In this work, we run several experiments to explore the authors’ findings and attempt
to verify their claims, namely:

• FairCal achieves SOTA accuracy for face verification on two large datasets,

• FairCal outputs SOTA fairness‐calibrated probabilities without knowledge of the
sensitive attribute,

• FairCal reduces the gap in FPRs across sensitive attributes compared to the base‐
line method.

The authors also introduce another method named Oracle, which works similarly to
FairCal, but uses explicit knowledge of the sensitive attributes to group images instead
of unsupervised clustering. We report our results for Oracle and other benchmarking
methods used by the authors in Appendix B, but focus on FairCal here. We subjectively
decided a result to be reproducible if they did not deviate greatly from the authors’ values.

3 Methodology

The authors provide anopen‐source implementation of their setuponGitHub [2]. Though
the code for the implementation of FairCal and Oracle required minimal debugging, it
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had room for improvement in readability and efficiency – thus, it was refactored keep‐
ing this inmind. Furthermore, code files were added to generate the image embeddings
and the files describing the pairs in the datasets (see section 3.2 for details). For the rest
of this section, we followed the authors’ implementations unless otherwise specified.

3.1 Model descriptions
Salvador et al. propose FairCal, a post‐processing method to ensure face verification
which is fairly calibrated across subgroups, and exhibits predictive equality. The au‐
thors define a model to be calibrated if the true probability of a match is equal to the
model’s confidence output. Thus, a binary classifier is fairly‐calibrated if it is calibrated
when conditioned on each subgroup. For a pair of images (x1, x2) with corresponding
embeddings (f(x1), f(x2)), calibration can be seen as a function µ that maps the cosine
similarity score, s(x1, x2) =

f(x1).f(x2)
|f(x1)||f(x2)| , to probabilities. This map can then be used to

define a binary classifier, where the score threshold sthr can be computed. Additionally,
the authors define a binary classifier to exhibit predictive equality for subgroups g1 and
g2 if the classifier has equal FPRs for each subgroup.
Mathematical details of this method can be found in the original paper. Briefly, the
authors describe FairCal as having three steps:

1 Apply K‐means to the image embeddings, forming K clusters Zk. Use these to
createK calibration sets Scal

k , which contain similarity scores of embedding pairs
where either x1 or x2 belong to Zk.

2 Use a post‐hoc calibration method on Scal
k to compute a map µk from cosine simi‐

larities to cluster‐conditional probabilities. The authors use beta calibration [13].

3 Compute their calibrated score for each image pair (x1, x2) in the test set. Now,
if the embeddings f(x1) and f(x2) belong to clusters k1 and k2 respectively, their
overall calibrated score is defined as a linear combination of their respectivemapped
calibrated scores µk1

(s(x1, x2)) and µk2
(s(x1, x2)), weighted by the relative popu‐

lation fraction of the two calibration sets Scal
k1 and Scal

k2 .

The authors use three pretrained models to generate embeddings:

• ‘Facenet (VGGFace2)’: An InceptionResnetmodel trainedon theVGGFace2 dataset.

• ‘Facenet (Webface)’: An InceptionResnetmodel trainedonCASIA‐Webface dataset.

• ‘ArcFace’: An ArcFace model trained on the refined version of MS‐Celeb‐1M.

To pre‐process the images, they employed a Multi‐Task Convolutional Neural Network
(MTCNN), removed images forwhich it failed to identify a face, and cropped and aligned
those for which is did identify a face. This pipeline was attained from [3] and [4], where
default hyperparameters were used. To create the functions that map the cosine sim‐
ilarity scores to probabilities and determine the thresholds of those probabilities, the
authors used beta calibration. The authors used 100 clusters for their results.
To benchmark FairCal, the authors define a baseline method. This method simply cal‐
culates the cosine similarity of two image embeddings, and determines them to be a
genuine pair if the cosine similarity exceeds a certain threshold determined using beta
calibration. Beta calibration works by fitting a logistic regression model with respect
to the cosine similarities and ground truth labels. Though logistic regression has no
closed‐form solution [14], repeated experiments with the baseline method on the same
set of embeddings gave the exact same results (validated experimentally by us). The
previous SOTA mentioned in the original paper is called Fair Score Normalization (FSN)
[15], has also been reproduced in our tables and figures for comparison. The authors
implemented several more methods to compare against FairCal, and our comparison of
these can be found in Appendix B.
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As an extension to the original paper, we experimented with using Gaussian mixture
models (GMMs) [14] as a clusteringmethod instead of K‐means for FairCal, in an attempt
to validate the use of unsupervised clustering methods in general to achieve the claims
of Salvador et al. Additionally we hypothesized that the clusters found by this approach
may be able tomodel the underlying structure of the embeddings aswell as, if not better,
than clusters that arise from K‐means, which tend to be roughly isotropic and sensitive
to outliers [16]. Thus, the embedding space was partitioned into discrete regions, with
each data point being assigned to the cluster corresponding to the Gaussian component
with the highest probability. Additional experiments were done with different numbers
of Gaussian components, which can be found in Appendix E. For the sake of comparison
with the K‐means version of FairCal, 100 Gaussian components were used for the results
mentioned in sections below (with this method referred to as FairCal-GMM).

