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ABSTRACT

We introduce a general framework for constructing generative models using one-
dimensional noising processes. Beyond diffusion processes, we outline examples that
demonstrate the flexibility of our approach. Motivated by this, we propose a novel frame-
work in which the 1D processes themselves are learnable, achieved by parameterizing
the noise distribution through quantile functions that adapt to the data. Our construction
integrates seamlessly with standard objectives, including Flow Matching and consistency
models. Learning quantile-based noise naturally captures heavy tails and compact supports
when present. Numerical experiments highlight both the flexibility and the effectiveness of

our method.

1 INTRODUCTION

Flow-based generative models, especially score-based diffusion [Sohly
Dickstein et al|(2015); Song & Ermon| (2019), flow matching (FM)
Albergo et al.|(2023)); Lipman et al.|(2023)); [Liu| (2022)) and consistency
models like the recently introduced inductive moment matching (IMM)
Zhou et al.|(2025)), achieve state-of-the-art results in many applications.
All these methods construct a probability flow from a simple latent
distribution (noise) to a complex target (data) with a neural network
trained to approximate this flow from limited target samples. In diffusion
models, the score function directs a reverse-time SDE, while in FM, the
velocity field is learned to compute trajectories via a flow ODE. Finally,
consistency models like IMM learn to predict the jumps from noise
to the data while factoring in the consistency of the flow trajectories.
Usually, a Gaussian is used as latent distribution which causes difficulties
when learning certain multimodal and heavy-tailed targets Hagemann
& Neumayer| (2021); Salmona et al.| (2022), see Figure Q]for a heavy-
tailed example. There exist only few approaches to learn the noising
process, Bartosh et al.| (2025) fit the forward diffusion process via a
learned invertible map that is trained end-to-end, [Kapusniak et al.| (2024)
use metric flow matching, i.e., a neural network to adapt the path to a
underlying Riemannian metric. On the other hand [Pandey et al.| (2024));
Zhang et al.|(2024) design heavy-tailed diffusions using Student-¢ latent
distributions, and |[Shariatian et al. (2025) extend the framework to the
family of «-stable distributions.

In this paper, we present a new approach to adapt the latent distribution
to the data by learning from its samples. The basic idea comes from

Figure 1: The learned noise (top) in
conjunction with optimal coupling
FM drastically shortens the trans-
port paths compared to FM with
Gaussian noise (bottom).
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the fact that all the above methods implicitly emerge as componentwise models. For example, denoting the
target random variable by X and the latent by X; ~ N(0, 1), FM utilizes the process X; = (X}, ..., XJ)
with the components X} = (1 — )X} + t X} employing one-dimensional Gaussians X; ~ N (0, 1). This
motivated us to generally construct generative models from 1D processes and their quantile functions.

Given any appropriate 1D process we demonstrate how to learn the componentwise neural flow by the
associated conditional velocity field. We give examples besides diffusion demonstrating the flexibility of
our machinery, namely the Kac process arising from the 1D damped wave equation, and a process reflecting
the Wasserstein gradient flow of the maximum mean discrepancy with negative distance kernel. In contrast
to diffusion, assuming a compactly supported target, these processes also have a compact support, leading
to a better regularity of the corresponding velocity field. This inspired us to further adapt the process to
the data and to learn the 1D noising process rather than choosing it manually. To this end, we exploit that
1D probability measures can be equivalently described by their quantile functions Q° : (0,1) — R which
are monotone functions, and consider quantile processes X; = (1 — )X} + tQ*(U?), i = 1,...,d with
ii.d. U® ~U[0,1] for t € [0, 1]. We learn the individual quantile functions Qfﬁ, i =1,...,d such that their

componentwise concatenation Q4(U) = (Qfﬁ(U ))4_, is "close" to the data. This inspired us to minimize

W3 (1o, Law(Qq(U))),  po = Law(Xo).

with the Wasserstein distance W,. We combine the learning of the latent Q,(U) with the learning of the
velocity field via optimal coupling FM. This allows us to effectively exploit the learned noise and drastically
shorten the transport paths, as illustrated in Figure

The simplicity of quantile functions give us a flexible tool, which enables us to simultaneously learn the
noising process and apply the FM framework. Our quantile perspective can further be extended to fit into
consistency models.

Contributions. 1. We introduce a general construction method for neural flows by decomposing multi-
dimensional flows into one-dimensional components. Ultimately, this allows us to work with one-dimensional
noising processes in the FM framework.

2. We highlight three interesting noising processes for our framework: the Wiener process, the 1D Kac
process and the 1D MMD gradient flow with negative distance kernel and uniform target measure.

3. Based on the decomposition viewpoint, we propose to describe our 1D noising processes by their quantile
functions. Via quantile interpolants, our framework can also be incorporated into consistency models.

4. Exploiting the simplicity of quantile functions, we propose to learn the quantile of the 1D noise simultane-
ously within the FM framework, aiming to fit the noise to the data. Numerical experiments demonstrate the
high flexibility of our data-adapted noise.

2  PRELIMINARIES: FLOW MATCHING

We start with a brief introduction of curves in Wasserstein spaces and basic ideas on flow matching. For more
details we refer to|/Ambrosio et al.| (2008) and [Wald & Steidl|(2025). Let (P2(R?), W) denote the complete
metric space of probability measures with finite second moments equipped with the Wasserstein distance

W2(uv):= min / o — g dr(z. )
mell(p,v) JRd xRd

Here I1(p, v) denotes the set of all probability measures on R? x R? having marginals y and v. The push-
forward measure of ;1 € P2(R?) by a measurable map 7 : R? — R? is defined by Tz := o 71 Let I be
an interval in IR, in this paper mainly I = [0, 1]. A narrowly continuous curve z; : I — P2(R%) is absolutely
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continuous, iff there exists a Borel measurable vector field v : I x R* — R? with [[v¢|| 1, ra ) € L2(I)
such that (u, v¢) satisfies the continuity equation

Ottt + Vg - (uevy) =0 (D

in the sense of distributions. If in addition [, sup,¢p [|vi(2)|+Lip (v, B) dt < oo for all compact B C R,
then the ODE

8t<p(t7x) = ’l}t(gﬁ(t,I)), 90(07x) =z, (2)
has a solution ¢ : I x R — R? and i, = (¢, )y to.

Starting in the target distribution 1o and ending in a simple latent distribution p1, as usual in diffusion models,
we can reverse the flow from the latent to the target distribution using just the opposite velocity field —v;_;
in the ODE (2). Thus, if somebody provides us with the velocity field v, we can sample from a target
distribution by starting in a sample from the latent one and then applying our favorite ODE solver.

If we do not have a velocity field donor, we can try to approximate (learn) the velocity field by a neural
network vf . Clearly, a desirable loss function would be

L(0) = Epurs(0,1), e [va(m) — vt(z)HQ} .

