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ABSTRACT

We introduce a general framework for learning data-adaptive latent distributions (noise)
in generative models based on 1D quantile functions through minimizing a statistical
discrepancy between noise and data samples. Our quantile-based parameterization naturally
adapts to heavy-tailed or compactly supported target distributions while shortening transport
paths by capturing marginal structure. This construction, originally motivated by the study
of 1D processes beyond the usual diffusion, integrates seamlessly with standard training
objectives, including flow matching and consistency models. Numerical experiments
highlight both the flexibility and the effectiveness of our approach, achieved with minimal
computational overhead.

1 INTRODUCTION

Flow-based generative models, especially score-based diffusion [Sohl{
Dickstein et al.| (2015)); [Song & Ermon| (2019)), flow matching (FM)

Albergo et al.|(2023); Lipman et al.| (2023); and one-step

generative models (consistency models)Song et al.|(2023); Boffi et al.|
like the recently introduced inductive moment matching (IMM)
(2023), achieve state-of-the-art results in many applications.
All these methods construct a probability flow from a simple latent
distribution (noise) to a complex target (data) with a neural network
trained to approximate this flow from limited target samples. In diffusion
models, the score function directs a reverse-time SDE, while in FM, the
velocity field is learned to compute trajectories via a flow ODE. Finally,
consistency models like IMM learn to predict the jumps from noise to the
data while factoring in the consistency of the flow trajectories. Usually,
a Gaussian is used as latent distribution which causes difficulties when
learning certain multimodal and heavy-tailed targets, see [Hagemann|
& Neumayer] (2021); [Salmona et al| (2022).A recent work of |(Ghane,
et al. has shown that diffusion models with Gaussian noise
satisfy a concentration of measure property. Moreover, by
[Dunson| (2023), GANs, VAEs and diffusion models with Gaussian or
log-concave latent variables can only generate light-tailed samples and Figure 1: FM via optimal coupling
are not universal generators. See Figure 2] for a heavy-tailed example, with Gaussian noise (top) and our
where Gaussian noise fails. There exist only few approaches to learn the learned noise (bottom). Latent sam-
noising process, Bartosh et al | (2023)) fit the forward diffusion process ples are shown in black, generated
via a learned invertible map that is trained end-to-end, in red, and transportation paths in
(2024) use metric flow matching, i.e., a neural network to adapt the path ~ green. Starting from the learned la-
to a underlying Riemannian metric. In a related approach tent drastically shortens the paths.
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(2024) learns a input-conditioned componentwise Gaussian noise schedule. In the setting of sampling from
unnormalized target densities, Blessing et al.| (2025a) learn the latent noise by optimizing the mean and
covariance of a Gaussian prior, while Blessing et al.| (2025b)) learn a Gaussian mixture prior, both are trained
end to end. From a complementary perspective, Wiese et al.|(2019) propose separating marginal modeling
from dependence structure using copula and marginal flows, recognizing that standard architectures struggle
with tail asymptotics, a motivation conceptually aligned with our componentwise quantile approach. On the
other hand |Pandey et al.| (2024); Zhang et al.| (2024) design heavy-tailed diffusions using Student-¢ latent
distributions, and |Shariatian et al.| (2025b) extend the framework to the family of a-stable distributions.

In this paper, we present a new approach to adapt the latent distribution to the data by learning from its
samples. The basic idea comes from the fact that all the above methods implicitly emerge as componentwise
models. For example, denoting the target random variable by X and the latent by X; ~ N(0, I4), FM
utilizes the process X; = (X}, ..., X?) with the components X; = (1 — )X} + tX! employing one-
dimensional Gaussians X} ~ A(0,1). This motivated us to generally construct generative models from /D
processes and their quantile functions.

Given any appropriate 1D process we demonstrate how to learn the componentwise neural flow by the
associated conditional velocity field. We give examples besides diffusion demonstrating the flexibility
of our machinery, namely the Kac process arising from the 1D damped wave equation, see |Duong et al.
(2025)); Han et al.| (2025), and a process reflecting the Wasserstein gradient flow of the maximum mean
discrepancy with negative distance kernel towards the uniform distribution. In contrast to diffusion, assuming
a compactly supported target, these processes also have a compact support, leading to a better regularity of
the corresponding velocity field. This inspired us to further adapt the process to the data and to learn the 1D
noising process rather than choosing it manually. To this end, we exploit that 1D probability measures can
be equivalently described by their quantile functions Q° : (0,1) — R which are monotone functions, and
consider quantile processes X; = (1 — )X} +tQ*(U?),i=1,...,d withiid. U’ ~ U[0,1] for t € [0, 1].
We learn the individual quantile functions Q;, i = 1,...,d such that their componentwise concatenation
Q4(U) = (Q},(U"))iL, is "close" to the data. This inspired us to minimize

W3 (no, Law(Qy(U))),  po = Law(Xo).

with the Wasserstein distance W,. We combine the learning of the latent Q,(U) with the learning of the
velocity field via optimal coupling FM. This allows us to effectively exploit the learned noise and drastically
shorten the transport paths, as illustrated in Figure[I} The simplicity of quantile functions give us a flexible
tool, which enables us to simultaneously learn the noising process and apply the FM framework. Our quantile
perspective can further be extended to fit into consistency models.

Contributions. 1. We introduce a general construction method for generative neural flows by decomposing
multi-dimensional flows into one-dimensional components. Ultimately, this allows us to work with one-
dimensional noising processes in the FM framework.

2. Besides the usual Wiener process, we highlight two interesting noising processes: the physics-inspired 1D
Kac process and the 1D MMD gradient flow with negative distance kernel leading to compactly supported
noise and a better regularity of the FM velocity field.

3. The above hand-crafted processes motivate our main contribution: we propose to learn the 1D noise
distributions themselves within the FM framework in a data adapted way, by parameterizing them through
quantile functions and minimizing a statistical discrepancy. As a side result, our framework can also be
incorporated into consistency models via so-called quantile interpolants.

4. Numerical experiments demonstrate that our method efficiently handles diverse marginal structures
including heavy-tailed, compact, and multi-modal distributions. Learned quantiles shorten transport paths by
capturing per-coordinate structure while delegating cross-dimensional dependencies to the velocity field.
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2 FLOW MATCHING AND STOCHASTIC PROCESSES

We first review absolutely continuous curves in Wasserstein spaces as basis of the subsequent FM method.
Then we highlight quite general stochastic processes (X); “interpolating” between our target X and a
noising process (Y';); that starts in Yo = 0 and ends in Y'; (our latent noise).

2.1 ABSOLUTELY CONTINUOUS CURVES IN WASSERSTEIN SPACE

We start with a brief introduction of curves in Wasserstein spaces and basic ideas on flow matching. For more
details we refer to/Ambrosio et al.| (2008) and Wald & Steidl|(2025). Let (P (Rd), W5) denote the complete
metric space of probability measures with finite second moments equipped with the Wasserstein distance

Wie)i= min [ o=yl dney
well(p,v) Jrd xRd

Here I1(p, v) denotes the set of all probability measures on R? x R? having marginals y and v. The push-

forward measure of 1 € Py(R?) by a measurable map 7 : R — R? is defined by Ty := 1o T 1. Let I be

an interval in IR, in this paper mainly I = [0, 1]. A narrowly continuous curve pi; : I — P2(R?) is absolutely

continuous, iff there exists a Borel measurable vector field v : I x R? — R? with |[v¢|,ra ) € L2(I)

such that (p, v¢) satisfies the continuity equation

Orpit + Vo - (peve) = 0 (0

in the sense of distributions. If in addition [, sup,¢p [|vi(2)|+Lip (v, B) dt < oo for all compact B C R,
then the ODE

at@(tvx) - vt(@(tvx))a 90(071’) =7, @)
has a solution ¢ : I x RY — R? and i, = (¢, ) pto.

Starting in the target distribution zo and ending in a simple latent distribution p1, as usual in diffusion models,
we can reverse the flow from the latent to the target distribution using just the opposite velocity field —v;_,
in the ODE (2). Thus, if somebody provides us with the velocity field v;, we can sample from a target
distribution by starting in a sample from the latent one and then applying our favorite ODE solver.

2.2 FLOW MATCHING

If we do not have a velocity field donor, we can try to approximate (learn) the velocity field by a neural
network vf . Clearly, a desirable loss function would be

L(0) = Etnrs(0,1), opss [va(m) — vt(x)HQ] )

Unfortunately this loss function is not helpful, since we do not know the exact velocity field v; nor can sample
from p, in the empirical expectation. However, employing the law of total probabilities, as done, e.g. in
Lipman et al.[(2023)), we see that £(0) = Lcrm(6) + const with a constant not depending on € and the
conditional flow matching (CFM) loss

2
Lerm(0) = Eogapg, tatd(0,1), 2ropue (o) [va(m) — ve(z|zo) } : 3
The key difference is the use of the conditional flow v.(x|zo) with respect to a fixed sample z from our

target distribution. To summarize, all you need is a conditional flow model with accessible velocity field
ve(x|xo) (at least along the flows trajectory), where you can easily sample from. Then you can indeed learn
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the velocity field v, of the general (non-conditional) flow and finally sample from the target by the reverse
ODE (2).

