

ADAPTING NOISE TO DATA: GENERATIVE FLOWS FROM LEARNED 1D PROCESSES

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce a general framework for learning data-adaptive latent distributions (noise) in generative models based on 1D quantile functions through minimizing a statistical discrepancy between noise and data samples. Our quantile-based parameterization naturally adapts to heavy-tailed or compactly supported target distributions while shortening transport paths by capturing marginal structure. This construction, originally motivated by the study of 1D processes beyond the usual diffusion, integrates seamlessly with standard training objectives, including flow matching and consistency models. Numerical experiments highlight both the flexibility and the effectiveness of our approach, achieved with minimal computational overhead.

1 INTRODUCTION

Flow-based generative models, especially score-based diffusion Sohl-Dickstein et al. (2015); Song & Ermon (2019), flow matching (FM) Albergo et al. (2023); Lipman et al. (2023); Liu (2022) and one-step generative models (consistency models) Song et al. (2023); Boffi et al. (2025) like the recently introduced inductive moment matching (IMM) Zhou et al. (2025), achieve state-of-the-art results in many applications. All these methods construct a probability flow from a simple latent distribution (noise) to a complex target (data) with a neural network trained to approximate this flow from limited target samples. In diffusion models, the *score function* directs a reverse-time SDE, while in FM, the *velocity field* is learned to compute trajectories via a flow ODE. Finally, consistency models like IMM learn to predict the jumps from noise to the data while factoring in the consistency of the flow trajectories. Usually, a Gaussian is used as latent distribution which causes difficulties when learning certain multimodal and heavy-tailed targets, see Hagemann & Neumayer (2021); Salmona et al. (2022). A recent work of Ghane et al. (2025) has shown that diffusion models with Gaussian noise satisfy a concentration of measure property. Moreover, by Tam & Dunson (2025), GANs, VAEs and diffusion models with Gaussian or log-concave latent variables can only generate light-tailed samples and are not universal generators. See Figure 2 for a heavy-tailed example, where Gaussian noise fails. There exist only few approaches to learn the noising process, Bartosh et al. (2025) fit the forward diffusion process via a learned invertible map that is trained end-to-end, Kapusniak et al. (2024) use metric flow matching, i.e., a neural network to adapt the path to a underlying Riemannian metric. In a related approach Sahoo et al.

Figure 1: FM via optimal coupling with Gaussian noise (top) and our learned noise (bottom). Latent samples are shown in black, generated in red, and transportation paths in green. Starting from the learned latent drastically shortens the paths.

(2024) learns a input-conditioned componentwise Gaussian noise schedule. In the setting of sampling from unnormalized target densities, Blessing et al. (2025a) learn the latent noise by optimizing the mean and covariance of a Gaussian prior, while Blessing et al. (2025b) learn a Gaussian mixture prior, both are trained end to end. From a complementary perspective, Wiese et al. (2019) propose separating marginal modeling from dependence structure using copula and marginal flows, recognizing that standard architectures struggle with tail asymptotics, a motivation conceptually aligned with our componentwise quantile approach. On the other hand Pandey et al. (2024); Zhang et al. (2024) design heavy-tailed diffusions using Student- t latent distributions, and Shariatian et al. (2025b) extend the framework to the family of α -stable distributions.

In this paper, we present a new approach to adapt the latent distribution to the data by *learning* from its samples. The basic idea comes from the fact that all the above methods implicitly emerge as *componentwise* models. For example, denoting the target random variable by \mathbf{X}_0 and the latent by $\mathbf{X}_1 \sim \mathcal{N}(0, I_d)$, FM utilizes the process $\mathbf{X}_t = (X_t^1, \dots, X_t^d)$ with the components $X_t^i = (1-t)X_0^i + tX_1^i$ employing *one-dimensional* Gaussians $X_1^i \sim \mathcal{N}(0, 1)$. This motivated us to generally construct generative models from *1D processes and their quantile functions*.

Given any appropriate 1D process we demonstrate how to learn the componentwise neural flow by the associated conditional velocity field. We give examples besides diffusion demonstrating the flexibility of our machinery, namely the Kac process arising from the 1D damped wave equation, [see Duong et al. \(2025\)](#); [Han et al. \(2025\)](#), and a process reflecting the Wasserstein gradient flow of the maximum mean discrepancy with negative distance kernel [towards the uniform distribution](#). In contrast to diffusion, assuming a compactly supported target, these processes also have a compact support, leading to a better regularity of the corresponding velocity field. This inspired us to further adapt the process to the data and to *learn* the 1D noising process rather than choosing it manually. To this end, we exploit that 1D probability measures can be equivalently described by their quantile functions $Q^i : (0, 1) \rightarrow \mathbb{R}$ which are monotone functions, and consider quantile processes $X_t^i = (1-t)X_0^i + tQ^i(U^i)$, $i = 1, \dots, d$ with i.i.d. $U^i \sim \mathcal{U}[0, 1]$ for $t \in [0, 1]$. We learn the individual quantile functions Q_ϕ^i , $i = 1, \dots, d$ such that their componentwise concatenation $\mathbf{Q}_\phi(\mathbf{U}) := (Q_\phi^i(U^i))_{i=1}^d$ is “*close*” to the data. This inspired us to minimize

$$W_2^2(\mu_0, \text{Law}(\mathbf{Q}_\phi(\mathbf{U}))), \quad \mu_0 = \text{Law}(\mathbf{X}_0).$$

with the Wasserstein distance W_2 . We combine the learning of the latent $\mathbf{Q}_\phi(\mathbf{U})$ with the learning of the velocity field via optimal coupling FM. This allows us to effectively exploit the learned noise and drastically shorten the transport paths, as illustrated in Figure 1. The simplicity of quantile functions give us a flexible tool, which enables us to simultaneously learn the noising process and apply the FM framework. Our quantile perspective can further be extended to fit into consistency models.

Contributions.

1. We introduce a general construction method for generative neural flows by decomposing multi-dimensional flows into one-dimensional components. Ultimately, this allows us to work with *one-dimensional* noising processes in the FM framework.
2. Besides the usual Wiener process, we highlight two interesting noising processes: the physics-inspired 1D Kac process and the 1D MMD gradient flow with negative distance kernel [leading to compactly supported noise and a better regularity of the FM velocity field](#).
3. The above hand-crafted processes motivate our *main contribution*: we propose to *learn the 1D noise distributions* themselves within the FM framework in a data adapted way, by parameterizing them through quantile functions and minimizing a statistical discrepancy. As a side result, our framework can also be incorporated into consistency models via so-called quantile interpolants.
4. Numerical experiments demonstrate that our method efficiently handles diverse marginal structures including heavy-tailed, compact, and multi-modal distributions. Learned quantiles shorten transport paths by capturing per-coordinate structure while delegating cross-dimensional dependencies to the velocity field.

094 **2 FLOW MATCHING AND STOCHASTIC PROCESSES**

095
096 We first review absolutely continuous curves in Wasserstein spaces as basis of the subsequent FM method.
097 Then we highlight quite general stochastic processes $(\mathbf{X}_t)_t$ “interpolating” between our target \mathbf{X}_0 and a
098 noising process $(\mathbf{Y}_t)_t$ that starts in $\mathbf{Y}_0 = 0$ and ends in \mathbf{Y}_1 (our latent noise).

100 **2.1 ABSOLUTELY CONTINUOUS CURVES IN WASSERSTEIN SPACE**

101 We start with a brief introduction of curves in Wasserstein spaces and basic ideas on flow matching. For more
102 details we refer to Ambrosio et al. (2008) and Wald & Steidl (2025). Let $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ denote the complete
103 metric space of probability measures with finite second moments equipped with the Wasserstein distance

$$105 \quad W_2^2(\mu, \nu) := \min_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|^2 d\pi(x, y)$$

108 Here $\Pi(\mu, \nu)$ denotes the set of all probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ having marginals μ and ν . The push-
109 forward measure of $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ by a measurable map $\mathcal{T} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined by $\mathcal{T}_\# \mu := \mu \circ \mathcal{T}^{-1}$. Let I be
110 an interval in \mathbb{R} , in this paper mainly $I = [0, 1]$. A narrowly continuous curve $\mu_t : I \rightarrow \mathcal{P}_2(\mathbb{R}^d)$ is absolutely
111 continuous, iff there exists a Borel measurable vector field $v : I \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ with $\|v_t\|_{L_2(\mathbb{R}^d, \mu_t)} \in L_2(I)$
112 such that (μ_t, v_t) satisfies the continuity equation

$$113 \quad \partial_t \mu_t + \nabla_x \cdot (\mu_t v_t) = 0 \quad (1)$$

115 in the sense of distributions. If in addition $\int_I \sup_{x \in B} \|v_t(x)\| + \text{Lip}(v_t, B) dt < \infty$ for all compact $B \subset \mathbb{R}^d$,
116 then the ODE

$$117 \quad \partial_t \varphi(t, x) = v_t(\varphi(t, x)), \quad \varphi(0, x) = x, \quad (2)$$

119 has a solution $\varphi : I \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $\mu_t = \varphi(t, \cdot)_\# \mu_0$.

120 Starting in the target distribution μ_0 and ending in a simple latent distribution μ_1 , as usual in diffusion models,
121 we can reverse the flow from the latent to the target distribution using just the opposite velocity field $-v_{1-t}$
122 in the ODE (2). Thus, if somebody provides us with the velocity field v_t , we can sample from a target
123 distribution by starting in a sample from the latent one and then applying our favorite ODE solver.

125 **2.2 FLOW MATCHING**

127 If we do not have a velocity field donor, we can try to approximate (learn) the velocity field by a neural
128 network v_t^θ . Clearly, a desirable loss function would be

$$129 \quad \mathcal{L}(\theta) := \mathbb{E}_{t \sim \mathcal{U}(0, 1), x \sim \mu_t} \left[\|v_t^\theta(x) - v_t(x)\|^2 \right].$$

132 Unfortunately this loss function is not helpful, since we do not know the exact velocity field v_t nor can sample
133 from μ_t in the empirical expectation. However, employing the law of total probabilities, as done, e.g. in
134 Lipman et al. (2023), we see that $\mathcal{L}(\theta) = \mathcal{L}_{\text{CFM}}(\theta) + \text{const}$ with a constant not depending on θ and the
135 conditional flow matching (CFM) loss

$$136 \quad \mathcal{L}_{\text{CFM}}(\theta) := \mathbb{E}_{x_0 \sim \mu_0, t \sim \mathcal{U}(0, 1), x \sim \mu_t(\cdot|x_0)} \left[\|v_t^\theta(x) - v_t(x|x_0)\|^2 \right]. \quad (3)$$

138 The key difference is the use of the *conditional flow* $v_t(x|x_0)$ with respect to a fixed sample x_0 from our
139 target distribution. To summarize, all you need is a *conditional* flow model with accessible velocity field
140 $v_t(x|x_0)$ (at least along the flows trajectory), where you can easily sample from. Then you can indeed learn

141 the velocity field v_t of the general (non-conditional) flow and finally sample from the target by the reverse
 142 ODE (2).

143 2.3 STOCHASTIC PROCESSES AND VELOCITY FIELDS

144 Consider a **continuously differentiable** (noising) process $(\mathbf{Y}_t)_t$ with $\mathbf{Y}_0 \equiv 0 \in \mathbb{R}^d$ with associated velocity
 145 field $v_t = v_t^{\mathbf{Y}}(\cdot | 0)$ such that the pair $(\mu_t^{\mathbf{Y}}, v_t^{\mathbf{Y}})$ satisfy the continuity equation (1), where $\mu_t^{\mathbf{Y}}$ is the law of
 146 $(\mathbf{Y}_t)_t$ ¹. To construct a generative model we need to create a process $(\mathbf{X}_t)_t$ which can start in any sample
 147 x_0 from the target measure μ_0 . Let $\mathbf{X}_0 \sim \mu_0$. Following the lines in Duong et al. (2025), we define the
 148 *mean-reverting* process by
 149

$$150 \quad \mathbf{X}_t := f(t) \mathbf{X}_0 + \mathbf{Y}_{g(t)}, \quad t \in [0, 1], \quad (4)$$

151 with smooth *scheduling functions* f, g fulfilling

$$152 \quad f(0) = 1, \quad f(1) = 0 \quad \text{and} \quad g(0) = 0, \quad g(1) = 1. \quad (5)$$

153 Then we have $\mathbf{X}_1 = \mathbf{Y}_1$, and by abuse of notation, the process \mathbf{X}_t starts in $\mathbf{X}_0 = \mathbf{X}_0$. Differentiation of (4)
 154 results in

$$155 \quad \dot{\mathbf{X}}_t = \dot{f}(t) \mathbf{X}_0 + \dot{g}(t) \dot{\mathbf{Y}}_{g(t)}.$$

156 The conditional velocity field of \mathbf{X}_t is given by (see Wald & Steidl (2025); Liu (2022))

$$157 \quad \begin{aligned} v_t^{\mathbf{X}}(x | x_0) &= \mathbb{E}[\dot{\mathbf{X}}_t | \mathbf{X}_t = x, \mathbf{X}_0 = x_0] \\ 158 &= \mathbb{E}[\dot{f}(t) x_0 + \dot{g}(t) \dot{\mathbf{Y}}_{g(t)} \mid \mathbf{Y}_{g(t)} = x - f(t)x_0] \\ 159 &= \dot{f}(t) x_0 + \dot{g}(t) v_{g(t)}^{\mathbf{Y}}(x - f(t)x_0 | 0). \end{aligned} \quad (6)$$

160 Now, the conditional flow matching loss (3) can be minimized regarding $\mathbf{X}_0 \sim \mu_0$ and $\mathbf{X}_t \sim \mu_t$. Note that
 161 given a sample $x \sim (\mathbf{X}_t \mid \mathbf{X}_0 = x_0)$, we have $v_t^{\mathbf{X}}(x | x_0) = \dot{f}(t) x_0 + \dot{g}(t) v_{g(t)}^{\mathbf{Y}}(\mathbf{Y}_{g(t)} | 0)$. In general, $v^{\mathbf{Y}}$
 162 might not be tractable, and only given as an conditional expectation of the time derivative $\dot{\mathbf{Y}}$. Yet, through
 163 our componentwise construction below, we will obtain easier access to it via its 1D components.

