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ABSTRACT

We introduce a general framework for constructing generative models using one-
dimensional noising processes. Beyond diffusion processes, we outline examples that
demonstrate the flexibility of our approach. Motivated by this, we propose a novel frame-
work in which the 1D processes themselves are learnable, achieved by parameterizing
the noise distribution through quantile functions that adapt to the data. Our construction
integrates seamlessly with standard objectives, including Flow Matching and consistency
models. Learning quantile-based noise naturally captures heavy tails and compact supports
when present. Numerical experiments highlight both the flexibility and the effectiveness of
our method.

1 INTRODUCTION

Figure 1: The learned noise (top) in
conjunction with optimal coupling
FM drastically shortens the trans-
port paths compared to FM with
Gaussian noise (bottom).

Flow-based generative models, especially score-based diffusion Sohl-
Dickstein et al. (2015); Song & Ermon (2019), flow matching (FM)
Albergo et al. (2023); Lipman et al. (2023); Liu (2022) and consistency
models like the recently introduced inductive moment matching (IMM)
Zhou et al. (2025), achieve state-of-the-art results in many applications.
All these methods construct a probability flow from a simple latent
distribution (noise) to a complex target (data) with a neural network
trained to approximate this flow from limited target samples. In diffusion
models, the score function directs a reverse-time SDE, while in FM, the
velocity field is learned to compute trajectories via a flow ODE. Finally,
consistency models like IMM learn to predict the jumps from noise
to the data while factoring in the consistency of the flow trajectories.
Usually, a Gaussian is used as latent distribution which causes difficulties
when learning certain multimodal and heavy-tailed targets Hagemann
& Neumayer (2021); Salmona et al. (2022), see Figure 2 for a heavy-
tailed example. There exist only few approaches to learn the noising
process, Bartosh et al. (2025) fit the forward diffusion process via a
learned invertible map that is trained end-to-end, Kapusniak et al. (2024)
use metric flow matching, i.e., a neural network to adapt the path to a
underlying Riemannian metric. On the other hand Pandey et al. (2024);
Zhang et al. (2024) design heavy-tailed diffusions using Student-t latent
distributions, and Shariatian et al. (2025) extend the framework to the
family of α-stable distributions.

In this paper, we present a new approach to adapt the latent distribution
to the data by learning from its samples. The basic idea comes from
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the fact that all the above methods implicitly emerge as componentwise models. For example, denoting the
target random variable by X0 and the latent by X1 ∼ N (0, Id), FM utilizes the process Xt = (X1

t , . . . , X
d
t )

with the components Xi
t = (1− t)Xi

0 + tXi
1 employing one-dimensional Gaussians Xi

1 ∼ N (0, 1). This
motivated us to generally construct generative models from 1D processes and their quantile functions.

Given any appropriate 1D process we demonstrate how to learn the componentwise neural flow by the
associated conditional velocity field. We give examples besides diffusion demonstrating the flexibility of
our machinery, namely the Kac process arising from the 1D damped wave equation, and a process reflecting
the Wasserstein gradient flow of the maximum mean discrepancy with negative distance kernel. In contrast
to diffusion, assuming a compactly supported target, these processes also have a compact support, leading
to a better regularity of the corresponding velocity field. This inspired us to further adapt the process to
the data and to learn the 1D noising process rather than choosing it manually. To this end, we exploit that
1D probability measures can be equivalently described by their quantile functions Qi : (0, 1) → R which
are monotone functions, and consider quantile processes Xi

t = (1 − t)Xi
0 + tQi(U i), i = 1, . . . , d with

i.i.d. U i ∼ U [0, 1] for t ∈ [0, 1]. We learn the individual quantile functions Qi
ϕ, i = 1, . . . , d such that their

componentwise concatenation Qϕ(U) := (Qi
ϕ(U

i))di=1 is "close" to the data. This inspired us to minimize

W 2
2 (µ0,Law(Qϕ(U))), µ0 = Law(X0).

with the Wasserstein distance W2. We combine the learning of the latent Qϕ(U) with the learning of the
velocity field via optimal coupling FM. This allows us to effectively exploit the learned noise and drastically
shorten the transport paths, as illustrated in Figure 1.

The simplicity of quantile functions give us a flexible tool, which enables us to simultaneously learn the
noising process and apply the FM framework. Our quantile perspective can further be extended to fit into
consistency models.

Contributions. 1. We introduce a general construction method for neural flows by decomposing multi-
dimensional flows into one-dimensional components. Ultimately, this allows us to work with one-dimensional
noising processes in the FM framework.

2. We highlight three interesting noising processes for our framework: the Wiener process, the 1D Kac
process and the 1D MMD gradient flow with negative distance kernel and uniform target measure.

3. Based on the decomposition viewpoint, we propose to describe our 1D noising processes by their quantile
functions. Via quantile interpolants, our framework can also be incorporated into consistency models.

4. Exploiting the simplicity of quantile functions, we propose to learn the quantile of the 1D noise simultane-
ously within the FM framework, aiming to fit the noise to the data. Numerical experiments demonstrate the
high flexibility of our data-adapted noise.

2 PRELIMINARIES: FLOW MATCHING

We start with a brief introduction of curves in Wasserstein spaces and basic ideas on flow matching. For more
details we refer to Ambrosio et al. (2008) and Wald & Steidl (2025). Let (P2(Rd),W2) denote the complete
metric space of probability measures with finite second moments equipped with the Wasserstein distance

W 2
2 (µ, ν) := min

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥2 dπ(x, y)

Here Π(µ, ν) denotes the set of all probability measures on Rd × Rd having marginals µ and ν. The push-
forward measure of µ ∈ P2(Rd) by a measurable map T : Rd → Rd is defined by T♯µ := µ ◦ T −1. Let I be
an interval in R, in this paper mainly I = [0, 1]. A narrowly continuous curve µt : I → P2(Rd) is absolutely
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continuous, iff there exists a Borel measurable vector field v : I × Rd → Rd with ∥vt∥L2(Rd,µt) ∈ L2(I)
such that (µt, vt) satisfies the continuity equation

∂tµt +∇x · (µtvt) = 0 (1)

in the sense of distributions. If in addition
∫
I

supx∈B ∥vt(x)∥+Lip(vt, B) dt <∞ for all compact B ⊂ Rd,
then the ODE

∂tφ(t, x) = vt(φ(t, x)), φ(0, x) = x, (2)

has a solution φ : I × Rd → Rd and µt = φ(t, ·)♯µ0.

Starting in the target distribution µ0 and ending in a simple latent distribution µ1, as usual in diffusion models,
we can reverse the flow from the latent to the target distribution using just the opposite velocity field −v1−t

in the ODE (2). Thus, if somebody provides us with the velocity field vt, we can sample from a target
distribution by starting in a sample from the latent one and then applying our favorite ODE solver.

If we do not have a velocity field donor, we can try to approximate (learn) the velocity field by a neural
network vθt . Clearly, a desirable loss function would be

L(θ) := Et∼U(0,1), x∼µt

[∥∥vθt (x)− vt(x)
∥∥2] .

Unfortunately this loss function is not helpful, since we do not know the exact velocity field vt nor can sample
from µt in the empirical expectation. However, employing the law of total probabilities, as done, e.g. in
Lipman et al. (2023), we see that L(θ) = LCFM(θ) + const with a constant not depending on θ and the
Conditional Flow Matching (CFM) loss

LCFM(θ) := Ex0∼µ0, t∼U(0,1), x∼µt(·|x0)

[∥∥vθt (x)− vt(x|x0)
∥∥2] . (3)

The key difference is the use of the conditional flow vt(x|x0) with respect to a fixed sample x0 from our
target distribution. To summarize, all you need is a conditional flow model with accessible velocity field
vt(x|x0) (at least along the flows trajectory), where you can easily sample from. Then you can indeed learn
the velocity field vt of the general (non-conditional) flow and finally sample from the target by the reverse
ODE (2).

