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ABSTRACT

Large Language Models (LLMs) can be misused to spread online spam and misin-
formation. Content watermarking deters misuse by hiding a message in generated
outputs, enabling detection using a secret watermarking key. Robustness is a core
security property, stating that evading detection requires (significant) degradation
of the content’s quality. Many LLM watermarking methods have been proposed,
but robustness is tested only against non-adaptive attackers who lack knowledge
of the provider’s watermarking method and can find only suboptimal attacks. We
formulate the robustness of LLM watermarking as an objective function and use
preference-based optimization to tune adaptive attacks against the specific water-
marking method. Our evaluation shows that (i) adaptive attacks evade detection
against all surveyed watermarking methods. (ii) Even in a non-adaptive setting,
attacks optimized adaptively against known watermarks remain effective when
tested on unseen watermarks, and (iii) optimization-based attacks are scalable and
use limited computational resources of less than seven GPU hours. Our findings
underscore the need to test robustness against adaptive attacks.

1 INTRODUCTION

Few providers of Large Language Models (LLMs) empower many users to generate human-
quality text at scale, raising concerns about dual use (Barrett et al| [2023). Untrustworthy
users can misuse the provided LLMs to generate harm, such as online spam (Weidinger et al.|
2021)), misinformation (Chen & Shul 2024)), or to facilitate phishing attacks (Shoaib et al.,|2023).
The ability to detect generated text can control these risks (Grinbaum & Adomaitis| [2022]).
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Content watermarking enables the detection of

generated outputs by embedding hidden mes-
sages that can be extracted with a secret water-
marking key. Some LLM providers, such as
DeepMind| (2024) and Meta (San Roman et al.}
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promote the ethical use of their models. A threat
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Figure 1: Adaptive attackers know the watermark-
ing algorithms (KEYGEN, VERIFY), but not the se-
cret key, so they can optimize a paraphraser against

erated text could further erode trust in the authen-
ticity of digital media (Federal Register] 2023).

a specific watermark.

A core security property of watermarking is robustness, which requires that evading detection is only
possible by significantly degrading text quality. Testing robustness requires identifying the most
effective attack against a specific watermarking method. However, existing content watermarks for
LLMs (Kirchenbauer et al., 2023a;|Aaronson & Kirchner, 2023} (Christ et al., 2023} |Kuditipudi et al.,
2024) test robustness only against non-adaptive attackers, who lack knowledge of the watermarking
algorithms. This reliance on obscurity makes watermarking vulnerable to adaptive attacks (Lukas
et al., [2024; INicks et al., 2024) when information about the watermarking algorithms is leaked.
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We propose a method to curate preference datasets and adaptively optimize an attack against known
content watermarking algorithms. Optimization is challenging due to (i) the complexity of optimizing
over the discrete textual domain and (ii) the limited computational resources available to attackers.
We demonstrate that adaptively tuned, open-weight LLMs such as Llama2-7b (Touvron et al.,
2023)) evade detection at negligible impact on text quality against L1ama3.1-70b (Dubey et al.,
2024). Our attacker spends less than 7 GPU hours to achieve over 96% evasion rate against any of
the surveyed watermarking methods with negligible impact on text quality. Our attacks are Pareto
optimal, even in the non-adaptive setting where they must transfer to unseen watermarks. Hence,
future watermarking methods must consider our attacks to test robustness.

We make the following contributions. (1) We propose methods to curate preference-based datasets us-
ing LLMs, enabling us to adaptively fine-tune watermark evasion attacks against four state-of-the-art
language watermarks. (2) Adaptively tuned paraphrasers with 0.5-7 billion parameters evade de-
tection from all tested watermarks at a negligible impact on text quality. We demonstrate their
Pareto optimality for evasion rates greater than 90‘7«[} Optimization against models with 46 x more
parameters requires less than seven GPU hours, which challenges security assumptions, as even
adversaries with limited resources can reliably evade detection using our attacks. (3) We test our
attacks in the non-adaptive setting against unseen watermarks and demonstrate that they remain
Pareto optimal compared to other non-adaptive attacks. Our results underscore the necessity of using
optimizable, adaptive attacks to test robustness. (4) We will publicly release our source code and
adaptively tuned paraphrasers to facilitate further research on robustness against adaptive attackers.