164 **Remark 1** (Relation to FM and diffusion). Consider the stochastic process

$$165 \quad \mathbf{X}_t^{\text{FM}} = \alpha_t \mathbf{X}_0 + \sigma_t \mathbf{X}_1, \quad \mathbf{X}_1 \sim \mathcal{N}(0, I_d). \quad (7)$$

166 Choosing $f(t) := \alpha_t$, $g(t) := \sigma_t^2$ and the standard Brownian motion $\mathbf{Y}_t = \mathbf{W}_t$, it holds the equality in
 167 distribution

$$168 \quad \mathbf{X}_t^{\text{FM}} \stackrel{d}{=} f(t) \mathbf{X}_0 + \mathbf{W}_{g(t)} = \mathbf{X}_t.$$

169 Then $f(t) := 1 - t$, $g(t) := t^2$ yields (independent) FM Lipman et al. (2023), and $f(t) := \exp\left(-\frac{h(t)}{2}\right)$,
 170 $g(t) := 1 - \exp(-h(t))$, where $h(t) := \int_0^t \beta_{\min} + s(\beta_{\max} - \beta_{\min}) ds$ with, e.g., $\beta_{\min} = 0.1$, $\beta_{\max} = 20$,
 171 corresponds to processes used in score-based generative models Song et al. (2021), see Appendix B.

172 **Remark 2** (Optimal Coupling). Instead of considering (possibly independent) random variables $\mathbf{X}_0 \sim$
 173 μ_0 , $\mathbf{X}_1 \sim \mu_1$ and their induced processes (7), we can also employ optimal transport (OT) couplings
 174 $\pi \in \Pi_o(\mu_0, \mu_1)$. Then the induced curve $(e_t)_{\sharp} \pi$ with $e_t(x, y) := (1 - t)x + ty$ is a geodesic between μ_0 and
 175 μ_1 in $\mathcal{P}_2(\mathbb{R}^d)$. This yields an OT FM objective

$$176 \quad \mathcal{L}_{\text{OT-CFM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,1), (x,y) \sim \pi} \left[\|v_{\theta}(e_t(x, y), t) - (y - x)\|_2^2 \right].$$

177 In contrast to using the independent coupling, this can lead to reduced variance in training and both shorter
 178 and straighter paths, see Tong et al. (2024); Pooladian et al. (2023).

179 Motivated by the fact that a multi-dimensional Wiener process $\mathbf{W}_t \in \mathbb{R}^d$ consists of *independent* (and
 180 identically distributed) 1D components $\mathbf{W}_t = (W_t^1, \dots, W_t^d)$, we propose to construct a d -dimensional flow
 181 \mathbf{Y}_t componentwise, based on independent one-dimensional processes Y_t^i .

182 ¹Existence of the velocity is given under weak assumptions by Wald & Steidl (2025) Theorem 6.3.

188

3 FROM ONE-DIMENSIONAL TO MULTI-DIMENSIONAL FLOWS

189

190 Restricting ourselves to processes \mathbf{Y}_t that decompose into one-dimensional components allows us to propose
191 a general construction method for accessible *conditional* flows in FM. Let Y_t^1, \dots, Y_t^d be a family of
192 independent one-dimensional stochastic processes with time dependent laws $\mu_t^i \in \mathcal{P}_2(\mathbb{R})$. For each $i =$
193 $1, \dots, d$, let $v_t^i: \mathbb{R} \rightarrow \mathbb{R}$ be the associated velocity field such that the pair (μ_t^i, v_t^i) satisfies the one-dimensional
194 continuity equation (1). Define the product measure $\mu_t \in \mathcal{P}_2(\mathbb{R}^d)$ by
195

196
$$\mu_t(x) = \prod_{i=1}^d \mu_t^i(x^i), \quad x = (x^1, \dots, x^d) \in \mathbb{R}^d. \quad (8)$$
197

198 For the d -dimensional process $\mathbf{Y}_t := (Y_t^1, \dots, Y_t^d)$, independence implies that its law is exactly μ_t . Moreover,
199 by the following proposition, the corresponding d -dimensional velocity field is given componentwise, see
200 Holderrieth et al. (2025); Duong et al. (2025).
201

202 **Proposition 3.** *Let μ_t be given by (8), where the μ_t^i are absolutely continuous curves in \mathbb{R} with velocity fields
203 v_t^i . Then μ_t satisfies a multi-dimensional continuity equation (1) with a velocity field which decomposes into
204 the univariate velocities $v_t(x) := (v_t^1(x^1), \dots, v_t^d(x^d))$.*
205

206 Therefore, assuming access to the 1D velocities, we can **construct accessible conditional flows for FM**:
207

208 1. *One-dimensional noise:* Start with a 1D process and an associated absolutely continuous curve μ_t
209 with $\mu_0 = \delta_0$, $0 \in \mathbb{R}$, where you can compute the velocity field v_t in the 1D continuity equation
210

211
$$\partial_t \mu_t + \partial_x(\mu_t v_t) = 0, \quad \mu_0 = \delta_0. \quad (9)$$
212

213 2. *Multi-dimensional noise:* Set up a multi-dimensional conditional flow model starting in $\mu_0 = \delta_0$,
214 $0 \in \mathbb{R}^d$ with possibly different, but independent 1D processes as described in Section 3.
215 3. *Incorporating the data:* Construct a multi-dimensional conditional flow model starting in $\mu_0 = \delta_{x_0}$
216 for any data point $x_0 \sim \mu_0$ by mean-reversion as shown in Section 2.3.
217

218 To outline the use of this recipe, we explore three interesting 1D (noising) processes Y_t in connection with
219 their respective PDEs, for which our approach via reduction to one dimension is nicely applicable, namely the
220

221 • Wiener process W_t and diffusion equation,
222 • Kac process K_t and damped wave equation,
223 • Uniform process U_t and the gradient flow of the maximum mean functional $\mathcal{F}_\nu := \text{MMD}_K(\cdot, \nu)$
224 with negative distance kernel $K(x, y) = -|x - y|$ and $\nu = \mathcal{U}(-b, b)$.
225

226 In each case, we explicitly calculate the respective conditional measure flow and its conditional velocity field
227 in Appendix A, such that the conditional flow matching loss (3) can be minimized. In each case, the absolutely
228 continuous curve starting in δ_0 and the corresponding velocity field can be calculated analytically. Note that
229 in contrast to the Wiener process W_t usually seen in diffusion and FM models, the latter two processes K_t, U_t
230 do not enjoy a trivial analogue in multiple dimensions: in case of K_t the corresponding PDE (damped wave
231 equation) is no longer mass-conserving in dimension $d \geq 3$, see Tautz & Lerche (2016); in case of U_t the
232 mere existence of the MMD gradient flow in multiple dimensions is unclear by the lack of convexity of the
233 MMD, see Hertrich et al. (2024). Our general construction method makes these 1D processes accessible for
234 generative modeling in arbitrary dimensions, **hinting at a wide range of suitable noising processes**.
235

236 ²Note that we used the independent coupling for training of these models. We also used z-score normalization.
237

Figure 2: Sampling of Neal’s funnel with different latent distributions.² Left to Right: uniform on $[-1, 1]$, standard Gaussian, Student-T (with parameters $(20, 4)$ inspired by the choice in Pandey et al. (2024)) and [our learned distribution](#). The last two heavy-tailed noises perform significantly better.

4 ADAPTING NOISE TO DATA

Motivated by the influence of the noising process on the sample quality depicted for the heavy-tailed funnel in Figure 2, we propose to *learn* the noising process itself. We first revisit the connection between one-dimensional distributions and their quantile functions, then introduce quantile processes and quantile interpolants. Finally, we describe how the corresponding quantile functions can be learned in practice.

4.1 QUANTILE PROCESSES AND INTERPOLANTS

The restriction to componentwise noising processes \mathbf{Y}_t in (4)³ allows us to use the quantile functions of the 1D components. Recall that the *cumulative distribution function* (CDF) R_μ of $\mu \in \mathcal{P}_2(\mathbb{R})$ and its *quantile function* Q_μ are given by

$$R_\mu(x) := \mu((-\infty, x]), \quad x \in \mathbb{R} \quad \text{and} \quad Q_\mu(u) := \min\{x \in \mathbb{R} : R_\mu(x) \geq u\}, \quad u \in (0, 1). \quad (10)$$

In Figure 11, we exemplify the CDF and quantile function of a standard Gaussian. The quantile functions form a closed, convex cone $\mathcal{C} := \{f \in L_2(0, 1) : f \text{ increasing a.e.}\}$ in $L_2(0, 1)$. The mapping $\mu \mapsto Q_\mu$ is an isometric embedding of $(\mathcal{P}_2(\mathbb{R}), W_2)$ into $(L_2(0, 1), \|\cdot\|_{L_2})$, meaning that

$$W_2^2(\mu, \nu) = \int_0^1 |Q_\mu(s) - Q_\nu(s)|^2 \, ds$$

and $\mu = Q_{\mu, \sharp} \mathcal{L}_{(0,1)}$. Let $U \sim \mathcal{U}[0, 1]$ be uniformly distributed on $[0, 1]$. Now, any probability measure flow μ_t can be described by their respective quantile flow $Q_t := Q_{\mu_t}$, such that $\mu_t = Q_{t, \sharp} \mathcal{L}_{(0,1)}$ and $Q_t \circ U$ is a stochastic process with marginals μ_t .

Quantile Processes. We can therefore model any *multi-dimensional* noising process, that decomposes into its components, via quantile functions. Namely let X_0 be any component \mathbf{X}_0^i of $\mathbf{X}_0 \sim \mu_0$, and $f, g : [0, 1] \rightarrow \mathbb{R}$ smooth schedules fulfilling (5). We assume that we are given a flow $(Q_t)_t$ of quantile functions $Q_t : (0, 1) \rightarrow \mathbb{R}$, $t \in [0, 1]$, which fulfill $Q_0 \equiv 0$ and are invertible on their respective image with the inverse given by the CDF $R_t : Q_t(0, 1) \rightarrow \mathbb{R}$. We introduce the *quantile process*

$$Z_t = f(t)X_0 + Q_{g(t)}(U), \quad U \sim \mathcal{U}(0, 1), \quad t \in [0, 1]. \quad (11)$$

The quantile process coincides (in distribution) with the components of the mean-reverting process (4), where the noising term is represented as $\mathbf{Y}_{g(t)}^i \stackrel{d}{=} Q_{\text{Law}(\mathbf{Y}_{g(t)}^i)}(U)$. In particular, the components of the process (7)

³Besides componentwise 1D processes we may also use triangular decompositions, not addressed in this paper.

282 are obtained via (11) using the quantile distribution Q_t of a standard Brownian motion W_t and $f(t) := \alpha_t$,
 283 $g(t) := \sigma_t^2$.
 284

285 **Quantile Interpolants.** Let us briefly mention how our setting fits into the framework of consistency
 286 models. To this end, we define the *quantile interpolants*

$$287 \quad I_{s,t}(x, y) = f(s)x + Q_{g(s)}(R_{g(t)}(y - f(t)x)), \quad s, t \in [0, 1] \quad (12)$$

289 which generalize the interpolants used in Denoising Diffusion Implicit Models (DDIM), see Remark 10.

290 **Proposition 4.** For all $x, y \in \mathbb{R}$ and all $s, r, t \in [0, 1]$, it holds $I_{0,t}(x, y) = x$, $I_{t,t}(x, y) = y$, and

$$291 \quad I_{s,r}(x, I_{r,t}(x, y)) = I_{s,t}(x, y).$$

293 Furthermore, inserting the quantile process (11) yields $I_{s,t}(Z_0, Z_t) = Z_s$.

294 The proof is given Appendix C. Proposition 4 allows us to also apply the concept of consistency models to our
 295 quantile process (11). In the Appendix C, we demonstrate this by means of the recently proposed *inductive*
 296 *moment matching* (IMM) Zhou et al. (2025).

298 4.2 LEARNING QUANTILE FUNCTIONS

300 The choice of the noise can have a significant impact on the sampling performance, see Figure 1 for the
 301 checkerboard distribution and Figure 2 for a heavy-tailed one. Now we adopt the quantile process view from
 302 Section 4.1 to learn data-adapted noise. For simplicity we will only consider noising processes defined as
 303 a deterministic scaling of a *fixed* random variable \mathbf{Z} . We adopt a signal-decay schedule $f(t) = 1 - t$ and
 304 the linear latent growth $g(t) = t$, and consider $\mathbf{Y}_t := t\mathbf{Z}$ and $v_t^{\mathbf{Y}}(x) = \frac{x}{t}$. Note that this corresponds to the
 305 standard linear interpolation often employed in FM. See Appendix A.4 for more theoretical background.

306 We pose the following requirements on the latent distribution ν : i) data-independence, and ii) independence
 307 of components. Under these assumptions the latent class reduces to the set $S := \{\nu \in \mathcal{P}_2(\mathbb{R}^d) : \nu =$
 308 ρdx and $\rho = \prod_{i=1}^d \rho^i\}$, i.e. considering quantile processes of the form

$$309 \quad X_t^i = (1 - t)X_0^i + tQ^i(U^i), \quad i = 1, \dots, d, \quad t \in [0, 1],$$

310 we have $\nu = \mathbf{Q}_{\#} \mathcal{U}([0, 1]^d)$ with $\mathbf{Q}(u) := (Q^1(u^1), \dots, Q^d(u^d))$. In particular, in our framework the
 311 quantile family determines the scales and tails of $\mathbf{Q}(\mathbf{U})$, thereby influencing the difficulty and inductive bias
 312 of predicting the conditional velocity $v_t(\mathbf{X}_t) = \mathbf{Q}(\mathbf{U}) - \mathbf{X}_0$ along the linear paths $\mathbf{X}_t = (1 - t)\mathbf{X}_0 + t\mathbf{Q}(\mathbf{U})$.