3 MULTI-DIMENSIONAL FLOWS VIA THEIR ONE-DIMENSIONAL COMPONENTS

We begin by outlining a general framework based on stochastic processes for flow–based sampling from
a given data distribution µ0, see e.g. Albergo et al. (2023). Then we restrict ourselves to componentwise
independent noising processes and show how they integrate into the framework. Finally, we recast the
construction from a one-dimensional viewpoint using quantile interpolants.

3.1 CONSTRUCTION VIA STOCHASTIC PROCESSES

Consider a (noising) process (Yt)t with Y0 ≡ 0 ∈ Rd with associated velocity field vt = vYt (· | 0) such that
the pair (µY

t , vYt ) satisfy the continuity equation (1), where µY
t is the law of (Yt)t. To construct a generative

model we need to create a process (Xt)t which can start in any sample x0 from the target measure µ0. Let
X0 ∼ µ0. Following the lines in Duong et al. (2025), we define the mean-reverting process by

Xt := f(t)X0 + Yg(t), t ∈ [0, 1], (4)

with smooth scheduling functions f, g

f(0) = 1, f(1) = 0 and g(0) = 0, g(1) = 1. (5)

3
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Then we have X1 = Y1, and by abuse of notation, the process Xt starts in X0 = X0. Differentiation of (4)
results in

Ẋt = ḟ(t)X0 + ġ(t) Ẏg(t).

Hence the conditional velocity field of Xt is given by (see Lipman et al. (2023))

vXt (x | x0) = E
[
Ẋt | Xt = x, X0 = x0

]
= E

[
ḟ(t)x0 + ġ(t) Ẏg(t)

∣∣ Yg(t) = x− f(t)x0

]
= ḟ(t)x0 + ġ(t) vYg(t)

(
x− f(t)x0 | 0

)
. (6)

Now, the conditional flow matching loss (3) can be minimized regarding X0 ∼ µ0 and Xt ∼ µt. Note that
given a sample x ∼ (Xt | X0 = x0), we have1 vXt (x | x0) = ḟ(t)x0 + ġ(t) vYg(t)

(
Yg(t) | 0

)
.

Remark 1 (Relation to FM and diffusion). Consider the stochastic process

XFM
t = αtX0 + σtX1, X1 ∼ N (0, Id). (7)

Choosing f(t) := αt, g(t) := σ2
t and the standard Brownian motion Yt = Wt, it holds the equality in

distribution
XFM

t
d
= f(t)X0 +Wg(t) = Xt.

Then f(t) := 1 − t, g(t) := t2 yields (independent) FM Lipman et al. (2023), and f(t) := exp
(
−h(t)

2

)
,

g(t) := 1 − exp (−h(t)), where h(t) :=
∫ t

0
βmin + s(βmax − βmin) ds with, e.g., βmin = 0.1, βmax = 20,

corresponds to processes used in score-based generative models Song et al. (2021), see Appendix B.

Motivated by the fact that a multi-dimensional Wiener process Wt ∈ Rd consists of independent (and
identically distributed) 1D components Wt = (W 1

t , ...,W
d
t ), we propose to construct a d-dimensional flow

Yt componentwise, based on independent one-dimensional processes Y i
t .

3.2 CONSTRUCTION OF COMPONENTWISE FLOWS

Restricting ourselves to processes Yt that decompose into one-dimensional components allows us to propose
our general construction method for accessible conditional flows in FM. Let Y 1

t , . . . , Y
d
t be a family

of independent one-dimensional stochastic processes with time dependent laws µi
t ∈ P2(R). For each

i = 1, . . . , d, let vit : R → R be the associated velocity field such that the pair (µi
t, v

i
t) satisfies the one-

dimensional continuity equation (1). Define the product measure µt ∈ P2(Rd) by

µt(x) =

d∏
i=1

µi
t(x

i), x = (x1, . . . , xd) ∈ Rd. (8)

For the d-dimensional process Yt := (Y 1
t , . . . , Y

d
t ), independence implies that its law is exactly µt. Moreover,

by the following proposition, the corresponding d-dimensional velocity field is given componentwise, see
Duong et al. (2025).
Proposition 2. Let µt be given by (8), where the µi

t are absolutely continuous curves in R with velocity fields
vit. Then µt satisfies a continuity equation (1) with a velocity field which decomposes into the univariate
velocities

vt(x) :=
(
v1t (x

1), . . . , vdt (x
d)
)
.

Using these insights on componentwise flows, we propose the following guide for constructing neural flows.
1In general, vY might not be tractable, and only given as an conditional expectation of the time derivative Ẏ. Yet,

through our componentwise construction below, we will obtain easier access to it via its 1D components.

4
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General construction method for accessible conditional flows in FM

1. One-dimensional noise: Start with an appropriate absolutely continuous measure curve µt starting
in µ0 = δ0, 0 ∈ R, where you can compute its velocity field vt in the 1D continuity equation

∂tµt + ∂x(µtvt) = 0, µ0 = δ0. (9)

Appropriate 1D noising processes are provided in Section 4.

2. Multi-dimensional noise: Set up a multi-dimensional conditional flow model starting in µ0 = δ0,
0 ∈ Rd with possibly different, but independent 1D processes as described in Section 3.2.

3. Incorporating the data: Construct a multi-dimensional conditional flow model starting in µ0 = δx0

for any data point x0 ∼ µ0 by mean-reversion as shown in Section 3.1.

3.3 QUANTILE PROCESSES

The restriction to componentwise noising processes Yt in (4) 2 allows us to use the quantile functions of the
1D components. Recall that the cumulative distribution function (CDF) Rµ of µ ∈ P2(R) and its quantile
function Qµ are given by

Rµ(x) := µ
(
(−∞, x]

)
, x ∈ R and Qµ(u) := min{x ∈ R : Rµ(x) ≥ u}, u ∈ (0, 1). (10)

In Figure 7 we exemplify the CDF and quantile of a standard Gaussian. The quantile functions form a closed,
convex cone C := {f ∈ L2(0, 1) : f increasing a.e.} in L2(0, 1). The mapping µ 7→ Qµ is an isometric
embedding of (P2(R),W2) into (L2(0, 1), ∥ · ∥L2

), meaning that

W 2
2 (µ, ν) =

∫ 1

0

∣∣Qµ(s)−Qν(s)
∣∣2 ds

and µ = Qµ,♯L(0,1). Let U ∼ U [0, 1] be uniformly distributed on [0, 1]. Now, any probability measure flow
µt can be described by their respective quantile flow Qt := Qµt

, such that µt = Qt,♯L(0,1) and Qt ◦ U is a
stochastic process with marginals µt.

We can therefore model any multi-dimensional noising process, that decomposes into its components, via
quantile functions. Namely let X0 be any component Xi

0 of X0 ∼ µ0, and f, g : [0, 1] → R smooth
schedules fulfilling (5). We assume that we are given a flow (Qt)t of quantile functions Qt : (0, 1) → R,
t ∈ [0, 1], which fulfill Q0 ≡ 0 and are invertible on their respective image with the inverse given by the CDF
Rt : Qt(0, 1)→ R. We introduce the quantile process

Zt = f(t)X0 +Qg(t)(U), U ∼ U(0, 1), t ∈ [0, 1]. (11)

The quantile process coincides (in distribution) with the components of the mean-reverting process (4), where
the noising term is represented as Yi

g(t)

d
= QLaw(Yi

g(t)
)(U). In particular, the components of the process (7)

are obtained via (11) using the quantile Qt of a standard Brownian motion Wt and f(t) := αt, g(t) := σ2
t .

Quantile Interpolants. Let us briefly mention how our setting fits into the framework of consistency
models. To this end, we define the quantile interpolants

Is,t(x, y) = f(s)x+Qg(s)

(
Rg(t)(y − f(t)x)

)
, s, t ∈ [0, 1] (12)

which generalize the interpolants used in Denoising Diffusion Implicit Models (DDIM), see Remark 9.