2 BACKGROUND

Large Language Models (LLMs) estimate the probability distribution of the next token over a
vocabulary V given a sequence of tokens. Autoregressive LLMs predict each subsequent token based
on all preceding tokens. Formally, for a sequence of tokens x1, ..., x,, an LLM models:

P(zp|z1,. .. 2n—1) = softmax(fo(z1,...,Zn—1))n

where fy is a neural network with parameters 6. Optimizing LLMs to maximize a reward function is
challenging because the text is discrete, and the autoregressive generation process prevents direct
backpropagation through the token sampling steps (Schulman et al.,[2017)).

LLM Content Watermarking hides a message in generated content that can later be extracted with
access to the content using a secret watermarking key. A watermarking method is a set of algorithms
(KEYGEN, EMBED, VERIFY) formalized as follows (Lukas et al., [2024)).

* 7 <+ KEYGEN(#,7): A randomized function to generate a watermarking key 7 given secret
(i) LLM parameters 6 and (ii) random seeds v € R.

* 6* + EMBED(#,7,m): Given a LLM 0, a watermarking key 7 and a message m, this
function returns parameters 6* of a watermarked LLM that generates watermarked text.

* 1 < VERIFY(z, 7, m): Detection requires (i) extracting a message m’ from text = using 7
and (ii) returning the p-value 7 to reject the null hypothesis that m and m’ match by chance.

(e,0)-Robustness. A text watermark is a hidden signal in text that can be mapped to a message
m € M using a secret watermarking key 7. The key 7 refers to secret random bits of information
used for detecting a watermark. A watermark is refained if VERIFY outputs < p, for p € R™.
Let @ : V* x V* — R be a function to measure text quality between pairs of texts. We say that
a watermark is (e, d)-robust, if any paraphrase A(z) of a watermarked text x that remains high-
quality (Q(z,r") > §), also retains the watermark with probability > 1 — e. Let .A be a randomized
paraphrasing method, then robustness can be stated as follows.

Pr [VERIFY(y,7,m) > p A Q(z,y) > d] <e (1)

yA(z)

Evasion Attacks. Watermark evasion attacks are categorized by the attacker’s access to the provider’s
(i) LLM, (ii) detection algorithm VERIFY that uses the provider’s secret watermarking key, and (iii)

!Closed models such as GPT4o are also on the Pareto front (due to high text quality) but achieve lower
evasion rates.
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knowledge of the watermarking algorithms. A no-box attacker has no access to the provider’s LLM,
whereas black-box attackers have API access, and white-box attackers know the parameters of the
provider’s LLM. Online attackers can query the provider’s VERIFY functionality, as opposed to offline
attackers who have no such access. Adaptive attackers know the algorithmic descriptions (KEYGEN,
EMBED, VERIFY) of the provider’s watermarking method, while non-adaptive attackers lack this
knowledge. Our work focuses on no-box, offline attacks in adaptive and non-adaptive settings.

Surveyed Watermarking Methods. Following Piet et al.|(2023), we evaluate the robustness of four
state-of-the-art watermarking methods. The Exp (Aaronson & Kirchner, [2023) method marks text by
selecting tokens that maximize a score combining the conditional probability P(z,, | zg . ..x,—1) and
a pseudorandom value derived from a sliding window of prior tokens. The Dist-Shift (Kirchen/
bauer et al.,[2023a) method favours tokens from a green list, which is generated based on pseudoran-
dom values and biases their logits to increase their selection probability. The Binary (Christ et al.,
2023)) approach converts tokens into bit-strings determined by pseudorandom values and the language
model’s bit distribution, subsequently translating the bit-string back into a token sequence. Lastly,
the Inverse (Kuditipudi et al. |2024) scheme uses inverse transform sampling by computing a
cumulative distribution function ordered pseudorandomly according to a secret key and using a fixed
pseudorandom value to sample from this distribution. We refer to |Piet et al.| (2023) for more details.