3.2 Datasets
The authors used two datasets: the Balanced Faces in theWild (BFW) dataset [5] and Racial
Faces in the Wild (RFW) [6]. Both datasets label their images by ethnicity (African, Asian,
Caucasian or Indian) and BFW also labels by gender (Female, Male). In RFW, all image
pairs are same‐ethnicity images, while BFW includes both mixed‐gender and mixed‐
ethnicity pairs. The authors report that RFW is made up of images from MS‐Celeb‐1M,
and BFW is made up of images from VGGFace2. These were used to train the ArcFace
and Facenet (VGGFace2) models respectively. Thus, the BFW dataset could only be used
with the FaceNet (Webface) and ArcFacemodels, while RFWcould only be usedwith the
two FaceNet models, to ensure the models were tested on unseen examples.
TheMTCNNpipelines providedby [3] (‘Facenet‐MTCNN’) and [4] (‘Arcface‐MTCNN’)were
used to preprocess images. After the Facenet‐MTCNN pre‐processing, there remained
23,903 image pairs for RFW dataset. The authors reported using 23,541 pairs, meaning
we used 1.5%more pairs. For the BFW dataset, 891,622 image pairs were available after
Facenet‐MTCNN pre‐processing and 888,833 after Arcface‐MTCNN, while the authors
reported using 890,347 pairs, meaning we used 0.14% more and 0.17% fewer pairs re‐
spectively. For both datasets, we found the same approximate ratio of genuine/imposter
pairs as the authors, namely 1:1 for RFW and 1:3 for BFW. The authors used folds given
alongside each dataset to perform five‐fold cross validation.
Since Salvador et al. do not provide their implementation for the MTCNN pipeline, it is
possible that our implementations differed, which led to the differing amount of images
for each dataset. Thus, we cannot be sure that the pairs the authors used are included
in our version and vice versa, meaning differences between results can occur.
The authors’ code base refers to CSV files relating to each of the datasets, which provide
essential information to replicate the author’s experiments: namely, the pairing of im‐
ages and their embeddings’ cosine similarities. However, these files were not provided
in the author’s repository, nor were there instructions on how to find them. The paper’s
first author generously provided us with a format for each file during correspondence,
which, combined with metadata available on the datasets themselves, allowed us to cre‐
ate compatible versions of these files.

3.3 Hyperparameters
100 clusters were used for the K‐means clustering, the same as Salvador et al., and for
FairCal‐GMM. In Appendix C, we show the results for varying amounts of clusters. Ad‐
ditionally, we use the default MTCNN hyperparameters specified in [3] and [4].

3.4 Experimental setup and code
Our setup was based on existing code by Salvador et al. in a GitHub repository [2]. We
improved the experimental setup bymaking the codemore efficient, primarily by using
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more efficient data structures. In the author’s code, the time to run one experiment (i.e.
one dataset for one model) using FairCal was approximately 2 hours. We were able to
reduce this to around 54 seconds on average (≈133x speedup). For the sake of repro‐
ducibility, we set the random seed to 42, since pseudo‐random initialization was used
for both K‐means and GMM clustering.

3.5 Computational requirements
The authors specify several approaches in their original paper in addition to FairCal.
Most are computationally light and are thus able to run on a CPU in relatively little time.
For the results provided in this paper, an AMD Ryzen 7 2700X CPU was used. To speed
up the K‐means and GMM algorithms, we used a GPU implementation [17], which was
run on a NVIDIA GeForce GTX1080Ti. An additional benchmarking method, AGENDA
(used in Table 5), requires the training of a multilayer perceptron, which was also done
using the above GPU. The runtimes for the main experiments can be found in Table 1.

RFW BFW
FaceNet (VGGFace2) FaceNet (Webface) FaceNet (Webface) ArcFace

Preprocessing Embeddings 2237 2198 284 4085
Cosine sims 11 11 1 1

Experiments
Baseline 1 1 12 15
FSN 53 47 45 47

FairCal 54 54 53 57
FairCal‐GMM 247 108 68 576

Table 1. The runtimes for the pre‐processing of the dataset and the experiments in seconds. The
row Embeddings refers to the generation of image embeddings, and the row Cosine sims refers
calculating cosine similarities for all image embedding pairs.

4 Results

4.1 Results reproducing original paper

Claim 1 (Accuracy) — Thefirst claimwe aimed to reproducewas that FairCal achieves SOTA
accuracy for face verification on two large datasets. As can be seen in Table 2, we were
able to reproducemost of the author’s results regarding this over all datasets andmodels.
Thus, we have successfully reproduced this claim.

Claim 2 (Fairness Calibration) — Secondly, we aimed to reproduce the authors’ claim that
FairCal outputs SOTA fairness‐calibrated probabilities without knowledge of the sen‐
sitive attribute. The authors measure this by computing the Kolmogorov‐Smirnov (KS)
score per subgroup and comparing themean KS across subgroups, the average absolute
deviation from themean (AAD),maximumabsolute deviation from themean (MAD) and
standard deviation from the mean (STD). By construction, FairCal does not take into ac‐
count the sensitive attribute. Our results can be seen in Table 3. We find these to be
partly reproducible, due to the fact that we are able to reproduce the difference inmean
KS between baseline and FairCal, but the authors find a larger difference than we do.
Furthermore, the AAD, MAD and STD we attained are not consistently similar to the
authors’ results.