2.3  STOCHASTIC PROCESSES AND VELOCITY FIELDS

Consider a continuously differentiable (noising) process (Y;); with Yo =0 € R< with associated velocity
field v; = v,Y (- | 0) such that the pair (1Y, v,Y) satisfy the continuity equation (TJ), where pY is the law of
(Y:)4'| To construct a generative model we need to create a process (X;); which can start in any sample
xo from the target measure po. Let Xo ~ po. Following the lines in Duong et al.[(2025), we define the
mean-reverting process by

Xt = f(t) XO + Yg(t)7 te [0, 1}, (4)
with smooth scheduling functions f, g fulfilling
f(0)=1, f(1)=0 and g¢(0)=0, g(1)=1. Q)

Then we have X; = Y, and by abuse of notation, the process X starts in Xy = X. Differentiation of @)
results in ) ) )
Xy = f(t)Xo + g(t) Y,
The conditional velocity field of X, is given by (see|Wald & Steidl| (2025)); |Liu] (2022]))
v (@ | @o) :]E[Xt | X, =z, Xo = 0]
=E[f(t) o+ §(t) Yy | Yo == — f(t)zo]
= f(t)xo + g(t) vy (z = f(H)ao | 0). (6)
Now, the conditional flow matching loss (3)) can be minimized regarding X, ~ 10 and X; ~ p;. Note that
given a sample = ~ (X, | X = x¢), we have v (z | z9) = f(t) zo + §(t) v\, (Yyr) | 0). In general, v¥
might not be tractable, and only given as an conditional expectation of the time derivative Y. Yet, through
our componentwise construction below, we will obtain easier access to it via its 1D components.
Remark 1 (Relation to FM and diffusion). Consider the stochastic process
XM =aXo+ 0 Xy, Xy~ N(0, L) )

Choosing f(t) = oy, g(t) = o? and the standard Brownian motion Y; = W, it holds the equality in
distribution

d
XM E ()Xo + Wy = X
Then f(t) == 1 —t, g(t) == t2 yields (independent) FM |Lipman et al.|(2023), and f(t) = exp (—@)
g(t) =1 — exp (—h(t)), where h(t) := fot Bmin + $(Bmax — Bmin) ds with, e.g., Bmin = 0.1, Bmax = 20,
corresponds to processes used in score-based generative modelsSong et al (2021), see Appendix|B|

Remark 2 (Optimal Coupling). Instead of considering (possibly independent) random variables Xq ~
o, X1 ~ w1 and their induced processes (7), we can also employ optimal transport (OT) couplings
m € I, (1o, pt1). Then the induced curve (e)ym with e,(x,y) = (1 —t)x + ty is a geodesic between o and
1 in Po(R®). This yields an OT FM objective

Lot-ckm(0) = Eiti(0,1), (z,y)~r [H’Ue (er(z,y), t) — (y — T/)Hﬂ

In contrast to using the independent coupling, this can lead to reduced variance in training and both shorter
and straighter paths, see|long et al.|(2024)); |Pooladian et al.|(2023|).

Motivated by the fact that a multi-dimensional Wiener process W; € R¢ consists of independent (and
identically distributed) 1D components W; = (W}, ..., W), we propose to construct a d-dimensional flow
Y componentwise, based on independent one-dimensional processes Y;'.

"Existence of the velocity is given under weak assumptions by [Wald & Steid]|(2025) Theorem 6.3.
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3 FROM ONE-DIMENSIONAL TO MULTI-DIMENSIONAL FLOWS

Restricting ourselves to processes Y, that decompose into one-dimensional components allows us to propose
a general construction method for accessible conditional flows in FM. Let Y;},...,Y;? be a family of
independent one-dimensional stochastic processes with time dependent laws ¢ € Po(R). For each i =
1,...,d,letvi: R — R be the associated velocity field such that the pair (p, v?) satisfies the one-dimensional
continuity equation (T). Define the product measure z1; € P2(R9) by

d
p(x) = [[rit’), z=@"... 2% eR" ®)
=1

For the d-dimensional process Y; = (Y1, ..., Y,?), independence implies that its law is exactly 1. Moreover,
by the following proposition, the corresponding d-dimensional velocity field is given componentwise, see
Holderrieth et al.[(2025); |Duong et al.|(2025)).

Proposition 3. Let 1, be given by (8)), where the i are absolutely continuous curves in R with velocity fields
v}. Then py satisfies a multi-dimensional continuity equation (1)) with a velocity field which decomposes into

the univariate velocities v(x) := (v} (z'), ..., v{(z)).

Therefore, assuming access to the 1D velocities, we can construct accessible conditional flows for FM:

1. One-dimensional noise: Start with a 1D process and an associated absolutely continuous curve ji;
with pg = dg, 0 € R, where you can compute the velocity field v; in the 1D continuity equation

Oppit + Ox (prvr) = 0, po = do- &)

2. Multi-dimensional noise: Set up a multi-dimensional conditional flow model starting in po = do,
0 € R? with possibly different, but independent 1D processes as described in Section

3. Incorporating the data: Construct a multi-dimensional conditional flow model starting in p9 = 04,
for any data point o ~ po by mean-reversion as shown in Section[2.3]

To outline the use of this recipe, we explore three interesting 1D (noising) processes Y; in connection with
their respective PDEs, for which our approach via reduction to one dimension is nicely applicable, namely the

* Wiener process W, and diffusion equation,
» Kac process K; and damped wave equation,

¢ Uniform process U; and the gradient flow of the maximum mean functional F,, := MMD g (-, v)
with negative distance kernel K (z,y) = —|x — y| and v = U (=D, b).

In each case, we explicitly calculate the respective conditional measure flow and its conditional velocity field
in Appendix[A] such that the conditional flow matching loss (3) can be minimized. In each case, the absolutely
continuous curve starting in g and the corresponding velocity field can be calculated analytically. Note that
in contrast to the Wiener process W; usually seen in diffusion and FM models, the latter two processes K, Uy
do not enjoy a trivial analogue in multiple dimensions: in case of K, the corresponding PDE (damped wave
equation) is no longer mass-conserving in dimension d > 3, see|Tautz & Lerche| (2016)); in case of U; the
mere existence of the MMD gradient flow in multiple dimensions is unclear by the lack of convexity of the
MMD, see |Hertrich et al.|(2024). Our general construction method makes these 1D processes accessible for
generative modeling in arbitrary dimensions, hinting at a wide range of suitable noising processes.

Note that we used the independent coupling for training of these models. We also used z-score normalization.
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Figure 2: Sampling of Neal’s funnel with different latent distributions Left to Right: uniform on [—1, 1],
standard Gaussian, Student-T (with parameters (20, 4) inspired by the choice in|Pandey et al.| (2024)) and our
learned distribution. The last two heavy-tailed noises perform significantly better.

4 ADAPTING NOISE TO DATA

Motivated by the influence of the noising process on the sample quality depicted for the heavy-tailed
funnel in Figure 2] we propose to learn the noising process itself. We first revisit the connection between
one-dimensional distributions and their quantile functions, then introduce quantile processes and quantile
interpolants. Finally, we describe how the corresponding quantile functions can be learned in practice.

4.1 QUANTILE PROCESSES AND INTERPOLANTS

The restriction to componentwise noising processes Y in (@) E] allows us to use the quantile functions of the
1D components. Recall that the cumulative distribution function (CDF) R,, of 1 € P2(R) and its quantile
function @), are given by

Ru(z) = p((—o0,2]), z€R and Q(u) =min{z € R: R,(z) >u}, wue(0,1). (10)

In Figure[TT] we exemplify the CDF and quantile function of a standard Gaussian. The quantile functions
form a closed, convex cone C := {f € L2(0,1) : f increasing a.e.} in L(0,1). The mapping p — @, is an
isometric embedding of (P2 (R), Wa) into (L2(0, 1), || - ||z, ), meaning that

W) = [ 10,00 - Qo) ds

and 1 = Qp3L0,1)- Let U ~ U[0, 1] be uniformly distributed on [0, 1]. Now, any probability measure flow
p can be described by their respective quantile flow Q; :== @, , such that p; = Q¢ 3L o1y and Qo U is a
stochastic process with marginals gi;.