3 THREAT MODEL

We consider a provider capable of training LLMs and deploying them to many users via a black-
box API, such as Google with Gemini or OpenAl with ChatGPT. The threat to the provider are
untrustworthy users who misuse the provided LLM and generate harmful content without detection.

Provider’s Capabilities and Goals (Deployment) The provider fully controls the LLM and its text
generation process, including the ability to embed a watermark into generated text. (Watermark
Verification) The provider must be able to verify their content watermark in each generated text. Their
goal is to have an (i) quality-preserving and (ii) robust watermark that enables detection of generated
text at a given, low False Positive Rate (FPR) p ¢ RT.

Attacker’s Capabilities. (Access Restrictions) We consider a (i) no-box attacker who cannot
collect any watermarked texts during training and is (ii) offline, meaning that they cannot access
the provider’s VERIFY function. Our focus is on (iii) adaptive attackers, who know the provider’s
watermark algorithms (KEYGEN, EMBED, VERIFY) but do not know the secret inputs used for
watermarking, such as random seeds or the provider’s LLM. We also evaluate how adaptive attacks
transfer in the non-adaptive setting against unseen watermarks. (Surrogate Models) A surrogate
model is a model trained for the same task as the provider’s model. For example, while ChatGPT40’s
weights are not public, the attacker can access the parameters of smaller, publicly available models
such as those from the L1ama?2 (Touvron et al. [2023) model family. Our attacker can use such
open-weight surrogate models paraphrasing text. We assume the surrogate model’s text quality is
inferior to the provided model; otherwise, there would be no need to use the watermarked model.
(Compute) Our attacker has limited computational resources and cannot train LLMs from scratch.

Attacker’s Goals. The attacker wants to use the provided, watermarked LLM to generate text
(i) without a watermark and (ii) with high quality. We measure text quality using many metrics,
including a quality function ) : V* x V* — R between pairs of text when the attacker attempts to
evade detection. We require that the provider correctly verifies their watermark with a given p-value
threshold at most p. Lower thresholds make evasion more likely to succeed, i.e., detection becomes
more challenging for the provider.

4 CONCEPTUAL APPROACH

Our goal is to adaptively fine-tune an open-weight paraphraser p against known watermarking
methods. The attacker lacks knowledge of the provider’s watermarking key 7 +— KEYGEN(6,~),
which depends on the unknown (i) random seed «y and (ii) parameters 6 of the provider’s LLM. Our
attacker overcomes this uncertainty by choosing an open-weight surrogate model 6 to generate
surrogate keys 7/ and maximizes the expected evasion rate over many random seeds v ~ R.
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4.1 ROBUSTNESS AS AN OBJECTIVE FUNCTION

Let Py : V* — V* denote a randomized paraphrasing functiorﬂ Hy : V* — V* is a function to
generate text given aquery ¢ € 7 C V* and @ : V* x V* — R measures the similarity between
pairs of text. We formulate robustness using the objective function in[Equation (2)|that optimizes the
parameters 6 p of a paraphrasing model.

HéaX E wr |E 7/«KEYGEN(0s,7) VERIFY (P9p (.1‘), 7'/; m/) +@Q (PQP (.’L‘), 'T) 2)
P m'~M L %« EMBED(05,7’,m’) (
w~T zHyx (q)

finds optimal parameters for the paraphraser § p by sampling uniformly at random over
(i) random seeds v ~ R, (ii) messages m’ ~ M and (iii) queries ¢ ~ 7. The second expectation
is taken over a surrogate watermarking key, generated using knowledge of the KEYGEN algorithm,
the surrogate model’s parameters g5 and a (previously sampled) random seed  as input. The
surrogate model, key, and message are used to embed a watermark into the surrogate model 6% (with
knowledge of EMBED), which generates a watermarked sample x. The optimization process finds
optimal parameters 0%, so the paraphraser has a high probability of generating text y <— Py, (x) that
evades watermark detection and preserves text quality compared to z. Note that knowledge of the
watermarking algorithms (KEYGEN, EMBED, VERIFY) is required to generate surrogate keys needed

to optimize

Algorithm 1 curates a preference dataset to optimize the adaptive attack’s objective in|[Eq. (2)

