
Under review as a conference paper at ICLR 2022

TEST-TIME ADAPTATION TO DISTRIBUTION SHIFT BY
CONFIDENCE MAXIMIZATION AND INPUT TRANSFOR-
MATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks often exhibit poor performance on data that is unlikely under
the train-time data distribution, for instance data affected by corruptions. Previous
works demonstrate that test-time adaptation to data shift, for instance using entropy
minimization, effectively improves performance on such shifted distributions. This
paper focuses on the fully test-time adaptation setting, where only unlabeled data
from the target distribution is required. This allows adapting arbitrary pretrained
networks. Specifically, we propose a novel loss that improves test-time adaptation
by addressing both premature convergence and instability of entropy minimization.
This is achieved by replacing the entropy by a non-saturating surrogate and adding
a diversity regularizer based on batch-wise entropy maximization that prevents
convergence to trivial collapsed solutions. Moreover, we propose to prepend
an input transformation module to the network that can partially undo test-time
distribution shifts. Surprisingly, this preprocessing can be learned solely using the
fully test-time adaptation loss in an end-to-end fashion without any target domain
labels or source domain data. We show that our approach outperforms previous
work in improving the robustness of publicly available pretrained image classifiers
to common corruptions on such challenging benchmarks as ImageNet-C.

1 INTRODUCTION

Deep neural networks achieve impressive performance on test data, which has the same distribution
as the training data. Nevertheless, they often exhibit a large performance drop on test (target) data
which differs from training (source) data; this effect is known as data shift (Quionero-Candela et al.,
2009) and can be caused for instance by image corruptions. There exist different methods to improve
the robustness of the model during training (Geirhos et al., 2019; Hendrycks et al., 2019; Tzeng
et al., 2017). However, generalization to different data shifts is limited since it is infeasible to include
sufficiently many augmentations during training to cover the excessively wide range of potential data
shifts (Mintun et al., 2021a). Alternatively, in order to generalize to the data shift at hand, the model
can be adapted during test-time. Unsupervised domain adaptation methods such as Vu et al. (2019)
use both source and target data to improve the model performance during test-time. In general source
data might not be available during inference time, e.g., due to legal constraints (privacy or profit).
Therefore we focus on the fully test-time adaptation setting (Wang et al., 2020): model is adapted to
the target data during test time given only the arbitrarily pretrained model parameters and unlabeled
target data that share the same label space as source data. We extend the work of Wang et al. (2020)
by introducing a novel loss function, using a diversity regularizer, and prepending a parametrized
input transformation module to the network. We show that our approach outperform previous works
and make pretrained models robust against common corruptions on image classification benchmarks
as ImageNet-C (Hendrycks & Dietterich, 2019) and ImageNet-R (Hendrycks et al., 2020).

Sun et al. (2020) investigate test-time adaptation using a self-supervision task. Wang et al. (2020) and
Liang et al. (2020) use the entropy minimization loss that uses maximization of prediction confidence
as self-supervision signal during test-time adaptation. Wang et al. (2020) has shown that such loss
performs better adaptation than a proxy task (Sun et al., 2020). When using entropy minimization,
however, high confidence predictions do not contribute to the loss significantly anymore and thus
provide little self-supervision. This is a drawback since high-confidence samples provide the most

1

Under review as a conference paper at ICLR 2022

trustworthy self-supervision. We mitigate this by introducing two novel loss functions that ensure
that gradients of samples with high confidence predictions do not vanish and learning based on
self-supervision from these samples continues. Our losses do not focus on minimizing entropy but
on minimizing the negative log likelihood ratio between classes; the two variants differ in using
either soft or hard pseudo-labels. In contrast to entropy minimization, the proposed loss functions
provide non-saturating gradients, even when there are high confident predictions. Figure 1 provides
illustration of the losses and the resulting gradients. Using these new loss functions, we are able to
improve the network performance under data shifts in both online and offline adaptation settings.

In general, self-supervision by confidence maximization can lead to collapsed trivial solutions, which
make the network to predict only a single or a set of classes independent of the input. To overcome
this issue a diversity regularizer (Liang et al., 2020; Wu et al., 2020) can be used, that acts on a
batch of samples. It encourages the network to make diverse class predictions on different samples.
We extend the regularizer by including a moving average, in order to include the history of the
previous batches and show that this stabilizes the adaptation of the network to unlabeled test samples.
Furthermore we also introduce a parametrized input transformation module, which we prepend to
the network. The module is trained in a fully test-time adaptation manner using the proposed loss
function, and without using source data or target labels. It aims to partially undo the data shift at hand
and helps to further improve the performance on image classification benchmark with corruptions.

Since our method does not change the training process, it allows to use any pretrained models. This
is beneficial because any good performing pretrained network can be readily reused, e.g., a network
trained on some proprietary data not available to the public. We show, that our method significantly
improves performance of different pretrained models that are trained on clean ImageNet data.

In summary our main contributions are as follows: we propose non-saturating losses based on the
negative log likelihood ratio, such that gradients from high confidence predictions still contribute to
test-time adaptation. We extend diversity regularizer to its moving average to include the history of
previous batch samples to prevent the model collapsing to trivial solutions. We also introduce an input
transformation module, which partially undoes the data shift at hand. We show that the performance
of different pretrained models can be significantly improved on ImageNet-C and ImageNet-R.

2 RELATED WORK

Common image corruptions are potentially stochastic image transformations motivated by real-
world effects that can be used for evaluating a model’s robustness. One such benchmark, ImageNet-
C (Hendrycks & Dietterich, 2019), contains simulated corruptions such as noise, blur, weather
effects, and digital image transformations. Additionally, Hendrycks et al. (2020) proposed three data
sets containing real-world distribution shifts, including Imagenet-R. Most proposals for improving
robustness involve special training protocols, requiring time and additional resources. This includes
data augmentation like Gaussian noise (Ford et al., 2019; Lopes et al., 2019; Hendrycks et al.,
2020), CutMix (Yun et al., 2019), AugMix (Hendrycks et al., 2019), training on stylized images
(Geirhos et al., 2019; Kamann et al., 2020) or against adversarial noise distributions (Rusak et al.,
2020a). Mintun et al. (2021b) pointed out that many improvements on ImageNet-C are due to data
augmentations which are too similar to the test corruptions, that is: overfitting to ImageNet-C occurs.
Thus, the model might be less robust to corruptions not included in the test set of ImageNet-C.

Unsupervised domain adaptation methods train a joint model of source and target domain by cross-
domain losses to find more general and robust features, e. g. optimize feature alignment (Quiñonero-
Candela et al., 2008; Sun et al., 2017) between domains, adversarial invariance (Ganin & Lempitsky,
2015; Tzeng et al., 2017; Ganin et al., 2016; Hoffman et al., 2018), shared proxy tasks (Sun et al.,
2019) or adapt entropy minimization via an adversarial loss (Vu et al., 2019). While these approaches
are effective, they require explicit access to source and target data at the same time, which may not
always be feasible. Our approach works with any pretrained model and only needs target data.

Test-time adaptation is a setting, when training (source) data is unavailable at test-time. It is related
to source free adaptation, where several works use generative models, alter training (Kundu et al.,
2020; Li et al., 2020b; Kurmi et al., 2021; Yeh et al., 2021) and require several thousand epochs to
adapt to the target data (Li et al., 2020b; Yeh et al., 2021). Besides, there is another line of work
(Sun et al., 2020; Schneider et al., 2020; Nado et al., 2021; Benz et al., 2021; Wang et al., 2020) that

2

Under review as a conference paper at ICLR 2022

interpret the common corruptions as data shift and aim to improve the model robustness against these
corruptions with efficient test-time adaptation strategy to facilitate online adaptation. such settings
spare the cost of additional computational overhead. Our work also falls in this line of research and
aims to adapt the model to common corruptions efficiently with both online and offline adaptation.

Sun et al. (2020) update feature extractor parameters at test-time via a self-supervised proxy task
(predicting image rotations). However, Sun et al. (2020) alter the training procedure by including
the proxy loss into the optimization objective as well, hence arbitrary pretrained models cannot be
used directly for test-time adaptation. Inspired by the domain adaptation strategies (Maria Carlucci
et al., 2017; Li et al., 2016), several works (Schneider et al., 2020; Nado et al., 2021; Benz et al.,
2021) replace the estimates of Batch Normalization (BN) activation statistics with the statistics of the
corrupted test images. Fully test time adaptation, studied by Wang et al. (2020) (TENT) uses entropy
minimization to update the channel-wise affine parameters of BN layers on corrupted data along
with the batch statistics estimates. SHOT (Liang et al., 2020) also uses entropy minimization and a
diversity regularizer to avoid collapsed solutions. SHOT modifies the model from the standard setting
by adopting weight normalization at the fully connected classifier layer during training to facilitate
their pseudo labeling technique. Hence, SHOT is not readily applicable to arbitrary pretrained models.

We show that pure entropy minimization (Wang et al., 2020; Liang et al., 2020) as well as alternatives
such as max square loss (Chen et al., 2019) and Charbonnier penalty (Yang & Soatto, 2020) results in
vanishing gradients for high confidence predictions, thus inhibiting learning. Our work addresses
this issue by proposing a novel non-saturating loss, that provides non-vanishing gradients for high
confidence predictions. We show that our proposed loss function improves the network performance
through test-time adaptation. In particular, performance on corruptions of higher severity improves
significantly. Furthermore, we add and extend the diversity regularizer (Liang et al., 2020; Wu et al.,
2020) to avoid collapse to trivial, high confidence solutions. Existing diversity regularizers (Liang
et al., 2020; Wu et al., 2020) act on a batch of samples, hence the number of classes has to be smaller
than the batch size. We mitigate this problem by extending the regularizer to a moving average
version. Li et al. (2020a) also use a moving average to estimate the entropy of the unconditional
class distribution but source data is used to estimate the gradient of the entropy. In contrast, our work
does not need access to the source data since the gradient is estimated using only target data. Prior
work Tzeng et al. (2017); Rusak et al. (2020b); Talebi & Milanfar (2021) transformed inputs by an
additional module to overcome domain shift, obtain robust models, and also to learn to resize. In our
work, we prepend an input transformation module to the model, but in contrast to former works, this
module is trained purely at test-time to partially undo the data shift at hand to aid the adaptation.

3 METHOD

We propose a novel method for fully test-time adaption. We assume that a neural network fθ with
parameters θ is available that was trained on data from some distributionD, as well a set of (unlabeled)
samples X ∼ D′ from a target distribution D′ 6= D (importantly, no samples from D are required).
We frame fully test-time adaption as a two-step process: (i) Generate a novel network gφ based on fθ,
where φ denotes the parameters that are adapted. A simple variant for this is g = f and φ ⊆ θ Wang
et al. (2020). However, we propose a more expressive and flexible variant in Section 3.1. (ii) Adapt
the parameters φ of g on X using an unsupervised loss function L. We propose two novel losses Lslr
and Lhlr in Section 3.2 that have non-vanishing gradients for high-confidence self-supervision.