2Besides componentwise 1D processes we may also use triangular decompositions, not addressed in this paper.
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Proposition 3. For all x, y ∈ R and all s, r, t ∈ [0, 1], it holds I0,t(x, y) = x, It,t(x, y) = y, and

Is,r(x, Ir,t(x, y)) = Is,t(x, y).

Furthermore, inserting the quantile process (11) yields Is,t(Z0, Zt) = Zs.

The proof is given Appendix C. Proposition 3 allows us to also apply the concept of consistency models to
our quantile process (11). The shared idea of these models is to predict the jumps from the process Zt to the
target X0, while factoring in the consistency of the trajectory of Zt via Zs, 0 < s < t. In FM, this consistency
of the flow is usually neglected as only single points on the FM paths are sampled. Also, consistency models
as one-step or multistep samplers usually are in no need of velocity fields. In the Appendix C, we demonstrate
by means of the recently proposed inductive moment matching (IMM) Zhou et al. (2025), that our formulation
via quantile interpolants fits seamlessly into the consistency framework.

4 ONE-DIMENSIONAL PROCESSES: FROM PRESCRIBED TO LEARNED

Next, we address the question of finding “good” 1D processes Y i
t which can drive our mean-reverting process

(4). Aside of the Wiener process, we highlight two other ones with accessible velocities and conditional
measures in Section 4.1. These processes have characteristics very different from diffusion, notably non-
exploding vector fields. This raises the question which 1D processes are best suited for certain problems. In
Subsection 4.2, we present a new method for learning data-adapted processes via their quantile functions.

4.1 ONE-DIMENSIONAL FLOWS BESIDES DIFFUSION

We explore three interesting 1D (noising) processes Yt in connection with their respective PDEs, for which
our approach via reduction to one dimension is nicely applicable, namely the

• Wiener process Wt and diffusion equation,

• Kac process Kt and damped wave equation,

• Uniform process Ut and the gradient flow of the maximum mean functional Fν := MMDK(·, ν)
with negative distance kernel K(x, y) = −|x− y| and ν = U(−b, b).

In each case, we explicitly calculate the respective conditional measure flow and its conditional velocity field
in Appendix A, such that the conditional flow matching loss (3) can be minimized. Note that in contrast to
the Wiener process Wt usually seen in diffusion and flow matching models, the latter two processes Kt, Ut

do not enjoy a trivial analogue in multiple dimensions: in case of Kt the corresponding PDE (damped wave
equation) is no longer mass-conserving in dimension d ≥ 3, see Tautz & Lerche (2016); in case of Ut the
mere existence of the MMD gradient flow in multiple dimensions is unclear by the lack of convexity of the
MMD, see Hertrich et al. (2024). Our general construction method makes these 1D processes accessible for
generative modeling in arbitrary dimensions.

4.2 LEARNING 1D PROCESSES VIA QUANTILE FUNCTIONS

The choice of the noise can have a significant impact on the sampling performance, see Figure 1 for the
checkerboard distribution and Figure 2 for a heavy-tailed one. Now we adopt the quantile process view from
Section 3.3 to learn data–adapted noise. We pose the following requirements on the latent distribution ν: i)
absolute continuity, ii) data–independence, and iii) independence of components (to fit our 1D construction).

4Note that we used the independent coupling for training of these models. We also used z-score normalization.

6
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Figure 2: Sampling of Neal’s funnel with different latent distributions.4From left to right with uniform
([−1, 1]), standard Gaussian, Student-T (with parameters (20, 4) inspired by the choice in Pandey et al.
(2024)) and our learned distribution. The last two heavy-tailed noises perform significantly better.

Under these assumptions the latent class reduces to the set S := {ν ∈ P2(Rd) : ν = ρdx and ρ = Πd
i=1ρ

i} ,
i.e. considering quantile processes of the form

Xi
t = (1− t)Xi

0 + tQi(U i), i = 1, . . . , d, t ∈ [0, 1],

we have ν = Q# U([0, 1]d) with Q(u) := (Q1(u1), . . . , Qd(ud)). In particular, in our framework the
quantile family determines the scales and tails of Q(U), thereby influencing the difficulty and inductive bias
of predicting the conditional velocity vt(Xt) = Q(U)−X0 along the linear paths Xt = (1− t)X0+ tQ(U).

We now describe how we learn the quantile maps Qϕ. The core idea is that besides our requirements i)-iii) as
well as being a valid quantile function, we would like our noise to be "close" to the data. We learn Qϕ by
minimizing a statistical discrepancy, e.g. the Wasserstein distance, between µ0 and νϕ,

E(ϕ) = W 2
2

(
µ0, νϕ

)
, νϕ := (Qϕ)# U([0, 1]d). (13)

Note that due to the restriction of our quantiles to the class S, the minimizer of (13) is in general not µ0.

While our quantiles can be trained independently, in order to provide an aligned training signal for the velocity
field, we propose to also train Qϕ jointly with the velocity vθ. Hence, we aim to minimize the loss

L(θ;ϕ) = ECFM(θ;ϕ) + λ E(ϕ), λ > 0,

with ECFM(θ;ϕ) = Et∼U(0,1),(x,y)∼πϕ

[∥∥vθ((1− t)x+ ty, t
)
− (y − x)

∥∥2
2

]
,

where πϕ ∈ Πo(µ0, νϕ) is an optimal coupling between µ0 and νϕ.

In practice, we optimize the empirical expectation via minibatches; see Appendix D.4. A pseudo-algorithm is
provided in Algorithm 1. In particular, we compute a mini batch optimal transport map T that minimizes∑B

j=1 ∥x
(j)
0 − y(T (j))∥22 for batches of data {x(j)

0 }Bj=1, {y(j)}Bj=1 from X0 and Qϕ(U), respectively. This
minibatch map T is reused below for flow matching to keep the targets consistent across the two terms.

5 EXPERIMENTS

To validate our proposed method, we conduct experiments on synthetic and imaging datasets. We parametrize
the latent distribution’s quantile function using Rational Quadratic Splines (RQS) Durkan et al. (2019). This
choice is motivated by several factors: RQS enforce monotonicity by construction, are parameter-efficient,
and provide access to analytic derivatives. For our experimental setup, see Table 1.

7
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Figure 3: A generated trajectory from the learned quantile latent (left) to the unevenly weighted Gaussian
mixture target (right). The adapted latent is already close to the target distribution.

5.1 ANALYSIS ON SYNTHETIC DATASETS

We begin by qualitatively analyzing our algorithm on several synthetic 2D distributions (see Appendix D.3),
each designed to highlight a specific aspect of our approach.

Gaussian Mixture Model (GMM). We first consider a 2D GMM with nine unevenly weighted modes,
as visualized in Figure 3. Due to the independence assumption inherent in our factorized quantile function,
the learned latent cannot perfectly replicate the target’s joint distribution and is not the product of the
correct marginals; see also D.1. Instead, it approximates a distribution where the components cannot further
independently improve the transport cost to the target.

Figure 4: Top: samples from the
learned latent. Bottom: gener-
ated samples from the learned FM
model.

Funnel Distribution. The funnel distribution, shown in Figure 2,
presents a challenge due to its heavy-tailed, conditional structure. This
experiment highlights the importance of matching the latent’s tail behav-
ior to that of the target. We observe that our learned latent successfully
adapts to the target’s heavy tails, see also the visualization in Figure 10.
This enables the flow matching model to generate high fidelity samples
across the distribution. Note that due to the high variance signal when
training on the funnel distribution, we pre-train our quantile.

Checkerboard Distribution. In contrast to the funnel, the checker-
board distribution (Figure 1) features a compact support. Here, we
demonstrate the synergy between our learned latent and an Optimal
Transport (OT) coupling. Our method learns a latent that approximates
a uniform distribution over the target’s support. When this adapted
latent is combined with an OT coupling for flow matching, the resulting
transport paths are substantially shorter (Figure 8) than those originating
from a standard Gaussian, and the vector field training converges much
faster (Figure 9). This result underscores our central claim: combining
a data-dependent latent with a data-dependent coupling has the potential
to significantly improve model performance.