Unfortunately this loss function is not helpful, since we do not know the exact velocity field v; nor can sample
from p; in the empirical expectation. However, employing the law of total probabilities, as done, e.g. in
Lipman et al.[(2023)), we see that £(0) = Lcrm(6) + const with a constant not depending on 6 and the
Conditional Flow Matching (CFM) loss

Lerm(0) = Eog oo, ta2(0,1), wrpue (o) [||Uf(fv) - vt(ﬂflxo)Hz} : 3)

The key difference is the use of the conditional flow v.(x|zo) with respect to a fixed sample z( from our
target distribution. To summarize, all you need is a conditional flow model with accessible velocity field
ve(x|xo) (at least along the flows trajectory), where you can easily sample from. Then you can indeed learn
the velocity field v; of the general (non-conditional) flow and finally sample from the target by the reverse
ODE ().

3  MULTI-DIMENSIONAL FLOWS VIA THEIR ONE-DIMENSIONAL COMPONENTS

We begin by outlining a general framework based on stochastic processes for flow—based sampling from
a given data distribution p, see e.g. |Albergo et al.|(2023)). Then we restrict ourselves to componentwise
independent noising processes and show how they integrate into the framework. Finally, we recast the
construction from a one-dimensional viewpoint using quantile interpolants.

3.1 CONSTRUCTION VIA STOCHASTIC PROCESSES

Consider a (noising) process (Y;); with Yo = 0 € R? with associated velocity field v; = v,Y (- | 0) such that
the pair (1Y, v,Y) satisfy the continuity equation (T)), where 1)’ is the law of (Y);. To construct a generative
model we need to create a process (X;); which can start in any sample x from the target measure . Let
Xo ~ pg. Following the lines inDuong et al.|(2025), we define the mean-reverting process by

Xt = f(t) XO + Yg(t)v t e [0, ].L (4)
with smooth scheduling functions f, g
JO) =1, f(1)=0 and g(0)=0, g(1)=1. )
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Then we have X; = Y, and by abuse of notation, the process X starts in Xy = X. Differentiation of ()
results in ) ) )
Xi=f(t)Xo + 9(t) Yyt)-
Hence the conditional velocity field of X, is given by (see|Lipman et al.|(2023))
vX (2| o) = ]E[Xt | X; =2, Xo = xo}
=E[ft)xo+ 9(t) Y | Ygu) =2 — f(t)z0]
= f(t)xo + §(t) v (& — f(H)zo | 0). 6)
Now, the conditional flow matching loss (3)) can be minimized regarding Xo ~ po and X¢ ~ fi;. Note that
given a sample x ~ (X; | Xg = z¢), we haveﬂvtx(x | o) = f(t) o + g(t) v )y (Yo | 0)-
Remark 1 (Relation to FM and diffusion). Consider the stochastic process
XM = 0, X + 0 Xy, X5 ~N(0,1y). (7

Choosing f(t) = oy, g(t) = o} and the standard Brownian motion Y, = W, it holds the equality in
distribution

d
XM E f()Xo + W) = X,
Then f(t) == 1 —t, g(t) == t2 yields (independent) FM \Lipman et al.| (2023), and f(t) = exp (—@),

g(t) =1 — exp (—h(t)), where h(t) := fot Bmin + $(Bmax — Bmin) ds with, e.g., Bmin = 0.1, Bmax = 20,
corresponds to processes used in score-based generative modelsSong et al.|(2021)), see Appendix[B|

Motivated by the fact that a multi-dimensional Wiener process W, € R¢ consists of independent (and
identically distributed) 1D components W, = (W}, ..., Wg), we propose to construct a d-dimensional flow
Y componentwise, based on independent one-dimensional processes Y;'.

3.2 CONSTRUCTION OF COMPONENTWISE FLOWS

Restricting ourselves to processes Y, that decompose into one-dimensional components allows us to propose
our general construction method for accessible conditional flows in FM. Let Y,!,... Y, be a family
of independent one-dimensional stochastic processes with time dependent laws ,u%' € P»(R). For each
i=1,...,d,letv}: R — R be the associated velocity field such that the pair (u},v}) satisfies the one-
dimensional continuity equation (T)). Define the product measure y; € Po(R?) by

d
pe(x) = [[u@), z=(@'. .. 2% R ®)
1=1

For the d-dimensional process Y; := (Y;}, ..., Y,%), independence implies that its law is exactly yi;. Moreover,
by the following proposition, the corresponding d-dimensional velocity field is given componentwise, see
Duong et al.[(2025).

Proposition 2. Let y; be given by (8), where the i are absolutely continuous curves in R with velocity fields
vi. Then p satisfies a continuity equation (1) with a velocity field which decomposes into the univariate
velocities

ve(z) = (vf(2h),...,vf(z?).

Using these insights on componentwise flows, we propose the following guide for constructing neural flows.

'In general, v¥ might not be tractable, and only given as an conditional expectation of the time derivative Y. Yet,
through our componentwise construction below, we will obtain easier access to it via its 1D components.
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General construction method for accessible conditional flows in FM

1. One-dimensional noise: Start with an appropriate absolutely continuous measure curve fi; starting
in pp = dp, 0 € R, where you can compute its velocity field v, in the 1D continuity equation

Ot + Ox(peve) = 0, o = do. 9

Appropriate 1D noising processes are provided in Section 4]

2. Multi-dimensional noise: Set up a multi-dimensional conditional flow model starting in g = d,
0 € R? with possibly different, but independent 1D processes as described in Section

3. Incorporating the data: Construct a multi-dimensional conditional flow model starting in p9 = 04,
for any data point o ~ po by mean-reversion as shown in Section [3.1]

3.3 QUANTILE PROCESSES

The restriction to componentwise noising processes Y in (@) [*{allows us to use the quantile functions of the
1D components. Recall that the cumulative distribution function (CDF) R,, of n € P»(R) and its quantile
function @Q),, are given by

Ru(z) = p((—o0,2]), z€R and Q(u)=min{z € R: R,(z) >u}, ue(0,1). (10)

In Figure[/|we exemplify the CDF and quantile of a standard Gaussian. The quantile functions form a closed,
convex cone C := {f € Ly(0,1) : fincreasing a.e.} in L(0,1). The mapping p — @, is an isometric
embedding of (P2(R), Wa) into (L2(0, 1), || - |, ), meaning that

W) = [ 1Qu(e) - Qulo)f* ds

and 1 = Q3L0,1)- Let U ~ U[0, 1] be uniformly distributed on [0, 1]. Now, any probability measure flow
p can be described by their respective quantile flow Q; == @,,,, such that p; = Q¢ 3L 0,1y and Qo U is a
stochastic process with marginals gi;.

We can therefore model any multi-dimensional noising process, that decomposes into its components, via
quantile functions. Namely let X, be any component X}, of Xy ~ pg, and f,g : [0,1] — R smooth
schedules fulfilling (3)). We assume that we are given a flow (Q;); of quantile functions @; : (0,1) — R,
t € [0, 1], which fulfill Q9 = 0 and are invertible on their respective image with the inverse given by the CDF
R: : Q+(0,1) — R. We introduce the quantile process

The quantile process coincides (in distribution) with the components of the mean-reverting process (@), where
.. . ;i d .
the noising term is represented as Y ) = QLaW(Yi(t))(U ). In particular, the components of the process (7))
g

are obtained via using the quantile @; of a standard Brownian motion W; and f(t) == «, g(t) == o?.