3.1 INPUT TRANSFORMATION

We propose to define the adaptable model as g = f ◦ d. That is: we preprend a trainable network
d to f . The motivation for the additional component d is to increase expressivity of g such that
it can learn to (partially) undo the domain shift D → D′. Specifically, we choose d(x) = γ ·
[τx+ (1− τ)rψ(x)] + β, where τ ∈ R, (β, γ) ∈ Rnin with nin being the number of input channels,
rψ being a network with identical input and output shape, and · denoting elementwise multiplication.
Specifically, β and γ implement a channel-wise affine transformation and τ implements a convex
combination of unchanged input and the transformed input rψ(x). By choosing τ = 1, γ = 1, β = 0,
we ensure d(x) = x and thus g = f at initialization. In principle, rψ can be chosen arbitrarily. Here,
we choose rψ as a simple stack of 3× 3 convolutions, group normalization, and ReLUs (refer Sec.
A.2 for details). However, exploring other choices would be an interesting avenue for future work.

3

Under review as a conference paper at ICLR 2022

Importantly, while the motivation for d is to learn to partially undo a domain shift D → D′, we train
d end-to-end in the fully test-time adaptation setting on data X ∼ D′, without any access to samples
from the source domain D, based on the losses proposed in Section 3.2. The modulation parameters
of gφ are φ = (β, γ, τ, ψ, θ′), where θ′ ⊆ θ. That is, we adapt only a subset of the parameters θ of the
pretrained network f . We largely follow Wang et al. (2020) in adapting only the affine parameters of
normalization layers in f while keeping parameters of convolutional kernels unchanged. Additionally,
batch normalization statistics (if any) are adapted to the target distribution.

Note that the proposed method is applicable to any pretrained network that contains normalization
layers with a channel-wise affine transformation. For networks with no affine transformation layers,
one can add such layers into f that are initialized to identity as part of model augmentation.

3.2 ADAPTATION OBJECTIVE

We propose a loss function L = Ldiv + δLconf for fully test-time network adaptation that consists of
two components: (i) a term Ldiv that encourages predictions of the network over the adaptation dataset
X that match a target distribution pD′(y). This can help avoiding test-time adaptation collapsing to
too narrow distributions such as always predicting the same or very few classes. If pD′(y) is (close to)
uniform, it acts as a diversity regularizer. (ii) A term Lconf that encourages high confidence prediction
on individual datapoints. We note that test-time entropy minimization (TENT) (Wang et al., 2020)
fits into this framework by choosing Ldiv = 0 and Lconf as the entropy.

3.2.1 CLASS DISTRIBUTION MATCHING Ldiv

Assuming knowledge of the class distribution pD′(y) on the target domain D′, we propose to add a
term to the loss that encourages the empirical distribution of (soft) predictions of gφ on X to match
this distribution. Specifically, let p̂gφ(y) be an estimate of the distribution of (soft) predictions of
gφ. We use the Kullback-Leibler divergence Ldiv = DKL(p̂gφ(y)|| pD′(y)) as loss term. In some
applications information about the target class distribution is available, e.g. in medical data it might
be known that there is a large class imbalance. In general this information is not available, and
here we assume a uniform distribution of pD′(y), which corresponds to maximizing the entropy
H(p̂gφ(y)). Similar assumption has been made in SHOT to circumvent the collapsed solutions.

Since the estimate p̂gφ(y) depends on φ, which is continuously adapted, it needs to be re-estimated
on a per-batch level. Since re-estimating p̂gφ(y) from scratch would be computational expensive, we
propose to use a running estimate that tracks the changes of φ as follows: let pt−1(y) be the estimate
at iteration t− 1 and pempt = 1

n

∑n
k=1 ŷ

(k), where ŷ(k) are the predictions (confidences) of gφ on a
mini-batch of n inputs x(k) ∼ X . We update the running estimate via pt(y) = κ · sg(pt−1(y))+(1−
κ) · pempt , where sg refers stop-gradient. The loss becomes Ldiv = DKL(pt(y)|| pD′(y)) accordingly.
Unlike Li et al. (2020a), our approach only requires target but no source data to estimate the gradient.

3.2.2 CONFIDENCE MAXIMIZATION Lconf

We motivate our choice of Lconf step-by-step from the (unavailable) supervised cross-entropy loss:
for this, let ŷ = gφ(x) be the predictions (confidences) of model gφ and H(ŷ, yr) = −∑

c y
r
c log ŷc

be the cross-entropy between prediction ŷ and some reference yr. Let the last layer of g be a softmax
activation layer softmax. That is ŷ = softmax(o), where o are the network’s logits. We can rewrite
the cross-entropy in terms of the logits o and a one-hot reference yr as follows: H(softmax(o), yr)
= −ocr + log

∑ncl
i=1 e

oi where cr is the index of the 1 in yr and ncl is the number of classes.

When labels being available for the target domain (which we do not assume) in the form of a one-hot
encoded reference yt for data xt, one could use the supervised cross-entropy loss by setting yr = yt
and using Lsup(ŷ, yr) = H(ŷ, yr) = H(ŷ, yt). Since fully test-time adaptation assumes no label
information, supervised cross-entropy loss is not applicable and other options for yr need to be used.

One option is (hard) pseudo-labels. That is, one defines the reference yr based on the network predic-
tions ŷ via yr = onehot(ŷ), where onehot creates a one-hot reference with the 1 corresponding to
the class with maximal confidence in ŷ. This results in Lpl(ŷ) = H(ŷ, onehot(ŷ)) = − log ŷc∗ , with
c∗ = argmax ŷ. One disadvantage with this loss is that the (hard) pseudo-labels ignore uncertainty
in the network predictions during self-supervision. This results in large gradient magnitudes with

4

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0

Confidence y1

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

L
os

s
L

Loss L
Hard Likelihood Ratio

Soft Likelihood Ratio

Entropy

Hard Pseudolabels

0.0 0.2 0.4 0.6 0.8 1.0

Confidence y1

−0.4

−0.2

0.0

0.2

0.4

L
og

it
G

ra
di

en
t
∂
L

∂
o 1

Figure 1: Illustration of different losses for confidence maximization. Losses (left, shifted such that
maxima of all losses are at 0) and the resulting gradients with respect to the first logit (right) as a
function of the first classes confidence are shown for the case of a binary classification problem.
Both entropy and hard pseudo-labels have vanishing gradients for high confidence predictions*.
Accordingly, both have maximum gradient amplitude for low-confidence self-supervision, with
this effect being stronger for the hard pseudo-labels. Hard Likelihood Ratio has constant gradient
amplitude for any confidence and thus takes into account low- and high-confidence self-supervision
equally. Soft Likelihood Ratio also shows non-vanishing (albeit non-maximum) gradients for high-
confidence self-supervision and additionally produces small gradient amplitudes from low-confidence
self-supervision. Since the likelihood ratio-based losses are unbounded, the design of the model
needs to ensure that logits cannot grow unbounded. *ResNet50 has a median prediction confidence of
0.929 on the ImageNet validation data and hence we consider a confidence of ≤ 0.8 as low and ≥ 0.95 as high.

respect to the logits |∂Lpl∂oc∗
| being generated on data where the network has low confidence (see Figure

1). This is undesirable since it corresponds to the network being affected most by data points where
the network’s self-supervision is least reliable1.

An alternative is to use soft pseudo-labels, that is yr = ŷ. This takes uncertainty in network
predictions into account during self-labelling and results in the entropy minimization loss of TENT
(Wang et al., 2020): Lent(ŷ) = H(ŷ, ŷ) = H(ŷ) = −∑

c ŷc log ŷc. However, also for the entropy
the logits’ gradient magnitude |∂Lent∂o | goes to 0 when one of the entries in ŷ goes to 1 (see Figure
1). For a binary classification task, for instance, the maximal logits’ gradient amplitude is obtained
for ŷ ≈ (0.82, 0.18). This implies that during later stages of test-time adaptation where many
predictions typically already have high confidence (significantly above 0.82), gradients are dominated
by datapoints with relative low confidence in self-supervision.

While both hard and soft pseudo-labels are clearly motivated, they are not optimal in conjunction
with a gradient-based optimizer since the self-supervision from low confidence predictions dominates
(at least during later stages of training). We address this issue by proposing two losses that increase
the gradient amplitude from high confidence predictions. We argue that this leads to stronger self-
supervision (better gradient direction when averaged over the batch) than from the entropy loss (see
also Sec. A.1 for an illustrative example supporting this claim) . The two losses are analogous to Lpl
and Lent, but are not based on the cross-entropy H but on the negative log likelihood ratios:

R(ŷ, yr) = −
∑
c

yrc log
ŷc∑
i6=c ŷi

= −
∑
c

yrc (log ŷc − log
∑
i 6=c

ŷi) = H(ŷ, yr) +
∑
c

yrc log
∑
i 6=c

ŷi

Note that while the entropy H is lower bounded by 0, R can get arbitrary small if yrc → 1 and the
sum

∑
i 6=c ŷi → 0 and thus log

∑
i 6=c ŷi → −∞. This property will induce non-vanishing gradients

for high confidence predictions.

The first loss we consider is the hard likelihood ratio loss that is defined similarly to the hard
pseudo-labels loss Lpl:

Lhlr(ŷ) = R(ŷ, onehot(ŷ)) = − log(
ŷc∗∑
i 6=c∗ ŷi

) = − log(
eoc∗∑
i 6=c∗ e

oi
) = −oc∗ + log

∑
i 6=c∗

eoi ,

1The prediction confidence for a datapoint can be interpreted as a proxy for its distance to the decision
boundary. A low confidence prediction indicates that a datapoint appears to be close to the decision boundary
and the model is less certain on which side of the decision boundary the datapoint should lie. We call this "low
confidence self-supervision" since the direction of the gradient becomes ambiguous.

5

Under review as a conference paper at ICLR 2022

where c∗ = argmax ŷ. We note that ∂Lhlr
∂oc∗

= −1, thus also high-confidence self-supervision
contributes equally to the maximum logits’ gradients. This loss was also independently proposed
as negative log likelihood ratio loss by Yao et al. (2020) as a replacement to the fully-supervised
cross entropy loss for classification task. However, to the best of our knowledge, we are the first to
motivate and identify the advantages of this loss for self-supervised learning and test-time adaptation
due to its non-saturating gradient property.