Quantile Processes. We can therefore model any multi-dimensional noising process, that decomposes
into its components, via quantile functions. Namely let X, be any component X{ of Xo ~ g, and
f,9 : [0,1] — R smooth schedules fulfilling (3). We assume that we are given a flow (Q;); of quantile
functions Q; : (0,1) — R, ¢t € [0, 1], which fulfill 9 = 0 and are invertible on their respective image with
the inverse given by the CDF R; : ¢(0,1) — R. We introduce the quantile process

The quantile process coincides (in distribution) with the components of the mean-reverting process @), where

the noising term is represented as Y;( t 4 QLaW(Y; m)(U ). In particular, the components of the process

3Besides componentwise 1D processes we may also use triangular decompositions, not addressed in this paper.



Under review as a conference paper at ICLR 2026

are obtained via (]E[) using the quantile distribution @Q; of a standard Brownian motion W; and f(¢) := ay,
g(t) = o},

Quantile Interpolants. Let us briefly mention how our setting fits into the framework of consistency
models. To this end, we define the quantile interpolants

Is,t(xa y) = f(S)l‘ + Qg(s) (Rg(t) (y - f(t)$)), s,t € [05 1] (12)
which generalize the interpolants used in Denoising Diffusion Implicit Models (DDIM), see Remark [I0}
Proposition 4. Forall z,y € Rand all s,r,t € [0,1], it holds I (z,y) = x, I 1(z,y) = y, and

IS,T’(z’ Ir,t(xa y)) = IS,t(‘Ta y)
Furthermore, inserting the quantile process (IE[) vields I ((Zy, Z,) = Zs.

The proof is given Appendix[C] Proposition ] allows us to also apply the concept of consistency models to our
quantile process (TT)). In the Appendix [C| we demonstrate this by means of the recently proposed inductive
moment matching (IMM) |Zhou et al.| (2025)).

4.2 LEARNING QUANTILE FUNCTIONS

The choice of the noise can have a significant impact on the sampling performance, see Figure [T for the
checkerboard distribution and Figure 2] for a heavy-tailed one. Now we adopt the quantile process view from
Section 1] to learn data—adapted noise. For simplicity we will only consider noising processes defined as
a deterministic scaling of a fixed random variable Z. We adopt a signal-decay schedule f(¢) = 1 — ¢ and
the linear latent growth g(t) = t, and consider Y, := ¢Z and v,¥ (x) = £. Note that this corresponds to the
standard linear interpolation often employed in FM. See Appendix [A.4]for more theoretical background.

We pose the following requirements on the latent distribution v: i) data—independence, and ii) independence
of components. Under these assumptions the latent class reduces to the set S := {v € P(R?) : v =

pdx and p = TIL_ | p'} | i.e. considering quantile processes of the form

Xi=01-t) X} + tQ'(UY), i=1,...,d, t €[0,1],

we have v = Qy U([0,1]%) with Q(u) = (Q'(ul),...,Q%(u?)). In particular, in our framework the
quantile family determines the scales and tails of Q(U), thereby influencing the difficulty and inductive bias
of predicting the conditional velocity v¢(X;) = Q(U) — X along the linear paths X; = (1—t)X, +tQ(U).

We now describe how we learn the quantile maps Q4. The core idea is that besides our requirements i)-ii) as
well as being a valid quantile function, we would like our noise to be "close” to the data. We learn Q4 by
minimizing a statistical discrepancy, e.g. the Wasserstein distance, between o and v,

Lax(9) = W3 (1o, vs), v = (Qg)s U([0,1]9). (13)
Note that due to the restriction of our quantiles to the class S, the minimizer of (T3) is in general not puo.
Crucially, the independence constraint restricts /4 to per-coordinate adaptation and prevents encoding cross-
dimensional correlations. The latter are introduced via the optimal transport coupling (x, y) and modeled by
the velocity field through the target (y — «). This separation lets the latent remain simple and computationally
efficient while delegating dependencies to the flow.

While our quantiles can be trained independently, in order to provide an aligned training signal for the velocity
field, we propose to also train Q jointly with the velocity vo. Hence, we aim to minimize the loss

L(O,¢) = Lcrm(0,0) + A Lan(9), A >0,
with  Lcem(0, ) = Erri(0,1), (2,y0)~ms [Hva((l — )z + tyg, t) — (sgys) — I)H;}?
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where 7wy € I, (1o, v4) is an optimal coupling between /o and v, and sg(-) denotes the stop-gradient
operator . For reference we visualize the effect of choosing A = 0 in Figure[T3]

In practice, we optimize the empirical expectation via minibatches; for more details on the implementation
see Appendix[D.4] A pseudo-algorithm is provided in Algorithm[T} In particular, we compute a mini batch
optimal transport map 7" that minimizes Zle ||x(()j ) _ y(TG) |2 for batches of data {xéj )};.3:1, {yU )}le
from X, and Q4(U), respectively. This minibatch map 7 is reused below for flow matching to keep the
targets consistent across the two terms.

5 EXPERIMENTS

To provide intuition and validate our proposed method, we conduct experiments on both synthetic and image
datasets. For each component, we model the quantile with a Rational Quadratic Spline (RQS) proposed
in |Gregory & Delbourgo| (1982); |[Durkan et al.| (2019) and add a learnable scale and bias. This keeps
monotonicity, is parameter-efficient, and gives analytic derivatives. See Appendix [D.2]for details.

t(

o

Figure 3: A generated trajectory from the learned quantile latent (left) to the unevenly weighted Gaussian
mixture target (right). The adapted latent is already close to the target distribution.

5.1 SYNTHETIC DATASETS

We begin by qualitatively analyzing our algorithm on several synthetic 2D distributions, see also Appendix
each designed to highlight a specific aspect of our approach. We provide intuition about the learned
latent distribution and demonstrate that it is closer to the data in the Wasserstein sense, yields shorter transport
paths, and successfully captures the tail behavior.

Gaussian Mixture Model (GMM). We first consider a 2D GMM with nine unevenly weighted modes, as
visualized in Figure[3] Due to the independence assumption inherent in our factorized quantile function, the
learned latent cannot perfectly replicate the target’s joint distribution and is not the product of the correct
marginals, see also Example [D.I] Instead, it approximates a distribution where the components cannot
further independently improve the transport cost to the target.

Funnel Distribution. The funnel distribution, shown in Figure [2] presents a challenge due to its heavy-
tailed, conditional structure. several methods for handling it have been proposed in the context of diffusion
models, e.g.[Pandey et al| (2024)); [Shariatian et al.| (2025alb). We compare our method to [Pandey et al.| (2024),
where the parameters of a latent Student-¢ distribution were hand-select in each dimension. To visualize the
effects more clearly, we use a capacity-constrained network with three layers of width 64 and no positional
embeddings. This experiment highlights the importance of matching the latent’s tail behavior to that of the
target distribution, showing that a compact latent performs worst, followed by the Gaussian. At the same
time, we observe that our learned latent successfully adapts to the target’s heavy tails, see also Figure [[3]in
the appendix. This enables the FM model to generate high fidelity samples across the distribution. Note that
due to the high variance signal when training on the funnel distribution, we pre-train our quantile.
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Checkerboard Distribution. In contrast to the funnel, the checkerboard distribution in Figure features a
compact support. Here, we demonstrate the synergy between our learned latent and an OT coupling. Our
method learns a latent that approximates a uniform distribution over the target’s support. When this adapted
latent is combined with an OT coupling for FM, the resulting transport paths are substantially shorter than
those originating from a standard Gaussian as shown in Figure[I]in the appendix. Further, the vector field
training converges much faster, see Figure [[4]in the appendix. This result underscores our central claim:
combining a data-dependent latent with a data-dependent coupling has the potential to significantly improve
model performance.

5.2 IMAGE DATASETS

Next, we analyze our method on standard image generation benchmarks. Our quantile is extremely lightweight
compared to the UNet architecture used for the flow model. We reuse the minibatch OT coupling for the
latent and freeze the quantile function after a 55k training epochs. This strategy introduces only minimal
computational overhead compared to the standard Gaussian baseline with minibatch OT coupling. On the
CIFARI0 dataset for example, we observe an overhead of approximately 3.2% in runtime during joint quantile
training, and about 1.2% after freezing the quantile parameters, measured on an NVIDIA GeForce RTX 4090.
In high-dimensional settings and given fixed batch sizes, the signal for the quantile function can be noisy,
potentially leading to degenerate solutions. To mitigate this, we add a regularization term to the loss that
penalizes the expected negative log-determinant of the Jacobian of the quantile. Since the quantile maps from
a uniform distribution U ~ U[0, 1], this term equals the negative differential entropy of the learned latent

H(Q(U)) = H(U) + Ellog| det Jo(U)|] = Ellog | det Jo (U)].