Require: Surrogate s, Paraphraser 6 p, Queries 7, Messages M, Paraphrase Repetition Rate NV, False Positive
Rate Threshold p, Quality Threshold §
1: D < 0 // The preference dataset
2: /I Sample from known watermarking methods VW
3: for (KEYGEN, EMBED, VERIFY) € W do

4 for each ¢ € T do

5: m ~ M

6: 7/ + KEYGEN(fs, RND())

7: 0% < EMBED(0s,7’,m)

8: 7 < Sox (q) // Watermarked text under T’

9: if VERIFY(r, 7', m) < p then // If watermark can be detected
10: /I Rejected (0) and Chosen (1) paraphrases

11: R, R" 0,0

12: for i € [N] do

13: v’ < Py, (r) // Paraphrase (randomized)
14: a <+ 1[Q(r,7") > 8] I/ High quality

15: b+ a - 1[VERIFY(r', 7', m) > p| I/ Evaded
16: R’ + R°U{r'}

17: for j € [|R'|] do

18: o (GZ|R)?TR) i1

19: D < DU {(r,r}, R})} /| Match pairwise

return D // The preference dataset

Optimization presents multiple challenges. The attacker optimizes over different random seeds y and
a surrogate model 65 than those used by the provider, since our attacker does not know the provider’s
model parameters 6 or random seeds. This lack of knowledge adds uncertainty for the attacker.
The discrete nature of text and the inability to backpropagate through its generation process make
maximizing the reward challenging (Shin et al.,|2020). Furthermore, the reward function depends on
VERIFY, which may not be differentiable. Deep reinforcement learning (RL) methods (Schulman
et al.,[2017} Rafailov et al., 2024) do not require differentiable reward functions. However, RL is
known to be compute-intensive and unstable, making it unclear whether optimization can achieve a
high reward using limited computational resources.

We consider language models as paraphrasers, where randomness arises from sampling the next token.
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4.2 PREFERENCE DATASET CURATION

We use reinforcement learning (RL) methods such as Direct Preference Optimization (DPO) (Rafailov
et al [2024) to optimize However, DPO requires collecting a preference dataset of
positive and negative examples to fine-tune the paraphraser. A negative sample retains the watermark
and represents a failed attempt at watermark evasion. In contrast, positive samples do not retain a
watermark and have a high text quality Q(r, r;,) > § for an attacker-chosen 6 € R*. To bootstrap
optimization, we require the ability to curate positive and negative examples, which we achieve
by using a publicly available, open-weight paraphrasers such as Llama2-7b. We curate triplets

using (r, 7/, 7';) using best-of-N rejection sampling that contain a watermarked sample r and two

paraphrased versions 77, , 7’; representing the negative and positive examples, respectively. [Algorithm 1
implements the algorithm to curate our preference dataset.

[Algorithm T|randomly samples from a set of known watermarking methods W (line 3) and from the
set of task-specific queries 7 (line 4). It samples a message m (line 5) and generates a surrogate
watermarking key 7/ to embed a watermark into the surrogate generator (lines 6-7). We generate
text 7 using the watermarked model 6% (line 8) and verify whether it retains the watermark (line 9).
The paraphrase model 8p generates N paraphrased versions of r that we partition into positive and
negative samples (lines 13-16). A sample r), is positive (b = 1) if it does not retain the watermark
and has high text quality > § and negative 7], (b = 0) otherwise. For each positive sample, we
select one corresponding negative sample and add the watermarked text and the negative and positive
paraphrases to the preference dataset D (lines 17-19).

Attack Name Description

DIPPER (Krishna et al., [2023) Train an 11b Sequence-to-Sequence model for paraphrasing.
Translate (Piet et al., [2023) Translate to another language and back (e.g., French, Russian).

Swap (Piet et al.| 2023) Randomly remove, add or swap words.

Synonym (Piet et al.| [2023)) Replace words with a synonym using WordNet (Miller, [1995).
HELM (Bommasani et al.,[2023)  Randomly add typos, lowercase or contractions.