In addition to Lhlr, we also account for uncertainty in network predictions during self-labelling in a
similar way as for the entropy loss Lent, and propose the soft likelihood ratio loss:

Lslr(ŷ) = R(ŷ, ŷ) = −
∑
c

ŷc · log(
ŷc∑
i 6=c ŷi

) =
∑
c

ŷc(−oc + log
∑
i 6=c

eoi)

We note that as ŷc∗ → 1, Lslr(ŷ) → Lhlr(ŷ). Thus the asymptotic behavior of the two likelihood
ratio losses for high confidence predictions is the same. However, the soft likelihood ratio loss
creates lower amplitude gradients for low confidence self-supervision. We provide illustrations of the
discussed losses and the resulting logits’ gradients in Figure 1. Furthermore, an illustration of other
losses like the max square loss and Charbonnier penalty can be found in Sec. A.7.

We note that both likelihood ratio losses would typically encourage the network to simply scale
its logits larger and larger, since this would reduce the loss even if the ratios between the logits
remain constant. However, when finetuning an existing network and restricting the layers that are
adapted such that the logits remain approximately scale-normalized, these losses can provide a
useful and non-vanishing gradient signal for network adaptation. We achieve this appproximate
scale normalization by freezing the top layers of the respective networks. In this case, normalization
layers such as batch normalization prohibit “logit explosion”. However, predicted confidences can
presumably become overconfident; calibrating confidences in a self-supervised test-time adaptation
setting is an open and important direction for future work.

4 EXPERIMENTAL SETTINGS

Datasets We evaluate our method on image classification datasets for corruption robustness and
domain adaptation. We evaluate on the challenging benchmark ImageNet-C (Hendrycks & Dietterich,
2019), which includes a wide variety of 15 different synthetic corruptions with 5 severity levels
that attribute to data shift. This benchmark also includes 4 additional corruptions as validation data.
For domain adaptation, we choose ImageNet trained models to adapt to ImageNet-R proposed by
Hendrycks et al. (2020). ImageNet-R comprises 30,000 image renditions for 200 ImageNet classes.
Domain adaptation on VisDA-C (Peng et al., 2017) and digit classification can be found in Sec. A.6.

Models Our method operates in a fully test-time adaptation setting that allows us to use any arbitrary
pretrained model. We use publicly available ImageNet pretrained models ResNet50, DenseNet121,
ResNeXt50, MobileNetV2 from torchvision Torch-Contributors (2020). We also test on a robust
ResNet50 model trained using DeepAugment+AugMix 2 Hendrycks et al. (2020).

Baseline for fully test-time adaptation Since TENT from Wang et al. (2020) outperformed compet-
ing methods and fits the fully test-time adaptation setting, we consider it as a baseline and compare
our results to this approach. Similar to TENT, we also adapt model features by estimating the normal-
ization statistics and optimize only the channel-wise affine parameters on the target distribution.

Settings We conduct test-time adaptation on a target distribution with both online and offline updates
using the Adam optimizer with learning rate 0.0006 with batch size 64. We set the weight of Lconf
in our loss function to δ = 0.025 and κ = 0.9 in the running estimate pt(y) of Ldiv (we investigate
the effect of κ in the Sec. A.4). Similar to SHOT (Liang et al., 2020), we also choose the target
distribution pD′(y) in Ldiv as a uniform distribution over the available classes. For TENT, we use
SGD with momentum 0.9 at learning rate 0.00025 with batch size 64. These values correspond to the
ones of Wang et al. (2020); alternative settings for TENT did not improve performance. For offline
updates, we adapt the models for 5 epochs using a cosine decay schedule of the learning rate. We
found that the models converge during 3 to 5 epochs and do not improve further. Similar to Wang
et al. (2020), we also control for ordering by data shuffling and sharing the order across the methods.

2From https://github.com/hendrycks/imagenet-r. Owner permitted to use it for research/commercial purposes.

6

Under review as a conference paper at ICLR 2022

Table 1: Test-time adaptation of ResNet50 on ImageNet-C at highest severity level 5. Ground truth
labels are used to adapt the model in supervised manner to obtain empirical upper bound performance.

Method Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mean

No Adaptation 2.44 2.99 1.96 17.92 9.82 14.78 22.50 16.89 23.31 24.43 58.93 5.43 16.95 20.61 31.65 18.04
Pseudo Labels 2.44 2.99 1.96 17.92 9.82 14.78 22.50 16.89 23.31 24.43 58.93 5.43 16.95 20.61 31.65 18.04

Online adaptation (evaluation on a batch directly after adaptation on the batch)

TENT 28.60 31.06 30.54 29.09 28.07 42.32 50.39 48.01 42.05 58.40 68.20 27.25 55.68 59.46 53.64 43.51
TENT+ 29.09 31.65 30.68 29.33 28.65 42.32 50.32 48.09 42.54 58.39 68.23 31.43 55.90 59.46 53.68 43.98

HLR (ours) 33.10 36.08 34.74 33.21 33.31 46.36 52.77 51.42 45.47 60.01 68.07 42.75 58.02 60.42 55.34 47.40
SLR (ours) 35.11 37.93 36.83 35.13 35.13 48.29 53.45 52.68 46.52 60.74 68.40 44.78 58.74 61.13 55.97 48.72

Evaluation after epoch 1

TENT 32.44 35.01 34.77 32.40 31.62 47.23 53.09 51.61 43.26 60.42 68.85 24.39 58.53 61.62 56.00 46.08
TENT+ 33.75 36.38 35.67 33.43 33.25 47.66 53.20 52.06 44.85 60.60 68.93 33.43 58.94 61.75 56.21 47.34

HLR (ours) 38.39 41.11 40.28 38.25 38.18 51.63 55.55 55.45 48.96 62.19 68.17 49.47 60.34 62.51 57.42 51.19
SLR (ours) 39.51 42.09 41.58 39.35 39.02 52.67 55.80 55.92 49.64 62.62 68.47 50.27 60.80 63.01 57.80 51.90

Evaluation after epoch 5

TENT 30.64 33.80 34.72 30.13 29.05 49.08 53.63 52.86 38.47 61.13 68.81 10.72 59.25 62.15 56.44 44.72
TENT+ 35.19 38.12 37.43 34.82 34.95 50.33 54.24 53.88 46.28 61.50 69.07 29.87 60.01 62.61 57.09 48.35

HLR (ours) 41.37 44.04 43.68 41.74 41.09 54.26 56.43 57.03 50.81 63.05 68.29 50.98 61.15 63.08 58.13 53.0
SLR (ours) 41.52 42.90 44.07 41.69 40.78 54.76 56.59 57.35 51.01 63.53 68.72 50.65 61.49 63.46 58.32 53.12
Groundtruth 55.68 58.10 61.27 55.84 55.08 65.83 67.22 67.56 62.60 72.49 76.97 65.04 70.86 72.51 68.56 65.04

Note that all the hyperparameters are tuned solely on the validation corruptions of ImageNet-C that
are disjoint from the test corruptions. As discussed in Section 3.2.2, we freeze all trainable parameters
in the top layers of the networks to prohibit “logit explosion”. Normalization statistics are still
updated in these layers. Sec. A.3 provides more details regarding frozen layers in different networks.

Furthermore, we prepend a trainable input transformation module d (cf. Sec. 3.1) to the network to
partially counteract the data-shift. Note that the parameters of this module discussed in Sec. 3.1 are
trainable and subject to optimization. This module is initialized to operate as an identity function prior
to adaptation on a target distribution by choosing τ = 1, γ = 1, and β = 0. We adapt the parameters
of this module along with the channel-wise affine transformations and normalization statistics in
an end-to-end fashion, solely using our proposed loss function along with the optimization details
mentioned above. The architecture of this module is discussed in Sec. A.2.

Since Ldiv is independent of Lconf, we also propose to combine Ldiv with TENT, i. e. L = Ldiv +Lent.
We denote this as TENT+ and also set κ = 0.9 here. Note that TENT optimizes all channel-wise
affine parameters in the network (since entropy is saturating and does not cause logit explosion). For
a fair comparison to our method, we also freeze the top layers of the networks in TENT+. We show
that adding Ldiv and freezing top layers significantly improves the networks performance over TENT.
Note that SHOT (Liang et al., 2020) is the combination of TENT, batch-level diversity regularizer,
and their pseudo labeling strategy. TENT+ can be seen as a variant of SHOT but without the pseudo
labeling. Please refer to Sec. A.5 for the test-time adaptation of pretrained models with SHOT.

Note that each corruption and severity in ImageNet-C is treated as a different target distribution and
we reset model parameters to their pretrained values before every adaptation. We run our experiments
for three times with random seeds (2020, 2021, 2022) in PyTorch and report the average accuracies.

5 RESULTS

Evaluation on ImageNet-C We adapt different models on the ImageNet-C benchmark using TENT,
TENT+, and both hard likelihood ratio (HLR) and soft likelihood ratio (SLR) losses in an online
adaptation setting. Figure 2 (top row) depicts the mean corruption accuracy (mCA%) of each model
computed across all the corruptions and severity levels. It can be observed that TENT+ improves over
TENT, showcasing the importance of a diversity regularizer Ldiv. Importantly, our methods HLR and
SLR outperform TENT and TENT+ across DenseNet121, MobileNetV2, ResNet50, ResNeXt50 and
perform comparable with TENT+ on robust ResNet50-DeepAugment+Augmix model. This shows
that the mCA% of robust DeepAugment+Augmix model can be further increased from 58% (before
adaptation) to 67.5% using test-time adaptation techniques. Here, the average of mCA obtained from
three different random seeds are depicted along with the error bars. These smaller error bars represent
that the test-time adaptation results are not sensitive to the choice of random seed.

We also illustrate the performance of ResNet50 on the highest severity level across all 15 test
corruptions of ImageNet-C in Table 1. Here, online adaptation results along with the offline adaptation
on epoch 1 and 5 are reported. It can be seen that online adaptation and single epoch of test-time

7

Under review as a conference paper at ICLR 2022

30

40

50

60

70

Im
ag

eN
et

-C
 A

cc
ur

ac
y

(%
)

42.1

56.8 57.0 57.9 58.5

DenseNet121

31.4

47.6 49.2 50.7 51.5

MobileNetV2

42.7

61.1 61.2 62.2 63.0

ResNeXt50

39.4

58.0 58.1 59.5 60.2

ResNet50

58.0

66.7 66.9 67.2 67.5
ResNet50-DeepAugmentAugmix

10

20

30

40

50

60

Im
ag

eN
et

-R
 A

cc
ur

ac
y

(%
)

37.2
43.9 44.0

47.5 47.4

31.0
34.3 35.2 37.4 37.5 37.7

45.4 45.1
50.3 50.6

36.2
43.0 42.7

47.2 47.5 46.8
53.6 53.4

57.3 57.5

NA TENT TENT+ HLR SLR

66

68

70

72

74

76

78

80

Im
ag

eN
et

 C
le

an
 A

cc
ur

ac
y

(%
)

74.4 74.5 74.6
73.2 73.4

NA TENT TENT+ HLR SLR

71.9 71.2 71.4
70.0 70.1

NA TENT TENT+ HLR SLR

77.6 77.6 77.6
76.6 76.8

NA TENT TENT+ HLR SLR

76.1 75.9 75.9
74.8 75.0

NA TENT TENT+ HLR SLR

75.8
74.6 74.7 74.0 74.2

Figure 2: Test-time adaptation results on (top row) ImageNet-C, averaged across all 15 corruptions and
severities, (middle row) ImageNet-R, (bottom row) clean ImageNet. NA refers to "No Adaptation".