Access to analytic derivatives makes this efficient. For more details on the parametrization and its practicability
see[D.2]

MNIST. The MNIST dataset exhibits strong marginal struc- I
ture: pixels near the center are frequently active (non-zero), o= 160 Bscline
whereas pixels at the borders are almost always zero. Our
learned quantile function successfully captures these marginal
statistics. As illustrated in Figure 3] the latent distribution
learns to concentrate its mass in regions corresponding to active o

pixels. 50 M
In Figure @ in the appendix, we compare the learned and T P S S
empirical quantiles on the MNIST dataset at different pixel lo- Training Step (x10%)

cations (x, y). Where the pixel is essentially black, the learned ) .
quantile concentrates around that value, whereas in the center re- Figure 4: Ablatlon on U-Net capacity for
gions, where uncertainty is higher, the quantiles remain spread MNIST using channels 8,16, 32. .The FI.D
around zero (gray), accurately reflecting the data variability. In CUrves show that our method 'achleves sig-
Figure [4 we compare the performance under different network nificantly lower .FIDS when using 1‘3?5 chan-
capacity constraints by evaluating our learned latent against nels. See also Flgurelzlthe appendix.

a Gaussian latent. Both latents are trained using mini-batch

OT. We use the quantile loss weight A = 1 (Eq. and regularization parameter § = 0.1 (see Eq.[D.2).
As observed in Figure[3] the learned latent successfully minimizes the distance between noise and data by
removing redundant information while the independence assumption prevents the model from capturing
specific spatial correlations (e.g. the shape of a digit). This enables the network to use the available parameters
more efficiently and achieve better results with the same parameter count.

FID Score
—- = = N
5 o 3 28
L > b o

=
2!
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Figure 5: Left to Right: Generated samples, samples from the learned latent and mean and standard deviation
of the learned latent.

CIFAR-10. On the CIFAR-10 dataset, we evaluate our method in a setting characterized by strong spatial
and inter-channel correlations, where our product-measure approximations is inherently limited. We used a
similar setup as in [Tong et al.|(2024) and including the commonly used U-Net architecture from |[Nichol
& Dhariwal| (2021). We vary the regularization parameter 3 while keeping the quantile loss weight fixed at
A = 1. Figure|6|reports results for different values of 3 and compares them to a standard Gaussian baseline.
Our results indicate that for uncorrelated noise, there exists a trade-off between the entropy of the latent
distribution and its closeness to the data. For independent noise on a highly correlated dataset, improvements
remain marginal as expected since a product measure can only approximate the underlying data distribution
to a limited extent. For more detail on training stability and the effect of regularization see Figures[T9]20]in
the appendix.

Euler steps — 20 100
B-logdet | FID FID

0.2 7.81 4.75
0.3 748 4.53
0.5 7.66 4.49
0.8 777 4.42
1.0 8.35 4.66
Baseline 8.42 4.63

Baseline

Figure 6: CIFAR results for a selection of regularization parameters and for the baseline, for complete results
see Figure[T8] Our method reached the best validation FID after 320k steps, while the baseline took 340k.
We evaluated the FID using 5 seeds and report the mean. We used those checkpoints for the evaluation. The
visualized samples were generated using 100 Euler steps.

6 CONCLUSIONS

We provide a "quantile sandbox" for building generative models: a unifying theory and a practical toolkit
that turns noise selection into a data-driven design element. Our construction plugs seamlessly into standard
objectives including flow matching and consistency models, e.g. Inductive Moment Matching. Furthermore,
our experiments demonstrate that it is possible to learn a freely parametrized, data-dependent latent distribution
beyond the usual smooth transformations of Gaussians. Our work opens several promising directions for

10
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future research. Extensions include developing time-dependent quantile functions to optimize the entire
path distribution, not just the endpoint, as well as designing conditional quantile functions for tasks like
class-conditional or text-to-image generation.
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A EXAMPLES OF ONE-DIMENSIONAL FLOWS

We provide three interesting examples, namely the well-established diffusion flow, the recently proposed
Kac flow, and the Wasserstein gradient flow of the MMD functional with negative absolute distance kernel
towards a uniform measure. Paths of the processes are depicted in Figure[7]and their probability flows are
shown in Figures 8] O] and [I0}

In each case, the absolutely continuous curve p; starting in dg (e.g. conditional) and the corresponding
velocity field can be given analytically. Note that in the latter two cases, multi-dimensional generalizations of
the flows are not trivially given, which further underlines the strength of our 1D approach. Henceforth, if the
measures f; admit a density function, we will denote it by p;.

isations of the Uniform Process (1D)

tions of a Standard Wiener Process (1D)

tions of the Kac process (1D)

Figure 7: Three realisations of a standard Wiener process (left), the Kac process (middle), and the Uniform
process (right), simulated until time 7" = 1.

A.1 WIENER PROCESS AND DIFFUSION EQUATION

Figure 8: A generated trajectory from a Flow Matching model trained using the conditional density and
velocity given by the Wiener process. As described in Section [2.3]we define the mean reverting process and
use schedules f(t) = 1 —tand g(t) = t°.

First, consider the standard Wiener process (Brownian motion) (W;); starting in 0 whose probability density
flow p; is given by the solution of the diffusion equation

1 1 .
opr = V- (pe §V10gpt) =3 Apy,  te(0,1], lgfglpt = do, (14)
where the limit for ¢ | 0 is taken in the sense of distributions. The solution is analytically known to be

|z)2

p(x) = (2mt) "2 7

Thus, the latent distribution is just the Gaussian p; = N(0, ;). The velocity field in (T4) reads as

1 T
v (z) = —§V10gpt =9 (15)
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However, its Lo-norm fulfills Hvt||%2(R ) = 4 and is therefore not integrable over time, i.e. [|v¢]| 1, (% p,) ¢

L(0,1). In practice, instability issues caused by this explosion at times close to the target need to be avoided
by e.g. time truncations, see e.g. |Kim et al.|(2022). For a heuristic analysis also including drift-diffusion
flows, we refer to Pidstrigach|(2022). Note that in the case of diffusion, there is no significant distinction
between the uni- and multivariate setting.

A.2 KAC PROCESS AND DAMPED WAVE EQUATION

B L

Figure 9: A generated trajectory from a flow matching model trained using the conditional density and
velocity given by the Kac process with (a,c) = (9,3). As described in Section we define the mean
reverting process and use schedules f(t) = 1 —t and g(t) = t2.

The Kac process |[Kac| (1974)), also known as persistent random walk, originates from a discrete random walk,
which starts in 0 and moves with velocity parameter ¢ > 0 in one direction until it reverses its direction with
probability aA;, a > 0. A continuous-time analogue is given by the Kac process which is defined using the
homogeneous Poisson point process Ny with rate a, i.e. 1) Ny = 0; ii) the increments of N; are independent,
iii) Ny — N, ~ Poi(a(t — s)) forall 0 < s < t. Now the Kac process starting in 0 is given by

t
K, = B%c/ (—1)™ ds, (16)
0

where B 1 Ber(%) is a Bernoulli random Variabl taking the values 1. Note that in contrast to diffusion

processes, the Kac process K persistently maintains its linear motion between changes of directions (jumps
of ), see Figure[7]

By the following proposition, the Kac process is related to the damped wave equation, also known as
telegrapher’s equation, and its probability distribution admits a computable vector field such that the continuity
equation is fulfilled. For a proof we refer to|Duong et al.| (2025)).

Proposition 5. The probability distribution flow of (K:): admits a singular and absolutely continuous part
via
1 _, .
wi(x) = 3¢ "(do(z + ct) + do(z — ct)) + pe(x), (17

with the absolutely continuous part

pe(x) = %e‘“t (ﬁctw + ﬁfo(ﬁﬁ(ﬂﬁ))) Lt (), ri(x) = 2t? — a2,

where (3 == %, and Iy denotes the 0-th modified Bessel function of first kind. The distribution is the
generalized solution of the damped wave equation
Ouult, ) + 2a Oyult, ) = *Opou(t, z), (18)
u(0,x) = do(z), Ou(0,2) = 0.

“More precisely, B 1 is two-point distributed with values {—1, 1}.
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Further (u, vy) solves the continuity equation (O) where the velocity field is analytically given by

—m ey U T € (=),

T G
ve(x) = c if ©=ct,
—c if x=—ct,
arbitrary otherwise.

The Kac velocity field admits the boundedness ||v¢ ||, r,.,) < ¢, and hence, ||v¢| L, w ) € L2(0,1).

Interestingly, the damped wave equation (T8) is closely related to the diffusion equation via Kac’ insertion
method. It is based on the following theorem, whose proof based on semigroup theory can be found in |Griego
& Hersh| (1971)), see also Janssen| (1990); [Kac| (1974).