Next we analyze our method on standard image generation benchmarks.
In high-dimensional settings and given fixed batch sizes, the signal for
the quantile function can be noisy, potentially leading to degenerate
solutions. To mitigate this, we add a regularization term to the loss that
penalizes the expected negative log-determinant of the Jacobian of the
quantile.

8
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MNIST. The MNIST dataset exhibits strong marginal properties; for instance, pixels near the center are
frequently active (non-zero), while pixels at the borders are almost always zero. Our learned quantile function
successfully captures these global marginal statistics. As illustrated in Figure 4, the latent distribution learns
to concentrate its mass in regions corresponding to active pixels. We also plot mean and standard deviation
(Figure 11) as well as empirical and learned quantiles (Figure 12) of our learned latent in the Appendix. While
the independence assumption precludes the model from capturing specific spatial correlations (e.g. the shape
of a digit), adapting to the correct marginals can provides a improved initialization for the flow model.

CIFAR-10. To assess the scalability of our approach, we train our model on the CIFAR-10 dataset. The
quantile is extremely lightweight compared to the UNet architecture used for the flow model. We reuse the
minibatch OT coupling for the latent and freeze the quantile function after a few training epochs. This strategy
results in minimal computational overhead compared to the standard Gaussian baseline with minibatch OT
coupling. Access to analytic derivatives makes our volume contraction regularization efficient. We evaluate
our models for a sufficiently high weight on the quantile loss, we fix it to be λ = 5 . In Figure 5, we report
results over different weights β for the regularization parameter. We compared to using a standard gaussian
baseline. Our results suggest that for uncorrelated noise, there is a trade-off between the smoothness of the
latent and its "closeness" to the data. While out of the scope of this paper, we hypothesize that, for most
sampling problems, there is an optimal tradeoff between these properties.

Baseline β = 3 β = 4

1 2 3 4 Baseline
FID (20 Euler steps) 11.21 10.18 9.97 9.78 10.46
FID (100 Euler steps) 7.22 6.62 6.39 6.26 6.44

Figure 5: CIFAR results for different choices of regularization parameter and for the baseline. The visualized
samples were generated using 100 Euler steps.

6 CONCLUSIONS

The result of this paper is a “quantile sandbox” for building generative models: a unifying theory and a
practical toolkit that turns noise selection into a data-driven design element. Our construction plugs seamlessly
into standard objectives including Flow Matching and consistency models, e.g. Inductive Moment Matching.
Furthermore our experiments demonstrate that it is possible to learn a freely parametrized, data-dependent
latent distribution, beyond the usual smooth transformations of Gaussians. Our work opens several promising
directions for future research. Extensions include developing time-dependent quantile functions to optimize
the entire path distribution, not just the endpoint as well as designing conditional quantile functions for tasks
like class-conditional or text-to-image generation.

9
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A EXAMPLES OF ONE-DIMENSIONAL FLOWS

We provide three interesting examples, namely the well-established diffusion flow, the recently proposed
Kac flow, and the Wasserstein gradient flow of the MMD functional with negative absolute distance kernel
towards a uniform measure. Paths of the processes are depicted in Figure 6.

In each case, the absolutely continuous curve µt starting in δ0 (e.g. conditional) and the corresponding
velocity field can be given analytically. Note that in the latter two cases, multi-dimensional generalizations of
the flows are not trivially given, which further underlines the strength of our 1D approach. Henceforth, if the
measures µt admit a density function, we will denote it by pt.

Figure 6: Three realisations of a standard Wiener process (left), the Kac process (middle), and the Uniform
process (right), simulated until time T = 1.

A.1 WIENER PROCESS AND DIFFUSION EQUATION

First, consider the standard Wiener process (Brownian motion) (Wt)t starting in 0 whose probability density
flow pt is given by the solution of the diffusion equation

∂tpt = ∇ · (pt
1

2
∇ log pt) =

1

2
∆pt, t ∈ (0, 1], lim

t↓0
pt = δ0, (14)

where the limit for t ↓ 0 is taken in the sense of distributions. The solution is analytically known to be

pt(x) = (2πt)−
d
2 e−

∥x∥2
2t .

Thus, the latent distribution is just the Gaussian p1 = N (0, Id). The velocity field in (14) reads as

vt(x) = −
1

2
∇ log pt =

x

2t
. (15)

However, its L2-norm fulfills ∥vt∥2L2(R1,pt)
= d

4t , and is therefore not integrable over time, i.e.
∥vt∥L2(R1,pt) /∈ L2(0, 1). In practice, instability issues caused by this explosion at times close to the
target need to be avoided by e.g. time truncations, see e.g. Kim et al. (2022). For a heuristic analysis also
including drift-diffusion flows, we refer to Pidstrigach (2022). Note that in the case of diffusion, there is no
significant distinction between the uni- and multivariate setting.

A.2 KAC PROCESS AND DAMPED WAVE EQUATION

The Kac process Kac (1974), also known as persistent random walk, originates from a discrete random walk,
which starts in 0 and moves with velocity parameter c > 0 in one direction until it reverses its direction with
probability a∆t, a > 0. A continuous-time analogue is given by the Kac process which is defined using the

12
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homogeneous Poisson point process Nt with rate a, i.e. i) N0 = 0; ii) the increments of Nt are independent,
iii) Nt −Ns ∼ Poi

(
a(t− s)

)
for all 0 ≤ s < t. Now the Kac process starting in 0 is given by

Kt := B 1
2
c

∫ t

0

(−1)Ns ds,

where B 1
2
∼ Ber( 12 ) is a Bernoulli random variable5 taking the values ±1. Note that in contrast to diffusion

processes, the Kac process Kt persistently maintains its linear motion between changes of directions (jumps
of Nt), see Figure 6.

By the following proposition, the Kac process is related to the damped wave equation, also known as
telegrapher’s equation, and its probability distribution admits a computable vector field such that the continuity
equation is fulfilled. For a proof we refer to Duong et al. (2025).

Proposition 4. The probability distribution flow of (Kt)t admits a singular and absolutely continuous part
via

µt(x) =
1

2
e−at

(
δ0(x+ ct) + δ0(x− ct)

)
+ p̃t(x), (16)

with the absolutely continuous part

p̃t(x) :=
1

2
e−at

(
βct

I ′0(βrt(x))

rt(x)
+ βI0(βrt(x))

)
1[−ct,ct](x), rt(x) :=

√
c2t2 − x2,

where β := a
c , and I0 denotes the 0-th modified Bessel function of first kind. The distribution (16) is the

generalized solution of the damped wave equation

∂ttu(t, x) + 2a ∂tu(t, x) = c2∂xxu(t, x), (17)
u(0, x) = δ0(x), ∂tu(0, x) = 0.

Further (µt, vt) solves the continuity equation (9) where the velocity field is analytically given by

vt(x) :=


x

t+
rt(x)

c
I0(βrt(x))

I′0(βrt(x))

if x ∈ (−ct, ct),

c if x = ct,
−c if x = −ct,

arbitrary otherwise.

The Kac velocity field admits the boundedness ∥vt∥L2(R1,µt) ≤ c, and hence, ∥vt∥L2(R1,µt) ∈ L2(0, 1).

Interestingly, the damped wave equation (17) is closely related to the diffusion equation via Kac’ insertion
method. It is based on the following theorem, whose proof based on semigroup theory can be found in Griego
& Hersh (1971), see also Janssen (1990); Kac (1974).

Theorem 5. For any initial function f0 ∈ H2(Rd), d ≥ 1, let wc(t, x) be the solution of the undamped wave
equation with velocity c > 0 given by

∂ttw(t, x) = c2∆w(t, x), x ∈ Rd, t > 0,

w(0, x) = f0(x), ∂tw(0, x) = 0.