314 We now describe how we learn the quantile maps \mathbf{Q}_{ϕ} . The core idea is that besides our requirements i)-ii) as
 315 well as being a valid quantile function, we would like our noise to be "close" to the data. We learn \mathbf{Q}_{ϕ} by
 316 minimizing a statistical discrepancy, e.g. the Wasserstein distance, between μ_0 and ν_{ϕ} ,

$$317 \quad \mathcal{L}_{\text{AN}}(\phi) = W_2^2(\mu_0, \nu_{\phi}), \quad \nu_{\phi} := (\mathbf{Q}_{\phi})_{\#} \mathcal{U}([0, 1]^d). \quad (13)$$

318 Note that due to the restriction of our quantiles to the class S , the minimizer of (13) is in general *not* μ_0 .
 319 Crucially, the independence constraint restricts ν_{ϕ} to per-coordinate adaptation and prevents encoding *cross-*
 320 *dimensional* correlations. The latter are introduced via the optimal transport coupling (x, y) and modeled by
 321 the velocity field through the target $(y - x)$. This separation lets the latent remain simple and computationally
 322 efficient while delegating dependencies to the flow.

323 While our quantiles can be trained independently, in order to provide an aligned training signal for the velocity
 324 field, we propose to also train \mathbf{Q}_{ϕ} *jointly* with the velocity v_{θ} . Hence, we aim to minimize the loss

$$326 \quad \mathcal{L}(\theta, \phi) = \mathcal{L}_{\text{CFM}}(\theta, \phi) + \lambda \mathcal{L}_{\text{AN}}(\phi), \quad \lambda > 0,$$

$$327 \quad \text{with } \mathcal{L}_{\text{CFM}}(\theta, \phi) = \mathbb{E}_{t \sim \mathcal{U}(0, 1), (x, y_{\phi}) \sim \pi_{\phi}} \left[\|v_{\theta}((1 - t)x + t y_{\phi}, t) - (\text{sg}(y_{\phi}) - x)\|_2^2 \right],$$

329 where $\pi_\phi \in \Pi_o(\mu_0, \nu_\phi)$ is an optimal coupling between μ_0 and ν_ϕ and $\text{sg}(\cdot)$ denotes the stop-gradient
 330 operator. For reference we visualize the effect of choosing $\lambda = 0$ in Figure 15.

331
 332 In practice, we optimize the empirical expectation via minibatches; for more details on the implementation
 333 see Appendix D.4. A pseudo-algorithm is provided in Algorithm 1. In particular, we compute a mini batch
 334 optimal transport map T that minimizes $\sum_{j=1}^B \|\mathbf{x}_0^{(j)} - \mathbf{y}^{(T(j))}\|_2^2$ for batches of data $\{\mathbf{x}_0^{(j)}\}_{j=1}^B, \{\mathbf{y}^{(j)}\}_{j=1}^B$
 335 from \mathbf{X}_0 and $\mathbf{Q}_\phi(\mathbf{U})$, respectively. This minibatch map T is reused below for flow matching to keep the
 336 targets consistent across the two terms.

337 5 EXPERIMENTS

338 To provide intuition and validate our proposed method, we conduct experiments on both synthetic and image
 339 datasets. For each component, we model the quantile with a Rational Quadratic Spline (RQS) proposed
 340 in Gregory & Delbourgo (1982); Durkan et al. (2019) and add a learnable scale and bias. This keeps
 341 monotonicity, is parameter-efficient, and gives analytic derivatives. See Appendix D.2 for details.

342
 343 Figure 3: A generated trajectory from the learned quantile latent (left) to the unevenly weighted Gaussian
 344 mixture target (right). The adapted latent is already close to the target distribution.

345 5.1 SYNTHETIC DATASETS

346 We begin by qualitatively analyzing our algorithm on several synthetic 2D distributions, see also Appendix
 347 D.3, each designed to highlight a specific aspect of our approach. We provide intuition about the learned
 348 latent distribution and demonstrate that it is closer to the data in the Wasserstein sense, yields shorter transport
 349 paths, and successfully captures the tail behavior.

350
 351 **Gaussian Mixture Model (GMM).** We first consider a 2D GMM with nine unevenly weighted modes, as
 352 visualized in Figure 3. Due to the independence assumption inherent in our factorized quantile function, the
 353 learned latent cannot perfectly replicate the target’s joint distribution and is *not the product of the correct*
 354 *marginals*, see also Example D.1. Instead, it approximates a distribution where the components cannot
 355 further independently improve the transport cost to the target.

356
 357 **Funnel Distribution.** The funnel distribution, shown in Figure 2, presents a challenge due to its heavy-
 358 tailed, conditional structure. several methods for handling it have been proposed in the context of diffusion
 359 models, e.g. Pandey et al. (2024); Shariatian et al. (2025a;b). We compare our method to Pandey et al. (2024),
 360 where the parameters of a latent Student- t distribution were hand-select in each dimension. To visualize the
 361 effects more clearly, we use a capacity-constrained network with three layers of width 64 and no positional
 362 embeddings. This experiment highlights the importance of matching the latent’s tail behavior to that of the
 363 target distribution, showing that a compact latent performs worst, followed by the Gaussian. At the same
 364 time, we observe that our learned latent successfully *adapts to the target’s heavy tails*, see also Figure 13 in
 365 the appendix. This enables the FM model to generate high fidelity samples across the distribution. Note that
 366 due to the high variance signal when training on the funnel distribution, we pre-train our quantile.

376 Checkerboard Distribution. In contrast to the funnel, the checkerboard distribution in Figure 12 features a
 377 compact support. Here, we demonstrate the synergy between our learned latent and an OT coupling. Our
 378 method learns a latent that approximates a uniform distribution over the target’s support. When this adapted
 379 latent is combined with an OT coupling for FM, the resulting *transport paths are substantially shorter* than
 380 those originating from a standard Gaussian as shown in Figure 1 in the appendix. Further, the vector field
 381 training converges much faster, see Figure 14 in the appendix. This result underscores our central claim:
 382 combining a data-dependent latent with a data-dependent coupling has the potential to significantly improve
 383 model performance.

384 5.2 IMAGE DATASETS

385 Next, we analyze our method on standard image generation benchmarks. Our quantile is extremely lightweight
 386 compared to the UNet architecture used for the flow model. We reuse the minibatch OT coupling for the
 387 latent and freeze the quantile function after a 55k training epochs. This strategy introduces only minimal
 388 computational overhead compared to the standard Gaussian baseline with minibatch OT coupling. On the
 389 CIFAR10 dataset for example, we observe an overhead of approximately 3.2% in runtime during joint quantile
 390 training, and about 1.2% after freezing the quantile parameters, measured on an NVIDIA GeForce RTX 4090.
 391 In high-dimensional settings and given fixed batch sizes, the signal for the quantile function can be noisy,
 392 potentially leading to degenerate solutions. To mitigate this, we add a regularization term to the loss that
 393 penalizes the expected negative log-determinant of the Jacobian of the quantile. Since the quantile maps from
 394 a uniform distribution $U \sim \mathcal{U}[0, 1]$, this term equals the negative differential entropy of the learned latent
 395

$$396 H(Q(U)) = H(U) + \mathbb{E}[\log |\det J_Q(U)|] = \mathbb{E}[\log |\det J_Q(U)|].$$

397 Access to analytic derivatives makes this efficient. For more details on the parametrization and its practicability
 398 see D.2.

401 **MNIST.** The MNIST dataset exhibits strong marginal structure: pixels near the center are frequently active (non-zero),
 402 whereas pixels at the borders are almost always zero. Our
 403 learned quantile function successfully captures these marginal
 404 statistics. As illustrated in Figure 5, the latent distribution
 405 learns to concentrate its mass in regions corresponding to active
 406 pixels.

407 In Figure 16 in the appendix, we compare the learned and
 408 empirical quantiles on the MNIST dataset at different pixel
 409 locations (x, y) . Where the pixel is essentially black, the learned
 410 quantile concentrates around that value, whereas in the center re-
 411 gions, where uncertainty is higher, the quantiles remain spread
 412 around zero (gray), accurately reflecting the data variability. In
 413 Figure 4, we compare the performance under different network
 414 capacity constraints by evaluating our learned latent against
 415 a Gaussian latent. Both latents are trained using mini-batch
 416 OT. We use the quantile loss weight $\lambda = 1$ (Eq. 4.2) and regularization parameter $\beta = 0.1$ (see Eq. D.2).
 417 As observed in Figure 5, the learned latent successfully minimizes the distance between noise and data by
 418 removing redundant information while the independence assumption prevents the model from capturing
 419 specific spatial correlations (e.g. the shape of a digit). This enables the network to use the available parameters
 420 more efficiently and achieve better results with the same parameter count.

421 **Figure 4: Ablation on U-Net capacity for**
 422 **MNIST using channels 8, 16, 32.** The FID
 423 curves show that our method achieves sig-
 424 nificantly lower FIDs when using less chan-
 425 nels. See also Figure 17 the appendix.

426 In Figure 16 in the appendix, we compare the learned and
 427 empirical quantiles on the MNIST dataset at different pixel
 428 locations (x, y) . Where the pixel is essentially black, the learned
 429 quantile concentrates around that value, whereas in the center re-
 430 gions, where uncertainty is higher, the quantiles remain spread
 431 around zero (gray), accurately reflecting the data variability. In
 432 Figure 4, we compare the performance under different network
 433 capacity constraints by evaluating our learned latent against
 434 a Gaussian latent. Both latents are trained using mini-batch
 435 OT. We use the quantile loss weight $\lambda = 1$ (Eq. 4.2) and regularization parameter $\beta = 0.1$ (see Eq. D.2).
 436 As observed in Figure 5, the learned latent successfully minimizes the distance between noise and data by
 437 removing redundant information while the independence assumption prevents the model from capturing
 438 specific spatial correlations (e.g. the shape of a digit). This enables the network to use the available parameters
 439 more efficiently and achieve better results with the same parameter count.

432 Figure 5: Left to Right: Generated samples, samples from the learned latent and mean and standard deviation
 433 of the learned latent.

434
 435
 436 **CIFAR-10.** On the CIFAR-10 dataset, we evaluate our method in a setting characterized by strong spatial
 437 and inter-channel correlations, where our product-measure approximations is inherently limited. We used a
 438 similar setup as in Tong et al. (2024) and including the commonly used U-Net architecture from Nichol
 439 & Dhariwal (2021). We vary the regularization parameter β while keeping the quantile loss weight fixed at
 440 $\lambda = 1$. Figure 6 reports results for different values of β and compares them to a standard Gaussian baseline.
 441 Our results indicate that for uncorrelated noise, there exists a trade-off between the entropy of the latent
 442 distribution and its closeness to the data. For independent noise on a highly correlated dataset, improvements
 443 remain marginal as expected since a product measure can only approximate the underlying data distribution
 444 to a limited extent. For more detail on training stability and the effect of regularization see Figures 19,20 in
 445 the appendix.

456 Figure 6: CIFAR results for a selection of regularization parameters and for the baseline, for complete results
 457 see Figure 18. Our method reached the best validation FID after 320k steps, while the baseline took 340k.
 458 We evaluated the FID using 5 seeds and report the mean. We used those checkpoints for the evaluation. The
 459 visualized samples were generated using 100 Euler steps.

463 6 CONCLUSIONS

464
 465 We provide a "quantile sandbox" for building generative models: a unifying theory and a practical toolkit
 466 that turns noise selection into a data-driven design element. Our construction plugs seamlessly into standard
 467 objectives including flow matching and consistency models, e.g. Inductive Moment Matching. Furthermore,
 468 our experiments demonstrate that it is possible to learn a freely parametrized, data-dependent latent distribution
 469 beyond the usual smooth transformations of Gaussians. Our work opens several promising directions for

470 future research. Extensions include developing time-dependent quantile functions to optimize the entire
 471 path distribution, not just the endpoint, as well as designing conditional quantile functions for tasks like
 472 class-conditional or text-to-image generation.
 473

474 **REFERENCES**

476 M. S. Albergo, N. M. Boffi, and E. Vanden-Eijnden. Stochastic interpolants: A unifying framework for flows
 477 and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

478 L. Ambrosio, N. Gigli, and G. Savaré. *Gradient Flows*. Lectures in Mathematics ETH Zürich. Birkhäuser,
 479 Basel, 2nd edition, 2008. doi: 10.1007/978-3-7643-8722-8.

481 G. Bartosh, D. Vetrov, and C. A. Naesseth. Neural flow diffusion models: Learnable forward process for
 482 improved diffusion modelling, 2025. URL <https://arxiv.org/abs/2404.12940>.

484 Denis Blessing, Julius Berner, Lorenz Richter, and Gerhard Neumann. Underdamped diffusion bridges with
 485 applications to sampling. In *International Conference on Learning Representations (ICLR)*, 2025a. URL
 486 <https://arxiv.org/abs/2503.01006>.

487 Denis Blessing, Xiaogang Jia, and Gerhard Neumann. End-to-end learning of gaussian mixture priors for
 488 diffusion sampler, 2025b. URL <https://arxiv.org/abs/2503.00524>.

490 Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. How to build a consistency model:
 491 Learning flow maps via self-distillation, 2025. URL <https://arxiv.org/abs/2505.18825>.

492 C. Cattaneo. Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée.
 493 *Comptes Rendus.*, 247, 1958.

495 R. T. Q. Chen. `torchdiffeq`, 2018. URL <https://github.com/rtqichen/torchdiffeq>.

496 M. Chester. Second sound in solids. *Physical Review*, 131, 1963.

498 R. Duong, V. Stein, R. Beinert, J. Hertrich, and G. Steidl. Wasserstein gradient flows of MMD functionals
 499 with distance kernel and Cauchy problems on quantile functions. *ArXiv:2408.07498*, 2024.