Theorem 6. For any initial function fo € H?(R®), d > 1, let w.(t, z) be the solution of the undamped wave
equation with velocity ¢ > 0 given by

Opw(t,r) = EAw(t,z), zeRe t>0,
w(0,z) = fo(x), Oyw(0,2) = 0.
Then, the functions defined by
h(t,z) :=E[wy (oW, )], resp. u(t,z) :=E[w.(c™' Sy, )]

solve the diffusion equation

2
Ah(t,z) = %Ah(t,x), z€RL >0,
h(0,z) = fo(x),

resp. the multi-dimensional damped wave equation

Opu(t, z) + 2a Ou(t, z) = Au(t,z), xR t>0,
u(0,x) = fo(x), Ou(0,2) = 0. (19)

As a consequence, it is not hard to show the following corollary, see|Duong et al.| (2025)).
Corollary 7. Foranyt > 0, the solution u™“(t, -) of the damped wave equation (19) converges to the solution
h(t,-) of the diffusion equation for a,c — oo with fixed 0 = %

In other words, diffusion can be seen as "an infinitely a-damped wave with infinite propagation speed c".
Note that the diffusion-related concept of particles traveling with infinite speed violates Einstein’s laws of
relativity and has therefore found resistance in the physics community (Cattaneo, (1958)); |(Chester| (1963));
Vernotte| (1958)); Tautz & Lerche| (2016).

We also like to stress that in multiple dimensions, the damped wave equation (I8) is no longer mass-conserving
as in 1D |Tautz & Lerche (2016), and hence eludes a characterization via stochastic processes. Figure |§| shows
the generation of samples from a weighted Gaussian Mixture Model (GMM) using Flow Matching and the
Kac process as our noising process. As described in Section[2.3| we define the mean reverting process and use
schedules f(t) = 1 —t and g(t) = t2.

A.3 UNIFORM PROCESS AND MMD GRADIENT FLOW

Wasserstein gradient flows are special absolutely continuous measure flows whose velocity fields are negative
Wasserstein (sub-)gradients of functionals F,, on Py (IR?) with the unique minimizer v. The gradient descent
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Figure 10: A generated trajectory from a flow matching model trained using the conditional density and
velocity given by the MMD gradient flow. As described in Section 23] we define the mean reverting process
and use schedules f(t) =1 —t and g(t) = t.

flow should reach this minimizer as ¢ — oco. In this context, the MMD functional with the non-smooth
negative distance kernel K (z,y) = —|z — y| given by

Fl1) = MMD(1.0) = =3 [ 2 =51 u(0) = v(2)) d (o) = v(0) . (20)

stands out for its flexible flow behavior between distributions of different support Hertrich et al.[(2024). In
1D, its Wasserstein gradient flow ji; can be equivalently described by the flow of its quantile functions Q),,,
with respect to an associated functional on L2 (0, 1). Note that the MMD functional (20) loses its convexity
(along generalized geodesics) in multiple dimensions Hertrich et al.|(2024), and the general existence of their
Wasserstein gradient flows is unclear in the multivariate case. This yields another reason to work in 1D, where
we have have the following proposition.

Proposition 8. The Wasserstein gradient flow i, of the MMD functional 20) starting in po = do towards the
uniform distribution v = U[—b, b] with fixed b > 0 reads as
pe = (1 —exp(—%)) U[-b,b],, t>0, 21

with corresponding velocity field
x
w(2) = e, € supp(uy). (22)
b(exp (3) — 1)

It holds ”UtHsz(R,m) = 2exp(—2L), and hence, ||v¢||1,r,u,) € L2(0,1). A corresponding (stochastic)

process (Uy)y is given by Uy .= b (1 — exp (—%)) U, where U ~ U[—1, 1], such that Law(U;) = fiz.

We prove the proposition more general for v = U[a, b] and a flow starting in zy € [a, ], i.e. we show
we =Ua+ (zo —a)exp (—r(t)),b— (b — zo) exp (—r(t))], t>0 (23)

with r(t) := ;2L and

vlz) =7 E a (expfrztf)o— 1) ' @9

To this end, we need the relation between measures in P»(R) and cumulative distribution functions, see (]E[)
For v = U]a, b], we have that

0, ifzr<a,
R, (z) =4 =2, ifa<az<b,
1, ife >0
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and Q,(s) = a(1 — s) + bs. In|Hertrich et al,| (2024) it was shown that the functional F,,: L2(0,1) — R

defined by )
Fo(u) ::/O ((1—23)(( +Qu(s /|u )dt) (25)

fulfills 7, (1) = F,(Q,) for all 1 € P2(R). Moreover, we have the following equivalent characterization of
Wasserstein gradient flows of F,,, which can be found in (Duong et al., 2024, Theorem 4.5).

Theorem 9. Let F,, and F, be defined by (20) and 23), respectively. Then the Cauchy problem
{atg(t) € —0F,(g(t)), te(0,00),
9(0) = Qo
has a unique strong solution g, and the associated curve ~v; ‘= (g(t))4M(0,1) is the unique Wasserstein

gradient flow of F,, with y(0+) = (Qu,)#M\(0,1). More precisely, there exists a velocity field v} such that
(¢, v7) satisfies the continuity equation ), and it holds the relations

UZ ° g(t) € _aFu(g(t)> and Uz € _a]:u<7t)- (26)
Lastly note that here, the subdifferential OF), () is explicitly given by the singleton

—0F,(u) = —-VF,(u) =2(-— R,ou) forallu € Ly(0,1),
see (Duong et al., [2024, Lemma 4.3).

Proof of Proposition[8) We want to apply Theorem [J]to (44, v;) in (23) and (24). The uniform distribution in
(23) has the quantile function

Qu,(s) = (1 —exp (—r(t)) ) (a +(b- a)s) + xgexp (—r(t)), s€(0,1).
Forallt > 0 and all s € (0,1), we have @, (s) € [a, b] since z( € [a, b], and thus
7VFV(QIH)(S) =2s — QTV(QM(S))
(1—exp(=r(t)))(a+ (b—a)s) +zoexp(—r(t)) —a

=25—2 T
—9 (s - ffbo__a“) exp (—r(t)).
On the other hand, it holds
— —9) (b — —
0:Qpu, (s) = —2% exp (—r(t)) — % exp (—r(t)) =2 (s — io—aa> exp (—r(t)).

By Theorem|§|, (14¢) is the unique Wasserstein gradient flow of F, starting in dg.

Furthermore, there exists a velocity field v} satisfying the continuity equation (@) and the relations (26)). For
s€(0,1)andt > 0,lety = gs(t) = a+ (xg —a)exp (—r(t)) + (b — a) (1 — exp (—r(t))) s. Then, we

have s = ¥ (ba a()az(i Z}(S?p(r(t)()t))) , and thus by (26),

) = 0 (Qu(e) =2 (5= P2 ) exp (=)

_o(y—a—(zo—a)exp(-r(t)) z0—a e
_2< (b—a) (1l —exp(—r(t))) b—a>ep( (1)

2 y—a— (g —a) exb (7
- (T oy ) oo o)

ﬂfa(expy(_()) )
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forally € gs(¢)(0,1) = [a + (z0 — a) exp(—r(t)),b — (b — zo) exp (—7r(t))]. Lastly, let us compute the
action. For ¢ > 0 we have

bi(bfx()) exp(7 ija )

HUtH%z(]R ) = / 4(x — $0)2 ; 1 "
QT e )

b—a

b—(b—zo) exp(f S )

4 2
- 2t 2 2t / o
= o) o )
4

— —XT ex — 2t
_xo)?)]b (b—o) exp(—724)

a+(zo—a) exp(— 2 )

a

and the proof is finished. U

Note that the fact that v; is uniquely determined on supp u; = ¢;(0, 1), correlates with the fact that the
gradient v} o g(t) = —VF,(g(¢)) is a singleton. Outside of supp (i, the velocity field may be arbitrarily
extended, which yields a velocity 0; € —0F, (u+) in a non-singleton subdifferential. The velocity v; may be
uniquely chosen from the tangent space T},, P>(R), or equivalently, by choosing it to have minimal norm, i.e.
v{ = 0 outside of supp piz.

A.4 SCALED LATENT DISTRIBUTIONS

Finally, we consider a simple class of processes obtained by a deterministic scaling of a latent random variable.
In particular, we will see that the above Wiener process and the Uniform process are of this form, while
the Kac process is not. Let Z be a random variable with law pz € P2(R), and let g: [0,1] — [0, 00) be
continuously differentiable with g(0) = 0 and g(1) = 1. We consider

Y i=yg(t) Z, t €[0,1],
with Y; ~ p;. Supposing that p; has density p;, we get

T
=g(t)™¢ -, t>0, d i = .
pi(x) = g(t) pZ(g(t)) an tlﬁ’)l/,j,t 0
Then straightforward computation yields that 1, together with the velocity field
g'(t)
ve(x) = x, X € supp(u

with the convention v;(0) = 0 and arbitrary outside supp(s), solves the continuity equation (9). Further, it

holds .