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

corruption : frost
 split_by: class

corruption : glass_blur
 split_by: class

corruption : contrast
 split_by: class

corruption : gaussian_noise
 split_by: class

0.2 0.4 0.6 0.8 1.0
Split Fraction

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

split_by: samples

0.2 0.4 0.6 0.8 1.0
Split Fraction

split_by: samples

0.2 0.4 0.6 0.8 1.0
Split Fraction

split_by: samples

0.2 0.4 0.6 0.8 1.0
Split Fraction

split_by: samples

No Adaptation
TENT
TENT+
HLR
SLR

Figure 3: Test-time adaptation of ResNet50 using (top row) a subset of classes, and (bottom row) a
subset of samples per class on 4 different corruptions at severity 5. Accuracy is computed based on
the evaluation of adapted model on the entire target data. Note that error bars are smaller to visualize.

adaptation improves the performance significantly and makes minor improvements until epoch 5.
TENT adaptation for more than one epoch result in reduced performance and TENT with Ldiv
(TENT+) prevents this behavior. Both HLR and SLR clearly and consistently outperform TENT /
TENT+ on the ResNet50 and also note that SLR outweighs HLR. We also compare our results with
the hard pseudo-labels (PL) objective and also with an oracle setting where the groundtruth labels of
the target data are used for adapting the model in a supervised manner (GT). Note that this oracle
setting is not of practical importance but illustrates the empirical upper bound on fully test-time
adaptation performance under the chosen modulation parametrization.

ImageNet-R We online adapt different models on ImageNet-R and depict the results in Figure 2
(middle row). Results show that HLR and SLR clearly outperform TENT and TENT+ and significantly
improve performance of all the models, including the model pretrained with DeepAugment+Augmix.

Evaluation with data subsets Above we evaluate the model on the same data that is also used for
the test-time adaptation. Here, we test model generalization by adapting on a subset of target data

8

Under review as a conference paper at ICLR 2022

Table 2: SSIM and SLR-adapted ResNet50 accuracy without and with input transformation (IT).
Corruption Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

SSIM 0.123 0.147 0.135 0.623 0.648 0.622 0.676 0.517 0.575 0.619 0.653 0.545 0.625 0.786 0.800
SSIM+IT 0.173 0.188 0.347 0.605 0.638 0.603 0.670 0.580 0.628 0.626 0.676 0.765 0.616 0.776 0.795

SLR 41.52 42.90 44.07 41.69 40.78 54.76 56.59 57.35 51.01 63.53 68.72 50.65 61.49 63.46 58.32
SLR+IT 43.09 44.39 64.05 41.98 40.99 55.73 56.75 58.56 51.68 63.64 68.85 55.01 61.32 63.59 58.24

and evaluate the performance on the whole dataset (in offline setting), which also includes unseen
data that is not used for adaptation. We conduct two case studies: (i) adapt on the data from a subset
of ImageNet classes and evaluate the performance on the data from all the classes. (ii) Adapt only on
a subset of data from each class and test on all seen and unseen samples from the whole dataset.

Figure 3 illustrates generalization of a ResNet50 adapted on different proportions of the data across
different corruptions, both in terms of classes and samples. We observe that adapting a model on
a small subset of samples and classes is sufficient to achieve reasonable accuracy on the whole
target data. This suggests that the adaptation actually learns to compensate the data shift rather than
overfitting to the adapted samples or classes. The performance of TENT decreases as the number of
classes/samples increases, because Lent can converge to trivial collapsed solutions and more data
corresponds to more updates steps during adaptation. Adding Ldiv such as in TENT+ stabilizes the
adaptation process and reduces this issues. Reported are the average of random seeds with error bars.

Input transformation We investigate whether the input transformation (IT) module, trained end-to-
end with a ResNet50 and SLR loss on data of the respective distortion without seeing any source
(undistorted) data, can partially undo certain domain shifts of ImageNet-C and also increase accuracy
on corrupted data. We measure domain shift via the structural similarity index measure (SSIM)
(Wang et al., 2004) between the clean image (unseen by the model) and its distorted version/the
output of IT on the distorted version. Following offline adaptation setting, Table 2 shows that IT
increases the SSIM considerably on certain distortions such as Impulse, Contrast, Snow, and Frost.
IT increases SSIM also for other types of noise distortions, while it slightly reduces SSIM for the
blur distortions, Elastic, Pixelate, and JPEG. When combined with SLR, IT considerably increases
accuracy on distortions for which also SSIM increased significantly (for instance +20 percent points
on Impulse, +4 percent points on Contrast) and never reduces accuracy by more than 0.11 percent
points. More results on online and offline adaptation with TENT / TENT+ can be found in Table A3.

Clean images As a sanity check, we investigate the effect of test-time adaptation when target data
comes from the same distribution as training data. For this, we online adapt pretrained models on
clean validation data of ImageNet. The results in Figure 2 (bottom row) depict that the performance
of SLR/HLR adapted models drops by 0.8 to 1.8 percent points compared to the pretrained model.
We attribute this drop to self-supervision being less reliable than the original full supervision on in-
distribution training data. The drop is smaller for TENT and TENT+, presumably because predictions
on in-distribution target data are typically highly confident such that there is little gradient and thus
little change to the pretrained networks by TENT. In summary, while self-supervision by confidence
maximization is a powerful method for adaptation to domain shift, the observed drop when adapting
to data from the source domain indicates that there is “no free lunch” in test-time adaptation.

6 CONCLUSION

We propose a method to improve corruption robustness and domain adaptation of models in a fully
test-time adaptation setting. Unlike entropy minimization, our proposed loss functions provide
non-vanishing gradients for high confident predictions and thus attribute to improved adaptation
in a self-supervised manner. We also show that additional diversity regularization on the model
predictions is crucial to prevent trivial solutions and stabilize the adaptation process. Lastly, we
introduce a trainable input transformation module that partially refines the corrupted samples to
support the adaptation. We show that our method improves corruption robustness on ImageNet-C and
domain adaptation to ImageNet-R on different ImageNet models. We also show that adaptation on a
small fraction of data and classes is sufficient to generalize to unseen target data and classes.

9

Under review as a conference paper at ICLR 2022

7 ETHICS STATEMENT

We abide by the general ethical principles listed by ICLR code of ethics. Our work does not
include the study of human subjects, dataset releases, do not raise pontential conflicts of interest,
or discrimination/bias/fairness concerns, or privacy and security issues. Our non-saturating loss
increases accuracy but might result in over confident predictions, which can cause harm in safety-
critical downstream applications when not properly calibrated. At the same time, self-supervised
confidence maximization might amplify bias in pretrained models. We hope that the diversity
regularizer in the loss partially compensates this issue.

8 REPRODUCIBILITY STATEMENT

We provide complete details of our experimental setup for reproducibility. Sec. 4 provides details
of the network architectures, optimizer, learning rate, batch size, choice of hyperparameters of
our method and the random seeds used for generating the results. Sec. A.3 provides more details
regarding frozen layers in different networks. Sec. A.2 shows the structure of input transformation
module used in this work. We will also provide a link to an anonymous downloadable source code as
a comment directed to the reviewers and area chairs in the discussion forum.

REFERENCES

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization
for improving corruption robustness. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 494–503, January 2021.

Minghao Chen, Hongyang Xue, and Deng Cai. Domain adaptation for semantic segmentation with
maximum squares loss. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 2090–2099, 2019.

Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are a natural
consequence of test error in noise. arXiv preprint arXiv:1901.10513, 2019.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1):2096–2030, 2016.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations,
2019.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. International Conference on Learning Representations (ICLR),
2019.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization, 2020.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
conference on machine learning, pp. 1989–1998. PMLR, 2018.

10

Under review as a conference paper at ICLR 2022

Christoph Kamann, Burkhard Güssefeld, Robin Hutmacher, Jan Hendrik Metzen, and Carsten Rother.
Increasing the robustness of semantic segmentation models with painting-by-numbers. arXiv
preprint arXiv:2010.05495, 2020.

Jogendra Nath Kundu, Naveen Venkat, Rahul M V, and R. Venkatesh Babu. Universal source-free
domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Vinod K. Kurmi, Venkatesh K. Subramanian, and Vinay P. Namboodiri. Domain impression: A
source data free domain adaptation method. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), January 2021.

Bo Li, Yezhen Wang, Tong Che, Shanghang Zhang, Sicheng Zhao, Pengfei Xu, Wei Zhou, Yoshua
Bengio, and Kurt Keutzer. Rethinking distributional matching based domain adaptation. arXiv
preprint arXiv:2006.13352, 2020a.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adaptation: Unsupervised
domain adaptation without source data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020b.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization
for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? Source
hypothesis transfer for unsupervised domain adaptation. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 6028–6039. PMLR, 13–18 Jul 2020.

Raphael Gontijo Lopes, Dong Yin, Ben Poole, Justin Gilmer, and Ekin D Cubuk. Improving
robustness without sacrificing accuracy with patch gaussian augmentation. arXiv preprint
arXiv:1906.02611, 2019.

Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, and Samuel Rota Bulo. Autodial:
Automatic domain alignment layers. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 5067–5075, 2017.

Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations and
corruptions in natural corruption robustness. arXiv preprint arXiv:2102.11273, 2021a.

Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations and
corruptions in natural corruption robustness, 2021b. URL https://openreview.net/
forum?id=zbEupOtJFF.

Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper
Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift, 2021.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda:
The visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and N Lawrence. Covariate
shift and local learning by distribution matching, 2008.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. Dataset
Shift in Machine Learning. MIT Press, 2009.

Evgenia Rusak, Lukas Schott, Roland Zimmermann, Julian Bitterwolf, Oliver Bringmann, Matthias
Bethge, and Wieland Brendel. Increasing the robustness of dnns against image corruptions by
playing the game of noise. arXiv preprint arXiv:2001.06057, 3, 2020a.

Evgenia Rusak, Lukas Schott, Roland S. Zimmermann, Julian Bitterwolf, Oliver Bringmann, Matthias
Bethge, and Wieland Brendel. A simple way to make neural networks robust against diverse image
corruptions. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.),
Computer Vision – ECCV, 2020b.

11

https://openreview.net/forum?id=zbEupOtJFF
https://openreview.net/forum?id=zbEupOtJFF

Under review as a conference paper at ICLR 2022

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. Advances
in Neural Information Processing Systems, 33, 2020.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for unsupervised domain
adaptation. In Domain Adaptation in Computer Vision Applications, pp. 153–171. Springer, 2017.

Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros. Unsupervised domain adaptation through
self-supervision. arXiv preprint arXiv:1909.11825, 2019.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International Conference on
Machine Learning, pp. 9229–9248. PMLR, 2020.

Hossein Talebi and Peyman Milanfar. Learning to resize images for computer vision tasks. arXiv
preprint arXiv:2103.09950, 2021.

Torch-Contributors. Torchvision models, 2020. URL https://pytorch.org/vision/
stable/models.html.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7167–7176, 2017.

Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. Advent: Adver-
sarial entropy minimization for domain adaptation in semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526, 2019.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Fully test-time
adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: From error
visibility to structural similarity. Trans. Img. Proc., 13(4):600–612, April 2004. ISSN 1057-7149.

Xiaofu Wu, Quan Zhou, Zhen Yang, Chunming Zhao, Longin Jan Latecki, et al. Entropy minimization
vs. diversity maximization for domain adaptation. arXiv preprint arXiv:2002.01690, 2020.

Yanchao Yang and Stefano Soatto. Fda: Fourier domain adaptation for semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4085–4095, 2020.

Hengshuai Yao, Dong-lai Zhu, Bei Jiang, and Peng Yu. Negative log likelihood ratio loss for deep
neural network classification. In Kohei Arai, Rahul Bhatia, and Supriya Kapoor (eds.), Proceedings
of the Future Technologies Conference (FTC), pp. 276–282, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-32520-6.

Hao-Wei Yeh, Baoyao Yang, Pong C. Yuen, and Tatsuya Harada. Sofa: Source-data-free feature
alignment for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), January 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

12

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 ILLUSTRATIVE EXAMPLE OF LOG LIKELIHOOD RATIO ADAPTATION OBJECTIVE

A simple 1D example is devised to illustrate the benefits of proposed log likelihood ratio as test
time adaptation objective. Consider data points (unlabeled) that are sampled from the following
bimodal distribution: 0.5 · N (−1, 3) + 0.5 · N (+1, 3), that is: half of the samples come from a
normal distribution with mean -1 and the other half from a normal distribution with mean +1 (and
both having standard deviation 3). We can interpret these two components of the mixture distributions
as corresponding to data of two different classes, but class labels are of course unavailable during
unsupervised test-time adaptation.

We assume a simple logistic model of the form pθ(y = 1|x) = 1
1+e−(x+θ) , where x is the value of the

data sample and θ is a scalar offset that determines the decision boundary. By construction, we know
that the minimum density of the mixture distribution on [−1, 1] is at 0. Since confidence maximization
aims as moving the decision boundary to regions in input space with minimum data density (in this
case to 0), we can compare different self-supervised confidence maximization losses in the finite data
regime as follows: for every finite data sample with N data points {xi} for i = 1, . . . , N and loss
function L , we solve θ∗(L) = argminθ∈[−1,1] L(θ, {xi}), where the loss (such as entropy or SLR)
is averaged over all data points. The absolute value |θ∗(L)| gives us then an estimate of the error of
the decision boundary parameter |θ∗(L)| for the given data set and loss function.

Table A1 provides this error for different loss functions and different number of data samples. It
can be seen that SLR and HLR clearly outperform Entropy loss (TENT) for all data regimes. The
difference between SLR and HLR is generally very small. While SLR seems to be consistently
slightly better than HLR, this difference is not statistically significant. We attribute the superiority of
SLR/HLR compared to entropy to the fact that all data points have non-saturating loss, regardless of
their distance to the decision boundary. Thus, all data contributes to localizing the decision boundary,
while for saturating losses such as the entropy, effectively only "nearby" points determine the decision
boundary. This example illustrates that our proposed non-saturating losses are beneficial over entropy
loss for self-supervised confidence maximization.

Table A1: Illustrates the error of the decision boundary parameter for different loss functions and
different number of samples averaged over 100 runs (shown are mean and standard error of mean).

#samples 100 200 500 1000 2000 10000 20000

Entropy 0.487±0.031 0.364±0.029 0.230±0.018 0.152±0.013 0.117±0.009 0.052±0.004 0.033±0.003
HLR 0.357±0.023 0.234±0.018 0.145±0.012 0.094±0.008 0.071±0.006 0.032±0.002 0.022±0.002
SLR 0.332±0.022 0.214±0.017 0.140±0.011 0.088±0.008 0.067±0.006 0.032±0.002 0.021±0.002

A.2 INPUT TRANSFORMATION MODULE

Note that we define our adaptable model as g = f ◦ d, where d is a trainable network prepended to a
pretrained neural network f (e.g., pretrained ResNet50). We choose d(x) = γ ·[τx+ (1− τ)rψ(x)]+
β, where τ ∈ R, (β, γ) ∈ Rnin with nin being the number of input channels, rψ being a network with
identical input and output shape, and · denoting elementwise multiplication. Here, β and γ implement
a channel-wise affine transformation and τ implements a convex combination of unchanged input
and the transformed input rψ(x). We set τ = 1, γ = 1, and β = 0, to ensure that d(x) = x and thus
g = f at initialization. In principle, rψ can be chosen arbitrarily. Here, we choose rψ as a simple
stack of 3× 3 convolutions with stride 1 and padding 1, group normalization, and ReLUs without
any upsampling/downsampling layers. Specifically, the structure of g is illustrated in Figure A1.

In addition to the results reported in Table 2, we also compare TENT and TENT+ with and without
Input Transformation (IT) module on ResNet50 for all corruptions at severity level 5 in both online
adaptation setting and offline adaptation with 5 epochs in Table A3. Furthermore, we also present the
qualitative results of the image transformations from the input transformation module adapted with
SLR (offline setting) in Figure A2.

13

Under review as a conference paper at ICLR 2022

Table A2: Ablation study on the components of input transformation module on ResNet50 for all
corruptions at severity level 5.

Corruption Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mean

x 41.52 42.90 44.07 41.69 40.78 54.76 56.59 57.35 51.01 63.53 68.72 50.65 61.49 63.46 58.32 53.12
rψ(x) 13.17 26.57 28.81 5.09 3.61 30.61 49.79 53.73 45.96 58.82 65.79 53.73 56.77 60.14 53.38 40.40

τx+ (1− τ)rψ(x) 43.13 46.43 56.25 41.80 40.90 55.75 56.65 58.55 51.72 63.59 68.83 53.89 61.50 63.73 58.51 54.74
γ · [τx+ (1− τ)rψ(x)] + β 43.18 46.24 56.21 41.91 40.89 55.79 56.66 58.50 51.72 63.56 68.83 54.26 61.49 63.76 58.52 54.76

Table A3: Test-time adaptation of ResNet50 on ImageNet-C at highest severity level 5 with and
without Input Transformation (IT) module. Reported are the mean accuracy(%) across three random
seeds (2020/2021/2022). While IT also improves performance when combined with TENT+, it is
still clearly outperformed by SLR+IT.

Method Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Online adaptation (evaluation on a batch directly after adaptation on the batch)

TENT 28.60 31.06 30.54 29.09 28.07 42.32 50.39 48.01 42.05 58.40 68.20 27.25 55.68 59.46 53.64
TENT + IT 28.99 31.73 31.15 28.87 27.85 42.43 50.36 48.02 41.95 58.37 68.19 24.35 55.68 59.49 53.57

TENT+ 29.09 31.65 30.68 29.33 28.65 42.32 50.32 48.09 42.54 58.39 68.23 31.43 55.90 59.46 53.68
TENT+ + IT 29.48 32.34 31.38 29.06 28.42 42.43 50.33 48.11 42.47 58.40 68.20 32.11 55.87 59.49 53.64
SLR (ours) 35.11 37.93 36.83 35.13 35.13 48.29 53.45 52.68 46.52 60.74 68.40 44.78 58.74 61.13 55.97

SLR + IT (ours) 36.19 39.17 40.46 35.17 34.87 48.67 53.62 52.71 46.93 60.66 68.30 46.55 58.79 61.27 55.93

Evaluation after epoch 5

TENT 30.64 33.80 34.72 30.13 29.05 49.08 53.63 52.86 38.47 61.13 68.81 10.72 59.25 62.15 56.44
TENT + IT 31.92 36.02 38.14 30.44 28.68 49.04 53.59 52.99 38.76 61.14 68.84 13.52 59.23 62.15 56.56

TENT+ 35.19 38.12 37.43 34.82 34.95 50.33 54.24 53.88 46.28 61.50 69.07 29.87 60.01 62.61 57.09
TENT+ + IT 36.13 39.84 41.03 34.62 34.72 50.33 54.10 53.91 46.46 61.54 69.07 30.22 59.95 62.72 57.11
SLR (ours) 41.52 42.90 44.07 41.69 40.78 54.76 56.59 57.35 51.01 63.53 68.72 50.65 61.49 63.46 58.32

SLR+IT (ours) 43.09 44.39 64.05 41.98 40.99 55.73 56.75 58.56 51.68 63.64 68.85 55.01 61.32 63.59 58.24

A.2.1 CONTRIBUTION OF EACH COMPONENT IN INPUT TRANSFORMATION MODULE

Table A2 shows the results of ablation study on the components of input transformation module
on ResNet50 for all corruptions at severity level 5 adapted with SLR for 5 epochs. The ablation
study includes: (1) no input transformation module d(x) = x, (2) with network d(x) = rψ(x), (3)
including τ , (4) including channel-wise affine transformation γ and β. We can observe that the inputs
transformed with network rψ drops the performance without the convex combination with τ . The
additional channel wise affine transformations didn’t bring further consistent improvements and can
be ignored from the transformation module. Exploring other architectural choices and training (or
pretraining) strategy for the input transformation module would be an interesting avenue for future
work.

A.3 FROZEN LAYERS IN DIFFERENT NETWORKS

As discussed in Section 3.2.2, we freeze all trainable parameters in the top layers of the networks to
prohibit “logit explosion”. That implies, we do not optimize the channel-wise affine transformations
of the top layers but normalization statistics are still estimated. Similar to the hyperparameters of
test time adaptation settings, the choice of these layers are made using ImageNet-C validation data.
We mention the frozen layers of each architecuture below. Note that the naming convention of these
layers are based on the model definition in torchvision:

• DenseNet121 - features.denseblock4, features.norm5.

• MobileNetV2 - features.16, features.17, features.18.

• ResNeXt50, ResNet50 and ResNet50 (DeepAugment+Augmix) - layer4.

A.3.1 RESULTS WITHOUT FREEZING THE TOP LAYERS

We mentioned that the proposed losses could alternatively encourage the network to scale the logits
grow larger and larger and still reduce the loss. However, we did not find any considerable differences
empirically in the explored settings when adapting the model with or without freezing the top
layer. We found that adapting the model with and without freezing the top layers have comparable
performance in both online and offline adaptation settings as shown in Table A4 respectively. However,
we would still recommend freezing the top-most layers as the default choice to be on the safe side.
These results indicate that the early layers capture the distribution shift sufficiently to improve the
model adaptation.