Then, the functions defined by

h(t, x) := E [w1 (σWt, x)] , resp. u(t, x) := E
[
wc(c

−1St, x)
]

5More precisely, B 1
2

is two-point distributed with values {−1, 1}.
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solve the diffusion equation

∂th(t, x) =
σ2

2
∆h(t, x), x ∈ Rd, t > 0,

h(0, x) = f0(x),

resp. the multi-dimensional damped wave equation

∂ttu(t, x) + 2a ∂tu(t, x) = c2∆u(t, x), x ∈ Rd, t > 0,

u(0, x) = f0(x), ∂tu(0, x) = 0. (18)

As a consequence, it is not hard to show the following corollary, see Duong et al. (2025).

Corollary 6. For any t ≥ 0, the solution ua,c(t, ·) of the damped wave equation (18) converges to the solution
h(t, ·) of the diffusion equation for a, c→∞ with fixed σ2 = c2

a .

In other words, diffusion can be seen as "an infinitely a-damped wave with infinite propagation speed c".
Note that the diffusion-related concept of particles traveling with infinite speed violates Einstein’s laws of
relativity and has therefore found resistance in the physics community Cattaneo (1958); Chester (1963);
Vernotte (1958); Tautz & Lerche (2016).

We also like to stress that in multiple dimensions, the damped wave equation (17) is no longer mass-conserving
as in 1D Tautz & Lerche (2016), and hence eludes a characterization via stochastic processes.

A.3 UNIFORM PROCESS AND MMD GRADIENT FLOW

Wasserstein gradient flows are special absolutely continuous measure flows whose velocity fields are negative
Wasserstein (sub-)gradients of functionals Fν on P2(Rd) with the unique minimizer ν. The gradient descent
flow should reach this minimizer as t → ∞. In this context, the MMD functional with the non-smooth
negative distance kernel

Fν(µ) = MMD2(µ, ν) := −1

2

∫
R2

|x− y|d (µ(x)− ν(x)) d (µ(y)− ν(y)) (19)

stands out for its flexible flow behavior between distributions of different support Hertrich et al. (2024). In
1D, its Wasserstein gradient flow µt can be equivalently described by the flow of its quantile functions Qµt

with respect to an associated functional on L2(0, 1). Note that the MMD functional (19) loses its convexity
(along generalized geodesics) in multiple dimensions Hertrich et al. (2024), and the general existence of their
Wasserstein gradient flows is unclear in the multivariate case. This yields another reason to work in 1D, where
we have have the following proposition.

Proposition 7. The Wasserstein gradient flow µt of the MMD functional (19) starting in µ0 = δ0 towards the
uniform distribution ν = U [−b, b] with fixed b > 0 reads as

µt =
(
1− exp(− t

b )
)
U [−b, b], , t > 0, (20)

with corresponding velocity field

vt(x) =
x

b
(
exp

(
t
b

)
− 1

) , x ∈ supp(µt). (21)

It holds ∥vt∥2L2(R1,µt)
= 2b

3 exp(− 2t
b ), and hence, ∥vt∥L2(R1,µt) ∈ L2(0, 1). A corresponding (stochastic)

process (Ut)t is given by Ut := b
(
1− exp

(
− t

b

))
U , where U ∼ U [−1, 1], such that Law(Ut) = µt.

14
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We prove the proposition more general for ν = U [a, b] and a flow starting in x0 ∈ [a, b], i.e. we show

µt = U [a+ (x0 − a) exp (−r(t)) , b− (b− x0) exp (−r(t))] , t > 0 (22)

with r(t) := 2t
b−a and

vt(x) =
2

b− a

(
x− x0

exp(r(t))− 1

)
. (23)

To this end, we need the relation between measures in P2(R) and cumulative distribution functions, see (10).
For ν = U [a, b], we have that

rν(x) =


0, if x < a,
x−a
b−a , if a ≤ x ≤ b,

1, if x > b

and Qν(s) = a(1 − s) + bs. In Hertrich et al. (2024) it was shown that the functional Fν : L2(0, 1) → R
defined by

Fν(u) :=

∫ 1

0

(
(1− 2s)

(
u(s) +Qν(s)

)
+

∫ 1

0

|u(s)−Qν(t)|dt
)
ds (24)

fulfills Fν(µ) = Fν(Qµ) for all µ ∈ P2(R). Moreover, we have the following equivalent characterization of
Wasserstein gradient flows of Fν , which can be found in (Duong et al., 2024, Theorem 4.5).

Theorem 8. Let Fν and Fν be defined by (19) and (24), respectively. Then the Cauchy problem{
∂tg(t) ∈ −∂Fν(g(t)), t ∈ (0,∞),

g(0) = Qµ0
,

has a unique strong solution g, and the associated curve γt := (g(t))#Λ(0,1) is the unique Wasserstein
gradient flow of Fν with γ(0+) = (Qµ0

)#Λ(0,1). More precisely, there exists a velocity field v∗t such that
(γt, v

∗
t ) satisfies the continuity equation (9), and it holds the relations

v∗t ◦ g(t) ∈ −∂Fν(g(t)) and v∗t ∈ −∂ Fν(γt). (25)

Lastly note that here, the subdifferential ∂Fν(u) is explicitly given by the singleton

−∂Fν(u) = −∇Fν(u) = 2(· − rν ◦ u) for all u ∈ L2(0, 1),

see (Duong et al., 2024, Lemma 4.3).

Proof of Proposition 7. We want to apply Theorem 8 to (µt, vt) in (22) and (23). The uniform distribution in
(22) has the quantile function

Qµt
(s) =

(
1− exp (−r(t))

)(
a+ (b− a)s

)
+ x0 exp (−r(t)) , s ∈ (0, 1).

For all t > 0 and all s ∈ (0, 1), we have Qµt
(s) ∈ [a, b] since x0 ∈ [a, b], and thus

−∇Fν(Qµt
)(s) = 2s− 2rν(Qµt

(s))

= 2s− 2

(
1− exp (−r(t))

)(
a+ (b− a)s

)
+ x0 exp (−r(t))− a

b− a

= 2

(
s− x0 − a

b− a

)
exp (−r(t)) .

15
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On the other hand, it holds

∂tQµt
(s) = −2x0 − a

b− a
exp (−r(t))− (−2)(b− a)s

b− a
exp (−r(t)) = 2

(
s− x0 − a

b− a

)
exp (−r(t)) .

By Theorem 8, (µt) is the unique Wasserstein gradient flow of Fν starting in δ0.

Furthermore, there exists a velocity field v∗t satisfying the continuity equation (9) and the relations (25). For
s ∈ (0, 1) and t > 0, let y := gs(t) = a + (x0 − a) exp (−r(t)) + (b − a) (1− exp (−r(t))) s. Then, we
have s = y−a−(x0−a) exp(−r(t))

(b−a)(1−exp(−r(t))) , and thus by (25),

v∗t (y) = v∗t (Qµt(s)) = 2

(
s− x0 − a

b− a

)
exp (−r(t))

= 2

(
y − a− (x0 − a) exp (−r(t))
(b− a) (1− exp (−r(t)))

− x0 − a

b− a

)
exp (−r(t))

=
2

b− a

(
y − a− (x0 − a)

1− exp (−r(t))

)
exp (−r(t))

=
2

b− a

(
y − x0

exp (r(t))− 1

)
for all y ∈ gs(t)(0, 1) = [a+ (x0 − a) exp(−r(t)), b− (b− x0) exp (−r(t))]. Lastly, let us compute the
action. For t > 0 we have

∥vt∥2L2(µt)
=

b−(b−x0) exp(− 2t
b−a )∫

a+(x0−a) exp(− 2t
b−a )

4(x− x0)
2

(b− a)2
(
exp

(
2t

b−a

)
− 1

)2

1

(b− a)
(
1− exp

(
− 2t

b−a

)) dx

=
4

(b− a)3
(
exp

(
2t

b−a

)
− 1

)2 (
1− exp

(
− 2t

b−a

))
b−(b−x0) exp(− 2t

b−a )∫
a+(x0−a) exp(− 2t

b−a )

(x− x0)
2 dx

=
4

(b− a)2 exp
(
− 2t

b−a

)(
exp

(
2t

b−a

)
− 1

)3

[
(x− x0)

3

3

]b−(b−x0) exp(− 2t
b−a )

a+(x0−a) exp(− 2t
b−a )

=
4
(
1− exp

(
− 2t

b−a

))3

3(b− a)2 exp
(
− 2t

b−a

)(
exp

(
2t

b−a

)
− 1

)3

[
(b− x0)

3 − (a− x0)
3
]

=
4
[
(b− x0)

3 − (a− x0)
3
]

3(b− a)2
exp

(
− 4t

b− a

)
.

and the proof is finished.