Claim 3 (Gap in FPRs) — Thirdly, we aimed to reproduce the authors’ claim that FairCal
reduces the gap in FPRs across sensitive attributes compared to the baseline method.
The results can be seen in Figure 1 and Table 4. From this, we conclude that the authors’
results are reproducible in most cases. We were able to decrease the gap in FPRs across
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AUROC TPR @ 0.1% FPR TPR @ 1% FPR
RFW Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

Baseline 88.26±0.19 89.97±0.58 18.42±1.28 25.27±6.51 34.88±3.27 39.92±2.40
FSN 90.05±0.29 91.30±0.35 23.01±2.00 26.79±4.63 40.21±2.09 44.52±2.91
FairCal 90.58±0.29 92.17±0.40 23.55±1.82 26.93±5.23 41.88±1.99 49.68±2.40
FairCal‐GMM – 92.46±0.43 – 29.88±4.34 – 50.86±3.42

FaceNet
(Webface)

Baseline 83.95±0.22 84.46±0.47 11.18±3.45 11.14±5.34 26.04±2.11 26.45±4.90
FSN 85.84±0.34 86.24±0.63 17.33±3.01 17.98±5.74 32.90±1.03 31.68±2.02
FairCal 86.71±0.25 86.97±0.72 20.64±3.09 19.23±3.64 33.13±1.67 33.82±4.55
FairCal‐GMM – 87.19±0.53 – 20.49±5.36 – 33.44±4.09

BFW

FaceNet
(Webface)

Baseline 96.06±0.16 94.62±0.17 33.61±2.10 27.93±2.02 58.87±0.92 52.79±1.74
FSN 96.77±0.20 94.84±0.22 47.11±1.23 37.87±0.98 69.92±1.01 59.86±1.23
FairCal 96.90±0.17 95.67±0.13 46.74±1.49 37.68±0.87 69.21±1.19 60.21±1.09
FairCal‐GMM – 95.48±0.15 – 35.39±1.46 – 58.49±1.57

ArcFace

Baseline 97.41±0.34 97.34±0.36 86.27±1.09 84.75±1.26 90.11±0.87 89.51±0.98
FSN 97.35±0.33 97.32±0.35 86.19±1.13 84.77±1.20 90.06±0.84 89.49±0.98
FairCal 97.44±0.34 97.37±0.35 86.28±1.24 84.95±1.32 90.14±0.86 89.55±1.01
FairCal‐GMM – 97.35±0.37 – 84.78±1.21 – 89.51±1.00

Table 2. Global accuracy measured by AUROC, TPR at 0.1% FPR threshold and TPR at 1% FPR
threshold. Higher is better. If we successfully reproduced a result, our result is colored green.
Entries indicate mean ± 1 standard deviation over 5‐fold validation.

sensitive attributes, but not for all experiments andnot as strongly as the authors’ results
show – thus, we see the same trends despite having different absolute results.

Figure 1. Illustration of bias in FPR rates globally and across subgroups, with the FaceNet (Webface)
feature model. Plots from the original paper are in blue (their figure 2) and plots from the current
paper are in green. False positives are indicated by imposter pairs above the decision threshold
value (horizontal lines). Black horizontal lines indicate thresholds which achieve a global FPR of
5%. Red horizontal lines indicate thresholds which achieve a FPR of 5% for a specific subgroup.
Greater distance of red horizontal lines from the black horizontal line indicates greater bias. This
shows that the baseline method is biased. Furthermore, global calibration (based on cosine simi‐
larity alone) does not reduce the bias. Lastly, we see that the FairCal method reduces bias in both
the original and the present paper.

4.2 Results beyond original paper

Additional Result 1 — As was described in section 3.4, we extended the original paper by
using Gaussian mixture models (GMMs) instead of the K‐means algorithm to cluster
the image embeddings. These results can be found in Tables 2, 3 and 4. Concerning
accuracy, FairCal‐GMM achieves the same or even slightly higher results than FairCal,
the KS score same or lower than FairCal, and comparable deviation in subgroup FPRs.