500 R. Duong, J. Chemseddine, P. Friz, and G. Steidl. Telegrapher's generative model via Kac flows. *arXiv
 501 preprint arXiv:2506.20641*, 2025.

503 C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. *Advances in Neural Information
 504 Processing Systems*, 32, 2019.

506 R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
 507 K. Fatras, N. Fournier, et al. Pot: Python Optimal Transport. *Journal of Machine Learning Research
 508 (JMLR)*, 22(1):3571–3578, 2021.

510 Reza Ghane, Anthony Bao, Danil Akhtiamov, and Babak Hassibi. Concentration of measure for distributions
 511 generated via diffusion models. *arXiv preprint arXiv:2501.07741*, 2025.

512 J. Gregory and R. Delbourgo. Piecewise rational quadratic interpolation to monotonic data. *IMA Journal of
 513 Numerical Analysis*, 2(2):123–130, 1982.

515 R. Griego and R. Hersh. Theory of random evolutions with applications to partial differential equations.
 516 *Transactions of the American Mathematical Society*, 156, 1971.

517 P. L. Hagemann and S. Neumayer. Stabilizing invertible neural networks using mixture models. *Inverse*
 518 *Problems*, 37(7):085002, 2021.

519

520 Weiqiao Han, Chenlin Meng, , Christopher D. Manning, and Stefano Ermon. DistillKac: Few-step image
 521 generation via damped wave equations. *arXiv preprint arXiv:2509.215113*, 2025.

522 J. Hertrich, M. Gräf, R. Beinert, and G. Steidl. Wasserstein steepest descent flows of discrepancies with Riesz
 523 kernels. *Journal of Mathematical Analysis and Applications*, 531(1):127829, 2024.

524

525 M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale
 526 update rule converge to a local Nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
 527 R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*,
 528 volume 30. Curran Associates, Inc., 2017.

529

530 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer, Ricky
 531 T. Q. Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary Markov
 532 processes. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 533 <https://openreview.net/forum?id=Rp17cJtZo>.

534

535 A. Janssen. The distance between the Kac process and the Wiener process with applications to generalized
 536 telegraph equations. *Journal of Theoretical Probability*, 3(2):349–360, 1990.

537

538 M. Kac. A stochastic model related to the telegrapher’s equation. *Rocky Mountain Journal of Mathematics*, 4,
 539 1974.

540

541 K. Kapusniak, P. Potapchik, T. Reu, L. Zhang, A. Tong, M. Bronstein, A. J. Bose, and F. Di Giovanni. Metric
 542 flow matching for smooth interpolations on the data manifold. *arXiv preprint arXiv:2405.14780*, 2024.

543

544 D. Kim, S. Shin, K. Song, W. Kang, and I.-C. Moon. Soft truncation: A universal training technique of
 545 score-based diffusion model for high precision score estimation. *ICML*, 2022.

546

547 D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. In *Proceedings of the ICLR ’15*, 2015.

548

549 Y. Lipman, R. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative modeling. *ICLR*,
 550 2023.

551

552 Q. Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv preprint arXiv:2209.14577*,
 553 2022.

554

555 R. M. Neal. Slice sampling. *The Annals of Statistics*, 31(3):705–767, 2003. doi: 10.1214/aos/1056562461.

556

557 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021.
 558 URL <https://openreview.net/forum?id=-NEXDKk8gZ>.

559

560 K. Pandey, J. Pathak, Y. Xu, S. Mandt, M. Pritchard, A. Vahdat, and M. Mardani. Heavy-tailed diffusion
 561 models, 2024. URL <https://arxiv.org/abs/2410.14171>.

562

563 J. Pidstrigach. Score-based generative models detect manifolds. *NeurIPS*, 2022.

564

565 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and
 566 Ricky T. Q. Chen. Multisample flow matching: Straightening flows with batch couplings, 2023. URL
 567 <https://arxiv.org/abs/2304.14772>.

568

569 Subham Sekhar Sahoo, Aaron Gokaslan, Christopher De Sa, and Volodymyr Kuleshov. Diffusion models
 570 with learned adaptive noise. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

564 A. Salmona, V. De Bortoli, J. Delon, and A. Desolneux. Can push-forward generative models fit multimodal
 565 distributions? *Advances in Neural Information Processing Systems*, 35:0766–10779, 2022.

566

567 D. Shariatian, U. Simsekli, and A. Durmus. Heavy-tailed diffusion with denoising Lévy probabilistic models,
 568 2025a. URL <https://arxiv.org/abs/2407.18609>.

569

570 D. Shariatian, U. Simsekli, and A. O. Durmus. Heavy-tailed diffusion with denoising levy probabilistic
 571 models. *ICLR 2025*, 2025b.

572

573 J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using
 574 nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd Inter-
 575 national Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*,
 576 pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

577

578 J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*,
 579 2020.

580

581 Y. Song and St. Ermon. Generative modeling by estimating gradients of the data distribution. *ArXiv
 582 1907.05600*, 2019.

583

584 Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
 585 modeling through stochastic differential equations. *ICLR*, 2021.

586

587 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *Proceedings of the
 588 40th International Conference on Machine Learning*, volume 202, 2023.

589

590 Edric Tam and David B. Dunson. On the statistical capacity of deep generative models. *arXiv preprint
 591 arXiv:2501.07763*, 2025.

592

593 R. C. Tautz and I. Lerche. Application of the three-dimensional telegraph equation to cosmic-ray transport.
 594 *Research in Astronomy and Astrophysics*, 2016.

595

596 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
 597 Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
 598 optimal transport, 2024. URL <https://arxiv.org/abs/2302.00482>.

599

600 P. Vernotte. Les paradoxes de la theorie continue de l'équation de la chaleur. *Comptes Rendus.*, 246, 1958.

601

602 C. Wald and G. Steidl. Flow Matching: Markov kernels, stochastic processes and transport plans. In *Variational and Information Flows in Machine Learning and Optimal Transport, Oberwolfach Seminars. Vol. 56*, pp. 185–254. Birkhäuser, 2025.

603

604 Magnus Wiese, Robert Knobloch, and Ralf Korn. Copula & marginal flows: Disentangling the marginal from
 605 its joint. *arXiv preprint arXiv:1907.03361*, 2019.

606

607 T. Zhang, H. Zheng, J. Yao, X. Wang, M. Zhou, Y. Zhang, and Y. Wang. Long-tailed diffusion models with
 608 oriented calibration. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 609 <https://openreview.net/forum?id=NW2s5XXwXU>.

610

L. Zhou, S. Ermon, and J. Song. Inductive moment matching. *ICML 2025*, 2025.

611 **A EXAMPLES OF ONE-DIMENSIONAL FLOWS**
612

613 We provide three interesting examples, namely the well-established diffusion flow, the recently proposed
614 Kac flow, and the Wasserstein gradient flow of the MMD functional with negative absolute distance kernel
615 towards a uniform measure. Paths of the processes are depicted in Figure 7 and their probability flows are
616 shown in Figures 8, 9 and 10.

617 In each case, the absolutely continuous curve μ_t starting in δ_0 (e.g. conditional) and the corresponding
618 velocity field can be given analytically. Note that in the latter two cases, multi-dimensional generalizations of
619 the flows are not trivially given, which further underlines the strength of our 1D approach. Henceforth, if the
620 measures μ_t admit a density function, we will denote it by p_t .
621

630 Figure 7: Three realisations of a standard Wiener process (left), the Kac process (middle), and the Uniform
631 process (right), simulated until time $T = 1$.
632

633 **A.1 WIENER PROCESS AND DIFFUSION EQUATION**
634

642 Figure 8: A generated trajectory from a Flow Matching model trained using the conditional density and
643 velocity given by the Wiener process. As described in Section 2.3 we define the mean reverting process and
644 use schedules $f(t) = 1 - t$ and $g(t) = t^2$.
645

646 First, consider the standard Wiener process (Brownian motion) $(W_t)_t$ starting in 0 whose probability density
647 is given by the solution of the diffusion equation
648

$$649 \partial_t p_t = \nabla \cdot (p_t \frac{1}{2} \nabla \log p_t) = \frac{1}{2} \Delta p_t, \quad t \in (0, 1], \quad \lim_{t \downarrow 0} p_t = \delta_0, \quad (14)$$

651 where the limit for $t \downarrow 0$ is taken in the sense of distributions. The solution is analytically known to be
652

$$653 p_t(x) = (2\pi t)^{-\frac{d}{2}} e^{-\frac{\|x\|^2}{2t}}.$$

654 Thus, the latent distribution is just the Gaussian $p_1 = \mathcal{N}(0, I_d)$. The velocity field in (14) reads as
655

$$656 v_t(x) = -\frac{1}{2} \nabla \log p_t = \frac{x}{2t}. \quad (15)$$

658 However, its L_2 -norm fulfills $\|v_t\|_{L_2(\mathbb{R}, p_t)}^2 = \frac{d}{4t}$, and is therefore not integrable over time, i.e. $\|v_t\|_{L_2(\mathbb{R}, p_t)} \notin$
 659 $L_2(0, 1)$. In practice, instability issues caused by this explosion at times close to the target need to be avoided
 660 by e.g. time truncations, see e.g. Kim et al. (2022). For a heuristic analysis also including drift-diffusion
 661 flows, we refer to Pidstrigach (2022). Note that in the case of diffusion, there is no significant distinction
 662 between the uni- and multivariate setting.

663 **A.2 KAC PROCESS AND DAMPED WAVE EQUATION**

664 **Figure 9: A generated trajectory from a flow matching model trained using the conditional density and**
 665 **velocity given by the Kac process with $(a, c) = (9, 3)$. As described in Section 2.3 we define the mean**
 666 **reverting process and use schedules $f(t) = 1 - t$ and $g(t) = t^2$.**

667 The Kac process Kac (1974), also known as persistent random walk, originates from a discrete random walk,
 668 which starts in 0 and moves with velocity parameter $c > 0$ in one direction until it reverses its direction with
 669 probability $a\Delta_t$, $a > 0$. A continuous-time analogue is given by the Kac process which is defined using the
 670 homogeneous *Poisson point process* N_t with rate a , i.e. i) $N_0 = 0$; ii) the increments of N_t are independent,
 671 iii) $N_t - N_s \sim \text{Poi}(a(t - s))$ for all $0 \leq s < t$. Now the *Kac process starting in 0* is given by

$$672 \quad K_t := B_{\frac{1}{2}} c \int_0^t (-1)^{N_s} ds, \quad (16)$$

673 where $B_{\frac{1}{2}} \sim \text{Ber}(\frac{1}{2})$ is a Bernoulli random variable⁴ taking the values ± 1 . Note that in contrast to diffusion
 674 processes, the Kac process K_t *persistently* maintains its linear motion between changes of directions (jumps
 675 of N_t), see Figure 7.

676 By the following proposition, the Kac process is related to the damped wave equation, also known as
 677 telegrapher's equation, and its probability distribution admits a computable vector field such that the continuity
 678 equation is fulfilled. For a proof we refer to Duong et al. (2025).

679 **Proposition 5.** *The probability distribution flow of $(K_t)_t$ admits a singular and absolutely continuous part*
 680 *via*

$$681 \quad \mu_t(x) = \frac{1}{2} e^{-at} (\delta_0(x + ct) + \delta_0(x - ct)) + \tilde{p}_t(x), \quad (17)$$

682 *with the absolutely continuous part*

$$683 \quad \tilde{p}_t(x) := \frac{1}{2} e^{-at} \left(\beta ct \frac{I'_0(\beta r_t(x))}{r_t(x)} + \beta I_0(\beta r_t(x)) \right) 1_{[-ct, ct]}(x), \quad r_t(x) := \sqrt{c^2 t^2 - x^2},$$

684 *where $\beta := \frac{a}{c}$, and I_0 denotes the 0-th modified Bessel function of first kind. The distribution (17) is the*
 685 *generalized solution of the damped wave equation*

$$686 \quad \partial_{tt} u(t, x) + 2a \partial_t u(t, x) = c^2 \partial_{xx} u(t, x), \quad (18)$$

$$687 \quad u(0, x) = \delta_0(x), \quad \partial_t u(0, x) = 0.$$

704 ⁴More precisely, $B_{\frac{1}{2}}$ is *two-point* distributed with values $\{-1, 1\}$.

705 Further (μ_t, v_t) solves the continuity equation (9) where the velocity field is analytically given by
 706

$$707 \quad 708 \quad 709 \quad 710 \quad 711 \quad v_t(x) := \begin{cases} \frac{x}{t + \frac{r_t(x)}{c} \frac{I_0(\beta r_t(x))}{I_0'(\beta r_t(x))}} & \text{if } x \in (-ct, ct), \\ c & \text{if } x = ct, \\ -c & \text{if } x = -ct, \\ \text{arbitrary} & \text{otherwise.} \end{cases}$$

712 The Kac velocity field admits the boundedness $\|v_t\|_{L_2(\mathbb{R}, \mu_t)} \leq c$, and hence, $\|v_t\|_{L_2(\mathbb{R}, \mu_t)} \in L_2(0, 1)$.
 713

714 Interestingly, the damped wave equation (18) is closely related to the diffusion equation via Kac' insertion
 715 method. It is based on the following theorem, whose proof based on semigroup theory can be found in Griego
 716 & Hersh (1971), see also Janssen (1990); Kac (1974).