Llama, Qwen2.5, GPT3.5 Paraphrase text using a publicly accessible LLM.
Ours-Llama2-7b-Exp Paraphrase with a L1ama2-7b model tuned adaptively against Exp.

Table 1: (Top) The non-adaptive baseline attacks we consider in our study against (Bottom) our adaptively
fine-tuned attacks. We refer to[Piet et al.| (2023) for details on the baseline attacks and [Appendix A.7|for our
adaptive attack.

5 EVALUATION

We report all runtimes on NVIDIA A100 GPUs accelerated using VLLM (Kwon et al., [2023))
for inference and DeepSpeed (Microsoft, [2021) for training. Our implementation uses PyTorch
and the Transformer Reinforcement Learning (TRL) library (von Werra et al.| [2020), and we use
the open-source repository by |Piet et al.|(2023) that implements the four surveyed watermarking
methods. We test robustness using hyper-parameters suggested by |Piet et al.|(2023). Please refer to
for details on hyperparameter selection and generalizability of our attacks against a
range of hyperparameters. All LLMs used in our evaluations have been instruction-tuned.
summarizes other surveyed evasion attacks.

5.1 ABLATION STUDIES

In our experiments, we ablate over the following settings.

(1) Adaptivity: (Adaptive) The same watermarking method is used for training and testing.
(Non-adaptive) The attack is tested against unseen watermarking methods, (2) Target Models:
We evaluate 2 models used by the provider: Llama2-13b, Llama3.1-70b, (3) Attacker’s Mod-
els: Our attacker matches surrogate and paraphrasing models. We consider L1ama2 (Touvron
et al.,[2023)) and Qwen2 . 5 (Qwen, |[2024) from 0.5b to 7b parameters, (4) Watermarking Methods:
Exp (Aaronson & Kirchner, [2023), Dist-Shift (Kirchenbauer et al.|2023b)), Inverse (Kudi-
tipudi et al.; 2024), Binary (Christ et al., [2023), (5) Hyper-Parameters: We ablate over multiple
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hyper-parameters that a provider can choose (see[Appendix A.6), and (6) False Positive Rates (FPR):
Appendix A.8|ablates over p € {0.01,0.025,0.05,0.075,0.1} when the provider can tolerate higher
FPR thresholds for detection.

A watermark has been retained if the null hypothesis that the watermark is not present in the content
can be rejected with a given p-value specified by the provider. The evasion rate is calculated as the
fraction of watermarked text that does not retain the watermark after applying the paraphrasing attack.
Due to the lack of a gold-standard metric to assess text quality, we measure quality with multiple
metrics: LLM-Judge, LLM-CoT and LLM-Compare from [Piet et al.|(2023)), Mauve (Pillutla et al.,
2021)) and Perplexity (PPL) with L1ama3-8B-Instruct. To enhance clarity, we only report the
LLM-Judge metric in the main paper following Piet et al.| (2023)) and report other quality metrics in
the Appendix. Unless otherwise specified, we use a p-value threshold of p = 0.01.

5.2 PREFERENCE DATASET COLLECTION

For a given watermarked sequence generated by the surro- Non-Adaptive Paraphrasing With PValue = 0.1

gate model, the attacker generates /V paraphrased versions L0
using the non-optimized paraphraser and calculates the 0s
best-of-N evasion rate with the surrogate key (Algorithm 1] 05

lines 9-12). [Figure 2| shows the number of repetltlons c
needed to achleve a glven evasion rate across four water-
marking methods using L1lama2-7b as both the surro-
gate and paraphrasing model. Our attacker can choose the

Evasion Rate
o
o

best-of-N paraphrases because they know the surrogate wa- —
termarking key to detect a watermark. The attacker cannot o — Binary
choose the best-of-N paraphrases against the provider’s T 12_ DL:’SMI;
watermarked text, as they lack access to the provider’s Number of Paraphrases

key. shows the success rate of observing at least
one positive sample after N paraphrases against methods Figure 2: |Algorithm 1| paraphrases text N
designed for robustness (Dist—-Shift, Exp) and unde- t;lmes mn luzies 13-17. Thl? %ra[l))h shows
tectability (Inverse, Binary). The attacker requires the expected evasion rate of the best sam-

.. . ple (lines 15-17) for the number of para-
limited computational resources to curate a large prefer- . .