Additional Result 2 — In their original paper, the authors compare the group FPRs for dif‐
ferent values of global FPR. The authors claim that if these lines are closer together, it
reflects better fairness (cf. figure 1 in Salvador et al. [1]). Thus, in a perfectly fair setting,
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Mean AAD MAD STD
RFW Authors Ours Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

Baseline 6.37 6.29 2.89 2.60 5.73 5.10 3.77 3.84
FSN 1.43 3.67 0.35 0.59 0.57 1.07 0.40 0.79
FairCal 1.37 1.67 0.28 0.47 0.50 0.93 0.34 0.66
FairCal‐GMM – 1.77 – 0.60 – 0.98 – 0.78

FaceNet
(Webface)

Baseline 5.55 5.55 2.48 2.31 4.97 4.60 2.91 3.34
FSN 2.49 3.90 0.84 0.54 1.19 1.05 0.91 0.75
FairCal 1.75 1.74 0.41 0.48 0.64 0.92 0.45 0.67
FairCal‐GMM – 1.75 – 0.48 – 0.82 – 0.62

BFW

FaceNet
(Webface)

Baseline 6.77 4.72 3.63 2.83 5.96 7.62 4.03 3.50
FSN 2.76 3.45 1.38 1.40 2.67 4.60 1.60 1.90
FairCal 3.09 3.06 1.34 1.19 2.48 2.59 1.55 1.45
FairCal‐GMM – 3.43 – 1.40 – 3.64 – 1.80

ArcFace
Baseline 2.57 2.17 1.39 1.24 2.94 3.30 1.63 1.57
FSN 2.65 2.91 1.45 1.29 3.23 4.26 1.71 1.72
FairCal 2.49 1.94 1.30 1.16 2.68 3.09 1.52 1.46
FairCal‐GMM – 1.58 – 0.85 – 2.71 – 1.13

Table 3. Fairness Calibration measured by KS score across sensitive subgroups. Measured by
mean, the average absolute deviation from the mean (AAD), maximum absolute deviation from
the mean(MAD) and standard deviation from the mean (STD). Lower is better in all cases. If we
successfully reproduced a result, our result is colored green.

the lines are identical. As such, unfairness may be quantified by measuring the extent
to which the lines differ. In an attempt to do so, we fitted a line using linear regression
to all points in subgroup‐data and calculated the sum of squared error residuals from
each subgroup to the fitted line. These results can be seen in Figure 2. Note that the
points included in this analysis are limited to Global FPR≤ 0.1, similarly to the authors.
From this, we can see that FairCal brings improvements over the baseline, and performs
comparably to FairCal‐GMM.

Figure 2. Illustration of quantified reduction in bias (improved fairness) measured by the FPRs
evaluated on intra‐ethnicity pairs on the RFW dataset with the FaceNet (Webface) feature model.
The two leftmost plots are from the original paper (their figure 1) and the three rightmost plots
are from the current paper. The best fit line for our experiments are indicated in black. Lines
closer together indicate better fairness. Residual (SSE) values for the corresponding methods are:
Baseline (0.499), FSN (0.037), FairCal (0.026), FairCal‐GMM (0.019).

5 Discussion

5.1 Discussion of the results
Overall, we found the authors’ results to be mostly reproducible. While we largely saw
the samepatterns as the authors, wewere unable to consistently reproduce their specific
values. This is particularly remarkable for the baselinemethod, since it is deterministic.
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Global FPR: 1%
AAD MAD STD

RFW Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

Baseline 0.68 0.74 1.02 0.94 0.74 0.90
FSN 0.37 0.42 0.68 0.77 0.46 0.58
FairCal 0.28 0.59 0.46 0.95 0.32 0.77
FairCal‐GMM – 0.44 – 0.74 – 0.59

FaceNet
(Webface)

Baseline 0.67 0.68 1.23 1.21 0.79 0.91
FSN 0.35 0.33 0.61 0.58 0.40 0.45
FairCal 0.29 0.33 0.57 0.53 0.35 0.44
FairCal‐GMM – 0.32 – 0.62 – 0.47

BFW

FaceNet
(Webface)

Baseline 2.42 1.99 7.48 6.30 3.22 2.85
FSN 0.87 0.72 2.19 1.71 1.05 0.96
FairCal 0.80 0.60 1.79 1.52 0.95 0.81
FairCal‐GMM – 0.66 – 1.54 – 0.89

ArcFace
Baseline 0.72 0.70 1.51 1.58 0.85 0.92
FSN 0.55 0.60 1.27 1.45 0.68 0.80
FairCal 0.63 0.62 1.46 1.34 0.78 0.80
FairCal‐GMM – 0.70 – 1.54 – 0.91

Global FPR: 0.1%
AAD MAD STD

RFW Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

Baseline 0.10 0.17 0.15 0.31 0.10 0.22
FSN 0.10 0.19 0.18 0.29 0.11 0.24
FairCal 0.09 0.18 0.14 0.33 0.10 0.24
FairCal‐GMM – 0.19 – 0.37 – 0.25

FaceNet
(Webface)

Baseline 0.14 0.14 0.26 0.27 0.16 0.19
FSN 0.11 0.16 0.23 0.26 0.23 0.20
FairCal 0.09 0.17 0.16 0.23 0.10 0.21
FairCal‐GMM – 0.15 – 0.21 – 0.19

BFW

FaceNet
(Webface)

Baseline 0.29 0.25 1.00 0.83 0.40 0.36
FSN 0.09 0.09 0.20 0.17 0.11 0.11
FairCal 0.09 0.08 0.20 0.19 0.11 0.10
FairCal‐GMM – 0.10 – 0.28 – 0.14

ArcFace
Baseline 0.12 0.12 0.30 0.27 0.15 0.16
FSN 0.11 0.11 0.28 0.23 0.14 0.14
FairCal 0.11 0.10 0.31 0.24 0.15 0.13
FairCal‐GMM – 0.13 – 0.27 – 0.16