Note that the fact that v∗t is uniquely determined on suppµt = gt(0, 1), correlates with the fact that the
gradient v∗t ◦ g(t) = −∇Fν(g(t)) is a singleton. Outside of suppµt, the velocity field may be arbitrarily
extended, which yields a velocity ṽt ∈ −∂Fν(µt) in a non-singleton subdifferential. The velocity v∗t may be
uniquely chosen from the tangent space TµtP2(R), or equivalently, by choosing it to have minimal norm, i.e.
v∗t ≡ 0 outside of suppµt.
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B FLOW MATCHING AS SPECIAL MEAN REVERTING PROCESSES

B.1 THE GAUSSIAN CASE

Let us shortly verify that our componentwise approach using the mean-reverting process (4), i.e.

Xt := f(t)X0 + Yg(t),

leads to the usual flow matching objective. where we choose the scheduling functions f(t) := 1−t, g(t) := t2,
the target random variable X0 ∼ µ0, and a standard Wiener process Yt in Rd (independent of X0): First, it
holds Yt2 ∼ N (0, t2Id), hence Yt2

d
= tZ with Z ∼ N (0, Id), so that

Xt
d
= (1− t)X0 + tZ.

Furthermore, by (15) the 1D components of Yt admit the velocity field vit(x
i) = xi

2t , x
i ∈ R, and by

Proposition 2 the multi-dimensional process Yt admits the velocity field vY(t, x) = (x
1

2t , ...,
xd

2t ) =
x
2t , x =

(x1, ..., xd) ∈ Rd. By the calculation (6), the conditional velocity field corresponding to Xt starting in
x0 ∈ Rd reads as

vX(t, x | x0) = ḟ(t)x0 + ġ(t) vY
(
g(t), x− f(t)x0 | 0

)
= −x0 + 2t vY

(
t2, x− (1− t)x0 | 0

)
= −x0 +

x− (1− t)x0

t
.

Now, if x ∼ PXt
(· | x0), i.e. x = (1− t)x0 + tz with z ∼ N (0, Id), then it follows

vX(t, x | x0) = −x0 +
(1− t)x0 + tz − (1− t)x0

t
= z − x0, (26)

which is the usual constant-in-time conditional FM velocity along the straight-line trajectories between
x0 ∼ µ0 and z ∼ N (0, Id).

B.2 THE UNIFORM CASE

Now consider any component of the mean-reverting process (4) with f(t), g(t) to be chosen, X0 being a
component of X0 ∼ µ0, and Yt given by the MMD gradient flow (20), i.e. Yt := b

(
1− exp

(
− t

b

))
U , where

U ∼ U [−1, 1]. Let vY be the corresponding velocity field from (21). Then, we have

vX(t, x|x0) = ḟ(t)x0 + ġ(t) vY
(
g(t), |x− f(t)x0|

) x− f(t)x0

|x− f(t)x0|

= ḟ(t)x0 + ġ(t)
x− f(t)x0

b
(
exp

(
g(t)
b

)
− 1

) .
Now, along the trajectory x ∼ PXt

(· | x0), i.e.

x = f(t)x0 + b

(
1− exp

(
−g(t)

b

))
u =: αt x0 + σt u, (27)
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with u ∼ U(−1, 1), the velocity calculates as

vX(t, x | x0) = ḟ(t)x0 + ġ(t)
b
(
1− exp

(
− g(t)

b

))
u

b
(
exp

(
g(t)
b

)
− 1

)
= ḟ(t)x0 + ġ(t) exp

(
−g(t)

b

)
u

= α̇t x0 + σ̇t u, (28)

where αt := f(t) and σt := b
(
1− exp

(
− g(t)

b

))
. Hence, in order to minimize the CFM loss, we only

need to sample t ∼ U [0, 1], x0 ∼ X0, and u ∼ U(−1, 1). Note the similarity between the MMD path
(27) and the FM/diffusion path (7); by choosing b = 1, f(t) := 1 − t and g(t) := − log(1 − t) it follows
α(t) = 1− t, σ(t) = t, and we obtain in (28) the FM-velocity along the trajectory (26), where the Gaussian
noise z ∼ N (0, 1) is just replaced by a uniform noise u ∼ U(−1, 1).

C IMM WITH QUANTILE INTERPOLANTS

In this section, we want to demonstrate how the IMM framework proposed in Zhou et al. (2025) can be
realized by our quantile approach. Note that in the following – for notational simplicity – we consider
the one-dimensional case X0, Zt ∈ R where we can employ quantile functions. By combining the 1D
components into a multivariate model X0 = (X1

0 , ..., X
d
0 ), Zt = (Z1

t , ..., Z
d
t ), the results of this chapter

trivially extend to Rd.

Recall our definition of the quantile process

Zt = f(t)X0 +Qg(t)(U), U ∼ U(0, 1), t ∈ [0, 1]. (29)

and the quantile interpolants

Is,t(x, y) = f(s)x+Qg(s)

(
Rg(t)(y − f(t)x)

)
, s, t ∈ [0, 1]. (30)

Note that by the assumptions (5) it holds Z0 = X0 and Z1 = Q1(U).

Figure 7: The CDF Rµ and quantile function Qµ of a standard normal distribution µ.

By the following remark, our quantile interpolants generalize the interpolants used in Denoising Diffusion
Implicit Models (DDIM).
Remark 9 (Relation to DDIM). The interpolants used in Denoising Diffusion Implicit Models (DDIMs) Song
et al. (2020) are given by

DDIMs,t(x, y) :=
(
αs −

σs

σt
αt

)
x+

σs

σt
y. (31)
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Now let f(t) := 1− t, g(t) := t2 and let Qt be the quantile of the law of a standard Brownian motion Wt.

First we obtain

Qg(t)(p) = Qt2(p) = QN (0,t2)(p) = t
√
2 erf−1(2p− 1) = tQN (0,1)(p), p ∈ (0, 1),

with the error function erf . Hence, (29) exactly becomes (not only in distribution)

Zt = (1− t)Y0 + tQN (0,1)(U) = (1− t)Y0 + tZ,

where Z := QN (0,1)(U) ∼ N (0, 1), i.e. the components of (7) with the choice αt = 1 − t, σt = t.

Furthermore, since Rt2(z) = RN (0,t2)(z) =
1
2 (1 + erf

(
z

t
√
2

)
), the quantile interpolant (12) reads as

Is,t(x, y) = (1− s)x+ s
√
2 erf−1

(
erf

(
y − (1− t)x

t
√
2

))
= (1− s)x+

s

t
(y − (1− t)x)

= ((1− s)− s

t
(1− t))x+

s

t
y.

which is exactly DDIMs,t(x, y) in (31) with αt = f(t) and σ2
t = g(t). ⋄

Exactly as the DDIM interpolants, our quantile interpolants (30) satisfy the following crucial interpolation
properties.
Proposition 10 (a.k.a Proposition 3). For all x, y ∈ R and all s, r, t ∈ [0, 1], it holds

I0,t(x, y) = x, It,t(x, y) = y, (32)

and

Is,r(x, Ir,t(x, y)) = Is,t(x, y).