. phrases using a vanilla L1ama2-7b as the

ence dataset against any of the four surveyed watermarks. paraphraser.
For instance, to collect | D| = 7000 preference samples
of T' = 512 tokens each, at 1800 tokens/second, we expect to generate |D| positive examples in
approximately 1.5 GPU hours for Dist-Shift, but only 0.5 GPU hours for Inverse. In practice,
including the overhead of evaluating quality and detecting watermarks, we require less than 5 GPU
hours to curate 7000 samples for Dist-Shift. At current AWS rates, an attacker who uses our
attacks faces only negligible costs of less than USD 108 to curate a preference dataset containing
7000 samples and fine-tune the paraphraser.

5.3 EXPERIMENTAL RESULTS

Adaptivity. shows the evasion rate and text quality of our methods trained in the adaptive
and non-adaptive settings when the provider uses L1ama2-13b and the attacker uses L1lama2-7b.
We find that all adaptive attacks have an evasion rate of at least 96.6%, while the non-adaptive attacks
have an evasion rate of at least 94.3%. We achieve the highest overall evasion rate when training
against the Exp watermark, which achieves an evasion rate of at least 97.0%. We train one attack,
denoted A11, against all four surveyed watermarking methods and test it against each watermark
separately. Interestingly, A11 performs slightly worse compared to training only on Exp as it has
an evasion rate of at least 96.3% and a lower text paraphrased quality of at least 0.893 against 0.901
when training only on Exp. In summary, shows that adaptive attacks trained against one
watermark remain highly effective when tested against unseen watermarks in the non-adaptive setting.

Model Sizes. shows the Pareto front against the Exp watermark with a L1ama3.1-70b
target model. Our attacker uses paraphraser models with at most 7b parameters, which is less than
the 11b DIPPER model (Krishna et al.| 2023) used to test robustness currently.
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Figure 3: Adaptive attacks are Pareto-optimal. We show the evasion rate versus text quality trade-off against
the Exp (Aaronson & Kirchner, [2023) watermark. The provider uses a L1ama3. 1-70b model, whereas our
attacker’s models are up to 46 x smaller. Non-adaptive attacks are marked by circles (O), adaptive attacks by
squares ((J). Notation ‘Ours—Qwen-3b-Exp” means that we evaluate our attack using a Qwen2 . 5 model
with 3b parameters that was adaptively optimized against the Exp watermark.
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Figure 4: 2The evasion rates (Left) and text quality measured with LLM-Judge (Right). The attacker uses
a matching L1ama2-7b surrogate and paraphraser model versus the provider’s L1ama2-13b. Results for
adaptive attacks are on the diagonal. For example, we obtain the bottom left value by training on Dist-Shift
and testing on Inverse.

We observe that (1) Non-adaptive baseline attacks such as Contraction, Swapping and Synonym
replacements are ineffective and have a low evasion rate of less than 20%, (2) Non-adaptive
model-based paraphrasing attacks such as using vanilla L1ama2-7b or ChatGPT3. 5 models have
a substantially higher evasion rate of 61.8% up to 86.1% respectively. Tuning L1ama2-7b using
our approach in the non-adaptive setting improves the evasion rate substantially to 90.9% (when
trained on Binary) and up to 97.6% (when trained on Inverse). These non-adaptive, optimized
attacks have a paraphrased text quality of 0.853 and 0.845, slightly improving over ChatGPT3. 5,
rated only 0.837, and (3) In the adaptive setting, our fine-tuned Qwen?2 . 5—7b achieves an evasion
rate of 97.3% at the highest text quality of 0.846 compared to Llama2-7b—-Inverse.