Table 4. Predictive equality, measured by the deviation in subgroup FPRs in terms of average abso‐
lute Deviation (AAD), maximum absolute deviation (MAD), and standard deviation (STD). Lower
is better in all cases. The top and bottom tables report results for a global FPR of 0.1% and 1%
respectively. If we successfully reproduced a result, our result is colored green.
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We verified this by using the embeddingswe generated and attained the same results for
repeated runs of the baseline method for all datasets and models. As was explained in
section 3.2, we believe that the discrepancy in image embeddings is also the primary
basis for the differences in the results.
Additionally, since FairCal is non‐deterministic due to using K‐means (specifically in the
initialization of cluster centroids), the authors may have had a very different initializa‐
tion than we did. Thus, a future study may validate these results further by analysing
several experiments with known seeds.
We also find that GMM clustering is at least as good as using K‐means, and in some
cases, outperforms it. This fits well with the theoretical underpinning of GMMs, since
they may produce more flexible, non‐isotropic clusters. This also validates the under‐
lying motivation of FairCal, which is that information about sensitive attributes is not
required to have fair calibration, and that unsupervised clustering methods are a suit‐
able replacement for sensitive attribute labels. However, the difference is usually under
one standard deviation for each metric. Thus, more experimentation and analysis is re‐
quired to confirm any additional improvement. We recommended this as a direction
for further research.

5.2 What was easy
We were very fortunate to be able to start with the author’s implementation of the code,
which required only minimal debugging. Once we had our datasets and embeddings in
the correct format, we were able to run the code without issues. Additionally, though
the RFW and BFW datasets are not freely available to the public, they are to researchers
– thus, contacting their authors allowed us to swiftly attain them. Furthermore, the
authors’ description of FairCal and how it implements fairness is very intuitive and clear
in their paper. As a result, we were able to understand their methods without prior
knowledge in the field of fairness in face verification.

5.3 What was difficult
There were mainly three difficulties: first, the environment that the authors provided
with their code was not project‐specific, contained conflicting dependencies, and as‐
sumed that the user had a specific operating system installed. Additionally, environ‐
ments built from scratch often had issues with dependency conflicts depending on OS
and hardware. Moreover, since the code expected the user to already possess files with
image embeddings, several packages needed to generate them were not listed.
Second, the pipeline of how to generate the image embeddings was not clear. For ex‐
ample, the authors report that they used an MTCNN for pre‐processing; however, the
Facenet‐MTCNN repository has a different implementation from the one containing the
Arcface‐MTCNN. Thus, it was ambiguous which MTCNN was used for which model.
Third, the original authors’ codewas challenging to understand and optimize, especially
since some of the functions or column names were renamed without adjusting down‐
stream references. Fortunately, fixing these naming errors allowed us to run the code
from start to end, albeit with a high runtime. We noted that some areas of the code
could benefit frommore efficient data structures, and the refactored code can be found
in our repository.
Finally, in our opinion, certain design decisions of the original authors need further
verification, perhaps as future research directions. For example, though they do refer
back to another paper’s suggestions, it was not clear to us why 100 clusters should be the
best performing specifically for FairCal. In addition, though KS scores are mentioned
as a strongmetric, others, such as ECE and Brier scores, may bemore useful in different
settings, and could provide insight into how these calibration methods work.
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5.4 Communication with original authors
Weemailed the first author of the paper twice. First at the beginning of our undertaking,
they were enthusiastic about our attempt, and clarified a few initial doubts about their
implementation, the embeddings, and missing files. As per the writing of this paper,
they have not responded to the second email.
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6 Appendix

6.1 Appendix A
In this appendix we present the visualisation of some clusters obtained by the K‐means
and GMM algorithms. Results can be found in Figures 3 and 4 respectively. Similarly
to Figure 3 from the original paper, we conclude that our clusters have clear semantic
meaning, both for K‐means and GMMs.

(a) Indian women with dark hair (b)Male African sportsmen

(c) Young Asian women with red hair and bangs (d) Caucasian men with short dark hair

Figure 3. Examples of clusters obtained with the K‐means algorithm (K=100) on the RFW dataset
based on the feature embeddings computed with the FaceNet (Webface) model, labelled with
potential semantic classes (labelled by us).
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(a) Older Asian men (b) Blonde Caucasian women

(c) Indian men with mustache (d) Young Indian women

Figure 4. Examples of clusters obtained with the GMM algorithm (k = 100) on the RFW dataset
based on the feature embeddings computed with the FaceNet (VGGFace2) model, labelled with
potential semantic classes (labelled by us).

6.2 Appendix B
Wepresent additional figures of the experiments on the othermethods used by the origi‐
nal authors: the Adverserial Gender De‐biasing algorithm (AGENDA) [18], the Fair Score
Normalization (FSN) method [15], and Oracle (introduced by the original authors). For
clarity, we also include the results for Baseline, FairCal with K‐means and FairCal with
GMM. Results can be found in Tables 5, 6 and 7.