Quantile Interpolants. Let us briefly mention how our setting fits into the framework of consistency
models. To this end, we define the quantile interpolants

Is,t(xv y) = f(S)JU =+ Qg(s) (Rg(t) (y - f(t).]?)), Svt € [Oa 1] (12)
which generalize the interpolants used in Denoising Diffusion Implicit Models (DDIM), see Remark [9]

ZBesides componentwise 1D processes we may also use triangular decompositions, not addressed in this paper.
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Proposition 3. Forall z,y € Rand all s,r,t € [0,1], it holds I (z,y) = x, I 1(z,y) = y, and

Is,r(xa Ir,t(xa y)) = S}t(.’lf, y)
Furthermore, inserting the quantile process vields I ((Zy, Z,) = Zs.

The proof is given Appendix [C} Proposition [3|allows us to also apply the concept of consistency models to
our quantile process (T1)). The shared idea of these models is to predict the jumps from the process Z; to the
target X, while factoring in the consistency of the trajectory of Z; via Z5, 0 < s < t. In FM, this consistency
of the flow is usually neglected as only single points on the FM paths are sampled. Also, consistency models
as one-step or multistep samplers usually are in no need of velocity fields. In the Appendix|C] we demonstrate
by means of the recently proposed inductive moment matching (IMM)|Zhou et al|(2025)), that our formulation
via quantile interpolants fits seamlessly into the consistency framework.

4 ONE-DIMENSIONAL PROCESSES: FROM PRESCRIBED TO LEARNED

Next, we address the question of finding “good” 1D processes Y, which can drive our mean-reverting process
[@). Aside of the Wiener process, we highlight two other ones with accessible velocities and conditional
measures in Section These processes have characteristics very different from diffusion, notably non-
exploding vector fields. This raises the question which 1D processes are best suited for certain problems. In
Subsection4.2] we present a new method for learning data-adapted processes via their quantile functions.

4.1 ONE-DIMENSIONAL FLOWS BESIDES DIFFUSION

We explore three interesting 1D (noising) processes Y; in connection with their respective PDEs, for which
our approach via reduction to one dimension is nicely applicable, namely the

* Wiener process W, and diffusion equation,
» Kac process K; and damped wave equation,

¢ Uniform process U; and the gradient flow of the maximum mean functional F,, :== MMDg (-, v)
with negative distance kernel K (z,y) = —|z — y| and v = U(-b, b).

In each case, we explicitly calculate the respective conditional measure flow and its conditional velocity field
in Appendix [A] such that the conditional flow matching loss (3) can be minimized. Note that in contrast to
the Wiener process W, usually seen in diffusion and flow matching models, the latter two processes Ky, U;
do not enjoy a trivial analogue in multiple dimensions: in case of K the corresponding PDE (damped wave
equation) is no longer mass-conserving in dimension d > 3, see|Tautz & Lerche| (2016)); in case of U; the
mere existence of the MMD gradient flow in multiple dimensions is unclear by the lack of convexity of the
MMD, see |[Hertrich et al.[(2024). Our general construction method makes these 1D processes accessible for
generative modeling in arbitrary dimensions.

4.2 LEARNING 1D PROCESSES VIA QUANTILE FUNCTIONS

The choice of the noise can have a significant impact on the sampling performance, see Figure [T for the
checkerboard distribution and Figure 2| for a heavy-tailed one. Now we adopt the quantile process view from
Section to learn data—adapted noise. We pose the following requirements on the latent distribution v: 1)
absolute continuity, ii) data—independence, and iii) independence of components (to fit our 1D construction).

“Note that we used the independent coupling for training of these models. We also used z-score normalization.
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Figure 2: Sampling of Neal’s funnel with different latent distributionsﬂFrom left to right with uniform
([-1,1]), standard Gaussian, Student-T (with parameters (20, 4) inspired by the choice in [Pandey et al.
(2024)) and our learned distribution. The last two heavy-tailed noises perform significantly better.

Under these assumptions the latent class reduces to the set S := {v € Po(R?) : v = pdz and p = TIL_, p} ,
i.e. considering quantile processes of the form

X, = (1-t) X, +tQ" (U, i=1,...,d, t€[0,1],

we have v = Qy U([0,1]%) with Q(u) = (Q'(ul),...,Q%(u?)). In particular, in our framework the
quantile family determines the scales and tails of Q(U), thereby influencing the difficulty and inductive bias
of predicting the conditional velocity v¢(X;) = Q(U) — X, along the linear paths X; = (1 —¢)X, +tQ(U).

We now describe how we learn the quantile maps Q. The core idea is that besides our requirements i)-iii) as
well as being a valid quantile function, we would like our noise to be "close” to the data. We learn Q4 by
minimizing a statistical discrepancy, e.g. the Wasserstein distance, between (o and v,

E(¢) = W22 (NO» V¢)» Vg 1= (th)# U([O, Hd)' (13)
Note that due to the restriction of our quantiles to the class S, the minimizer of (T3) is in general not .

While our quantiles can be trained independently, in order to provide an aligned training signal for the velocity
field, we propose to also train Q jointly with the velocity vy. Hence, we aim to minimize the loss

[,(9, ¢) = SCFM(9§¢) + )\5(¢), A>0,
with  Ecem(036) = Eoatto,0),(mors |00 (1= 2+ ty, £) = (y = 2)|[3],

where g € I1,(10, V) i an optimal coupling between pio and v,

In practice, we optimize the empirical expectation via minibatches; see Appendix [D.4] A pseudo-algorithm is
provided in Algorithm[I] In particular, we compute a mini batch optimal transport map 7' that minimizes
Ele Ix§ = y(T@)|2 for batches of data {Xé])}le, {y@W}E., from X, and Q4 (U), respectively. This
minibatch map 7" is reused below for flow matching to keep the targets consistent across the two terms.

5 EXPERIMENTS

To validate our proposed method, we conduct experiments on synthetic and imaging datasets. We parametrize
the latent distribution’s quantile function using Rational Quadratic Splines (RQS) Durkan et al.[(2019)). This
choice is motivated by several factors: RQS enforce monotonicity by construction, are parameter-efficient,
and provide access to analytic derivatives. For our experimental setup, see Table
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Figure 3: A generated trajectory from the learned quantile latent (left) to the unevenly weighted Gaussian
mixture target (right). The adapted latent is already close to the target distribution.

5.1 ANALYSIS ON SYNTHETIC DATASETS

We begin by qualitatively analyzing our algorithm on several synthetic 2D distributions (see Appendix |D.3)),
each designed to highlight a specific aspect of our approach.

Gaussian Mixture Model (GMM). We first consider a 2D GMM with nine unevenly weighted modes,
as visualized in Figure 3] Due to the independence assumption inherent in our factorized quantile function,
the learned latent cannot perfectly replicate the target’s joint distribution and is not the product of the
correct marginals; see also[D.T] Instead, it approximates a distribution where the components cannot further
independently improve the transport cost to the target.

Funnel Distribution. The funnel distribution, shown in Figure
presents a challenge due to its heavy-tailed, conditional structure. This
experiment highlights the importance of matching the latent’s tail behav-
ior to that of the target. We observe that our learned latent successfully
adapts to the target’s heavy tails, see also the visualization in Figure [I0]
This enables the flow matching model to generate high fidelity samples
across the distribution. Note that due to the high variance signal when
training on the funnel distribution, we pre-train our quantile.