717 **Theorem 6.** For any initial function $f_0 \in H^2(\mathbb{R}^d)$, $d \geq 1$, let $w_c(t, x)$ be the solution of the undamped wave
 718 equation with velocity $c > 0$ given by

$$719 \quad \partial_{tt} w(t, x) = c^2 \Delta w(t, x), \quad x \in \mathbb{R}^d, \quad t > 0, \\ 720 \quad w(0, x) = f_0(x), \quad \partial_t w(0, x) = 0.$$

721 Then, the functions defined by

$$722 \quad h(t, x) := \mathbb{E}[w_1(\sigma W_t, x)], \quad \text{resp.} \quad u(t, x) := \mathbb{E}[w_c(c^{-1} S_t, x)]$$

723 solve the diffusion equation

$$724 \quad \partial_t h(t, x) = \frac{\sigma^2}{2} \Delta h(t, x), \quad x \in \mathbb{R}^d, \quad t > 0, \\ 725 \quad h(0, x) = f_0(x),$$

726 resp. the multi-dimensional damped wave equation

$$727 \quad \partial_{tt} u(t, x) + 2a \partial_t u(t, x) = c^2 \Delta u(t, x), \quad x \in \mathbb{R}^d, \quad t > 0, \\ 728 \quad u(0, x) = f_0(x), \quad \partial_t u(0, x) = 0. \quad (19)$$

729 As a consequence, it is not hard to show the following corollary, see Duong et al. (2025).

730 **Corollary 7.** For any $t \geq 0$, the solution $u^{a,c}(t, \cdot)$ of the damped wave equation (19) converges to the solution
 731 $h(t, \cdot)$ of the diffusion equation for $a, c \rightarrow \infty$ with fixed $\sigma^2 = \frac{c^2}{a}$.

732 In other words, diffusion can be seen as "an infinitely a -damped wave with infinite propagation speed c ".
 733 Note that the diffusion-related concept of particles traveling with infinite speed violates Einstein's laws of
 734 relativity and has therefore found resistance in the physics community Cattaneo (1958); Chester (1963);
 735 Vernotte (1958); Tautz & Lerche (2016).

736 We also like to stress that in multiple dimensions, the damped wave equation (18) is no longer mass-conserving
 737 as in 1D Tautz & Lerche (2016), and hence eludes a characterization via stochastic processes. Figure 9 shows
 738 the generation of samples from a weighted Gaussian Mixture Model (GMM) using Flow Matching and the
 739 Kac process as our noising process. As described in Section 2.3 we define the mean reverting process and use
 740 schedules $f(t) = 1 - t$ and $g(t) = t^2$.

741 A.3 UNIFORM PROCESS AND MMD GRADIENT FLOW

742 Wasserstein gradient flows are special absolutely continuous measure flows whose velocity fields are negative
 743 Wasserstein (sub-)gradients of functionals \mathcal{F}_ν on $\mathcal{P}_2(\mathbb{R}^d)$ with the unique minimizer ν . The gradient descent

Figure 10: A generated trajectory from a flow matching model trained using the conditional density and velocity given by the MMD gradient flow. As described in Section 2.3 we define the mean reverting process and use schedules $f(t) = 1 - t$ and $g(t) = t$.

flow should reach this minimizer as $t \rightarrow \infty$. In this context, the MMD functional with the non-smooth negative distance kernel $K(x, y) = -|x - y|$ given by

$$\mathcal{F}_\nu(\mu) = \text{MMD}_K^2(\mu, \nu) := -\frac{1}{2} \int_{\mathbb{R}^2} |x - y| d(\mu(x) - \nu(x)) d(\mu(y) - \nu(y)), \quad (20)$$

stands out for its flexible flow behavior between distributions of different support Hertrich et al. (2024). In 1D, its Wasserstein gradient flow μ_t can be equivalently described by the flow of its quantile functions Q_{μ_t} with respect to an associated functional on $L_2(0, 1)$. Note that the MMD functional (20) loses its convexity (along generalized geodesics) in multiple dimensions Hertrich et al. (2024), and the general existence of their Wasserstein gradient flows is unclear in the multivariate case. This yields another reason to work in 1D, where we have the following proposition.

Proposition 8. *The Wasserstein gradient flow μ_t of the MMD functional (20) starting in $\mu_0 = \delta_0$ towards the uniform distribution $\nu = \mathcal{U}[-b, b]$ with fixed $b > 0$ reads as*

$$\mu_t = (1 - \exp(-\frac{t}{b})) \mathcal{U}[-b, b], \quad t > 0, \quad (21)$$

with corresponding velocity field

$$v_t(x) = \frac{x}{b(\exp(\frac{t}{b}) - 1)}, \quad x \in \text{supp}(\mu_t). \quad (22)$$

It holds $\|v_t\|_{L_2(\mathbb{R}, \mu_t)}^2 = \frac{2b}{3} \exp(-\frac{2t}{b})$, and hence, $\|v_t\|_{L_2(\mathbb{R}, \mu_t)} \in L_2(0, 1)$. A corresponding (stochastic) process $(U_t)_t$ is given by $U_t := b(1 - \exp(-\frac{t}{b})) U$, where $U \sim \mathcal{U}[-1, 1]$, such that $\text{Law}(U_t) = \mu_t$.

We prove the proposition more general for $\nu = \mathcal{U}[a, b]$ and a flow starting in $x_0 \in [a, b]$, i.e. we show

$$\mu_t = \mathcal{U}[a + (x_0 - a) \exp(-r(t)), b - (b - x_0) \exp(-r(t))], \quad t > 0 \quad (23)$$

with $r(t) := \frac{2t}{b-a}$ and

$$v_t(x) = \frac{2}{b-a} \left(\frac{x - x_0}{\exp(r(t)) - 1} \right). \quad (24)$$

To this end, we need the relation between measures in $\mathcal{P}_2(\mathbb{R})$ and cumulative distribution functions, see (10). For $\nu = \mathcal{U}[a, b]$, we have that

$$R_\nu(x) = \begin{cases} 0, & \text{if } x < a, \\ \frac{x-a}{b-a}, & \text{if } a \leq x \leq b, \\ 1, & \text{if } x > b \end{cases}$$

and $Q_\nu(s) = a(1 - s) + bs$. In Hertrich et al. (2024) it was shown that the functional $F_\nu: L_2(0, 1) \rightarrow \mathbb{R}$ defined by

$$F_\nu(u) := \int_0^1 \left((1-2s)(u(s) + Q_\nu(s)) + \int_0^1 |u(s) - Q_\nu(t)| dt \right) ds \quad (25)$$

fulfills $\mathcal{F}_\nu(\mu) = F_\nu(Q_\mu)$ for all $\mu \in \mathcal{P}_2(\mathbb{R})$. Moreover, we have the following equivalent characterization of Wasserstein gradient flows of \mathcal{F}_ν , which can be found in (Duong et al., 2024, Theorem 4.5).

Theorem 9. Let \mathcal{F}_ν and F_ν be defined by (20) and (25), respectively. Then the Cauchy problem

$$\begin{cases} \partial_t g(t) \in -\partial F_\nu(g(t)), & t \in (0, \infty), \\ g(0) = Q_{\mu_0}, \end{cases}$$

has a unique strong solution g , and the associated curve $\gamma_t := (g(t))_{\#} \Lambda_{(0,1)}$ is the unique Wasserstein gradient flow of \mathcal{F}_ν with $\gamma(0+) = (Q_{\mu_0})_{\#} \Lambda_{(0,1)}$. More precisely, there exists a velocity field v_t^* such that (γ_t, v_t^*) satisfies the continuity equation (9), and it holds the relations

$$v_t^* \circ g(t) \in -\partial F_\nu(g(t)) \quad \text{and} \quad v_t^* \in -\partial \mathcal{F}_\nu(\gamma_t). \quad (26)$$

Lastly note that here, the subdifferential $\partial F_\nu(u)$ is explicitly given by the singleton

$$-\partial F_\nu(u) = -\nabla F_\nu(u) = 2(\cdot - \textcolor{blue}{R}_\nu \circ u) \quad \text{for all } u \in L_2(0, 1),$$

see (Duong et al., 2024, Lemma 4.3).

Proof of Proposition 8. We want to apply Theorem 9 to (μ_t, v_t) in (23) and (24). The uniform distribution in (23) has the quantile function

$$Q_{\mu_+}(s) = \left(1 - \exp(-r(t))\right) \left(a + (b - a)s\right) + x_0 \exp(-r(t)), \quad s \in (0, 1).$$

For all $t > 0$ and all $s \in (0, 1)$, we have $Q_{\mu_t}(s) \in [a, b]$ since $x_0 \in [a, b]$, and thus

$$\begin{aligned}
-\nabla F_\nu(Q_{\mu_t})(s) &= 2s - 2r_\nu(Q_{\mu_t}(s)) \\
&= 2s - 2 \frac{(1 - \exp(-r(t)))(a + (b - a)s) + x_0 \exp(-r(t)) - a}{b - a} \\
&= 2 \left(s - \frac{x_0 - a}{b - a} \right) \exp(-r(t)).
\end{aligned}$$

On the other hand, it holds

$$\partial_t Q_{\mu_t}(s) = -2 \frac{x_0 - a}{b - a} \exp(-r(t)) - \frac{(-2)(b - a)s}{b - a} \exp(-r(t)) = 2 \left(s - \frac{x_0 - a}{b - a} \right) \exp(-r(t)).$$

By Theorem 9, (μ_t) is the unique Wasserstein gradient flow of \mathcal{F}_ν starting in δ_0 .

Furthermore, there exists a velocity field v_t^* satisfying the continuity equation (9) and the relations (26). For $s \in (0, 1)$ and $t > 0$, let $y := g_s(t) = a + (x_0 - a) \exp(-r(t)) + (b - a)(1 - \exp(-r(t)))s$. Then, we have $s = \frac{y-a-(x_0-a)\exp(-r(t))}{(b-a)(1-\exp(-r(t)))}$, and thus by (26),

$$\begin{aligned}
v_t^*(y) &= v_t^*(Q_{\mu_t}(s)) = 2 \left(s - \frac{x_0 - a}{b - a} \right) \exp(-r(t)) \\
&= 2 \left(\frac{y - a - (x_0 - a) \exp(-r(t))}{(b - a)(1 - \exp(-r(t)))} - \frac{x_0 - a}{b - a} \right) \exp(-r(t)) \\
&= \frac{2}{b - a} \left(\frac{y - a - (x_0 - a)}{1 - \exp(-r(t))} \right) \exp(-r(t)) \\
&= \frac{2}{b - a} \left(\frac{y - x_0}{\exp(r(t)) - 1} \right)
\end{aligned}$$

846 for all $y \in g_s(t)(0, 1) = [a + (x_0 - a) \exp(-r(t)), b - (b - x_0) \exp(-r(t))]$. Lastly, let us compute the
 847 action. For $t > 0$ we have

$$\begin{aligned}
 849 \quad & \|v_t\|_{L^2(\mathbb{R}, \mu_t)}^2 = \int_{a+(x_0-a)\exp(-\frac{2t}{b-a})}^{b-(b-x_0)\exp(-\frac{2t}{b-a})} \frac{4(x-x_0)^2}{(b-a)^2 \left(\exp\left(\frac{2t}{b-a}\right) - 1 \right)^2} \frac{1}{(b-a) \left(1 - \exp\left(-\frac{2t}{b-a}\right) \right)} dx \\
 850 \quad & = \frac{4}{(b-a)^3 \left(\exp\left(\frac{2t}{b-a}\right) - 1 \right)^2 \left(1 - \exp\left(-\frac{2t}{b-a}\right) \right)} \int_{a+(x_0-a)\exp(-\frac{2t}{b-a})}^{b-(b-x_0)\exp(-\frac{2t}{b-a})} (x-x_0)^2 dx \\
 851 \quad & = \frac{4}{(b-a)^2 \exp\left(-\frac{2t}{b-a}\right) \left(\exp\left(\frac{2t}{b-a}\right) - 1 \right)^3} \left[\frac{(x-x_0)^3}{3} \right]_{a+(x_0-a)\exp(-\frac{2t}{b-a})}^{b-(b-x_0)\exp(-\frac{2t}{b-a})} \\
 852 \quad & = \frac{4 \left(1 - \exp\left(-\frac{2t}{b-a}\right) \right)^3}{3(b-a)^2 \exp\left(-\frac{2t}{b-a}\right) \left(\exp\left(\frac{2t}{b-a}\right) - 1 \right)^3} [(b-x_0)^3 - (a-x_0)^3] \\
 853 \quad & = \frac{4 [(b-x_0)^3 - (a-x_0)^3]}{3(b-a)^2} \exp\left(-\frac{4t}{b-a}\right).
 \end{aligned}$$

867 and the proof is finished. \square

868
 869 Note that the fact that v_t^* is uniquely determined on $\text{supp } \mu_t = \overline{g_t(0, 1)}$, correlates with the fact that the
 870 gradient $v_t^* \circ g(t) = -\nabla F_\nu(g(t))$ is a *singleton*. Outside of $\text{supp } \mu_t$, the velocity field may be arbitrarily
 871 extended, which yields a velocity $\tilde{v}_t \in -\partial F_\nu(\mu_t)$ in a *non-singleton* subdifferential. The velocity v_t^* may be
 872 *uniquely* chosen from the tangent space $T_{\mu_t} \mathcal{P}_2(\mathbb{R})$, or equivalently, by choosing it to have minimal norm, i.e.
 873 $v_t^* \equiv 0$ outside of $\text{supp } \mu_t$.