6.3 Appendix C
In this section, we present the performance of fairness‐calibration for the Expected Cali‐
bration Error (ECE) [19] and Brier [20] scores. The original authorsmention these scores
in their paper, but do not show their results. Here, we show that the FairCal‐GMM
method outperforms regular FairCal in most cases. Results can be found in Tables 8
and 9.

6.4 Appendix D
In this section, we present further results on the performance of FairCal‐GMM as com‐
pared to the baseline and original FairCal methods. We compare the performance of
thesemethods by reporting the deviation in subgroup FNRs in terms of average absolute
Deviation (AAD),maximum absolute deviation (MAD), and standard deviation (STD). Re‐
sults can be found in Table 10.
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AUROC TPR @ 0.1% FPR TPR @ 1% FPR
RFW Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

AGENDA 76.83±0.57 79.12±0.67 8.32±1.86 13.33±2.87 18.01±1.44 21.63±2.56
Baseline 88.26±0.19 89.97±0.58 18.42±1.28 25.27±6.51 34.88±3.27 39.92±2.40
FairCal 90.58±0.29 92.17±0.40 23.55±1.82 26.93±5.23 41.88±1.99 49.68±2.40
FSN 90.05±0.29 91.30±0.35 23.01±2.00 26.79±4.63 40.21±2.09 44.52±2.91
Oracle 89.74±0.31 91.26±0.50 21.40±3.54 25.45±6.20 411.83±2.98 47.98±4.92
FairCal‐GMM – 92.46±0.43 – 29.88±4.34 – 50.86±3.42

FaceNet
(Webface)

AGENDA 74.51±0.94 72.79±1.36 6.38±0.78 6.89±3.27 14.98±1.11 13.97±2.58
Baseline 83.95±0.22 84.46±0.47 11.18±3.45 11.14±5.34 26.04±2.11 26.45±4.90
FairCal 86.71±0.25 86.97±0.72 20.64±3.09 19.23±3.64 33.13±1.67 33.82±4.55
FSN 85.84±0.34 86.24±0.63 17.33±3.01 17.98±5.74 32.90±1.03 31.68±2.02
Oracle 85.23±0.18 85.72±0.54 16.71±1.98 16.72±2.82 31.60±1.08 32.20±4.37
FairCal‐GMM – 87.19±0.53 – 20.49±5.36 – 33.44±4.09

BFW

FaceNet
(Webface)

AGENDA 82.42±0.45 76.33±0.76 15.95±1.53 6.84±0.72 32.51±1.24 18.58±1.25
Baseline 96.06±0.16 94.62±0.17 33.61±2.10 27.93±2.02 58.87±0.92 52.79±1.74
FairCal 96.90±0.17 95.67±0.13 46.74±1.49 37.68±0.87 69.21±1.19 60.21±1.09
FSN 96.77±0.20 94.84±0.22 47.11±1.23 37.87±0.98 69.92±1.01 59.86±1.23
Oracle 97.28±0.13 96.18±0.10 45.13±1.45 35.34±1.02 67.56±1.05 58.99±1.01
FairCal‐GMM – 95.48±0.15 – 35.39±1.46 – 58.49±1.57

ArcFace

AGENDA 95.09±0.55 93.17±0.54 69.61±2.40 44.97±3.06 79.67±2.06 64.09±2.38
Baseline 97.41±0.34 97.34±0.36 86.27±1.09 84.75±1.26 90.11±0.87 89.51±0.98
FairCal 97.44±0.34 97.37±0.35 86.28±1.24 84.95±1.32 90.14±0.86 89.55±1.01
FSN 97.35±0.33 97.32±0.35 86.19±1.13 84.77±1.20 90.06±0.84 89.49±0.98
Oracle 98.91±0.12 98.85±0.13 86.41±1.19 84.98±1.24 90.40±0.91 89.87±1.06
FairCal‐GMM – 97.35±0.37 – 84.78±1.21 – 89.51±1.00

Table 5. Global accuracy measured by AUROC, TPR at 0.1% FPR threshold and TPR at 1% FPR
threshold. Higher is better. Entries indicate mean ± 1 standard deviation over 5‐fold validation.
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Mean AAD MAD STD
RFW Authors Ours Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

AGENDA 7.71 8.87 3.11 2.66 6.09 4.96 3.86 3.64
Baseline 6.37 7.28 2.89 2.37 5.73 4.57 3.77 3.30
FairCal 1.37 3.30 0.28 0.51 0.50 0.96 0.34 0.71
FSN 1.43 3.67 0.35 0.59 0.57 1.07 0.40 0.79
Oracle 1.18 3.50 0.28 0.97 0.53 1.80 0.33 1.33
FairCal ‐ GMM – 1.77 – 0.60 – 0.98 – 0.78

FaceNet
(Webface)

AGENDA 7.71 8.87 3.11 2.66 6.09 4.96 3.86 3.64
Baseline 6.37 7.28 2.89 2.37 5.73 4.57 3.77 3.30
FairCal 1.37 3.30 0.28 0.51 0.50 0.96 0.34 0.71
FSN 1.43 3.67 0.35 0.59 0.57 1.07 0.40 0.79
Oracle 1.18 3.50 0.28 0.97 0.53 1.80 0.33 1.33
FairCal ‐ GMM – 1.75 – 0.48 – 0.82 – 0.62