Checkerboard Distribution. In contrast to the funnel, the checker-
board distribution (Figure |1) features a compact support. Here, we
demonstrate the synergy between our learned latent and an Optimal
Transport (OT) coupling. Our method learns a latent that approximates
a uniform distribution over the target’s support. When this adapted
latent is combined with an OT coupling for flow matching, the resulting
transport paths are substantially shorter (Figure[8)) than those originating
from a standard Gaussian, and the vector field training converges much
faster (Figure[9). This result underscores our central claim: combining
a data-dependent latent with a data-dependent coupling has the potential
to significantly improve model performance.
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Next we analyze our method on standard image generation benchmarks.
In high-dimensional settings and given fixed batch sizes, the signal for
the quantile function can be noisy, potentially leading to degenerate Figure 4: Top: samples from the
solutions. To mitigate this, we add a regularization term to the loss that learned latent. Bottom: gener-
penalizes the expected negative log-determinant of the Jacobian of the ated samples from the learned FM
quantile. model.
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MNIST. The MNIST dataset exhibits strong marginal properties; for instance, pixels near the center are
frequently active (non-zero), while pixels at the borders are almost always zero. Our learned quantile function
successfully captures these global marginal statistics. As illustrated in Figure[d] the latent distribution learns
to concentrate its mass in regions corresponding to active pixels. We also plot mean and standard deviation
(Figure[TT) as well as empirical and learned quantiles (Figure[I2)) of our learned latent in the Appendix. While
the independence assumption precludes the model from capturing specific spatial correlations (e.g. the shape
of a digit), adapting to the correct marginals can provides a improved initialization for the flow model.

CIFAR-10. To assess the scalability of our approach, we train our model on the CIFAR-10 dataset. The
quantile is extremely lightweight compared to the UNet architecture used for the flow model. We reuse the
minibatch OT coupling for the latent and freeze the quantile function after a few training epochs. This strategy
results in minimal computational overhead compared to the standard Gaussian baseline with minibatch OT
coupling. Access to analytic derivatives makes our volume contraction regularization efficient. We evaluate
our models for a sufficiently high weight on the quantile loss, we fix it to be A\ = 5 . In Figure[5} we report
results over different weights /3 for the regularization parameter. We compared to using a standard gaussian
baseline. Our results suggest that for uncorrelated noise, there is a trade-off between the smoothness of the
latent and its "closeness" to the data. While out of the scope of this paper, we hypothesize that, for most
sampling problems, there is an optimal tradeoff between these properties.

Baseline

\ 1 2 3 4 Baseline

FID (20 Euler steps) 11.21 10.18 997 9.78 10.46
FID (100 Euler steps) | 7.22 6.62 639 6.26 6.44

Figure 5: CIFAR results for different choices of regularization parameter and for the baseline. The visualized
samples were generated using 100 Euler steps.

6 CONCLUSIONS

The result of this paper is a “quantile sandbox” for building generative models: a unifying theory and a
practical toolkit that turns noise selection into a data-driven design element. Our construction plugs seamlessly
into standard objectives including Flow Matching and consistency models, e.g. Inductive Moment Matching.
Furthermore our experiments demonstrate that it is possible to learn a freely parametrized, data-dependent
latent distribution, beyond the usual smooth transformations of Gaussians. Our work opens several promising
directions for future research. Extensions include developing time-dependent quantile functions to optimize
the entire path distribution, not just the endpoint as well as designing conditional quantile functions for tasks
like class-conditional or text-to-image generation.
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A EXAMPLES OF ONE-DIMENSIONAL FLOWS

We provide three interesting examples, namely the well-established diffusion flow, the recently proposed
Kac flow, and the Wasserstein gradient flow of the MMD functional with negative absolute distance kernel
towards a uniform measure. Paths of the processes are depicted in Figure 6}

In each case, the absolutely continuous curve p; starting in dg (e.g. conditional) and the corresponding
velocity field can be given analytically. Note that in the latter two cases, multi-dimensional generalizations of
the flows are not trivially given, which further underlines the strength of our 1D approach. Henceforth, if the
measures y; admit a density function, we will denote it by p;.

Realisations of a Standard Wiener Process (1D) Realisations of the Kac process (1D) Realisations of the Uniform Process (1D)

Wt

Figure 6: Three realisations of a standard Wiener process (left), the Kac process (middle), and the Uniform
process (right), simulated until time 7" = 1.
A.1 WIENER PROCESS AND DIFFUSION EQUATION

First, consider the standard Wiener process (Brownian motion) (W, ), starting in 0 whose probability density
flow p; is given by the solution of the diffusion equation

1 1 .
Opr = V- (pe §V10gpt) =3 Apy, te€(0,1], ltlﬁ)lpt = do, (14)
where the limit for ¢ | 0 is taken in the sense of distributions. The solution is analytically known to be

Izl

pe(x) = (27Tt)_g€_ 7,

Thus, the latent distribution is just the Gaussian p; = N(0, I). The velocity field in (T4) reads as

1 x
vy (@) = —5 Viogp: = % (15)

However, its Lo-norm fulfills ||vt\|%2(R1 o) 4%, and is therefore not integrable over time, i.e.

llvell Lot ,p) & L2(0,1). In practice, instability issues caused by this explosion at times close to the
target need to be avoided by e.g. time truncations, see e.g. Kim et al.|(2022). For a heuristic analysis also
including drift-diffusion flows, we refer to Pidstrigach! (2022)). Note that in the case of diffusion, there is no
significant distinction between the uni- and multivariate setting.

A.2 KAC PROCESS AND DAMPED WAVE EQUATION
The Kac process |[Kac| (1974)), also known as persistent random walk, originates from a discrete random walk,

which starts in 0 and moves with velocity parameter ¢ > 0 in one direction until it reverses its direction with
probability aA, a > 0. A continuous-time analogue is given by the Kac process which is defined using the
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homogeneous Poisson point process Ny with rate a, i.e. 1) Ny = 0; ii) the increments of N; are independent,
iii) Ny — N ~ Poi(a(t — s)) for all 0 < s < t. Now the Kac process starting in 0 is given by

t
K; = B;c/ (—1)N=ds,
2 Jo

where B 1 Ber(%) is a Bernoulli random variable]|taking the values 1. Note that in contrast to diffusion

processes, the Kac process K persistently maintains its linear motion between changes of directions (jumps
of Ny), see Figure [6]

By the following proposition, the Kac process is related to the damped wave equation, also known as
telegrapher’s equation, and its probability distribution admits a computable vector field such that the continuity
equation is fulfilled. For a proof we refer to|Duong et al.[(2025).

Proposition 4. The probability distribution flow of (K}); admits a singular and absolutely continuous part
via

1
() = 56_‘“ (8o(z + ct) + bo(z — ct)) + pr(), (16)
with the absolutely continuous part
1 I
o) = g (B ) 4 BB )1 ean(@), ile) = VR,

where 3 := %, and Iy denotes the 0-th modified Bessel function of first kind. The distribution is the
generalized solution of the damped wave equation

Oru(t, ) + 2a dpu(t, x) = 0pzult, ), (17
u(0,x) = do(z), Ou(0,z) = 0.
Further (uz, vt) solves the continuity equation (O) where the velocity field is analytically given by

Ta@eaey @€ (=t ),

c I, (Bre(a)

ve(z) = c if ©=ct,
—c if x=—ct,
arbitrary otherwise.