14

Under review as a conference paper at ICLR 2022

Table A4: Comparing the online and offline adaptation results with and without freezing the affine
parameters of top normalization layers of ResNet50 at severity 5. Here, "Freeze" and "NoFreeze"
refer to the setting with and without freezing the top affine layers respectively.

Corruption Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mean

Online evaluation

TENT+ NoFreeze 29.05 31.32 30.32 28.95 28.29 42.37 50.45 48.12 42.21 58.51 68.29 28.17 55.57 59.47 53.46 43.63
TENT+ Freeze 29.21 31.54 30.55 29.17 28.60 42.54 50.47 48.18 42.51 58.50 68.30 31.25 55.76 59.54 53.62 43.98

HLR NoFreeze 33.73 36.50 35.63 33.99 33.88 46.55 52.76 51.44 45.82 59.74 67.37 43.19 57.69 59.77 54.95 47.53
HLR Freeze 33.10 36.08 34.74 33.21 33.31 46.36 52.77 51.42 45.47 60.01 68.07 42.75 58.02 60.42 55.34 47.40

SLR NoFreeze 35.61 38.37 37.50 35.83 35.81 48.29 53.61 52.62 46.85 60.42 67.71 44.93 58.43 60.56 55.65 48.81
SLR Freeze 35.11 37.93 36.83 35.13 35.13 48.29 53.45 52.68 46.52 60.74 68.40 44.78 58.74 61.13 55.97 48.72

offline evaluation

TENT+ NoFreeze 32.03 35.33 35.28 31.92 31.27 49.20 53.79 53.01 40.37 61.22 68.79 19.38 59.25 62.20 56.51 45.97
TENT+ Freeze 35.19 38.12 37.43 34.82 34.95 50.33 54.24 53.88 46.28 61.50 69.07 29.87 60.01 62.61 57.09 48.35

HLR NoFreeze 41.60 43.80 43.89 42.21 41.50 53.82 56.21 56.71 50.83 62.74 67.87 51.34 60.65 62.58 57.70 52.89
HLR Freeze 41.37 44.04 43.68 41.74 41.09 54.26 56.43 57.03 50.81 63.05 68.29 50.98 61.15 63.08 58.13 53.0

SLR NoFreeze 41.45 43.95 44.26 42.56 41.60 54.25 56.13 56.72 50.92 62.97 68.02 50.99 60.90 62.83 57.86 53.02
SLR Freeze 41.52 42.90 44.07 41.69 40.78 54.76 56.59 57.35 51.01 63.53 68.72 50.65 61.49 63.46 58.32 53.12

A.4 EFFECT OF κ

Note that the running estimate of Ldiv prevents model collapsed to trivial solutions i.e., model predicts
only a single or a set of classes as outputs regardless of the input samples. Ldiv encourages model to
match it’s empirical distribution of predictions to class distribution of target data (uniform distribution
in our experiments). Such diversity regularization is crucial as there is no direct supervision attributing
to different classes and thus aids to avoid collapsed trivial solutions. In Figure A3, we investigate
different values of κ on validation corruptions of ImageNet-C to study its effectiveness on our
approach. It can be observed that both the HLR and SLR without Ldiv leads to collapsed solutions
(e.g., accuracy drops to 0%) on some of the corruptions and the performance gains are not consistent
across all the corruptions. On the other hand, Ldiv with κ = 0.9 remain consistent and improve the
performance across all the corruptions.

A.5 TEST-TIME ADPTATION OF PRETRAINED MODELS WITH SHOT

Following SHOT (Liang et al., 2020), we use their pseudo labeling strategy on the ImageNet
pretrained ResNet50 in combination with TENT+, HLR and SLR. Note that TENT+ and pseudo
labeling strategy jointly forms the method SHOT. The pseudo labeling strategy starts after the 1st
epoch and thereafter computed at every epoch. The weight for the loss computed on the pseudo labels
is set to 0.3, similar to (Liang et al., 2020). Different values for this weight is explored and found
0.3 to perform best. Table A6 compares the results of the methods with and without pseudo labeling
strategy. It can be observed that the results with pseudo labeling strategy perform worse than without
taking this strategy into account.

We further modified the pretrained ResNet50 by following the network modifications suggested in
(Liang et al., 2020), that includes adding a bottleneck layer with BatchNorm and applying weight
norm on the linear classifier along with smooth label training to facilitate the pseudo labeling strategy.
Table A7 shows that the pseudo labeling strategy on such network improve the results of TENT+
from epoch 1 to epoch 5. However, there are no improvements noticed in SLR. Moreover, Table
A8 shows that NO pseudo labeling strategy on the same network performs better than applying the
pseudo labeling strategy. Finally, the no pseduo labeling results from Table A6 and A8 shows that
additional modifications to ResNet50 do not improve the performance when compared to the standard
ResNet50.

A.6 DOMAIN ADAPTATION ON VISDA-C AND DIGIT CLASSIFICATION

VisDA-C: We extended our experiments to VisDA-C. We followed similar network architecture
from SHOT (Liang et al., 2020) and evaluated TENT+, our SLR loss function with diversity regu-
larizer. Similar to ImageNet-C, we adapted only the channel wise affine parameters of batchnorm
layers for 5 epochs with Adam optimizer with cosine decay scheduler of the learning rate with initial
value 2e− 5. Here, the batchsize is set to 64, the weight of Lconf in our loss function to δ = 0.25 and
κ = 0 in the running estimate pt(y) of Ldiv, since the number of classes in this dataset (12 classes) is
smaller than the batchsize. Setting κ = 0 enables the batch wise diversity regularizer. Table A9 shows

15

Under review as a conference paper at ICLR 2022

Table A5: Test-time adaptation of ResNet50 on ImageNet-C at highest severity level 5. Same as
Table 1 with error bars.

name Epoch 1 Epoch 5

corruption No adaptation PL TENT TENT+ HLR SLR TENT TENT+ HLR SLR

Gauss 2.44 2.44 32.44±0.10 33.75±0.09 38.39±0.25 39.51±0.23 30.64±0.51 35.19±0.17 41.37±0.09 41.52±0.08
Shot 2.99 2.99 35.01±0.17 36.38±0.19 41.11±0.13 42.09±0.26 33.80±0.74 38.12±0.10 44.04±0.09 42.90±0.08

Impulse 1.96 1.96 34.77±0.09 35.67±0.15 40.28±0.20 41.58±0.04 34.72±1.01 37.43±0.09 43.68±0.06 44.07±0.06
Defocus 17.92 17.92 32.40±0.10 33.43±0.14 38.25±0.32 39.35±0.13 30.13±0.61 34.82±0.25 41.74±0.12 41.69±0.07

Glass 9.82 9.82 31.62±0.15 33.25±0.01 38.18±0.08 39.02±0.09 29.05±0.21 34.95±0.13 41.09±0.17 40.78±0.08
Motion 14.78 14.78 47.23±0.11 47.66±0.12 51.63±0.08 52.67±0.25 49.08±0.08 50.33±0.07 54.26±0.02 54.76±0.04
Zoom 22.50 22.50 53.09±0.06 53.20±0.07 55.55±0.06 55.80±0.07 53.63±0.16 54.24±0.06 56.43±0.07 56.59±0.05
Snow 16.89 16.89 51.61±0.05 52.06±0.09 55.45±0.11 55.92±0.06 52.86±0.13 53.88±0.07 57.03±0.12 57.35±0.03
Frost 23.31 23.31 43.26±0.30 44.85±0.20 48.96±0.07 49.64±0.14 38.47±0.50 46.28±0.27 50.81±0.08 51.01±0.02
Fog 24.43 24.43 60.42±0.08 60.60±0.05 62.19±0.03 62.62±0.04 61.13±0.08 61.50±0.05 63.05±0.04 63.53±0.08

Bright 58.93 58.93 68.85±0.02 68.93±0.03 68.17±0.01 68.47±0.05 68.81±0.06 69.07±0.06 68.29±0.09 68.72±0.10
Contrast 5.43 5.43 24.39±0.98 33.43±0.77 49.47±0.20 50.27±0.08 10.72±0.32 29.87±1.36 50.98±2.54 50.65±0.55
Elastic 16.95 16.95 58.53±0.05 58.94±0.05 60.34±0.18 60.80±0.08 59.25±0.06 60.01±0.02 61.15±0.04 61.49±0.07
Pixel 20.61 20.61 61.62±0.06 61.75±0.07 62.51±0.10 63.01±0.08 62.15±0.04 62.61±0.08 63.08±0.06 63.46±0.08
JPEG 31.65 31.65 56.00±0.09 56.21±0.05 57.42±0.13 57.80±0.04 56.44±0.07 57.09±0.02 58.13±0.09 58.32±0.05

Table A6: Test-time adaptation of ResNet50 on ImageNet-C at highest severity level 5 with and
without the pseudo labeling strategy (Liang et al., 2020).

name No pseudo labeling: Epoch 5 Pseudo labeling: Epoch 5

corruption No adaptation TENT+ HLR SLR TENT+ HLR SLR

Gauss 2.44 33.97±0.17 41.37±0.09 41.52±0.08 34.08±0.11 34.88±0.35 35.58±0.06
Shot 2.99 37.95±0.10 44.04±0.09 42.90±0.08 36.74±0.26 37.61±0.49 37.98±0.19

Impulse 1.96 36.93±0.09 43.68±0.06 44.07±0.06 36.69±0.04 37.24±0.22 37.77±0.05
Defocus 17.92 32.69±0.25 41.74±0.12 41.69±0.07 33.99±0.28 34.76±0.11 35.11±0.10

Glass 9.82 33.36±0.13 41.09±0.17 40.78±0.08 34.06±0.12 34.51±0.30 34.81±0.27
Motion 14.78 51.42±0.07 54.26±0.02 54.76±0.04 50.91±0.09 48.96±0.39 49.46±0.20
Zoom 22.50 54.33±0.06 56.43±0.07 56.59±0.05 54.10±0.10 52.49±0.02 52.50±0.23
Snow 16.89 54.55±0.07 57.03±0.12 57.35±0.03 54.06±0.08 52.49±0.19 52.95±0.07
Frost 23.31 45.80±0.27 50.81±0.08 51.01±0.02 44.44±0.07 45.47±0.26 46.06±0.20
Fog 24.43 62.09±0.05 63.05±0.04 63.53±0.08 61.91±0.08 59.66±0.14 59.98±0.12

Bright 58.93 69.03±0.06 68.29±0.09 68.72±0.10 68.98±0.02 65.59±0.06 66.00±0.03
Contrast 5.43 24.08±1.36 50.98±2.54 50.65±0.55 29.37±0.95 44.58±0.38 45.64±0.47
Elastic 16.95 60.36±0.02 61.15±0.04 61.49±0.07 60.23±0.05 57.48±0.14 57.87±0.04
Pixel 20.61 63.10±0.08 63.08±0.06 63.46±0.08 62.98±0.04 59.72±0.02 60.05±0.14
JPEG 31.65 57.21±0.02 58.13±0.09 58.32±0.05 57.09±0.04 54.72±0.09 54.88±0.07

average results from three different random seeds and also shows that SLR outperforms TENT+ on
this dataset.