874 A.4 SCALED LATENT DISTRIBUTIONS

875 Finally, we consider a simple class of processes obtained by a deterministic scaling of a latent random variable.
 876 In particular, we will see that the above Wiener process and the Uniform process are of this form, while
 877 the Kac process is not. Let Z be a random variable with law $\rho_Z \in \mathcal{P}_2(\mathbb{R})$, and let $g: [0, 1] \rightarrow [0, \infty)$ be
 878 continuously differentiable with $g(0) = 0$ and $g(1) = 1$. We consider

$$879 \quad Y_t := g(t) Z, \quad t \in [0, 1],$$

880 with $Y_t \sim \mu_t$. Supposing that μ_t has density ρ_t , we get

$$881 \quad \rho_t(x) = g(t)^{-d} \rho_Z\left(\frac{x}{g(t)}\right), \quad t > 0, \quad \text{and} \quad \lim_{t \downarrow 0} \mu_t = \delta_0.$$

882 Then straightforward computation yields that μ_t together with the velocity field

$$883 \quad v_t(x) = \frac{g'(t)}{g(t)} x, \quad x \in \text{supp}(\mu_t)$$

884 with the convention $v_t(0) = 0$ and arbitrary outside $\text{supp}(\mu_t)$, solves the continuity equation (9). Further, it
 885 holds

$$886 \quad \int_0^1 \|v_t\|_{L^2(\mathbb{R}, \mu_t)}^2 dt = \mathbb{E}[\|Z\|^2] \int_0^1 (g'(t))^2 dt < \infty \quad \text{whenever } g' \in L_2(0, 1).$$

893 Also note that if $Z = Q(U)$ for a quantile function $Q : (0, 1) \rightarrow \mathbb{R}$ and a random variable $U \sim \mathcal{U}([0, 1])$, we
 894 have

$$895 \quad 896 \quad \mathbb{E}[\|Z\|^2] = \int_0^1 |Q(u)|^2 du,$$

897 i.e. the second moment of Z is exactly given by the L_2 -norm of its quantile. Hence, explosions of the
 898 velocity's norm $\int_0^1 \|v_t\|_{L_2(\mathbb{R}, \mu_t)}^2 dt$ can be directly controlled by the derivative of the time schedule g , and the
 899 size of the quantile function Q of the latent variable.
 900

901 The Wiener process fits into this framework with $g(t) = \sqrt{t}$ and $Z \sim \mathcal{N}(0, 1)$, which recovers the exploding
 902 vector field $v_t(x) = \frac{1}{2t}x$ in (15). Also the Uniform process appears as a special case of the scaling process.
 903 In contrast, the Kac process does *not* belong to this class, as it is not generated by a deterministic scaling map
 904 but by persistent velocity switching, cf. (16).

905 B FLOW MATCHING AS SPECIAL MEAN REVERTING PROCESSES

906 B.1 THE GAUSSIAN CASE

907 Let us shortly verify that our componentwise approach using the mean-reverting process (4), i.e.

$$908 \quad 909 \quad \mathbf{X}_t := f(t) \mathbf{X}_0 + \mathbf{Y}_{g(t)},$$

910 leads to the usual flow matching objective, where we choose the scheduling functions $f(t) := 1 - t$, $g(t) := t^2$,
 911 the target random variable $\mathbf{X}_0 \sim \mu_0$, and a standard Wiener process \mathbf{Y}_t in \mathbb{R}^d (independent of \mathbf{X}_0): First, it
 912 holds $\mathbf{Y}_{t^2} \sim \mathcal{N}(0, t^2 I_d)$, hence $\mathbf{Y}_{t^2} \stackrel{d}{=} t \mathbf{Z}$ with $\mathbf{Z} \sim \mathcal{N}(0, I_d)$, so that
 913

$$914 \quad \mathbf{X}_t \stackrel{d}{=} (1 - t) \mathbf{X}_0 + t \mathbf{Z}.$$

915 Furthermore, by (15) the 1D components of \mathbf{Y}_t admit the velocity field $v_t^i(x^i) = \frac{x^i}{2t}$, $x^i \in \mathbb{R}$, and by
 916 Proposition 3 the multi-dimensional process \mathbf{Y}_t admits the velocity field $v_{\mathbf{Y}}(t, x) = (\frac{x^1}{2t}, \dots, \frac{x^d}{2t}) = \frac{x}{2t}$, $x =$
 917 $(x^1, \dots, x^d) \in \mathbb{R}^d$. By the calculation (6), the conditional velocity field corresponding to \mathbf{X}_t starting in
 918 $x_0 \in \mathbb{R}^d$ reads as

$$919 \quad 920 \quad v_{\mathbf{X}}(t, x \mid x_0) = \dot{f}(t) x_0 + \dot{g}(t) v_{\mathbf{Y}}(g(t), x - f(t)x_0 \mid 0) \\ 921 \quad = -x_0 + 2t v_{\mathbf{Y}}(t^2, x - (1 - t)x_0 \mid 0) \\ 922 \quad = -x_0 + \frac{x - (1 - t)x_0}{t}.$$

923 Now, if $x \sim P_{\mathbf{X}_t}(\cdot \mid x_0)$, i.e. $x = (1 - t)x_0 + tz$ with $z \sim \mathcal{N}(0, I_d)$, then it follows
 924

$$925 \quad 926 \quad v_{\mathbf{X}}(t, x \mid x_0) = -x_0 + \frac{(1 - t)x_0 + tz - (1 - t)x_0}{t} = z - x_0, \quad (27)$$

927 which is the usual constant-in-time conditional FM velocity along the straight-line trajectories between
 928 $x_0 \sim \mu_0$ and $z \sim \mathcal{N}(0, I_d)$.
 929

930 B.2 THE UNIFORM CASE

931 Now consider any component of the mean-reverting process (4) with $f(t), g(t)$ to be chosen, X_0 being a
 932 component of $\mathbf{X}_0 \sim \mu_0$, and Y_t given by the MMD gradient flow (21), i.e. $Y_t := b(1 - \exp(-\frac{t}{b}))U$, where
 933 $U \sim \mathcal{U}[-1, 1]$. Let v_Y be the corresponding velocity field from (22). Then, we have
 934

$$\begin{aligned}
v_X(t, x|x_0) &= \dot{f}(t)x_0 + \dot{g}(t)v_Y(g(t), |x - f(t)x_0|) \frac{x - f(t)x_0}{|x - f(t)x_0|} \\
&= \dot{f}(t)x_0 + \dot{g}(t) \frac{x - f(t)x_0}{b \left(\exp \left(\frac{g(t)}{b} \right) - 1 \right)}.
\end{aligned}$$

Now, along the trajectory $x \sim P_{X_t}(\cdot | x_0)$, i.e.

$$x = f(t)x_0 + b \left(1 - \exp \left(-\frac{g(t)}{b} \right) \right) u =: \alpha_t x_0 + \sigma_t u, \quad (28)$$

with $u \sim \mathcal{U}(-1, 1)$, the velocity calculates as

$$\begin{aligned}
v_X(t, x | x_0) &= \dot{f}(t)x_0 + \dot{g}(t) \frac{b \left(1 - \exp \left(-\frac{g(t)}{b} \right) \right) u}{b \left(\exp \left(\frac{g(t)}{b} \right) - 1 \right)} \\
&= \dot{f}(t)x_0 + \dot{g}(t) \exp \left(\frac{-g(t)}{b} \right) u \\
&= \dot{\alpha}_t x_0 + \dot{\sigma}_t u,
\end{aligned} \quad (29)$$

where $\alpha_t := f(t)$ and $\sigma_t := b \left(1 - \exp \left(-\frac{g(t)}{b} \right) \right)$. Hence, in order to minimize the CFM loss, we only need to sample $t \sim \mathcal{U}[0, 1]$, $x_0 \sim X_0$, and $u \sim \mathcal{U}(-1, 1)$. Note the similarity between the MMD path (28) and the FM/diffusion path (7); by choosing $b = 1$, $f(t) := 1 - t$ and $g(t) := -\log(1 - t)$ it follows $\alpha(t) = 1 - t$, $\sigma(t) = t$, and we obtain in (29) the FM-velocity along the trajectory (27), where the Gaussian noise $z \sim \mathcal{N}(0, 1)$ is just replaced by a uniform noise $u \sim \mathcal{U}(-1, 1)$.

C IMM WITH QUANTILE INTERPOLANTS

In this section, we want to demonstrate how the IMM framework proposed in Zhou et al. (2025) can be realized by our quantile approach.

The general idea of consistency models is to predict the jumps from a process Z_t to the target X_0 , while factoring in the *consistency* of the trajectory of Z_t via Z_s , $0 < s < t$. In FM, this consistency of the flow is usually neglected as only single points on the FM paths are sampled. Also, consistency models as one-step or multistep samplers usually are in no need of velocity fields.

Note that in the following – for notational simplicity – we consider the one-dimensional case $X_0, Z_t \in \mathbb{R}$ where we can employ quantile functions. By combining the 1D components into a multivariate model $\mathbf{X}_0 = (X_0^1, \dots, X_0^d)$, $\mathbf{Z}_t = (Z_t^1, \dots, Z_t^d)$, the results of this chapter trivially extend to \mathbb{R}^d .

Recall our definition of the *quantile process*

$$Z_t = f(t)X_0 + Q_{g(t)}(U), \quad U \sim \mathcal{U}(0, 1), \quad t \in [0, 1]. \quad (30)$$

and the *quantile interpolants*

$$I_{s,t}(x, y) = f(s)x + Q_{g(s)}(R_{g(t)}(y - f(t)x)), \quad s, t \in [0, 1]. \quad (31)$$

Note that by the assumptions (5) it holds $Z_0 = X_0$ and $Z_1 = Q_1(U)$.

By the following remark, our quantile interpolants generalize the interpolants used in Denoising Diffusion Implicit Models (DDIM).

Figure 11: The CDF R_μ and quantile function Q_μ of a standard normal distribution μ .

Remark 10 (Relation to DDIM). *The interpolants used in Denoising Diffusion Implicit Models (DDIMs) Song et al. (2020) are given by*

$$\text{DDIM}_{s,t}(x, y) := \left(\alpha_s - \frac{\sigma_s}{\sigma_t} \alpha_t \right) x + \frac{\sigma_s}{\sigma_t} y. \quad (32)$$

Now let $f(t) := 1 - t$, $g(t) := t^2$ and let Q_t be the quantile of the law of a standard Brownian motion W_t .

First we obtain

$$Q_{g(t)}(p) = Q_{t^2}(p) = Q_{\mathcal{N}(0,t^2)}(p) = t\sqrt{2} \operatorname{erf}^{-1}(2p - 1) = t Q_{\mathcal{N}(0,1)}(p), \quad p \in (0, 1),$$

with the error function erf . Hence, (30) exactly becomes (not only in distribution)

$$Z_t = (1 - t)Y_0 + t Q_{\mathcal{N}(0,1)}(U) = (1 - t)Y_0 + tZ,$$

where $Z := Q_{\mathcal{N}(0,1)}(U) \sim \mathcal{N}(0, 1)$, i.e. the components of (7) with the choice $\alpha_t = 1 - t$, $\sigma_t = t$.

Furthermore, since $R_{t^2}(z) = R_{\mathcal{N}(0,t^2)}(z) = \frac{1}{2}(1 + \operatorname{erf}\left(\frac{z}{t\sqrt{2}}\right))$, the quantile interpolant (12) reads as

$$\begin{aligned} I_{s,t}(x, y) &= (1 - s)x + s\sqrt{2} \operatorname{erf}^{-1}\left(\operatorname{erf}\left(\frac{y - (1 - t)x}{t\sqrt{2}}\right)\right) = (1 - s)x + \frac{s}{t}(y - (1 - t)x) \\ &= ((1 - s) - \frac{s}{t}(1 - t))x + \frac{s}{t}y. \end{aligned}$$

which is exactly $\text{DDIM}_{s,t}(x, y)$ in (32) with $\alpha_t = f(t)$ and $\sigma_t^2 = g(t)$. \diamond

Exactly as the DDIM interpolants, our quantile interpolants (31) satisfy the following crucial interpolation properties.

Proposition 11 (a.k.a Proposition 4). *For all $x, y \in \mathbb{R}$ and all $s, r, t \in [0, 1]$, it holds*

$$I_{0,t}(x, y) = x, \quad I_{t,t}(x, y) = y, \quad (33)$$

and

$$I_{s,r}(x, I_{r,t}(x, y)) = I_{s,t}(x, y).$$

Furthermore, inserting the quantile process (11) yields

$$I_{s,t}(Z_0, Z_t) = Z_s. \quad (34)$$

Proof. By assumptions it holds

$$I_{0,t}(x, y) = f(0)x + Q_{g(0)}(R_{g(0)}(y - f(t)x)) = x,$$

1034 and

1035
$$I_{t,t}(x, y) = f(t)x + Q_{g(t)}(R_{g(t)}(y - f(t)x)) = y.$$

1036 Furthermore, it holds the interpolation/consistency property

1038
$$\begin{aligned} I_{s,r}(x, I_{r,t}(x, y)) &= f(s)x + Q_{g(s)}(R_{g(r)}(I_{r,t}(x, y) - f(r)x)) \\ 1039 &= f(s)x + Q_{g(s)}(\cancel{R_{g(r)}(f(r)x)} + \cancel{Q_{g(r)}(R_{g(t)}(y - f(t)x))} - \cancel{f(r)x}) \\ 1040 &= f(s)x + Q_{g(s)}(R_{g(t)}(y - f(t)x)) \\ 1041 &= I_{s,t}(x, y) \end{aligned}$$

1043 for all $x, y \in \mathbb{R}$. Also note that inserting the random variables Z_0, Z_t yields

1044
$$\begin{aligned} I_{s,t}(Z_0, Z_t) &= f(s)Z_0 + Q_{g(s)}(R_{g(t)}(Z_t - f(t)Z_0)) \\ 1045 &= f(s)Z_0 + Q_{g(s)}(U) \\ 1046 &= Z_s. \end{aligned}$$

1047 This finishes the proof. \square 1050 Proposition 11 represents the key observation which allows us to utilize our quantile process (30) in the IMM
1051 framework the same way as Zhou et al. (2025) employ the DDIM interpolants (32):1052 For this, let us now recall the basic idea of inductive moment matching and the corresponding loss functions.
1053 Let us distinguish between real numbers written in small letters ($x_0, u, z_t \in \mathbb{R}$) and random variables written
1054 with capital letters (X_0, U, Z_t, \dots). We assume that the probability distributions have densities:

1055
$$\begin{array}{c|c|c|c|c} \text{Law}(X_0) & \text{Law}(Z_t) & \text{Law}(Z_s | X_0 = x_0, Z_t = z_t) & \text{Law}(Z_t | X_0 = x_0, U = u) & \text{Law}(X_0 | Z_t = z_t) \\ \hline \rho_0(x_0) & \rho_t(z_t) & \rho_{s|0,t}(z_s | x_0, z_t) & \rho_{t|0,1}(z_t | x_0, u) & \rho_{0|t}(x_0 | z_t) \end{array}$$

1056 Note that by (34) we have $\rho_{s|0,t}(z_s | x_0, z_t) = \text{Law}(I_{s,t}(x_0, z_t))(z_s) = \delta(z_s - I_{s,t}(x_0, z_t))$, hence sampling
1057 from $\rho_{s|0,t}(z_s | x_0, z_t)$ is just applying $I_{s,t}(x_0, z_t)$. Similarly, sampling from $\rho_{t|0,1}(z_t | x_0, u)$ is just evaluating
1058 $I_{t,1}(x_0, Q_1(u))$.1059 The following proposition follows directly from Proposition 11 as in Zhou et al. (2025). It is essential for
1060 deriving the appropriate loss functions.1061 **Proposition 12.** *For all $0 \leq s \leq r \leq t \leq 1$, the quantile interpolant (31) is self-consistent, i.e.*

1062
$$\rho_{s|0,t}(z_s | x_0, z_t) = \int_{\mathbb{R}} \rho_{s|0,r}(z_s | x_0, z_r) \rho_{r|0,t}(z_r | x_0, z_t) dz_r,$$

1063 and the quantile process (30) is marginal preserving, i.e.