The Kac velocity field admits the boundedness ||v¢|| 1, (r1 .,y < ¢, and hence, ||v¢|| 1, w1 ) € L2(0, 1).

Interestingly, the damped wave equation is closely related to the diffusion equation via Kac’ insertion
method. It is based on the following theorem, whose proof based on semigroup theory can be found in |Griego
& Hersh| (1971)), see also Janssen| (1990); [Kac| (1974).

Theorem 5. For any initial function fo € H?(R%), d > 1, let w,(t, x) be the solution of the undamped wave
equation with velocity ¢ > 0 given by

Opw(t,z) = Aw(t,z), =R t>0,
w(0,z) = fo(z), Ow(0,z) = 0.

Then, the functions defined by
h(t,z) == E[w (oW, z)], resp. u(t,z) :=E[w.(c 'S, z)]

>More precisely, B 1 is two-point distributed with values {—1, 1}.
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solve the diffusion equation

2
Ouh(t,z) = %Ah(t,x), zeRY, >0,
]’L(O,J?) = fO(x),

resp. the multi-dimensional damped wave equation

Onu(t, ) + 2a dpu(t, x) = Au(t,z), xR t>0,
u(0,x) = fo(x), Ou(0,2) = 0. (18)

As a consequence, it is not hard to show the following corollary, see|(Duong et al.| (2025)).

Corollary 6. Foranyt > 0, the solution u®*(t, ) of the damped wave equation (I8) converges to the solution
h(t,-) of the diffusion equation for a,c — oo with fixed o = %

In other words, diffusion can be seen as "an infinitely a-damped wave with infinite propagation speed c'".
Note that the diffusion-related concept of particles traveling with infinite speed violates Einstein’s laws of
relativity and has therefore found resistance in the physics community (Cattaneo| (1958)); |(Chester| (1963));
Vernotte| (1958)); Tautz & Lerche| (2016).

We also like to stress that in multiple dimensions, the damped wave equation (17) is no longer mass-conserving
as in 1D [Tautz & Lerche| (2016), and hence eludes a characterization via stochastic processes.

A.3 UNIFORM PROCESS AND MMD GRADIENT FLOW

Wasserstein gradient flows are special absolutely continuous measure flows whose velocity fields are negative
Wasserstein (sub-)gradients of functionals F,, on P5(R?) with the unique minimizer . The gradient descent
flow should reach this minimizer as ¢ — oo. In this context, the MMD functional with the non-smooth
negative distance kernel

Fo(p) = MMD? (i, v) = —% /Rz |z —yld (u(z) —v(z))d(uly) —v(y) 19)

stands out for its flexible flow behavior between distributions of different support Hertrich et al.|(2024). In
1D, its Wasserstein gradient flow ji; can be equivalently described by the flow of its quantile functions @),,,
with respect to an associated functional on L2 (0, 1). Note that the MMD functional loses its convexity
(along generalized geodesics) in multiple dimensions [Hertrich et al|(2024), and the general existence of their
Wasserstein gradient flows is unclear in the multivariate case. This yields another reason to work in 1D, where
we have have the following proposition.

Proposition 7. The Wasserstein gradient flow p; of the MMD functional (19) starting in o = 6o towards the
uniform distribution v = U[—b, b] with fixed b > 0 reads as

pe = (1 —exp(—§)) U[-b,b],,  t>0, (20

with corresponding velocity field

X

Wa x € supp(fie)- (21

ve(x) =

It holds ||Ut||%2(]R1 ) = % exp(—2), and hence, ||vi| 1, ®1 ) € L2(0,1). A corresponding (stochastic)

process (Uy)y is given by Uy := b (1 — exp (—%)) U, where U ~ U[—1, 1], such that Law (Uy;) = ju.
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We prove the proposition more general for v = U[a, b] and a flow starting in 2 € [a, b], i.e. we show

ue=Ula~+ (xg —a)exp (—r(t)),b— (b—xg)exp (—r(t))], t>0 (22)
with r(t) :== ;2L and
2 r—x
vel®) = b—a (exp(r(t))o— 1) ' 23)

To this end, we need the relation between measures in P2 (R) and cumulative distribution functions, see (T0).
For v = U]a, b], we have that

0, ifzr<a,
r(z) = s, ifa<z <D,
1, ifxe >0

and @, (s) = a(l — s) + bs. InHertrich et al[(2024) it was shown that the functional F,: L2(0,1) - R
defined by

R = [ 1 (-2 + Qo) + [ huls) - Qu(0) at) s 24)

fulfills 7, (1) = F,,(Q,) for all 1 € P2(R). Moreover, we have the following equivalent characterization of
Wasserstein gradient flows of F,,, which can be found in (Duong et al., 2024, Theorem 4.5).

Theorem 8. Let F,, and F,, be defined by (19) and @24)), respectively. Then the Cauchy problem
{8tg(t) € _aFu(g(t))v te (0700)7
g(o) = Q/Ao?

has a unique strong solution g, and the associated curve 7, = (g(t))4M(0,1) is the unique Wasserstein
gradient flow of F,, with y(0+) = (Qu,)#A(0,1)- More precisely, there exists a velocity field v} such that
(e, v5 ) satisfies the continuity equation ), and it holds the relations

vy og(t) € —0F,(g(t)) and vy € =0 F, (1) (25)

Lastly note that here, the subdifferential OF}, () is explicitly given by the singleton
—0F,(u) = —VF,(u) =2(-—r,ou) forallu € Ls(0,1),
see (Duong et al., [2024, Lemma 4.3).

Proof of Proposition[7] We want to apply Theorem|8]to (x4, v;) in (22) and (23). The uniform distribution in
(22) has the quantile function

Qu.(s) = (1 —exp (—r(t)) ) (a +(b- a)s) + xgexp (—r(t)), s€(0,1).
Forallt > 0 and all s € (0,1), we have @, (s) € [a, b] since z( € [a, b], and thus
_VFV(QNt)(S) =2s— 2TV(QHt(S))

Ly (1 —exp (—r(t)) ) (a +(b- a)s) +xzgexp(—r(t)) —a
b—a
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On the other hand, it holds

e (o) - AT e (o) =2 (5= P8 ) exp (o0,

6tQm (S) =-2

By Theorem (11¢) is the unique Wasserstein gradient flow of F, starting in .