1
/ Hvt||2L2(RM) dt = E[|| Z|]?] / (g'(t))th < oo whenever g’ € L(0,1).
0 0
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Also note that if Z = Q(U) for a quantile function @ : (0,1) — R and a random variable U ~ U(][0, 1]), we
have

EMMFL:A\Qdew

i.e. the second moment of Z is exactly given by the L,-norm of its quantile. Hence, explosions of the
velocity’s norm f01 |lve H%Q(R p) At can be directly controlled by the derivative of the time schedule g, and the
size of the quantile function @ of the latent variable.

The Wiener process fits into this framework with g(t) = v/t and Z ~ N(0, 1), which recovers the exploding
vector field v (z) = %x in (T3)). Also the Uniform process appears as a special case of the scaling process.
In contrast, the Kac process does not belong to this class, as it is not generated by a deterministic scaling map

but by persistent velocity switching, cf. (I6).

B FLOW MATCHING AS SPECIAL MEAN REVERTING PROCESSES

B.1 THE GAUSSIAN CASE

Let us shortly verify that our componentwise approach using the mean-reverting process (@), i.e.
X; = f(t) Xo + Yg(t);

leads to the usual flow matching objective. where we choose the scheduling functions f(t) :== 1—t, g(t) := ¢,
the target random variable X ~ /10, and a standard Wiener process Y in R¢ (independent of X): First, it

holds Y2 ~ N(0,21,), hence Y2 < ¢ Z with Z ~ N(0, I,), so that

X, L (1-t)Xo+tZ.
Furthermore, by (T3) the 1D components of Y; admit the velocity field v}(z?) = 92”—;, z' € R, and by
Propositionthe multi-dimensional process Y admits the velocity field vy (¢,z) = (%, s %) = 5
(z',...,2%) € R? By the calculation (@), the conditional velocity field corresponding to X; starting in
xo € R? reads as

xr =

vx (t, @ | 2o0) = f(t)wo + §(t) vy (9(t), = — f(t)zo | 0)
=—xz9 + 2tvy (£, 2 — (1 —t)zo | 0)

x— (1 —1t)xo

—

Now, if z ~ Px, (- | o), i.e. x = (1 — t)xq + tz with z ~ N(0, ), then it follows

:—"L‘O +

1—t)xg+tz— (1 —1t)xg
ox(t,a | @) = —ag + LD EZ Q00 @
which is the usual constant-in-time conditional FM velocity along the straight-line trajectories between

xo ~ po and z ~ N(0, I).

B.2 THE UNIFORM CASE

Now consider any component of the mean-reverting process @) with f(t), g(t) to be chosen, X, being a
component of X ~ 49, and Y; given by the MMD gradient flow 1), i.e. Y; := b (1 — exp (—1)) U, where
U ~ U[—-1,1]. Let vy be the corresponding velocity field from (22). Then, we have
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vx (¢, z|xo) = f(t) xo + ¢g(t) Uy(g(t), |x — f(t)x0|)

i . z— f(t)x
= ft)zo + g(t) b(exp (g(t))o_1)

Now, along the trajectory « ~ Px, (- | o), i.e.

T = f(t)x0+b<1—exp (—gs:)>) u = oy To+ ot u, (28)

with u ~ U(—1, 1), the velocity calculates as

) o bgl—exp (—gg))l)u

vx(t,x | zg) = f(t)xo + ¢

= dt i) +O't u, (29)

where oy == f(t) and oy = b (1 — exp —%t))). Hence, in order to minimize the CFM loss, we only

need to sample ¢t ~ U[0,1], zo ~ Xo, and u ~ U(—1,1). Note the similarity between the MMD path
(28) and the FM/diffusion path (7); by choosing b = 1, f(¢) := 1 — t and g(t) := —log(1 — ¢) it follows
a(t) =1—t, o(t) = t, and we obtain in (29) the FM-velocity along the trajectory ([27), where the Gaussian
noise z ~ A (0, 1) is just replaced by a uniform noise v ~ U(—1,1).

C IMM WITH QUANTILE INTERPOLANTS

In this section, we want to demonstrate how the IMM framework proposed in [Zhou et al.| (2025) can be
realized by our quantile approach.

The general idea of consistency models is to predict the jumps from a process Z; to the target X, while
factoring in the consistency of the trajectory of Z, via Z,, 0 < s < t. In FM, this consistency of the flow is
usually neglected as only single points on the FM paths are sampled. Also, consistency models as one-step or
multistep samplers usually are in no need of velocity fields.

Note that in the following — for notational simplicity — we consider the one-dimensional case Xy, Z; € R
where we can employ quantile functions. By combining the 1D components into a multivariate model
Xo = (Xg, ., X&), Zy = (Z}, ..., Z1), the results of this chapter trivially extend to R<.

Recall our definition of the quantile process

Ly = f(t)XO + Qg(t)(U)a U~ Z/{(O, 1)7 te [Oa 1] (30)
and the quantile interpolants
Li(z,y) = f(s)z + Qqes) (Ryy (y — F(t)2)),  s,t €[0,1]. 31

Note that by the assumptions (3)) it holds Zy = X and Z; = Q1 (U).

By the following remark, our quantile interpolants generalize the interpolants used in Denoising Diffusion
Implicit Models (DDIM).
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Value

Figure 11: The CDF R,, and quantile function ), of a standard normal distribution .

Remark 10 (Relation to DDIM). The interpolants used in Denoising Diffusion Implicit Models (DDIMs)
Song et al.|(2020) are given by

DDIM, ,(z,y) == (ozs - ﬁat)m L (32)
Ot (o

Now let f(t) =1 —t, g(t) == t? and let Q; be the quantile of the law of a standard Brownian motion W;.

First we obtain
Qq()(P) = Qi2(p) = Qu(0,2)(p) = tV2erf ™' (2p = 1) = t Qu0,1)(P), P € (0,1),
with the error function erf. Hence, (30) exactly becomes (not only in distribution)
Zy=(1-t)Yo +tQn1)(U) = (1 -t)Yo +tZ,
where Z = Qu0,1)(U) ~ N(0,1), ie. the components of (T) with the choice oy = 1 —t, 0y = t.
Furthermore, since Ry2(z) = Rpr0,42)(2) = 3 (1 + exf ( f>) the quantile interpolant (12)) reads as

Ioi(z,y) = (1 — s)z + sv/2erf™ 1(erf( 1‘” )) :(1—s)x+§(y—(1—t)x)

= ((1=s) = (1= t)a+ v

w\m

which is exactly DDIM 4 (x,y) in B2) with oy = f(t) and o? = g(t). ©

Exactly as the DDIM interpolants, our quantile interpolants (31)) satisfy the following crucial interpolation
properties.

Proposition 11 (a.k.a Proposition . Forall x,y € Rand all s,r,t € [0, 1], it holds
I(),t(x, y) =, It,t($7 y) =Y, (33)

and

ISJ’(m7 IT,t(x7 y)) = s}t(l', y)'
Furthermore, inserting the quantile process (L) yields

I (Zo, Z4) = Zs. (34)

Proof. By assumptions it holds

Ioi(z,y) = f(0) + Qo) (Ryty(y — f(t)x)) =,
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and
It,t(xa y) = f(t)x + Qg(t) (Rg(t)(y - f(t)as)) =Y.
Furthermore, it holds the interpolation/consistency property

Lo (2, Int(2,9)) = f(8)2 + Qys) (Ry(ry (Irt(2,y) — f(r)2))
= ()2 + Queo) (Bar) (LT + Qo (Ryy (v = F(0)2)) = £r77))
= f(s)r 4+ Qqs) (Rg(ry (y — f(1)))
= L4(z,y)
for all z, y € R. Also note that inserting the random variables Z,, Z; yields
I +(Zo, Zy) = f(8)Zo + Qgs)(Ry) (Ze — f(t)Z0))
= f(8)Z0 + Qg(s)(U)
= Zs.
This finishes the proof. O

Proposition[TT]represents the key observation which allows us to utilize our quantile process (30) in the IMM
framework the same way as[Zhou et al.|(2025) employ the DDIM interpolants (32)):

For this, let us now recall the basic idea of inductive moment matching and the corresponding loss functions.
Let us distinguish between real numbers written in small letters (xg, u, z; € R) and random variables written
with capital letters (X, U, Z, . . .). We assume that the probability distributions have densities:

Law(Xo) | Law(Z;) | Law(Zs|Xo = w0, Zs = 2) | Law(Z|Xo = ®0, U = u) | Law(Xo|Z; = 2)
po(xo) | pe(z) | psjo,e(zslzo, zc) | pejo,1(zi]@o, w) | poje(wolzt)

Note that by (34) we have pyo (25|20, 2¢:) = Law (I (20, 2¢))(2s) = 0(2s — Is,1(0, 2¢)), hence sampling
from pg|o,¢(2s|To, 2¢) is just applying I, ¢(xo, 2¢). Similarly, sampling from py|q 1 (2¢|x0, u) is just evaluating

Ii 1 (20, Q1(uw)).