1064
$$\rho_s(z_s) = \mathbb{E}_{z_t \sim \rho_t, x_0 \sim \rho_{0|t}(\cdot | z_t)} [\rho_{s|0,t}(z_s | x_0, z_t)].$$

1065 **Learning.** The conditional probability $\rho_{0|t}(\cdot | z_t)$ is now approximated by a network p_{s,t,z_t}^θ where the
1066 parameter s describes the dependence on ρ_s such that

1067
$$\rho_s \approx \mathbb{E}_{z_t \sim \rho_t, x_0 \sim p_{s,t,z_t}^\theta} [\rho_{s|0,t}(\cdot | x_0, z_t)] =: p^\theta(s, t). \quad (35)$$

1068 Then it is proposed in (Zhou et al., 2025, Eq. (7)) to minimize the so-called *naïve objective*

1069
$$\mathcal{L}_{\text{naive}}(\theta) := \mathbb{E}_{s,t} [D(\rho_s, p^\theta(s, t))], \quad (36)$$

1070 with an appropriate metric D , e.g. MMD. The procedure is now as follows: starting in a sample x_0 from X_0 ,
1071 we can sample z_s, z_t from Z_s, Z_t by (30), respectively; then given z_t we sample \tilde{x}_0 from p_{s,t,z_t}^θ , and finally
1072 we can evaluate $\tilde{z}_s = I(\tilde{x}_0, z_t)$ from (34), which is then compared with z_s .

1081 **Inference.** The following iterative multi-step sampling can be applied: for chosen decreasing $t_k \in (0, 1]$,
 1082 $k = 0, \dots, T$ with $t_0 = 1$, starting with $x_0^{(0)} \sim p_{0,1,z_1}^\theta$, we compute
 1083

$$1084 \quad z_{t_k} = I_{t_k, t_{k-1}} \left(x_0^{(k-1)}, z_{t_{k-1}} \right), \quad x_0^{(k)} \sim p_{0,t_k,z_{t_k}}^\theta, \quad k = 1, \dots, T.$$

1085

1087 Although for marginal-preserving interpolants, a minimizer of $\mathcal{L}_{\text{naive}}$ exists with minimum 0, the authors of
 1088 Zhou et al. (2025) object that directly optimizing (36) faces practical difficulties when t is far away from s .
 1089 Instead, they propose to apply the following “inductive bootstrapping” technique:
 1090

1091 **Bootstrapping.** Instead of minimizing (36), we consider the *general objective*
 1092

$$1093 \quad \mathcal{L}_{\text{general}}(\theta) := \mathbb{E}_{s,t} [w(s,t) \text{MMD}_{\mathcal{K}}^2(p^{\theta_{n-1}}(s,r), p^{\theta_n}(s,t))], \quad (37)$$

1094

1095 with a weighting function $w(s,t)$ to be chosen. The kernel \mathcal{K} of the squared MMD distance can be chosen as
 1096 e.g. the (time-dependent) Laplace kernel. Importantly, the value r is chosen to be a function $r = r_{s,t} \in [s, t]$
 1097 being “close to t ” and fulfilling a suitable monotonicity property.

1098 Let us assume the simplest case $r_{s,t} := \max\{s, t - \varepsilon\}$ with a small fixed $\varepsilon > 0$ and hereby demonstrate the
 1099 bootstrapping technique: Fix $s \in [0, 1]$. Then, it holds for all $t \in [s, s + \varepsilon]$ that $r_{s,s} = s$. By the definition
 1100 (35) and property (33), it holds (independently of θ) that $p^\theta(s, s)(z_s) = \rho_s(z_s)$. Hence, minimizing (37) in
 1101 the first step $n = 1$ yields
 1102

$$1103 \quad 0 = \text{MMD}_{\mathcal{K}}^2(p^{\theta_0}(s, s), p^{\theta_1}(s, t_1)) = \text{MMD}_{\mathcal{K}}^2(\rho_s, p^{\theta_1}(s, t_1)) \quad \text{for all } t_1 \in [s, s + \varepsilon].$$

1104

1105 In the second step $n = 2$, it holds for all $t_2 \in [s, s + 2\varepsilon]$ that $r_{s,t_2} \in [s, s + \varepsilon]$. Hence, minimizing (37) in the
 1106 second step yields, together with the first step,
 1107

$$1107 \quad 0 = \text{MMD}_{\mathcal{K}}^2(p^{\theta_1}(s, r_{s,t_2}), p^{\theta_2}(s, t_2)) = \text{MMD}_{\mathcal{K}}^2(\rho_s, p^{\theta_2}(s, t_2)) \quad \text{for all } t_2 \in [s, s + 2\varepsilon].$$

1108

1109 Thus, for the number of steps $n \rightarrow \infty$, it holds $0 = \text{MMD}_{\mathcal{K}}^2(\rho_s, p^{\theta_n}(s, t_n))$ even for the entire interval
 1110 $t_n \in [s, 1]$. Hence, minimizing the general objective (37) with a large number of steps eventually minimizes
 1111 the naive objective (36), see (Zhou et al., 2025, Theorem 1) for more details.
 1112

1113 D ADAPTING NOISE TO DATA

1114

1115 D.1 COUNTEREXAMPLE: MARGINAL PRODUCT

1116

1117 For the measure
 1118

$$1119 \quad \mu = \frac{1}{2}\delta_{(1,1)} + \frac{1}{2}\delta_{(-1,-1)} \in \mathcal{P}_2(\mathbb{R}^2), \quad \mu_{\text{marg}} = \left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1 \right) \otimes \left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1 \right),$$

1120

1121 one has $W_2^2(\mu, \mu_{\text{marg}}) = 2$, whereas for
 1122

$$1123 \quad \nu_\alpha = \left(\frac{1}{2}\delta_{-\alpha} + \frac{1}{2}\delta_\alpha \right) \otimes \left(\frac{1}{2}\delta_{-\alpha} + \frac{1}{2}\delta_\alpha \right)$$

1124

1125 it holds $W_2^2(\mu, \nu_\alpha) = 2(1 - \alpha + \alpha^2) = 1.5$ for $\alpha = 0.5$. Thus the W_2 -closest independent latent may
 1126 contract or expand the marginals to partially account for correlations it cannot represent.
 1127

1128 D.2 DETAILS ON THE ARCHITECTURE OF THE LEARNED QUANTILES
11291130 We implement each one-dimensional quantile function with rational-quadratic splines (RQS) Gregory &
1131 Delbourgo (1982); Durkan et al. (2019). We explored several ways to map $u \in (0, 1)$ into the spline input;
1132 the two variants below consistently performed well and are used in our experiments. For every coordinate i ,
1133 we write

1134
$$Q_\phi^i(u) = S_\phi^i(\psi(u)), \quad u \in (0, 1),$$

1135

1136 where $S_\phi^i : \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing RQS with an interior knot interval $(-B, B)$ (with K bins) and
1137 linear tails outside $\pm B$ that are C^1 -matched at the boundaries. The two settings differ only in the "activation"
1138 ψ :

1139 (A) Logit: $\psi(u) = \text{logit}(u)$, (B) Affine: $\psi(u) = \alpha_B(u) = B(2u - 1)$.
1140

1141 Thus, both (A) and (B) share exactly the same spline S_ϕ^i architecture—including the bounded interior
1142 $(-B, B)$ and slope-matched linear tails—and differ only in how $(0, 1)$ is mapped into the spline's input. In
1143 (A), $\psi(u) \in \mathbb{R}$ and the linear tails of S_ϕ^i are used whenever $|\text{logit}(u)| > B$; in (B), $\psi(u) \in (-B, B)$ so the
1144 forward pass never touches the tails (they remain important for invertibility and out-of-range evaluation).1145
1146 **Parameterization and constraints.** Each spline S_ϕ^i is parameterized by raw bin widths, heights, and knot
1147 slopes. We pass these raw parameters through softplus, normalize widths and heights to sum to one (scaled
1148 to the domain span $2B$ and the learned range span, respectively), and add a small constant $s_{\min} > 0$ to each
1149 slope to enforce a positive lower bound. The linear tail slopes (left/right) are learned in the same way and are
1150 chosen so that both function value and slope agree at $\pm B$. These constraints guarantee strict monotonicity,
1151 hence Q_ϕ^i is strictly increasing on $(0, 1)$ under both (A) and (B). Closed-form formulas for the spline pieces
1152 and their (log-)derivatives are available; by the chain rule,

1153
$$\frac{d}{du} Q_\phi^i(u) = S_\phi^{i\prime}(\psi(u)) \psi'(u), \quad \text{with} \quad \psi'(u) = \begin{cases} \frac{1}{u(1-u)} & \text{for (A),} \\ 2B & \text{for (B).} \end{cases}$$

1154
1155

1156
1157 **Per-component affine wrapper (scale/bias).** After computing $Q_\phi^i(u)$, we add a tiny affine head per
1158 coordinate:

1159
$$\tilde{Q}_\phi^i(u) = s_i Q_\phi^i(u) + b_i, \quad s_i = \text{softplus}(\log \alpha_i), \quad b_i = \beta_i,$$

1160

1161 where $\alpha_i > 0$ and $\beta_i \in \mathbb{R}$ are learned per component. Using $\text{softplus}(\log \alpha_i)$ keeps $s_i > 0$ with a convenient
1162 dynamic range; this preserves monotonicity and adds only one scale and one bias parameter per component.
11631164 **Regularization via Expected Negative Log-Jacobian** Let $Q_\phi : (0, 1)^d \rightarrow \mathbb{R}^d$ be the componentwise map
1165 with affine heads, $Q_\phi(u) = (\tilde{Q}_\phi^1(u_1), \dots, \tilde{Q}_\phi^d(u_d))$. Since the construction is per-coordinate, the Jacobian
1166 is diagonal with entries $\partial_{u_i} \tilde{Q}_\phi^i(u_i) > 0$. We regularize with the expected negative log-determinant of the
1167 Jacobian:

1168
$$\begin{aligned} \mathcal{L}_{\text{reg}}(\phi) &= \lambda_{\text{reg}} \mathbb{E}_{u \sim p_U} [-\log \det J_{Q_\phi}(u)] \\ &= \lambda_{\text{reg}} \mathbb{E}_{u \sim p_U} \left[-\sum_{i=1}^d \log (\partial_{u_i} \tilde{Q}_\phi^i(u_i)) \right]. \end{aligned}$$

1169
1170

1171 Here $p_U = \text{Unif}((0, 1)^d)$. In practice, we evaluate the log-derivatives in closed form.
1172
1173

1175 **Computational efficiency and scalability.** The quantile architecture is highly efficient in both computation
 1176 and memory. Each component i requires only $\mathcal{O}(K)$ parameters for the RQS (where K is the number of bins)
 1177 plus two affine parameters, totaling roughly $4K + 2$ parameters per dimension for typical implementations.
 1178 For a d -dimensional problem, this yields $\mathcal{O}(d \cdot K)$ total parameters—negligible compared to modern UNet
 1179 architectures which often contain millions of parameters. Forward evaluation of $Q_\phi(u)$ involves d independent
 1180 spline evaluations operating in parallel. The diagonal Jacobian structure means that both the determinant and
 1181 its gradient reduce to d independent scalar derivatives with analytical closed-form expressions which are fully
 1182 parallelizable, avoiding expensive automatic differentiation of matrix operations.

1183 In practice, as noted in Section 5, the computational overhead (on CIFAR10) during joint training is approxi-
 1184 mately 3.2% and drops to 1.2% after freezing the quantile. Furthermore we only used 300k parameters for the
 1185 quantile in contrast to 35M for the U-Net, making the approach highly scalable to high-dimensional problems.
 1186 The strict monotonicity constraints and bounded parameterization (via softplus and normalization) ensure
 1187 numerical stability throughout training, and we observed no instabilities across our experiments spanning
 1188 dimensions from $d = 2$ to $d = 3072$ (CIFAR-10).