Furthermore, there exists a velocity field vy satisfying the continuity equation (9 and the relations (25). For
s€(0,1)and ¢ > 0,lety = gs(t) = a+ (xg —a)exp (—r(t)) + (b — a) (1 — exp (—r(t))) s. Then, we

have s = yzba_fa()?i:gig’((fiztr)()t))) , and thus by (23),

) =07 @ () =2 (5= = exp (- ()
L (va- @ -@en(rt) m-a)
‘2< (=) (1 —oxp (—r()) b—a) p{=r(t)
2 (y—a—(mo—a)

“b—a\1-exp (—r(t))

b E a (explér(tf)o— 1)

forall y € gs(¢)(0,1) = [a+ (xg — a) exp(—r(t)),b — (b — zg) exp (—r(t))]. Lastly, let us compute the
action. For ¢t > 0 we have

b—(b—x0) exp(— bz_ta)

el ) = / oo 1 N
bty 00 (o () <) 00 (1o ()

—a

) exp (=1 (1))

b—(b—wxo) exp(f b2—ta,)

= 1 / (z — m0)* da

(b—a)? (CXP (%) - 1)2 (1 — exp (_%>> o+ (zo—a) exp(— 525
4 3} b_(b_wo)eXp(_bQ—ta)

(IE — I’Q)

at(z0—a) exp(— 2% )

and the proof is finished. O

Note that the fact that v} is uniquely determined on supp u; = ¢+(0, 1), correlates with the fact that the
gradient vy o g(t) = —VF,(g(t)) is a singleton. Outside of supp p, the velocity field may be arbitrarily
extended, which yields a velocity o, € —0.F, (u+) in a non-singleton subdifferential. The velocity v; may be
uniquely chosen from the tangent space T}, P»(RR), or equivalently, by choosing it to have minimal norm, i.e.
vy = 0 outside of supp ;.
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B FLOW MATCHING AS SPECIAL MEAN REVERTING PROCESSES

B.1 THE GAUSSIAN CASE

Let us shortly verify that our componentwise approach using the mean-reverting process (@), i.e.
Xi = f(t)Xo + Yyu),

leads to the usual flow matching objective. where we choose the scheduling functions f(t) :== 1—t, g(t) := ¢,
the target random variable X ~ g, and a standard Wiener process Y in R4 (independent of X): First, it

holds Y2 ~ N(0,21,), hence Y2 £ ¢ Z with Z ~ N(0, I,)), so that
X, 2 (1-t)Xo +tZ.

Furthermore, by the 1D components of Y; admit the velocity field v(z') = %, z' € R, and by
d

Propositionthe multi-dimensional process Y; admits the velocity field vy (¢,2) = (%’ o 55 ) = 5
(z1,...,2%) € R By the calculation (@), the conditional velocity field corresponding to X; starting in
xo € R? reads as

€r =

f@®)ywo + g(t) vy (9(t), = — f(t)wo | 0)
=—x9 + 2tvy(t2, z—(1—1t)zo|0)
x— (1 —1t)xo

—

UX(t7 € | ‘TO)

:—ajo +

Now, if z ~ Px, (- | zo), i.e. x = (1 — t)xg + tz with z ~ N(0, 1), then it follows

1—t)xg+tz—(1—-t)x
ox(t, 2| @) = —ag + LD EZA00 6)

which is the usual constant-in-time conditional FM velocity along the straight-line trajectories between
xo ~ po and z ~ N(0, I).

B.2 THE UNIFORM CASE

Now consider any component of the mean-reverting process (@) with f(¢), g(¢) to be chosen, X, being a
component of X ~ f10, and Y; given by the MMD gradient flow (20), i.e. ¥; :=b (1 — exp (—%)) U, where
U ~ U[-1,1]. Let vy be the corresponding velocity field from (ZI). Then, we have

ox(t,alan) = 020 + 30 o (900, o — SOl TR
; : z — f(t)zo
= f(t)mo + g(t .
f()xO g()b(exp(gg))—l)
Now, along the trajectory = ~ Px, (- | zo), i.e.
T = f(t)xo—i—b(l—exp (_gét)))u = o3 7o + or U, 27
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with u ~ U(—1, 1), the velocity calculates as

) ® bl()l—exp (—gg’)z)u

vx(t, @ [ xo) = f(t)zo + ¢

= dt o +O’t u, (28)

_9)
b

where a; == f(t) and oy == b (1 — exp ( )) Hence, in order to minimize the CFM loss, we only

need to sample ¢ ~ U[0,1], zg ~ X, and u ~ U(—1,1). Note the similarity between the MMD path
(27) and the FM/diffusion path (7); by choosing b = 1, f(t) := 1 — t and g(¢) := —log(1 — ¢t) it follows
a(t) =1—t,0(t) =t, and we obtain in the FM-velocity along the trajectory (26), where the Gaussian
noise z ~ N (0, 1) is just replaced by a uniform noise u ~ U(—1,1).

C IMM WITH QUANTILE INTERPOLANTS

In this section, we want to demonstrate how the IMM framework proposed in [Zhou et al.| (2025]) can be
realized by our quantile approach. Note that in the following — for notational simplicity — we consider
the one-dimensional case Xy, Z; € R where we can employ quantile functions. By combining the 1D
components into a multivariate model X = (X}, ..., X{), Z; = (Z}, ..., Z{), the results of this chapter
trivially extend to R

Recall our definition of the quantile process

and the quantile interpolants
Is,t(xa y) = f(S).’E =+ Qg(s) (Rg(t) (y - f(t)x))v S, te [0, ]-] (30)

Note that by the assumptions (3)) it holds Zy = X and Z; = Q1 (U).

Value

Figure 7: The CDF R,, and quantile function (),, of a standard normal distribution y.

By the following remark, our quantile interpolants generalize the interpolants used in Denoising Diffusion
Implicit Models (DDIM).

Remark 9 (Relation to DDIM). The interpolants used in Denoising Diffusion Implicit Models (DDIMs) | Song
et al.|(2020) are given by

DDIM, ;(z, ) == (as _ ﬁat)a: + 25y G1)

Ot Ot
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Now let f(t) :== 1 —t, g(t) == t? and let Q; be the quantile of the law of a standard Brownian motion W;.
First we obtain
Qy(1) () = Qiz(p) = Q0,2 (p) = tV2erf ™' (2p — 1) =t Queo1y(0),  p € (0,1),
with the error function erf. Hence, 29) exactly becomes (not only in distribution)
Zy =(1=1)Yo +tQneo1)(U) = (1 - 1)Yo + 12,
where Z = Qxr0,1)(U) ~ N(0,1), i.e. the components of (I) with the choice oy = 1 —t, oy = L.
Furthermore, since Ry2(z) = Rpr(0,42)(2) = 3(1 + erf ( )) the quantile interpolant (12)) reads as

Ioi(x,y) = (1 — s)x + sv/2erf™ 1<erf< 1‘” )) :(1—8)x+§(y—(1—t)x)

:((1—3)—2(14 T+ 2y,

which is exactly DDIM 4 (z,y) in BI) with o, = f(t) and o = g(t). ©

V)

Exactly as the DDIM interpolants, our quantile interpolants (30) satisfy the following crucial interpolation
properties.