BFW

FaceNet
(Webface)

AGENDA 13.21 14.06 6.37 4.94 12.91 14.94 7.55 6.40
Baseline 6.77 5.80 3.63 2.88 5.96 6.86 4.03 3.49
FairCal 3.09 3.38 1.34 1.12 2.48 2.43 1.55 1.38
FSN 2.76 3.45 1.38 1.40 2.67 4.60 1.60 1.90
Oracle 2.23 2.64 1.15 1.00 2.63 2.76 1.40 1.29
FairCal ‐ GMM – 3.43 – 1.40 – 3.64 – 1.80

ArcFace

AGENDA 5.14 17.43 2.48 3.43 5.92 8.85 3.04 4.27
Baseline 2.57 2.36 1.39 1.15 2.94 3.15 1.63 1.47
FairCal 2.49 2.17 1.30 1.04 2.68 2.87 1.52 1.32
FSN 2.65 2.91 1.45 1.29 3.23 4.26 1.71 1.72
Oracle 1.41 2.54 0.59 0.86 1.30 2.16 0.69 1.08
FairCal ‐ GMM – 1.58 – 0.85 – 2.71 – 1.13

Table 6. Fairness Calibrationmeasured by KS score across sensitive subgroups. Measured bymean,
the average absolute deviation from the mean (AAD), maximumum absolute deviation from the
mean(MAD) and standard deviation from the mean (STD). Lower is better in all cases.
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Global FPR: 1%
AAD MAD STD

RFW Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

AGENDA 0.71 0.71 1.14 1.19 0.81 0.94
Baseline 0.68 0.74 1.02 0.94 0.74 0.90
FairCal 0.28 0.59 0.46 0.95 0.32 0.77
FSN 0.37 0.42 0.68 0.77 0.46 0.58
Oracle 0.40 0.44 0.69 0.75 0.45 0.58
FairCal‐GMM – 0.44 – 0.74 – 0.59

FaceNet
(Webface)

AGENDA 0.73 0.89 1.08 1.26 0.78 1.10
Baseline 0.67 0.68 1.23 1.21 0.79 0.91
FairCal 0.29 0.33 0.57 0.53 0.35 0.44
FSN 0.35 0.33 0.61 0.58 0.40 0.45
Oracle 0.41 0.41 0.74 0.68 0.48 0.53
FairCal‐GMM – 0.32 – 0.62 – 0.47

BFW

FaceNet
(Webface)

AGENDA 1.21 0.63 3.09 1.43 1.51 0.81
Baseline 2.42 1.99 7.48 6.30 3.22 2.85
FairCal 0.80 0.60 1.79 1.52 0.95 0.81
FSN 0.87 0.72 2.19 1.71 1.05 0.96
Oracle 0.77 0.67 1.71 1.43 0.91 0.84
FairCal‐GMM – 0.66 – 1.54 – 0.89

ArcFace

AGENDA 0.65 0.40 1.78 0.93 0.84 0.52
Baseline 0.72 0.70 1.51 1.58 0.85 0.92
FairCal 0.63 0.62 1.46 1.34 0.78 0.80
FSN 0.55 0.60 1.27 1.45 0.68 0.80
Oracle 0.83 0.74 2.08 1.84 1.07 1.02
FairCal‐GMM – 0.70 – 1.54 – 0.91

Global FPR: 0.1%
AAD MAD STD

RFW Authors Ours Authors Ours Authors Ours

FaceNet
(VGGFace2)

AGENDA 0.11 0.16 0.20 0.28 0.13 0.20
Baseline 0.10 0.17 0.15 0.31 0.10 0.22
FairCal 0.09 0.18 0.14 0.33 0.10 0.24
FSN 0.10 0.19 0.18 0.29 0.11 0.24
Oracle 0.11 0.19 0.19 0.36 0.12 0.25
FairCal‐GMM – 0.19 – 0.37 – 0.25

FaceNet
(Webface)

AGENDA 0.12 0.14 0.23 0.23 0.14 0.18
Baseline 0.14 0.14 0.26 0.27 0.16 0.19
FairCal 0.09 0.17 0.16 0.23 0.10 0.21
FSN 0.11 0.16 0.23 0.26 0.23 0.20
Oracle 0.11 0.15 0.20 0.24 0.13 0.19
FairCal‐GMM – 0.15 – 0.21 – 0.19

BFW

FaceNet
(Webface)

AGENDA 0.14 0.09 0.40 0.20 0.18 0.11
Baseline 0.29 0.25 1.00 0.83 0.40 0.36
FairCal 0.09 0.08 0.20 0.19 0.11 0.10
FSN 0.09 0.09 0.20 0.17 0.11 0.11
Oracle 0.12 0.14 0.25 0.37 0.15 0.19
FairCal‐GMM – 0.10 – 0.28 – 0.14