1190 **D.3 TOY TARGET DISTRIBUTIONS**

1192
 1193
 1194
 1195
 1196
 1197
 1198 Figure 12: A generated sample path from the learned quantile latent to the checkerboard. The adapted latent
 1199 (left) is already close to the target distribution.
 1200

1201
 1202 We use three standard challenging low-dimensional distributions: Neal’s funnel, a 3×3 Gaussian mixture,
 1203 and a checkerboard.
 1204

1205 **Funnel.** For the toy illustration in Figure 2, we work with the dataset known as Neals Funnel Neal (2003).
 1206 The distribution of Neal’s funnel is defined as follows:
 1207

$$1208 p(x_1, x_2) = \mathcal{N}(x_1; 0, 3) \mathcal{N}(x_2; 0, \exp(x_1/2)).$$

1209
 1210 **Grid Gaussian Mixture.** We give more details about the mixture of Gaussian we consider in our experiment.
 1211 It is designed in a grid pattern in $[-1, 1]^2$, as follows:
 1212

$$1213 \sum_{i=1}^9 w_i \cdot \mathcal{N}(\mu_i, \sigma^2 I_2),$$

1214 where $(w_i)_{i=1}^9 = (0.01, 0.1, 0.3, 0.2, 0.02, 0.15, 0.02, 0.15, 0.05)$, $\mu_i = (\mu_1, \mu_2)$ with $\mu_1 = (i \bmod 3) - 1$, $\mu_2 = \lfloor \frac{i}{3} \rfloor - 1$, and $\sigma = 0.025$.
 1215

1216 **Checkerboard.** Fix $\ell < h$ and domain $\Omega = [\ell, h]^2$. Define the support
 1217

$$1218 \mathcal{S} = \{(x, y) \in \Omega : \lfloor x \rfloor + \lfloor y \rfloor \text{ is even}\}.$$

1222 The checkerboard distribution is uniform on \mathcal{S} and zero elsewhere:

1223

1224

1225

$$p_{\text{Checker}}(x, y) = \begin{cases} \frac{1}{\text{area}(\mathcal{S})}, & (x, y) \in \mathcal{S}, \\ 0, & \text{otherwise.} \end{cases}$$

1226

1227

1228

1229

1230 For integer ℓ, h with even side length (e.g. $\ell = -4, h = 4$), exactly half of Ω is active, hence

1231

1232

1233

$$p_{\text{Checker}}(x, y) = \frac{2}{(h - \ell)^2} \mathbf{1}_{\mathcal{S}}(x, y).$$

1234

1235

1236

1237

1238 **D.4 LOSS IMPLEMENTATION**

1239

1240 For training, the minibatch OT is computed empirically as follows: draw a minibatch $\{\mathbf{x}_0^{(i)}\}_{i=1}^B \sim \mu_0$ and

1241 $\{\mathbf{u}^{(j)}\}_{j=1}^B \sim \mathcal{U}([0, 1]^d)$, set $\mathbf{y}^{(j)} = \mathbf{Q}_\phi(\mathbf{u}^{(j)})$, and define the empirical measures

1242

1243

1244

1245

$$\hat{\mu}_0^B = \frac{1}{B} \sum_{i=1}^B \delta_{\mathbf{x}_0^{(i)}}, \quad \hat{\nu}_\phi^B = \frac{1}{B} \sum_{j=1}^B \delta_{\mathbf{y}^{(j)}}.$$

1246

1247

1248

1249 The minibatch quantile alignment objective is

1250

1251

1252

$$\hat{\mathcal{L}}_{\text{AN}}(\phi) = W_2^2(\hat{\mu}_0^B, \hat{\nu}_\phi^B),$$

1253

1254

1255

1256 and gradients backpropagate through $\mathbf{y}^{(j)} = \mathbf{Q}_\phi(\mathbf{u}^{(j)})$. Let $T : \{1, \dots, B\} \rightarrow \{1, \dots, B\}$ denote the optimal

1257 assignment that minimizes $\sum_{i=1}^B \|\mathbf{x}_0^{(i)} - \mathbf{y}^{(T(i))}\|_2^2$, and define its inverse $P(j) = i$ such that $T(i) = j$. We

1258 use the conditional flow path $\mathbf{x}_t^{(j)} = (1 - t_j)\mathbf{x}_0^{(j)} + t_j \mathbf{y}^{(j)}$, $j = 1, \dots, B$, with $t_j \sim \mathcal{U}(0, 1)$. The target

1259 velocity is $\mathbf{y}^{(j)} - \mathbf{x}_0^{(P(j))}$, we apply a stop-gradient operator $\text{sg}(\cdot)$ to this target in the flow matching loss.

1260 This prevents gradients from the velocity model from flowing back through the quantile function in this term,

1261 ensuring that \mathbf{Q}_ϕ is updated primarily through $\hat{\mathcal{L}}_{\text{AN}}$, while v_θ learns to match the transport directions defined

1262 by the current quantile map. Note however the stop gradient operation only slightly stabilizes training, we

1263 can train with full gradients as well. We optimize the empirical version

1264

1265

1266

$$\hat{\mathcal{L}}_{\text{CFM}}(\theta, \phi) = \frac{1}{B} \sum_{j=1}^B \|v_\theta(\mathbf{x}_t^{(j)}, t_j) - \text{sg}(\mathbf{y}^{(j)} - \mathbf{x}_0^{(P(j))})\|_2^2, \quad \hat{\mathcal{L}}(\theta, \phi) = \hat{\mathcal{L}}_{\text{CFM}}(\theta, \phi) + \lambda \hat{\mathcal{L}}_{\text{AN}}(\phi).$$

1267

1268

1269 D.5 ALGORITHM

1270

1271

Algorithm 1 Joint learning of 1D quantiles and FM velocity

1272 **Require:** Dataset \mathcal{D} , batch size B , weight λ , iterations K
 1273 **Require:** Quantile model \mathbf{Q}_ϕ , velocity model v_θ
 1274 1: **for** $k = 1$ to K **do**
 1275 2: Sample $\{\mathbf{x}_i\}_{i=1}^B \sim \mathcal{D}$, $\{\mathbf{u}_j\}_{j=1}^B \sim \mathcal{U}([0, 1]^d)$, $\{t_j\}_{j=1}^B \sim \mathcal{U}(0, 1)$
 1276 3: $C_{ij} \leftarrow \|\mathbf{x}_i - \mathbf{Q}_\phi(\mathbf{u}_j)\|_2^2$
 1277 4: $T \leftarrow \arg \min_T \sum_{i=1}^B C_{i,T(i)}$
 1278 5: Define P by $P(j) = i$ such that $T(i) = j$
 1279 6: $\hat{\mathbf{x}}_j \leftarrow \mathbf{x}_{P(j)}$
 1280 7: $\mathbf{z}_j \leftarrow (1 - t_j)\hat{\mathbf{x}}_j + t_j \mathbf{Q}_\phi(\mathbf{u}_j)$
 1281 8: $v_{\text{target},j} \leftarrow \text{sg}(\mathbf{Q}_\phi(\mathbf{u}_j) - \hat{\mathbf{x}}_j)$
 1282 9: $\hat{\mathcal{L}}_{\text{AN}} \leftarrow \frac{1}{B} \sum_{j=1}^B \|\hat{\mathbf{x}}_j - \mathbf{Q}_\phi(\mathbf{u}_j)\|_2^2$
 1283 10: $\hat{\mathcal{L}}_{\text{CFM}} \leftarrow \frac{1}{B} \sum_{j=1}^B \|v_\theta(\mathbf{z}_j, t_j) - v_{\text{target},j}\|_2^2$
 1284 11: $\hat{\mathcal{L}} \leftarrow \hat{\mathcal{L}}_{\text{CFM}} + \lambda \hat{\mathcal{L}}_{\text{AN}}$
 1285 12: Update (θ, ϕ) by a gradient step on $\hat{\mathcal{L}}$
 1286 13: **end for**
 1287 14: **return** (θ, ϕ)

1290

1291

1292 E IMPLEMENTATION DETAILS

1293

1294 We support baseline flow matching, optional quantile pretraining, and joint quantile+velocity optimisation.
 1295 Pretraining fits the RQS transport before optionally freezing it; joint training updates both modules simultaneously.
 1296 Once the quantile learning rate decays to zero we freeze its weights and continue optimising the
 1297 velocity field only.

1298 The coupling plans are calculated using the Python Optimal Transport package Flamary et al. (2021). For
 1299 inference simulate the corresponding ODEs using the torchdiffeq Chen (2018) package. For all models we
 1300 only used the batch size 128 and learning rate $2e - 4$ for the velocities. We use Adam Kingma & Ba (2015)
 1301 as the optimizer. The quantiles are parameterised by rational-quadratic splines as described in D.2, we set
 1302 the minimum bin width and height to $1e - 3$ and the minimum slope to $1e - 5$. We could in principle stack
 1303 multiple RQS layers, however for all of our experiments we use one layer.

1304

1305

1306 E.1 SYNTHETIC EXAMPLES

1307

1308 All models include a sinusoidal time embedding and SiLU activation functions. In these low dimensional
 1309 settings we need no regularization and used $\lambda = 50$.

1310

1311 **Funnel.** For all models we used 3 hidden layers with width 64. We used a batch size of 128, a learning
 1312 rate of $2e - 4$ and exponential moving average on the network weights of 0.999. The baselines were trained
 1313 for 200,000 iterations. Since there is a very high variance when sampling from the funnel, we pretrain our
 1314 quantiles and use the frozen quantiles during flow matching. We trained our quantile for 50,000 steps and to
 1315 compensate we trained our velocity for only 100,000 steps. For the RQS we chose logit activation, 32 bins
 and a bound of 500.

1316 **Grid Gaussian Mixture and Checker.** The quantiles were trained for the first 20,000 steps, after which the
 1317 learning rate was linearly decayed to 0 by step 25,000. For both datasets, we trained the velocity model with
 1318 3 layers and a hidden width of 256 for 100,000 steps. **Furthermore we used sinusoidal positional embeddings**
 1319 **for the checkerboard.** We found both bounded and logit activation performed well, for the RQS we chose 32
 1320 bins with a bound of 50.

1321

1322

E.2 IMAGE EXPERIMENTS

1323

1324 For both image datasets, we adapt the U-Net from Nichol & Dhariwal (2021) to parametrize our velocity
 1325 field.

1326

1327 **MNIST.** For the MNIST dataset we use the U-Net with channel multipliers (1, 2, 4), two residual blocks per
 1328 resolution, attention at 7×7 , and 1 attention head. We clip the gradient norm to 1 and use exponential moving
 1329 averaging with a decay of 0.99. We test three configurations with base widths of 8, 16, and 32 channels. For
 1330 these ablation runs, we use quantile loss weight $\lambda = 1.0$, regularization parameter $\beta = 0.1$, and rational
 1331 quadratic spline with 16 bins and bound 3.0. The quantiles were trained for the first 20,000 steps, after which
 1332 the learning rate was linearly decayed to 0 over the next 10,000 steps. The images in Figure 5 were generated
 1333 using our 32 channel configuration.

1334

1335 **CIFAR.** We use exactly the same U-Net setup from Tong et al. (2024). We clip the gradient norm to 1
 1336 and use exponential moving averaging with a decay of 0.9999. To evaluate our results, we use the Fréchet
 1337 inception distance (FID) Heusel et al. (2017). The quantiles were trained for the first 20,000 steps, after which
 1338 the learning rate was linearly decayed to 0 by step 25,000. **We used $\lambda = 1$ and varied β . For the RQS we**
 1339 **used logit activation, 32 bins and a bound of 25.**

1340

1341 CIFAR-10 inputs are normalized to $[-1, 1]$ with random horizontal flips.

1342

1343

F FURTHER EXPERIMENTAL RESULTS

1344

1345

F.1 SYNTHETIC DATASETS

1346

1359

1360

1361 Figure 13: Samples (1M) from our learned latent of the funnel distribution. Color shows endpoint norm.

1362

Figure 14: Flow Matching with optimal coupling using Gaussian noise (left) and our learned noise (right) after 20k training steps with identical parameters. Generated samples are shown in blue, and ground-truth samples in red

Figure 15: Visualization of the effect of the loss weight λ , on the left the learned latents for the checkerboard and the gaussian mixture example using $\lambda = 50$. On the right the learned latents using $\lambda = 0$. Without the additional loss the model tries to make predicting the velocity as simple as possible, this does not align with our objective.

1410 F.2 MNIST
14111444 Figure 16: Comparison of the empirical and learned probability density functions and their quantile functions
1445 at different pixel locations (y, x) , averaged over images from the MNIST dataset. The blue area illustrates the
1446 difference between the quantiles, corresponding to the one-dimensional Wasserstein distance; see Eq. 4.1.
14471448
1449
1450
1451
1452
1453
1454
1455
1456

Figure 17: [Ablation study over capacity of the U-Net for sampling from the MNIST dataset](#). The FID curves show that our method achieves significantly lower FIDs for lower capacities. Note the difference in parameters is approximately 40k.

F.3 CIFAR10

	β	FID (20 steps)	FID (100 steps)
1518	0.1	8.93 ± 0.04	5.22 ± 0.02
1519	0.2	7.81 ± 0.04	4.75 ± 0.02
1520	0.3	7.48 ± 0.05	4.53 ± 0.05
1521	0.4	7.60 ± 0.05	4.54 ± 0.01
1522	0.5	7.66 ± 0.03	4.49 ± 0.02
1523	0.6	7.70 ± 0.05	4.47 ± 0.03
1524	0.7	7.93 ± 0.05	4.59 ± 0.02
1525	0.8	7.77 ± 0.05	4.42 ± 0.02
1526	0.9	8.09 ± 0.04	4.56 ± 0.02
1527	1.0	8.35 ± 0.03	4.66 ± 0.04
1528	1.1	8.60 ± 0.04	4.80 ± 0.03
1529	Baseline	8.42 ± 0.07	4.63 ± 0.05

Figure 18: Complete FID scores on CIFAR-10 for all β values. Our method reached the best validation FID after 320k steps, while the baseline took 340k. We used those checkpoints for the evaluation. We evaluated the FID using 5 seeds and report the mean as well as the standard deviation. Red denotes 20 step FID, blue 100 step FID, dotted line refers to baseline.

1561 (f) Final performance metrics at 55k training steps as a function of regularization
 1562 parameter β .

1576 (b) Wasserstein distance evolution during training for different regularization
 1577 parameters β .

1593 (c) Regularization loss $-E[\log|\det J_Q|]$ showing the regularization loss
 1594 across different β values.

1596 Figure 19: **Ablation studies for regularization parameter β and model capacity.**
 1597

(d) Gradient norm of the quantile function during training.

(e) Gradient norm of the velocity field for fixed $\beta = 0.5$ over training.

Figure 20: Ablation studies showing the effect of regularization and model capacity on training dynamics and final performance.