Proposition 10 (a.k.a Proposition . Forall z,y € Randall s,r,t € [0,1], it holds

Iy (z,y) =2, ILi(x,y)=vy, (32)
and

Lo p (2, Iy (2, 9)) = Is (3, y).
Furthermore, inserting the quantile process (11)) yields

Is(Zo, Z4) = Zs. (33)

Proof. By assumptions it holds

Ioo(2,9) = f(0)z + Qqeo) (Rg(ry (v — f(t)2)) = 1,
and
Iii(z,y) = ()2 + Q) (Rery(y — f(1)2)) = v.
Furthermore, it holds the interpolation/consistency property
L@, Ine(2,y) = f(s)x + Qg(s) (Ry(r) (Lt () — f(r)z))
= f(5)7 + Qo) ( Byt (ST + Q) (Ro(y (y — f(8)2)) — f1)T))
= [(8)x + Qq(s) (Ryr) (y — f(t)2))
= Is,t(xa Y)
for all x,y € R. Also note that inserting the random variables 7, Z; yields
L((Zo, Zy) = f(8)Zo + Qgs)(Ryy (Ze — f(t)Z0))
= f(s)Zo + QQ(S) (U)
= Zs.
This finishes the proof. O
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Proposition[I0|represents the key observation which allows us to utilize our quantile process (29) in the IMM
framework the same way as[Zhou et al.|(2025)) employ the DDIM interpolants (3T)):

For this, let us now recall the basic idea of inductive moment matching and the corresponding loss functions.
Let us distinguish between real numbers written in small letters (zg, u, z; € R) and random variables written
with capital letters (X, U, Zy, . . .). We assume that the probability distributions have densities:

Law(Xo) | Law(Z;) | Law(Zs|Xo = w0, Z: = z) | Law(Zi|Xo = ®0, U = u) | Law(Xo|Z: = 2)
po(xo) | pe(ze) | psjo,e(2s]wo, 2¢) | pejo,1 (zt]zo, u) | poje(zol2t)

Note that by (33) we have pyo (2|20, 2¢:) = Law (15 (20, 2¢))(2s) = 0(2s — Is,t(0, 2¢) ), hence sampling
from pg)o,¢(2s|o, 2¢) is just applying I, ; (o, 2;). Similarly, sampling from pyq 1 (2¢|x0, ) is just evaluating

I 1 (20, Q1(u)).

The following proposition follows directly from Proposition [10|as in |[Zhou et al.|(2025). It is essential for
deriving the appropriate loss functions.

Proposition 11. Forall 0 < s <r <t < 1, the quantile interpolant (30) is self-consistent, i.e.

Ps|0,t(2’s|$0, Zt) = / ps|0,r(25|x07 Z’l“) pr\O,t(zr|x07 Zt) er,
R
and the quantile process (29) is marginal preserving, i.e.
ps(2s) = Beaypy wompops(120) [Pslo.(2s]0, 20)] -

Learning. The conditional probability po(-|2¢) is now approximated by a network pf%zﬁ where the
parameter s describes the dependence on p, such that

Ps = EZtNPufEONPg),,zt [ps\O,t(.kEOv Zt)] = pe(s» t) (34)
Then it is proposed in (Zhou et al.; 2025, Eq. (7)) to minimize the so-called naive objective

Loaive(0) = Eqg ¢ [D(ps, p° (5, 1)], (35)

with an appropriate metric D, e.g. MMD. The procedure is now as follows: starting in a sample x( from X,
we can sample zg, z; from Z,, Z; by ([29), respectively; then given z; we sample %o from pz,t,zw and finally
we can evaluate Z, = I(Z, z¢) from (33)), which is then compared with z,.

Inference. The following iterative multi-step sampling can be applied: for chosen decreasing ;. € (0, 1],

k=0,...,T withto = 1, starting with z{") ~ P§ 1., » we compute

_ (k—1) (k) 0 _
2ty = Itk,tk,1 (Jfo sRtk_1 )y Lo NpO,thtk’ k= 1,...,T.

Although for marginal-preserving interpolants, a minimizer of £,,,;y. €xists with minimum 0, the authors of
Zhou et al.| (2025) object that directly optimizing (33)) faces practical difficulties when ¢ is far away from s.
Instead, they propose to apply the following “inductive bootstrapping” technique:

Bootstrapping. Instead of minimizing (33)), we consider the general objective
Lgeneral(0) = Eq ¢ [w(s, )MMD? (p" = (s,1),p™ (. 1))] | (36)

with a weighting function w(s, t) to be chosen. The kernel of the squared MMD distance can be chosen as
e.g. the (time-dependent) Laplace kernel. Importantly, the value r is chosen to be a function r = r ; € [s, ]
being "close to ¢" and fulfilling a suitable monotonicity property.
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Let us assume the simplest case 7, ; := max{s, ¢ — ¢} with a small fixed ¢ > 0 and hereby demonstrate the
bootstrapping technique: Fix s € [0, 1]. Then, it holds for all ¢ € [s, s + ¢] that r5 s = s. By the definition
(34) and property (32), it holds (independently of 6) that p?(s, s)(zs) = ps(2s). Hence, minimizing (36) in
the first step n = 1 yields
0 = MMD?(p% (s, 5), p’ (5,t1)) = MMD?(ps, p" (s,t1)) forallt; € [s,s + €].
In the second step n = 2, it holds for all to € [s, s + 2¢] that 4 4, € [s, s + €]. Hence, minimizing (36) in the
second step yields, together with the first step,
0 = MMD?(p? (s,75.4,), p(s,t2)) = MMD?(pg, p?2(s,t2)) forall ts € [s, s + 2¢].

Thus, for the number of steps n — oo, it holds 0 = MMD?(p,, p* (s, t,)) even for the entire interval
t, € [s,1]. Hence, minimizing the general objective (36) with a large number of steps eventually minimizes
the naive objective (33)), see (Zhou et al.| [2025] Theorem 1) for more details.

D LEARN THE NOISE

D.1 COUNTEREXAMPLE: MARGINAL PRODUCT

For the Wasserstein distance, the minimizer is not necessarily the product measure with the correct marginals.
For the measure

p= 3001+ 30-1,-1) € P2(R?),
the product measure with the correct marginals is given by
Hmarg = (%6—1 + %51) X (%5—1 + %61) .
Then the Wasserstein distance is
W22(:u7 ﬂmarg) = 2,
but the product measure
o = (30-0-+ 302) x (30-0 + 02)
is, for o = 0.5, closer in the Wasserstein distance:

W2 (p,ve) = 2(1 — a+a?) = 1.5.

D.2 DETAILS ON THE ARCHITECTURE OF THE LEARNED QUANTILES Q¢

We implement the quantile transport with rational quadratic splines (RQS) |Durkan et al.|(2019). For each
coordinate 7 the map takes the form

Qfﬁ(u) = H;(logit(u)), u € (0,1),

where H: : R — R is a monotone spline with K bins and linear tails. A lightweight conditioner network
outputs bin widths, bin heights, and knot slopes; we pass these raw values through softplus, add a small
constant to the slopes, and normalise widths/heights so they sum to one. The positive lower bound on each
slope ensures that H Zb is strictly increasing, hence be is strictly increasing on (0, 1). The derivative exists
almost everywhere and satisfies

(Q%) (u) = H) (logit(u)) >0 forae. ue (0,1).

o
u(l —u)
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D.3 Toy TARGET DISTRIBUTIONS

Figure 8: A generated sample path from the learned quantile latent to the checkerboard. The adapted latent
(left) is already close to the target distribution.