Domain adaptation from SVHN to MNIST / MNIST-M / USPS: ResNet26 is trained on SVHN
dataset for 50 epochs with batch size 128, SGD optimizer with momentum 0.9 and initial learning rate
0.01, which drops to 0.001 and 0.0001 at 25th and 40th epoch respectively. ResNet26 obtains 96.49%
test accuracy on SVHN. Domain adaptation of SVHN trained ResNet26 to MNIST/MNIST-M/USPS

Table A7: Test-time adaptation of modified ResNet50 (following (Liang et al., 2020)) on ImageNet-C
at highest severity level 5 with pseudo labeling strategy at epoch 1 and epoch 5.

name Pseudo labeling: Epoch 1 Pseudo labeling: Epoch 5

corruption No adaptation TENT+ HLR SLR TENT+ HLR SLR

Gauss 2.95 31.03±0.18 34.65±0.28 37.21±0.23 35.26±0.16 35.93±0.23 37.61±0.30
Shot 3.65 33.55±0.07 38.09±0.30 40.30±0.09 37.39±0.05 38.95±0.16 40.42±0.06

Impulse 2.54 32.70±0.07 36.95±0.05 39.73±0.07 38.16±0.08 38.13±0.04 40.12±0.11
Defocus 19.36 31.66±0.15 35.08±0.05 37.18±0.15 35.95±0.17 36.72±0.13 37.96±0.25

Glass 9.72 31.06±0.06 35.46±0.12 37.62±0.10 35.98±0.04 36.84±0.11 37.90±0.02
Motion 15.66 46.96±0.12 49.95±0.12 51.87±0.14 52.24±0.02 51.90±0.12 52.76±0.09
Zoom 22.20 52.45±0.02 54.15±0.22 54.84±0.18 54.80±0.07 54.84±0.09 54.95±0.14
Snow 17.56 51.79±0.05 53.98±0.06 55.44±0.04 55.15±0.02 55.27±0.20 55.75±0.02
Frost 24.11 45.59±0.06 47.87±0.03 48.96±0.11 48.10±0.20 48.52±0.11 49.13±0.20
Fog 25.59 60.33±0.03 61.55±0.10 62.21±0.16 62.39±0.03 62.38±0.12 62.38±0.11

Bright 58.30 68.84±0.04 68.44±0.04 68.60±0.10 69.13±0.04 68.50±0.02 68.47±0.09
Contrast 6.49 42.34±0.19 47.98±0.13 50.32±0.28 42.11±0.15 49.22±0.42 50.80±0.19
Elastic 17.72 58.47±0.02 59.70±0.06 60.30±0.09 60.40±0.04 60.27±0.22 60.45±0.21
Pixel 21.29 61.39±0.06 62.10±0.07 62.71±0.10 63.04±0.02 62.71±0.07 62.81±0.07
JPEG 32.13 55.22±0.03 56.49±0.07 57.04±0.07 57.21±0.06 57.25±0.07 57.37±0.05

16

Under review as a conference paper at ICLR 2022

Table A8: Test-time adaptation of modified ResNet50 (following (Liang et al., 2020)) on ImageNet-C
at highest severity level 5 with and without pseudo labeling strategy.

name No Pseudo labeling: Epoch 5 Pseudo labeling: Epoch 5

corruption No adaptation TENT+ HLR SLR TENT+ HLR SLR

Gauss 2.95 34.96±0.08 38.58±0.12 39.72±0.13 35.26±0.16 35.93±0.23 37.61±0.30
Shot 3.65 37.22±0.17 41.59±0.09 42.45±0.05 37.39±0.05 38.95±0.16 40.42±0.06

Impulse 2.54 37.82±0.04 40.88±0.07 42.39±0.03 38.16±0.08 38.13±0.04 40.12±0.11
Defocus 19.36 34.46±0.12 39.22±0.15 39.78±0.09 35.95±0.17 36.72±0.13 37.96±0.25

Glass 9.72 35.12±0.05 38.83±0.13 39.37±0.07 35.98±0.04 36.84±0.11 37.90±0.02
Motion 15.66 51.91±0.09 53.23±0.05 54.00 52.24±0.02 51.90±0.12 52.76±0.09
Zoom 22.20 54.57±0.05 55.76±0.04 55.79±0.02 54.80±0.07 54.84±0.09 54.95±0.14
Snow 17.56 55.02±0.05 56.35±0.12 56.80±0.04 55.15±0.02 55.27±0.20 55.75±0.02
Frost 24.11 48.18±0.09 49.86±0.22 50.43±0.08 48.10±0.20 48.52±0.11 49.13±0.20
Fog 25.59 62.24±0.04 62.90±0.06 63.29±0.06 62.39±0.03 62.38±0.12 62.38±0.11

Bright 58.30 69.12±0.01 68.72±0.06 68.83±0.05 69.13±0.04 68.50±0.02 68.47±0.09
Contrast 6.49 33.91±0.92 52.13±0.16 53.04±0.14 42.11±0.15 49.22±0.42 50.80±0.19
Elastic 17.72 60.37±0.11 60.89±0.08 61.12±0.01 60.40±0.04 60.27±0.22 60.45±0.21
Pixel 21.29 62.97±0.02 62.95±0.05 63.21±0.05 63.04±0.02 62.71±0.07 62.81±0.07
JPEG 32.13 57.10±0.06 57.91±0.06 57.99±0.11 57.21±0.06 57.25±0.07 57.37±0.05

Table A9: Performance on VisDA-C dataset
Method Accuracy(%)

No Adaptation 46.1
TENT+ 81.83±0.16

SLR 82.32±0.16

is conducted with Adam optimizer with constant learning rate 0.001 for 20 epochs on TENT, TENT+
and SLR with three random seeds (2020/2021/2022). Table A10 compares our proposed loss SLR
with TENT variants on ResNet26 and shows that our approach outperforms them across all the
datasets.

A.7 COMPARISON WITH MAX SQUARE LOSS AND CHARBONNIER PENALTY

Similar to Figure 1, we provide the illustration of max square loss (Chen et al., 2019) and charbonnier
penalty applied to entropy minimization (Yang & Soatto, 2020) in Figure A4. Both the max Squares
loss and the charbonnier penalty applied to entropy minimization have gradients of the loss w.r.t. the
logit that go to 0 for high confidence predictions (confidences greater than 0.95). This is not the case
for our proposed non-saturating losses. This vanishing gradient cause high confidence predictions to
have less contribution on the test-time adaptation than lower confident predictions. We also compare
the online test-time adaptation results of these losses with our proposed losses in Table A11.

A.8 TESTS ON IMAGENET-A

We adapted ResNet50 on ImageNet-A dataset for 5 epochs with different losses as presented in the
Table A12. We see that SLR outperforms the other losses. However, the improvements from the
test-time adaptation on this dataset are minimal when compared to the results on corrupted datasets.
Thus, test-time adaptation is best suited when there is a shift in appearance in the inputs rather
involving high-level or semantic changes as in ImageNet-A.

Table A10: Digit domain adaptation from SVHN to MNIST / MNIST-M / USPS. Reported values are
mean accuracy(%) over three random seeds (2020/2021/2022).

MNIST MNIST-M USPS

No adaptation 42.48 47.43 11.83
TENT 93.5 56.9 84.0

TENT+ 96.9 67.4 85.6
SLR (ours) 98.3 77.4 94.2

17

Under review as a conference paper at ICLR 2022

Table A11: Test-time online adaptation of ResNet50 on ImageNet-C at highest severity level 5.
Similar to TENT+, Ldiv is combined with Max Square loss and Charbonnier Penalty and also freeze
top layers of the network. We denote these settings as Max Square+ and Charbonnier Penalty+.
Here, different η ∈ {0.1, 0.3, 0.75, 1.0, 1.75, 2.0} values are explored for Charbonnier penalty and
found η = 0.3 performs better. Reported values are mean accuracy over three random seeds
(2020/2021/2022) of ResNet50 at severity level 5. Results show that SLR outperforms Max Squares
loss and the Charbonnier Penalty, even when tuning the Charbonnier penalty’s hyperparamter η
carefully.

Corruption Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Max square 17.14 18.50 17.68 17.58 17.40 30.02 42.81 38.15 36.03 52.23 66.73 21.22 47.66 53.24 45.02
Max square+ 16.85 18.15 17.35 17.29 17.08 29.59 42.34 37.67 35.68 51.74 66.58 20.95 47.28 52.78 44.46

Charbonnier Penalty (eta=0.3) 24.82 27.00 26.03 25.34 24.48 38.36 48.47 45.40 40.76 56.98 67.90 28.92 53.49 57.96 51.38
Charbonnier Penalty+ (eta=0.3) 24.55 26.76 25.45 24.86 24.22 38.00 48.22 44.98 40.55 56.80 67.83 30.22 53.33 57.77 51.14

TENT 28.60 31.06 30.54 29.09 28.07 42.32 50.39 48.01 42.05 58.40 68.20 27.25 55.68 59.46 53.64
TENT+ 29.09 31.65 30.68 29.33 28.65 42.32 50.32 48.09 42.54 58.39 68.23 31.43 55.90 59.46 53.68

HLR (ours) 33.10 36.08 34.74 33.21 33.31 46.36 52.77 51.42 45.47 60.01 68.07 42.75 58.02 60.42 55.34
SLR (ours) 35.11 37.93 36.83 35.13 35.13 48.29 53.45 52.68 46.52 60.74 68.40 44.78 58.74 61.13 55.97

Table A12: ResNet50 adaptation on ImageNet-A (reported is the model accuracy)
No adaptation TENT TENT+ HLR SLR

ImageNet-A 0.0% 0.04% 0.08% 0.51% 0.55%

A.9 ADDITIONAL STUDIES ON TENT/TENT+

Optimizer and learning rate: The default optimization setting proposed for TENT (Wang et al.,
2020) is SGD with learning rate (lr) 0.00025. Table A13 provide additional results for TENT and
TENT+ results with both SGD and Adam at different learning rates for both online and offline (5
epochs) adaptation settings on ResNet50 for all corruptions at severity level 5. We can notice that
SGD shown to perform better than Adam for TENT and slightly better for TENT+. Among different
learning rates with SGD, higher learning rates bring additional improvements for TENT and TENT+
in online adaptation setting but they are still outperformed by our SLR results. However, for offline
updates, the higher learning rates shown to hurt the model performance with TENT / TENT+ and
our SLR results are superior over them. Note that our optimizer and learning rate remain same for
both online and offline adaptation settings. Here, TENT behaves differently in online and offline
adaptation for the same learning rate and our HLR/SLR behaves the same in both the settings.