The following proposition follows directly from Proposition [IT] as in[Zhou et al.| (2025). It is essential for
deriving the appropriate loss functions.

Proposition 12. For all 0 < s < r <t < 1, the quantile interpolant (31)) is self-consistent, i.e.
paoa(eleosa) = [ puos(ealoo, o) pioaenlon, ) dar
R
and the quantile process is marginal preserving, i.e.
ps(zs) = Eztwpt,xowpm,,(ﬁzt) [Ps|0,t(2s|$oaztﬂ .

Learning. The conditional probability po:(-|2;) is now approximated by a network p?, . where the
parameter s describes the dependence on p, such that

Ps = Ezt“‘Pt@O”"pg,t,zt [ps\O,t('|x07 Zt)] = p9(37 t) (35)
Then it is proposed in (Zhou et al.| 2025, Eq. (7)) to minimize the so-called naive objective

ﬁnaivc (0) = Es,t [D(psvpo(sv t)] 5 (36)

with an appropriate metric D, e.g. MMD. The procedure is now as follows: starting in a sample x( from X,
we can sample zg, z; from Z,, Z; by (30), respectively; then given z; we sample %o from pZ,t,zw and finally
we can evaluate Z, = I(Zg, z¢) from (34), which is then compared with z,.
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Inference. The following iterative multi-step sampling can be applied: for chosen decreasing ¢, € (0, 1],
k=0,...,T with to = 1, starting with z{") ~ p{ 1.2, we compute

_ (k—1) (k) 0 _
2ty = Itk,tk,1 (Jfo sRtk_1 )y Lo NpO,thtk’ k= 1,...7T.

Although for marginal-preserving interpolants, a minimizer of L,,ive exists with minimum 0, the authors of
Zhou et al| (2023)) object that directly optimizing (36)) faces practical difficulties when ¢ is far away from s.
Instead, they propose to apply the following “inductive bootstrapping” technique:

Bootstrapping. Instead of minimizing (36), we consider the general objective
Legeneral(0) == Eg 4 [w(s,t)MMD%((pe”*l(s,r),pe"(s,t))] , 37
with a weighting function w(s, t) to be chosen. The kernel K of the squared MMD distance can be chosen as

e.g. the (time-dependent) Laplace kernel. Importantly, the value r is chosen to be a function r = r 4 € [s, 1]
being "close to ¢" and fulfilling a suitable monotonicity property.

Let us assume the simplest case 7, ; := max{s, ¢ — ¢} with a small fixed ¢ > 0 and hereby demonstrate the
bootstrapping technique: Fix s € [0, 1]. Then, it holds for all ¢ € [s, s + €] that r5 ; = s. By the definition

(33) and property (33), it holds (independently of ) that p?(s, s)(25) = ps(zs). Hence, minimizing (37) in
the first step n = 1 yields
0 = MMDZ% (p% (s, 5), p’ (s,t1)) = MMD% (ps, p” (s,t1)) forall t; € [s,s + ¢€].

In the second step n = 2, it holds for all t5 € [s, s + 2¢] that r, 4, € [s, s + ¢]. Hence, minimizing (37) in the
second step yields, together with the first step,

0 = MMD% (p” (s, 75.1,), p?(5,t2)) = MMD% (ps, p? (s, t2)) forall ty € [s, s + 2¢].

Thus, for the number of steps 7 — oo, it holds 0 = MMD?% (p,, p’" (s,t,)) even for the entire interval
tn € [s,1]. Hence, minimizing the general objective (37) with a large number of steps eventually minimizes
the naive objective (36), see (Zhou et al.l2025| Theorem 1) for more details.

D ADAPTING NOISE TO DATA

D.1 COUNTEREXAMPLE: MARGINAL PRODUCT

For the measure
f=3001)+ 56(-1,-1) € P2(R?),  frmarg = (%571 + %51) ® (%5,1 + %51),
one has W3 (i, fimarg) = 2, whereas for
Va = (300 +300) ® (30-a + 504)

it holds W3 (i1, va) = 2(1 — a + o?) = 1.5 for @ = 0.5. Thus the W,—closest independent latent may
contract or expand the marginals to partially account for correlations it cannot represent.
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D.2 DETAILS ON THE ARCHITECTURE OF THE LEARNED QUANTILES

We implement each one—dimensional quantile function with rational-quadratic splines (RQS)
Delbourgo (1982); Durkan et al.{(2019). We explored several ways to map u € (0, 1) into the spline input;
the two variants below consistently performed well and are used in our experiments. For every coordinate 7,
we write

where Sé : R— R is a strictly increasing RQS with an interior knot interval (— B, B) (with K bins) and
linear tails outside + B that are C''-matched at the boundaries. The two settings differ only in the "activation"
P

(A) Logit: 9 (u) = logit(u), (B) Affine: ¢(u) = ap(u) = B(2u —1).

Thus, both (A) and (B) share exactly the same spline Sé architecture—including the bounded interior

(—B, B) and slope-matched linear tails—and differ only in how (0, 1) is mapped into the spline’s input. In
(A), ¢(u) € R and the linear tails of S} are used whenever |logit(u)| > B;in (B), ¢(u) € (=B, B) so the
forward pass never touches the tails (they remain important for invertibility and out-of-range evaluation).

Parameterization and constraints. Each spline S}; is parameterized by raw bin widths, heights, and knot
slopes. We pass these raw parameters through softplus, normalize widths and heights to sum to one (scaled
to the domain span 2B and the learned range span, respectively), and add a small constant s,;, > 0 to each
slope to enforce a positive lower bound. The linear tail slopes (left/right) are learned in the same way and are
chosen so that both function value and slope agree at + 3. These constraints guarantee strict monotonicity,
hence Q% is strictly increasing on (0, 1) under both (A) and (B). Closed-form formulas for the spline pieces
and their (log-)derivatives are available; by the chain rule,

d i Qi / . / o ﬁ for (A)7
%Q(b(u) =5 (w(u)) P'(w), with ' (u) = {QB for (B).

Per-component affine wrapper (scale/bias). After computing Qfﬁ(u), we add a tiny affine head per
coordinate:

Q;(u) = s Q;(u) + b, s; = softplus(log ozi), b; = B,
where a;; > 0 and 3; € R are learned per component. Using softplus(log «;) keeps s; > 0 with a convenient

dynamic range; this preserves monotonicity and adds only one scale and one bias parameter per component.

Regularization via Expected Negative Log—Jacobian Let Q) : (0, 1)¢ —R? be the componentwise map
with affine heads, Q4 (u) = (Qé(ul), e Qi(ud)). Since the construction is per—coordinate, the Jacobian

is diagonal with entries 8quﬁ(u1) > (. We regularize with the expected negative log—determinant of the
Jacobian:

Lreg(®) = Areg IEUNPU[* logdet Jq,, (u)]

= Areg EuNPU{— i log(aui be(ul))} .

i=1

Here pyy = Unif (((), 1)d). In practice, we evaluate the log—derivatives in closed form.
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Computational efficiency and scalability. The quantile architecture is highly efficient in both computation
and memory. Each component i requires only O(K) parameters for the RQS (where K is the number of bins)
plus two affine parameters, totaling roughly 4 K" + 2 parameters per dimension for typical implementations.
For a d-dimensional problem, this yields O(d - K) total parameters—negligible compared to modern UNet
architectures which often contain millions of parameters. Forward evaluation of Q4 (w) involves d independent
spline evaluations operating in parallel. The diagonal Jacobian structure means that both the determinant and
its gradient reduce to d independent scalar derivatives with analytical closed-form expressions which are fully
parallelizable, avoiding expensive automatic differentiation of matrix operations.

In practice, as noted in Section 5] the computational overhead (on CIFAR10) during joint training is approxi-
mately 3.2% and drops to 1.2% after freezing the quantile. Furthermore we only used 300k parameters for the
quantile in contrast to 35M for the U-Net, making the approach highly scalable to high-dimensional problems.
The strict monotonicity constraints and bounded parameterization (via softplus and normalization) ensure
numerical stability throughout training, and we observed no instabilities across our experiments spanning
dimensions from d = 2 to d = 3072 (CIFAR-10).

D.3 Toy TARGET DISTRIBUTIONS

Figure 12: A generated sample path from the learned quantile latent to the checkerboard. The adapted latent
(left) is already close to the target distribution.

We use three standard challenging low-dimensional distributions: Neal’s funnel, a 3 x 3 Gaussian mixture,
and a checkerboard.