We use three standard challenging low-dimensional distributions: Neal’s funnel, a 3 x 3 Gaussian mixture,
and a checkerboard.

Funnel. For the toy illustration in Figure 2| we work with the dataset known as Neals Funnel (Neal, 2003]).
The distribution of Neal’s funnel is defined as follows:

p(w1,x2) = N(z1;0,3) Mx2; 0, exp(a1/2)).

Grid Gaussian Mixture. We give more details about the mixture of Gaussian we consider in our experiment.
It is designed in a grid pattern in [—1,1]2, as follows:

9
Zwi : N(/L’La 0—2-[2) )
=1

where (w;)?_, = (0.01, 0.1, 0.3, 0.2, 0.02, 0.15, 0.02, 0.15, 0.05), 11; = (1, jt2) with sy = (i mod 3) —

1=

1, po = L% —1,and o = 0.025.

Checkerboard. Fix ¢ < h and domain 2 = [¢, h]?. Define the support
S={(z,y) €Q: |z] + [y] iseven}.

The checkerboard distribution is uniform on S and zero elsewhere:

1

pChecker(l'y y) = area(S) ’
0, otherwise.

(z,y) €S,

For integer ¢, h with even side length (e.g. { = —4, h = 4), exactly half of (2 is active, hence

2
pChecker(‘ra y) = m 1s (l’, y)
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Figure 9: Comparing the generated samples due to our learned latent (left) to those due to a Gaussian latent
(right), after 20k steps of training with the same network architecture. Our model converges much faster.

D.4 MINIBATCH OPTIMAL TRANSPORT

Since the learned latent distribution is close to the data distribution, we can exploit this improved matching
via an optimal transport coupling. For training, the minibatch OT is computed emplrlcally as follows: draw

a minibatch {xo) iq ~ po and {u(J)}B ~ U([0,1]%), set y9) = Q4(u'?)), and define the empirical
measures

B
Z5xz>, ﬁfi%Z(sy(j).

i=1 j=1

U:J\H

The minibatch objective is
Ea(¢) = D(ag,75),

and gradients backpropagate through y/) = Q,(u().

Furthermore, we use the linear path x(j) (1 —tj)xg 0 4 t;y ™), j=1,..., B, witht; ~1(0,1), the

@)
X0

target velocity y(*() — , and we optimize the empirical versions

Erm (0 —BZW (9, 85) = (7T = xT)2, Lo = &+ Aq Eo.
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E IMPLEMENTATION DETAILS

Algorithm 1 Joint learning of 1D quantiles and FM velocity

Require: Dataset D, batch size B, weight \g, iterations K
Require: Quantile model Qg, velocity model vg
1: for k =1to K do
o Sample {x;}, ~ D, {w by ~U([0,1)9), {t:i} 7, ~ U(0,1)
Cij + |Ixi — Qg (uy) |3
T < argming Ef; Cire)

Lo ¢ %320 Ixi — yreo 3

Lem < 5 21‘3:1 v (zi, i) — yra) +xill3
L« Lpyv + )\QLQ

9: Update (0, ¢) by a gradient step on L

10: end for

11: return (6, ¢)

A A o

We support baseline flow matching, optional quantile pretraining, and joint quantile+velocity optimisation.
Pretraining fits the RQS transport before optionally freezing it; joint training updates both modules simulta-
neously. Once the quantile learning rate decays to zero we freeze its weights and continue optimising the
velocity field only.

The coupling plans are calculated using the Python Optimal Transport package (Flamary et al.,|2021}). For
inference simulate the corresponding ODEs using the torchiffeq (Chen, [2018)) package. For all models we
only used the batch size 128 and learning rate 2e — 4 for the velocities. Quantile transports are parameterised
by stacked rational-quadratic splines following Durkan et al.| (2019).

E.1 SYNTHETIC EXAMPLES

All models include a sinusoidal time embedding and SiL.U activation functions.

Funnel. For the funnel distribution, we pretrain our quantiles and use the frozen quantiles during flow
matching. We trained our quantile for 20,000 steps and to compensate we trained our velocity for only
150,000 steps. For the RQS we choose the parameters number of bins 64, bound 25, layers 3.

Grid Gaussian Mixture and Checker. The quantiles were trained for the first 20,000 steps, after which the
learning rate was linearly decayed to 0 by step 25,000. For both datasets, we trained the velocity model with
4 layers and a hidden width of 256 for 100,000 steps. For the RQS we choose the parameters number of bins
32, bound 5, layers 3.

E.2 IMAGE EXPERIMENTS

For both image datasets, we adapt the U-Net from (Dhariwal & Nichol, 2021)) to parametrize our velocity
field.

MNIST. For the MNIST dataset we use the U-Net with base width 64, channel multipliers (1, 2, 4), two
residual blocks per resolution, attention at 7 x 7, 1 attention head, and dropout 0.1. We clip the gradient
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norm to 1 and use exponential moving averaging with a decay of 0.99. The quantiles were trained for the first
20,000 steps, after which the learning rate was linearly decayed to 0 by step 25,000.

CIFAR. Here we use the U-Net with base width 128, channel multipliers (1, 2,2, 2), two residual blocks
per resolution, attention at 16 x 16, four attention heads , and dropout 0.1. We clip the gradient norm to 1
and use exponential moving averaging with a decay of 0.9999. To evaluate our results, we use the Fréchet
inception distance (FID) (Heusel et al.| 2017). The quantiles were trained for the first 20,000 steps, after
which the learning rate was linearly decayed to 0 by step 25,000.

CIFAR-10 inputs are normalized to [—1, 1] with random horizontal flips.

Table 1: Overview of the default parameters. Adam with LR 2x 1074,

Setting Funnel GMM / Checker MNIST CIFAR-10
Dimensionality d 2 2 784 (1x28x28) 3072 (3x32x32)
MLP layers 3 3 - -

MLP width 64 128 - -
Positional embeddings none sinusoidal - -

UNet channels - - 64 128

UNet mult - - (1,2,4) (1,2,2,2)
UNet attention depth - - 7 16
Quantile objective w2 75 75 W3

RQS (layers / bound / bins) 2/25/ 64 3/5/32 3/5/16 4/5/16
KL weight Akr, 0 0 0.1 1,2,3,4
Minibatch OT off on on on

Batch size 128 128 128 128

Train steps (k) 150/200 100 100 400

EMA (model) 0.999 0.99 0.99 0.9999 (warmup 5k)
Quantile loss weight 50.0 50 5.0 5.0
Quantile LR / batch / steps ~ 1le—4/128/50k  2e—4/128/25k  le—4/128/25k 2e—4/128/25k
Quantile EMA (used) 0.99 (on) - - -
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F FURTHER EXPERIMENTAL RESULTS

F.1 SYNTHETIC EXAMPLES

latent colored by ||x||

- 700

- 600
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400

(111

300

200
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Figure 10: We plot 1M samples from our learned funnel latent and color them by the norm of the associated
endpoint after solving the flow ODE.

F.2 IMAGES

Latent mean Latent std

~ B
- .

Figure 11: Mean and standard deviation of our learned MNIST latent.
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Figure 12: Comparison of the empirical (left) and learned (right) histograms and quantiles for the MNIST

dataset at given pixel locations.
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