Results without freezing top layers: We run TENT by freezing all but the affine parameters of
normalization layers and we freeze top affine layers of the network for TENT+ additionally. In
Table A14, we present the results of TENT+ without freezing the top affine layers of ResNet50 for
all corruptions at severity level 5 with different learning rates using SGD. We can observe that the
network with freezing top layers has comparable or sometimes better performance than no freeze
network. These results indicate that the distribution shift is better captured in early affine layers and
handling the distribution shift in deeper affine layers with high learning rate limit their functionality
to operate on abstract representations and thereby affect the model performance.

18

Under review as a conference paper at ICLR 2022

Table A13: Evaluation of TENT and TENT+ with both SGD and Adam at different learning rate on
ResNet50 for all corruptions at severity level 5.

Method Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mean

online adaptation TENT - SGD

lr 0.0001 24.76 26.97 25.93 25.13 24.37 37.74 47.98 44.73 40.26 56.43 67.62 27.51 52.88 57.34 50.85 40.7
lr 0.00025 28.70 30.97 30.38 29.03 28.00 42.46 50.42 48.15 42.03 58.48 68.25 26.97 55.66 59.52 53.54 43.5
lr 0.0004 30.01 32.35 32.17 30.11 29.25 44.32 51.37 49.42 42.18 59.18 68.43 24.19 56.68 60.26 54.45 44.29
lr 0.0006 30.25 32.90 32.84 30.12 29.19 45.52 51.94 50.21 41.05 59.55 68.52 19.11 57.24 60.62 54.92 44.26
lr 0.0008 29.59 32.48 32.73 29.37 28.38 46.07 52.05 50.59 40.45 59.70 68.48 15.03 57.54 60.78 55.10 43.88
lr 0.001 28.11 31.13 32.06 28.56 26.96 46.21 52.03 50.72 39.33 59.74 68.40 12.36 57.66 60.85 55.10 43.28

online adaptation TENT - Adam

lr 0.0001 26.71 29.30 28.60 26.75 26.04 40.99 50.39 47.77 40.60 58.43 68.49 23.44 55.61 59.13 53.18 42.36
lr 0.00025 25.06 28.47 29.17 25.50 23.63 43.54 51.32 49.40 37.51 59.39 68.27 14.83 56.91 60.05 54.37 41.82
lr 0.0004 18.53 21.34 24.40 19.65 16.34 41.61 49.67 47.94 31.70 58.77 67.65 9.30 56.46 59.66 53.69 38.44
lr 0.0006 12.41 14.23 15.49 13.28 10.68 34.22 44.63 41.62 21.65 56.65 66.20 6.31 52.08 57.12 50.41 33.13
lr 0.0008 8.98 10.05 10.82 9.76 8.08 24.09 37.15 32.72 15.69 49.32 63.38 4.42 44.82 53.36 42.22 27.65
lr 0.001 6.92 7.57 8.34 7.52 6.41 18.46 28.07 25.61 12.55 40.22 57.01 3.35 35.87 45.79 31.53 22.34

online adaptation TENT+ - SGD

lr 0.0001 24.73 26.91 25.63 24.86 24.31 37.55 47.79 44.49 40.15 56.30 67.57 28.67 52.80 57.19 50.70 40.64
lr 0.00025 29.21 31.54 30.55 29.17 28.60 42.54 50.47 48.18 42.51 58.50 68.30 31.25 55.76 59.54 53.62 43.98
lr 0.0004 30.95 33.35 32.66 30.90 30.43 44.67 51.49 49.63 43.54 59.29 68.48 31.21 56.98 60.37 54.60 45.23
lr 0.0006 32.03 34.66 33.91 31.82 31.57 46.10 52.18 50.69 44.20 59.79 68.62 30.01 57.69 60.92 55.31 45.96
lr 0.0008 32.37 35.16 34.58 32.00 31.91 46.96 52.50 51.28 44.55 60.08 68.68 27.23 58.09 61.21 55.66 46.15
lr 0.001 32.52 35.32 34.84 31.89 32.00 47.41 52.56 51.61 44.66 60.24 68.66 24.75 58.34 61.45 55.82 46.13
lr 0.002 31.03 34.69 33.39 29.41 29.80 48.12 52.47 52.11 42.96 60.42 68.48 15.25 58.57 61.67 55.74 44.94

online adaptation TENT+ - Adam

lr 0.0001 27.95 30.48 29.30 27.86 27.80 41.57 50.64 48.07 42.44 58.65 68.53 29.24 55.98 59.31 53.38 43.41
lr 0.00025 31.07 33.60 33.10 30.19 30.52 45.54 52.36 50.63 44.12 60.00 68.65 28.67 58.02 60.78 55.13 45.49
lr 0.0004 31.31 33.90 33.59 30.00 30.29 46.60 52.46 51.41 43.65 60.26 68.43 25.66 58.25 61.08 55.44 45.48
lr 0.0006 30.27 33.14 32.65 28.15 28.47 46.85 51.80 51.48 42.39 60.09 68.04 18.16 58.11 61.02 55.17 44.38
lr 0.0008 28.21 31.20 30.62 24.61 25.18 46.42 50.79 50.92 40.09 59.79 67.67 13.48 57.60 60.70 54.66 42.79
lr 0.001 25.31 28.53 27.92 20.80 21.05 45.29 49.57 49.89 37.94 59.30 67.15 9.77 57.11 60.20 53.86 40.91

online adaptation Ours - Adam lr 0.0006

HLR 33.10 36.08 34.74 33.21 33.31 46.36 52.77 51.42 45.47 60.01 68.07 42.75 58.02 60.42 55.34 47.40
SLR 35.11 37.93 36.83 35.13 35.13 48.29 53.45 52.68 46.52 60.74 68.40 44.78 58.74 61.13 55.97 48.72

offline adaptation TENT+ - SGD

lr 0.001 27.81 33.79 32.94 25.14 26.52 50.95 52.69 54.19 43.29 62.07 68.78 2.66 60.24 63.06 56.94 44.07
lr 0.0008 31.80 35.84 35.01 27.64 29.49 51.61 53.33 54.47 44.57 62.15 68.89 9.03 60.40 62.98 57.07 45.6

lr 0.00025 35.19 38.12 37.43 34.82 34.95 50.33 54.24 53.88 46.28 61.50 69.07 29.87 60.01 62.61 57.09 48.35

offline adaptation Ours - Adam lr 0.0006

HLR 41.37 44.04 43.68 41.74 41.09 54.26 56.43 57.03 50.81 63.05 68.29 50.98 61.15 63.08 58.13 53.0
SLR 41.52 42.90 44.07 41.69 40.78 54.76 56.59 57.35 51.01 63.53 68.72 50.65 61.49 63.46 58.32 53.12

Table A14: Evaluation of TENT+ with and without freezing the top affine layers at different learning
rate on ResNet50 for all corruptions at severity level 5. Here, "Freeze" and "NoFreeze" refer to the
setting with and without freezing the top affine layers respectively.

Method Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mean

online adaptation TENT+ - SGD lr 0.00025

NoFreeze 29.05 31.32 30.32 28.95 28.29 42.37 50.45 48.12 42.21 58.51 68.29 28.17 55.57 59.47 53.46 43.63
Freeze 29.21 31.54 30.55 29.17 28.60 42.54 50.47 48.18 42.51 58.50 68.30 31.25 55.76 59.54 53.62 43.98

online adaptation TENT+ - SGD lr 0.0004

NoFreeze 30.38 32.86 32.17 30.26 29.64 44.44 51.42 49.45 43.01 59.12 68.48 27.83 56.75 60.32 54.42 44.70
Freeze 30.95 33.35 32.66 30.90 30.43 44.67 51.49 49.63 43.54 59.29 68.48 31.21 56.98 60.37 54.60 45.23

online adaptation TENT+ - SGD lr 0.0006

NoFreeze 30.87 33.72 32.89 30.58 29.76 45.58 52.01 50.32 43.03 59.47 68.60 25.66 57.35 60.71 54.88 45.02
Freeze 32.03 34.66 33.91 31.82 31.57 46.10 52.18 50.69 44.20 59.79 68.62 30.01 57.69 60.92 55.31 45.96

online adaptation TENT+ - SGD lr 0.0008

NoFreeze 30.85 33.58 32.98 29.87 29.50 46.28 52.18 50.69 42.66 59.66 68.52 22.56 57.64 60.85 55.08 44.86
Freeze 32.37 35.16 34.58 32.00 31.91 46.96 52.50 51.28 44.55 60.08 68.68 27.23 58.09 61.21 55.66 46.15

online adaptation TENT+ - SGD lr 0.001

NoFreeze 30.48 33.07 32.58 29.42 28.66 46.54 52.09 50.77 41.84 59.74 68.41 18.57 57.72 60.97 55.13 44.39
Freeze 32.52 35.32 34.84 31.89 32.00 47.41 52.56 51.61 44.66 60.24 68.66 24.75 58.34 61.45 55.82 46.13

19

Under review as a conference paper at ICLR 2022

Figure A1: Structure of our adaptable model g, that comprises of rψ .

Figure A2: Qualitative results of image transformation from input transformation module adapted
with SLR.

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99
0

25

50

Ac
cu

ra
cy

 (%
) corruption : saturate

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99

corruption : spatter

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99

corruption : speckle_noise

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99

corruption : gaussian_blur

Method
Hard Likelihood Ratio with Ldiv

Hard Likelihood Ratio without Ldiv

(a)

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99
0

25

50

Ac
cu

ra
cy

 (%
) corruption : saturate

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99

corruption : gaussian_blur

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99

corruption : speckle_noise

0 0.1 0.25 0.5 0.75 0.9 0.95 0.99

corruption : spatter

Method
Soft Likelihood Ratio with Ldiv

Soft Likelihood Ratio without Ldiv

(b)

Figure A3: Effect of different κ on both (a) HLR and (b) SLR

20

Under review as a conference paper at ICLR 2022

(a)

(b)

Figure A4: (a) Illustration of Max Square (MS) loss and (b) Charbonnier penalty with different η.
Similar to entropy in Figure 1, both the losses have vanishing gradient for high confidence predictions
(confidences greater than 0.95).

21

	Introduction
	Related work
	Method
	Input Transformation
	Adaptation Objective
	Class Distribution Matching
	Confidence Maximization

	Experimental settings
	Results
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Illustrative example of log likelihood ratio adaptation objective
	Input transformation module
	Contribution of each component in input transformation module

	Frozen layers in different networks
	Results without freezing the top layers

	Effect of
	Test-time adptation of pretrained models with SHOT
	Domain adaptation on VisDA-C and digit classification
	Comparison with Max square loss and Charbonnier penalty
	Tests on ImageNet-A
	Additional studies on TENT/TENT+