Furthermore, inserting the quantile process (11) yields

Is,t(Z0, Zt) = Zs. (33)

Proof. By assumptions it holds

I0,t(x, y) = f(0)x+Qg(0)

(
Rg(t)(y − f(t)x)

)
= x,

and
It,t(x, y) = f(t)x+Qg(t)

(
Rg(t)(y − f(t)x)

)
= y.

Furthermore, it holds the interpolation/consistency property

Is,r(x, Ir,t(x, y)) = f(s)x+Qg(s)

(
Rg(r)(Ir,t(x, y)− f(r)x)

)
= f(s)x+Qg(s)

(
���Rg(r) (���f(r)x +���Qg(r)

(
Rg(t)(y − f(t)x)

)
−���f(r)x)

)
= f(s)x+Qg(s)

(
Rg(t)(y − f(t)x)

)
= Is,t(x, y)

for all x, y ∈ R. Also note that inserting the random variables Z0, Zt yields

Is,t(Z0, Zt) = f(s)Z0 +Qg(s)

(
Rg(t)

(
Zt − f(t)Z0

))
= f(s)Z0 +Qg(s)

(
U
)

= Zs.

This finishes the proof.
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Proposition 10 represents the key observation which allows us to utilize our quantile process (29) in the IMM
framework the same way as Zhou et al. (2025) employ the DDIM interpolants (31):

For this, let us now recall the basic idea of inductive moment matching and the corresponding loss functions.
Let us distinguish between real numbers written in small letters (x0, u, zt ∈ R) and random variables written
with capital letters (X0, U, Zt, . . .). We assume that the probability distributions have densities:

Law(X0) Law(Zt) Law(Zs|X0 = x0, Zt = zt) Law(Zt|X0 = x0, U = u) Law(X0|Zt = zt)
ρ0(x0) ρt(zt) ρs|0,t(zs|x0, zt) ρt|0,1(zt|x0, u) ρ0|t(x0|zt)

Note that by (33) we have ρs|0,t(zs|x0, zt) = Law(Is,t(x0, zt))(zs) = δ(zs − Is,t(x0, zt)), hence sampling
from ρs|0,t(zs|x0, zt) is just applying Is,t(x0, zt). Similarly, sampling from ρt|0,1(zt|x0, u) is just evaluating
It,1(x0, Q1(u)).

The following proposition follows directly from Proposition 10 as in Zhou et al. (2025). It is essential for
deriving the appropriate loss functions.
Proposition 11. For all 0 ≤ s ≤ r ≤ t ≤ 1, the quantile interpolant (30) is self-consistent, i.e.

ρs|0,t(zs|x0, zt) =

∫
R
ρs|0,r(zs|x0, zr) ρr|0,t(zr|x0, zt) dzr,

and the quantile process (29) is marginal preserving, i.e.

ρs(zs) = Ezt∼ρt,x0∼ρ0|t(·|zt)
[
ρs|0,t(zs|x0, zt)

]
.

Learning. The conditional probability ρ0|t(·|zt) is now approximated by a network pθs,t,zt where the
parameter s describes the dependence on ρs such that

ρs ≈ Ezt∼ρt,x0∼pθ
s,t,zt

[
ρs|0,t(·|x0, zt)

]
=: pθ(s, t). (34)

Then it is proposed in (Zhou et al., 2025, Eq. (7)) to minimize the so-called naïve objective

Lnaive(θ) := Es,t

[
D(ρs, p

θ(s, t)
]
, (35)

with an appropriate metric D, e.g. MMD. The procedure is now as follows: starting in a sample x0 from X0,
we can sample zs, zt from Zs, Zt by (29), respectively; then given zt we sample x̃0 from pθs,t,zt , and finally
we can evaluate z̃s = I(x̃0, zt) from (33), which is then compared with zs.

Inference. The following iterative multi-step sampling can be applied: for chosen decreasing tk ∈ (0, 1],
k = 0, . . . , T with t0 = 1, starting with x

(0)
0 ∼ pθ0,1,z1 , we compute

ztk = Itk,tk−1

(
x
(k−1)
0 , ztk−1

)
, x

(k)
0 ∼ pθ0,tk,ztk

, k = 1, . . . , T.

Although for marginal-preserving interpolants, a minimizer of Lnaive exists with minimum 0, the authors of
Zhou et al. (2025) object that directly optimizing (35) faces practical difficulties when t is far away from s.
Instead, they propose to apply the following “inductive bootstrapping” technique:

Bootstrapping. Instead of minimizing (35), we consider the general objective

Lgeneral(θ) := Es,t

[
w(s, t)MMD2(pθn−1(s, r), pθn(s, t))

]
, (36)

with a weighting function w(s, t) to be chosen. The kernel of the squared MMD distance can be chosen as
e.g. the (time-dependent) Laplace kernel. Importantly, the value r is chosen to be a function r = rs,t ∈ [s, t]
being "close to t" and fulfilling a suitable monotonicity property.
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Let us assume the simplest case rs,t := max{s, t− ε} with a small fixed ε > 0 and hereby demonstrate the
bootstrapping technique: Fix s ∈ [0, 1]. Then, it holds for all t ∈ [s, s+ ε] that rs,s = s. By the definition
(34) and property (32), it holds (independently of θ) that pθ(s, s)(zs) = ρs(zs). Hence, minimizing (36) in
the first step n = 1 yields

0 = MMD2(pθ0(s, s), pθ1(s, t1)) = MMD2(ρs, p
θ1(s, t1)) for all t1 ∈ [s, s+ ε].

In the second step n = 2, it holds for all t2 ∈ [s, s+2ε] that rs,t2 ∈ [s, s+ ε]. Hence, minimizing (36) in the
second step yields, together with the first step,

0 = MMD2(pθ1(s, rs,t2), p
θ2(s, t2)) = MMD2(ρs, p

θ2(s, t2)) for all t2 ∈ [s, s+ 2ε].

Thus, for the number of steps n → ∞, it holds 0 = MMD2(ρs, p
θn(s, tn)) even for the entire interval

tn ∈ [s, 1]. Hence, minimizing the general objective (36) with a large number of steps eventually minimizes
the naïve objective (35), see (Zhou et al., 2025, Theorem 1) for more details.

D LEARN THE NOISE

D.1 COUNTEREXAMPLE: MARGINAL PRODUCT

For the Wasserstein distance, the minimizer is not necessarily the product measure with the correct marginals.
For the measure

µ = 1
2δ(1,1) +

1
2δ(−1,−1) ∈ P2(R2),

the product measure with the correct marginals is given by

µmarg =
(
1
2δ−1 +

1
2δ1

)
×
(
1
2δ−1 +

1
2δ1

)
.

Then the Wasserstein distance is
W 2

2 (µ, µmarg) = 2,

but the product measure
να =

(
1
2δ−α + 1

2δα
)
×
(
1
2δ−α + 1

2δα
)

is, for α = 0.5, closer in the Wasserstein distance:

W 2
2 (µ, να) = 2(1− α+ α2) = 1.5.

D.2 DETAILS ON THE ARCHITECTURE OF THE LEARNED QUANTILES Qϕ

We implement the quantile transport with rational quadratic splines (RQS) Durkan et al. (2019). For each
coordinate i the map takes the form

Qi
ϕ(u) = Hi

ϕ

(
logit(u)

)
, u ∈ (0, 1),

where Hi
ϕ : R → R is a monotone spline with K bins and linear tails. A lightweight conditioner network

outputs bin widths, bin heights, and knot slopes; we pass these raw values through softplus, add a small
constant to the slopes, and normalise widths/heights so they sum to one. The positive lower bound on each
slope ensures that Hi

ϕ is strictly increasing, hence Qi
ϕ is strictly increasing on (0, 1). The derivative exists

almost everywhere and satisfies

(Qi
ϕ)

′(u) = Hi ′

ϕ

(
logit(u)

) 1

u(1− u)
> 0 for a.e. u ∈ (0, 1).
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D.3 TOY TARGET DISTRIBUTIONS

Figure 8: A generated sample path from the learned quantile latent to the checkerboard. The adapted latent
(left) is already close to the target distribution.