Funnel. For the toy illustration in Figure 2} we work with the dataset known as Neals Funnel (2003).
The distribution of Neal’s funnel is defined as follows:

p(a1,x2) = N(x1;0,3) Mx2; 0, exp(a1/2)).
Grid Gaussian Mixture. We give more details about the mixture of Gaussian we consider in our experiment.
It is designed in a grid pattern in [—1, 1]2, as follows:

9

Zwi : N(Mh 02]2) ’

i=1

where (w;)]_; = (0.01, 0.1, 0.3, 0.2, 0.02, 0.15, 0.02, 0.15, 0.05), u; = (p11, p12) With 1y = (i mod 3) —
Lpe = %] — 1, and o = 0.025.

Checkerboard. Fix ¢ < h and domain 2 = [¢, h]?. Define the support

S={(z,y) €Q: |[x] + [y] iseven}.
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The checkerboard distribution is uniform on S and zero elsewhere:

1

T OR z,Y) € Sv
Pchecker (T, y) = { area(S) (@,9)
0, otherwise.

For integer ¢, h with even side length (e.g. { = —4, h = 4), exactly half of (2 is active, hence

2
PChecker (T, Y) = h—0p 1s(z,y).

D.4 LoSS IMPLEMENTATION

For training, the minibatch OT is computed empirically as follows: draw a minibatch {xéi)}le ~ o and
{u@} B ~u([0,1]%), set y9) = Qy(ul?)), and define the empirical measures

B B
1 B _ 1
=% E MOR Vg = F E 0y -

j=1
The minibatch quantile alignment objective is
Lan(9) = W3 (g, 75),

and gradients backpropagate through y /) = Q4(u\)). Let T : {1,..., B} — {1, ..., B} denote the optimal
assignment that minimizes ZB 1 ||x(i) yT@)||2, and define its inverse P(j) = i such that T'(7) = j. We
use the conditional flow path x(J) (1- tj)xép(j)) +t y@),j=1,...,B, with t; ~U(0,1). The target
velocity is y(/) — OP( )), we apply a stop-gradient operator sg(-) to this target in the flow matching loss.
This prevents gradients from the velocity model from flowing back through the quantile function in this term,

ensuring that Qg is updated primarily through L AN, While vy learns to match the transport directions defined
by the current quantile map. Note however the stop gradient operation only slightly stabilizes training, we
can train with full gradients as well. We optimize the empirical version

~

Lcrm(8,¢) = BZ |va ( X(]) t;) —sg (y¥ *Xép(j)))H;, L(0,¢) = Lcem(0, 0) + A Lan(9).
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D.5 ALGORITHM

Algorithm 1 Joint learning of 1D quantiles and FM velocity

Require: Dataset D, batch size B, weight A, iterations K
Require: Quantile model Q, velocity model vg
1. for k =1to K do
2 Sample {xi}2, ~ D, {wy Ly ~U((0,1)%), {1}y ~ U0, 1)
Cij + lxi — Qu(uy)|l3
T <+ arg miny Zil Ci i)
Define P by P(j) = i such that 7'(i) = j
Xj < Xp(j)
zj (1= 1;)%; + 15 Qp(uy)
%arget,j < Sgéng(uj) - Xj)
Lan % Zj:l 1% — Qg ()3
10: Lerm < 5 1 [v0(25,t5) = Vearger 113
11: L < Lcpm + A LaN R
12: Update (6, ¢) by a gradient step on £
13: end for
14: return (6, ¢)

N T AR

E IMPLEMENTATION DETAILS

We support baseline flow matching, optional quantile pretraining, and joint quantile+velocity optimisation.
Pretraining fits the RQS transport before optionally freezing it; joint training updates both modules simulta-
neously. Once the quantile learning rate decays to zero we freeze its weights and continue optimising the
velocity field only.

The coupling plans are calculated using the Python Optimal Transport package Flamary et al.|(2021). For
inference simulate the corresponding ODEs using the torchdiffeq|Chen| (2018) package. For all models we
only used the batch size 128 and learning rate 2e — 4 for the velocities. We use Adam |[Kingma & Ba|(2015)
as the optimizer. The quantiles are parameterised by rational-quadratic splines as described in[D.2] we set
the minimum bin width and height to 1e — 3 and the minimum slope to 1le — 5. We could in principle stack
mutiple RQS layers, however for all of our experiments we use one layer.

E.1 SYNTHETIC EXAMPLES

All models include a sinusoidal time embedding and SiLU activation functions. In these low dimensional
settings we need no regularization and used A = 50.

Funnel. For all models we used 3 hidden layers with width 64. We used a batch size of 128, a learning
rate of 2e — 4 and exponential moving average on the network weights of 0.999. The baselines were trained
for 200,000 iterations. Since there is a very high variance when sampling from the funnel, we pretrain our
quantiles and use the frozen quantiles during flow matching. We trained our quantile for 50,000 steps and to
compensate we trained our velocity for only 100,000 steps. For the RQS we chose logit activation, 32 bins
and a bound of 500.
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Grid Gaussian Mixture and Checker. The quantiles were trained for the first 20,000 steps, after which the
learning rate was linearly decayed to 0 by step 25,000. For both datasets, we trained the velocity model with
3 layers and a hidden width of 256 for 100,000 steps. Furthermore we used sinusoidal positional embeddings
for the checkerboard. We found both bounded and logit activation performed well, for the RQS we chose 32
bins with a bound of 50.

E.2 IMAGE EXPERIMENTS

For both image datasets, we adapt the U-Net from [Nichol & Dhariwal| (2021)) to parametrize our velocity
field.

MNIST. For the MNIST dataset we use the U-Net with channel multipliers (1, 2, 4), two residual blocks per
resolution, attention at 7 x 7, and 1 attention head. We clip the gradient norm to 1 and use exponential moving
averaging with a decay of 0.99. We test three configurations with base widths of 8, 16, and 32 channels. For
these ablation runs, we use quantile loss weight A = 1.0, regularization parameter § = 0.1, and rational
quadratic spline with 16 bins and bound 3.0. The quantiles were trained for the first 20,000 steps, after which
the learning rate was linearly decayed to 0 over the next 10,000 steps. The images in Figure 5] were generated
using our 32 channel configuration.

CIFAR. We use exactly the same U-Net setup from Tong et al.[|(2024). We clip the gradient norm to 1
and use exponential moving averaging with a decay of 0.9999. To evaluate our results, we use the Fréchet
inception distance (FID)[Heusel et al.| (2017). The quantiles were trained for the first 20,000 steps, after which
the learning rate was linearly decayed to 0 by step 25,000. We used A = 1 and varied (5. For the RQS we
used logit activation, 32 bins and a bound of 25.

CIFAR-10 inputs are normalized to [—1, 1] with random horizontal flips.

F FURTHER EXPERIMENTAL RESULTS

F.1 SYNTHETIC DATASETS
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Figure 13: Samples (1M) from our learned latent of the funnel distribution. Color shows endpoint norm.

29



1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

015 015
010 010

-l s IO
0.00 0.00 —

T

plx) x PO

Figure 14: Flow Matching with optimal coupling using Gaussian noise (left) and our learned noise (right)
after 20Kk training steps with identical parameters. Generated samples are shown in blue, and ground-truth
samples in red

Figure 15: Visualization of the effect of the loss weight A, on the left the learned latents for the checkerboard
and the gaussian mixture example using A = 50. On the right the learned latents using A = 0. Without the
additional loss the model tries to make predicting the velocity as simple as possible, this does not align with
our objective.
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Figure 16: Comparison of the empirical and learned probability density functions and their quantile functions
at different pixel locations (y, «), averaged over images from the MNIST dataset. The blue area illustrates the
difference between the quantiles, corresponding to the one-dimensional Wasserstein distance; see Eq. @
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Figure 17: Ablation study over capacity of the U-Net for sampling from the MNIST dataset. The FID curves
show that our method achieves significantly lower FIDs for lower capacities. Note the difference in parameters
is approximately 40k.
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Figure 18: Complete FID scores on CIFAR-10 for all 5 values. Our method reached the best validation FID
after 320k steps, while the baseline took 340k. We used those checkpoints for the evaluation. We evaluated
the FID using 5 seeds and report the mean as well as the standard deviation. Red denotes 20 step FID, blue
100 step FID, dotted line refers to baseline.
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(f) Final performance metrics at 55k training steps as a function of regular-
ization parameter /3.
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(b) Wasserstein distance evolution during training for different regularization
parameters /3.
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(c) Regularization loss —E[log | det Jg|] showing the regularization loss
across different 3 values.

Figure 19: Ablation studies for regularization parameter 3 and model capacity.

34



Under review as a conference paper at ICLR 2026

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614 10
1615 0
1616 (') 10(')00 20(')00 30(')00 40(')00 50(')00 60(')00
1617 Training Step

1618
1619
1620
1621
1622
1623
1624 31
1625
1626
1627
1628 o
1629

1630

1631 (') 50(')00 100'000 150'000 200'000 250'000 300'000 350'000 400'000
1632 Training Step

1633
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Figure 20: Ablation studies showing the effect of regularization and model capacity on training dynamics and
final performance.
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