ArcFace

AGENDA 0.09 0.06 0.23 0.15 0.11 0.08
Baseline 0.12 0.12 0.30 0.27 0.15 0.16
FairCal 0.11 0.10 0.31 0.24 0.15 0.13
FSN 0.11 0.11 0.28 0.23 0.14 0.14
Oracle 0.12 0.11 0.27 0.25 0.14 0.14
FairCal‐GMM – 0.13 – 0.27 – 0.16

Table 7. Predictive equality, measured by the deviation in subgroup FPRs in terms of average abso‐
lute Deviation (AAD), maximum absolute deviation (MAD), and standard deviation (STD). Lower
is better in all cases. The top and bottom tables report results for a global FPR of 0.1% and 1%
respectively.
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RFW Mean AAD MAD STD

FaceNet
(VGGFace2)

Baseline 6.29 2.60 5.10 3.84
FairCal 1.67 0.47 0.93 0.66

FairCal‐GMM 1.77 0.60 0.98 0.78

FaceNet
(Webface)

Baseline 5.55 2.31 4.60 3.34
FairCal 1.74 0.48 0.92 0.67

FairCal‐GMM 1.75 0.48 0.82 0.62

BFW

FaceNet
(Webface)

Baseline 4.72 2.83 7.62 3.50
FairCal 3.06 1.19 2.59 1.45

FairCal‐GMM 3.43 1.40 3.64 1.80

ArcFace
Baseline 2.17 1.24 3.30 1.57
FairCal 1.94 1.16 3.09 1.46

FairCal‐GMM 1.58 0.85 2.71 1.13

Table 8. Fairness calibration measured by ECE score. Lower is better in all cases.

RFW Mean AAD MAD STD

FaceNet
(VGGFace2)

Baseline 6.29 2.60 5.10 3.84
FairCal 1.67 0.47 0.93 0.66

FairCal‐GMM‐full 1.77 0.60 0.98 0.78

FaceNet
(Webface)

Baseline 5.55 2.31 4.60 3.34
FairCal 1.74 0.48 0.92 0.67

FairCal‐GMM‐full 1.75 0.48 0.82 0.62

BFW

FaceNet
(Webface)

Baseline 4.72 2.83 7.62 3.50
FairCal 3.06 1.19 2.59 1.45

FairCal‐GMM‐full 3.43 1.40 3.64 1.80

ArcFace
Baseline 2.17 1.24 3.30 1.57
FairCal 1.94 1.16 3.09 1.46

FairCal‐GMM‐full 1.58 0.85 2.71 1.13

Table 9. Fairness calibration measured by Brier score. Lower is better in all cases.
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Global FPR: 1%
RFW AAD MAD STD

FaceNet
(VGGFace2)

Baseline 0.53 0.97 0.72
FairCal 0.42 0.68 0.55
FairCal‐GMM 0.39 0.69 0.54

FaceNet
(Webface)

Baseline 0.44 0.79 0.58
FairCal 0.47 0.75 0.61
FairCal‐GMM 0.45 0.85 0.62

BFW

FaceNet
(Webface)

Baseline 0.36 0.87 0.48
FairCal 0.32 0.63 0.41
FairCal‐GMM 0.32 0.63 0.40

ArcFace
Baseline 0.74 1.91 0.99
FairCal 0.66 1.59 0.87
FairCal‐GMM 0.71 1.85 0.95

Global FPR: 0.1%
RFW AAD MAD STD

FaceNet
(VGGFace2)

Baseline 0.14 0.27 0.18
FairCal 0.11 0.22 0.15
FairCal‐GMM 0.11 0.22 0.14

FaceNet
(Webface)

Baseline 0.09 0.18 0.12
FairCal 0.07 0.14 0.10
FairCal‐GMM 0.12 0.23 0.16

BFW

FaceNet
(Webface)

Baseline 0.08 0.21 0.11
FairCal 0.07 0.21 0.10
FairCal‐GMM 0.07 0.16 0.09

ArcFace
Baseline 0.11 0.33 0.15
FairCal 0.10 0.29 0.14
FairCal‐GMM 0.10 0.30 0.14

Table 10. Equal opportunity, measured by the deviation in subgroup FNRs in terms of average abso‐
lute Deviation (AAD), maximum absolute deviation (MAD), and standard deviation (STD). Lower
is better in all cases. The top and bottom tables report results for a global FPR of 0.1% and 1%
respectively.
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6.5 Appendix E
In the original paper, the authors show the robustness of FairCal by showing that its
performance does not significantly change for the choice of a wide number amount
of clusters. We performed the same analysis and concluded that FairCal‐GMM is also
robust to differing amounts of clusters, as can be shown in Figure 5.

(a) Comparison of AUROC for different cluster
amounts for FairCal and FairCal‐GMM

(b) Comparison of FPR @ 1% for different cluster
amounts for FairCal and FairCal‐GMM

(c) Comparison of FPR @ 0.1% for different clus‐
ter amounts for FairCal and FairCal‐GMM

Figure 5. Comparison of FairCal and FairCal‐GMM on the three accuracymetrics for different clus‐
ter amounts. Shaded uncertainties indicate mean ± 1 standard deviation over 5‐fold validation.
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