We use three standard challenging low-dimensional distributions: Neal’s funnel, a 3× 3 Gaussian mixture,
and a checkerboard.

Funnel. For the toy illustration in Figure 2, we work with the dataset known as Neals Funnel (Neal, 2003).
The distribution of Neal’s funnel is defined as follows:

p(x1, x2) = N
(
x1; 0, 3

)
N
(
x2; 0, exp(x1/2)

)
.

Grid Gaussian Mixture. We give more details about the mixture of Gaussian we consider in our experiment.
It is designed in a grid pattern in [−1, 1]2, as follows:

9∑
i=1

wi · N (µi, σ
2I2) ,

where (wi)
9
i=1 = (0.01, 0.1, 0.3, 0.2, 0.02, 0.15, 0.02, 0.15, 0.05), µi = (µ1, µ2) with µ1 = (i mod 3)−

1, µ2 =
⌊
i
3

⌋
− 1, and σ = 0.025.

Checkerboard. Fix ℓ < h and domain Ω = [ℓ, h]2. Define the support

S =
{
(x, y) ∈ Ω : ⌊x⌋+ ⌊y⌋ is even

}
.

The checkerboard distribution is uniform on S and zero elsewhere:

pChecker(x, y) =


1

area(S)
, (x, y) ∈ S,

0, otherwise.

For integer ℓ, h with even side length (e.g. ℓ = −4, h = 4), exactly half of Ω is active, hence

pChecker(x, y) =
2

(h− ℓ)2
1S(x, y).
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Figure 9: Comparing the generated samples due to our learned latent (left) to those due to a Gaussian latent
(right), after 20k steps of training with the same network architecture. Our model converges much faster.

D.4 MINIBATCH OPTIMAL TRANSPORT

Since the learned latent distribution is close to the data distribution, we can exploit this improved matching
via an optimal transport coupling. For training, the minibatch OT is computed empirically as follows: draw
a minibatch {x(i)

0 }Bi=1 ∼ µ0 and {u(j)}Bj=1 ∼ U([0, 1]d), set y(j) = Qϕ(u
(j)), and define the empirical

measures

µ̂B
0 = 1

B

B∑
i=1

δ
x
(i)
0

, ν̂Bϕ = 1
B

B∑
j=1

δy(j) .

The minibatch objective is

ÊQ(ϕ) = D
(
µ̂B
0 , ν̂

B
ϕ

)
,

and gradients backpropagate through y(j) = Qϕ(u
(j)).

Furthermore, we use the linear path x
(j)
t = (1− tj)x

(j)
0 + tj y

(T (j)), j = 1, . . . , B, with tj ∼ U(0, 1), the
target velocity y(π(j)) − x

(j)
0 , and we optimize the empirical versions

ÊFM(θ;ϕ) =
1

B

B∑
j=1

∥∥vθ(x(j)
t , tj

)
−
(
y
(T (j))
ϕ − x

(j)
0

)∥∥2
2
, L̂joint = ÊFM + λQ ÊQ.
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E IMPLEMENTATION DETAILS

Algorithm 1 Joint learning of 1D quantiles and FM velocity
Require: Dataset D, batch size B, weight λQ, iterations K
Require: Quantile model Qϕ, velocity model vθ

1: for k = 1 to K do
2: Sample {xi}Bi=1 ∼ D, {ui}Bi=1 ∼ U([0, 1]d), {ti}Bi=1 ∼ U(0, 1)
3: Cij ← ∥xi −Qϕ(uj)∥22
4: T ← argminT

∑B
i=1 Ci,T (i)

5: LQ ← 1
B

∑B
i=1 ∥xi − yT (i)∥22

6: zi ← (1− ti)xi + ti ỹi

7: LFM ← 1
B

∑B
i=1 ∥vθ(zi, ti)− yT(i) + xi∥22

8: L← LFM + λQLQ

9: Update (θ, ϕ) by a gradient step on L
10: end for
11: return (θ, ϕ)

We support baseline flow matching, optional quantile pretraining, and joint quantile+velocity optimisation.
Pretraining fits the RQS transport before optionally freezing it; joint training updates both modules simulta-
neously. Once the quantile learning rate decays to zero we freeze its weights and continue optimising the
velocity field only.

The coupling plans are calculated using the Python Optimal Transport package (Flamary et al., 2021). For
inference simulate the corresponding ODEs using the torchiffeq (Chen, 2018) package. For all models we
only used the batch size 128 and learning rate 2e− 4 for the velocities. Quantile transports are parameterised
by stacked rational-quadratic splines following Durkan et al. (2019).

E.1 SYNTHETIC EXAMPLES

All models include a sinusoidal time embedding and SiLU activation functions.

Funnel. For the funnel distribution, we pretrain our quantiles and use the frozen quantiles during flow
matching. We trained our quantile for 20,000 steps and to compensate we trained our velocity for only
150,000 steps. For the RQS we choose the parameters number of bins 64, bound 25, layers 3.

Grid Gaussian Mixture and Checker. The quantiles were trained for the first 20,000 steps, after which the
learning rate was linearly decayed to 0 by step 25,000. For both datasets, we trained the velocity model with
4 layers and a hidden width of 256 for 100,000 steps. For the RQS we choose the parameters number of bins
32, bound 5, layers 3.

E.2 IMAGE EXPERIMENTS

For both image datasets, we adapt the U-Net from (Dhariwal & Nichol, 2021) to parametrize our velocity
field.

MNIST. For the MNIST dataset we use the U-Net with base width 64, channel multipliers (1, 2, 4), two
residual blocks per resolution, attention at 7 × 7, 1 attention head, and dropout 0.1. We clip the gradient
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norm to 1 and use exponential moving averaging with a decay of 0.99. The quantiles were trained for the first
20,000 steps, after which the learning rate was linearly decayed to 0 by step 25,000.

CIFAR. Here we use the U-Net with base width 128, channel multipliers (1, 2, 2, 2), two residual blocks
per resolution, attention at 16× 16, four attention heads , and dropout 0.1. We clip the gradient norm to 1
and use exponential moving averaging with a decay of 0.9999. To evaluate our results, we use the Fréchet
inception distance (FID) (Heusel et al., 2017). The quantiles were trained for the first 20,000 steps, after
which the learning rate was linearly decayed to 0 by step 25,000.

CIFAR-10 inputs are normalized to [−1, 1] with random horizontal flips.

Table 1: Overview of the default parameters. Adam with LR 2×10−4.
Setting Funnel GMM / Checker MNIST CIFAR-10

Dimensionality d 2 2 784 (1×28×28) 3072 (3×32×32)
MLP layers 3 3 – –
MLP width 64 128 – –
Positional embeddings none sinusoidal – –
UNet channels – – 64 128
UNet mult – – (1, 2, 4) (1, 2, 2, 2)
UNet attention depth – – 7 16
Quantile objective W 2

2 W 2
2 W 2

2 W 2
2

RQS (layers / bound / bins) 2 / 25/ 64 3 / 5/ 32 3 / 5/ 16 4 / 5/ 16
KL weight λKL 0 0 0.1 1, 2, 3, 4
Minibatch OT off on on on
Batch size 128 128 128 128
Train steps (k) 150/200 100 100 400
EMA (model) 0.999 0.99 0.99 0.9999 (warmup 5k)
Quantile loss weight 50.0 50 5.0 5.0
Quantile LR / batch / steps 1e−4/128/50k 2e−4/128/25k 1e−4/128/25k 2e−4/128/25k
Quantile EMA (used) 0.99 (on) – – –
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F FURTHER EXPERIMENTAL RESULTS

F.1 SYNTHETIC EXAMPLES

Figure 10: We plot 1M samples from our learned funnel latent and color them by the norm of the associated
endpoint after solving the flow ODE.

F.2 IMAGES

Figure 11: Mean and standard deviation of our learned MNIST latent.
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Figure 12: Comparison of the empirical (left) and learned (right) histograms and quantiles for the MNIST
dataset at given pixel locations.
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