By ablating over Qwen?2 .5 between 0.5b and 7b parameters, we find that attackers can strictly
improve paraphrased text quality at similar evasion rates by using more capable paraphrases with
more parameters. [Figure 12]in the Appendix shows results against a L1ama2-13b target model,
which are consistent with those against L1ama3.1-70b. Against smaller target models, attackers
can achieve higher evasion rates and text quality ratings.
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Figure 5: (Left) The cumulative density of p-values on the Dist—-Shift watermark (blue), a vanilla
LlamaZ2-7b paraphraser (green) and our adaptive L1ama2—-7b paraphraser (red). (Right) The median p-
value relative to the text token length with a threshold of p = 0.01 (dashed line).

Text Quality. shows (i) a watermarked text sample generated using L1ama2-13b with
Dist-Shift, (ii) paraphrased text using a non-optimized L.1amaZ2—7b model, and (iii) paraphrased
text obtained with an adaptively tuned L1ama2-7b model using our attack. We observe that
all paraphrased texts preserve quality, but our attack has the lowest green-to-red token ratio (i.e.,
maximizes the evasion rate). [Table 3]in the Appendix shows a quantitative analysis of the median
quality of generated text for a vanilla L1ama2-7b model compared to our best adaptive and non-
adaptive attacks. It shows that text quality is preserved across five text quality metrics when using our
attacks. We only show one paragraph of generated text that we truncated due to space restrictions

and [Tables 5]and [f]in the Appendix show non-truncated samples. shows a rare, cherrypicked
example where our attack fails at evading watermark detection after paraphrasing.

Adaptive vs Non-adaptive. shows two results to compare the non-optimized L1ama2-7b
with our adaptively tuned L1ama2~-7b model. The result on the left plots the cumulative density of
p-values. Our method strictly improves over the non-optimized model as it generates paraphrased
text with higher mean p-values for watermark detection. The result on the right plots the expected
p-value against the token length. The watermarked text has a median p-value of less than 0.01 after
approximately 170 tokens, whereas the non-optimized L1ama2—7b model has an expected p-value
of 0.10 at around 500 tokens compared to an expected p-value of 0.4 for our adaptively tuned model.

Additional Testing. We present more results to compare adaptive versus non-adaptive attacks in
including tests against other recently released watermarking methods. These results
are consistent with our findings in the main part of the paper that adaptive attacks are Pareto optimal
and outperform much larger, closed-source systems such as GPT4o at evading watermark detection.

We kindly refer the reader to[Appendix A.3[for more baseline tests and |[Appendix A.4{for an analysis

of the impact of paraphrasing on the top-50 token distribution.

6 DISCUSSION

Effectiveness of Adaptive Attacks. Our work demonstrates that content watermarking methods
for large language models are vulnerable to adaptively optimized attacks. Attackers can adaptively
fine-tune relatively small open-weight models, such as L1ama2—-7b (Touvron et al., [2023)), using
less than seven GPU hours to evade watermark detection from substantially larger and more capable
models, such as L1ama3.1-70b (Dubey et al.,2024).

Our attacks remain effective even in the non-adaptive setting when testing with unseen watermarking
methods. Our findings challenge the robustness claims of existing watermarking methods, and we
propose improved methods to test robustness using adaptive attacks.

Analysis. Studying why adaptive attacks work is challenging due to the non-interpretability of the
optimization process. The ability to maximize[Equation (2)|implies the ability to evade detection since
encodes robustness for any watermarking method. The effectiveness of non-adaptive
attacks could be explained by the fact that all surveyed watermarks are similar in that they operate on
the token level. Hence, an effective attack against one watermark likely generalizes to other unseen
watermarks. Adaptive attacks further improve effectiveness as there are at least three learnable signals
for paraphrasing watermarked text: (1) Avoid repeating token sequences as they likely contain the
watermark, (2) find text replacements with low impact in text quality to maximize evasion rate (e.g.,
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uncommon words or sentence structures), and (3) calibrate the minimum token edit distance and
lexical diversity that on average (over the randomness of the key generation process) evades detection.

We refer to for a more detailed analysis of our approach’s effectiveness.

Attack Runtime. Our attacks involve two steps: Dataset Curation and Model Optimization. Curating
7000 samples requires less than 5 GPU hours, and model optimization requires only approximately 2
GPU hours for a L1ama~-7b model at 16-bit precision. These attacks can be executed with limited
computational resources and cost less than USD 10$ with current on-demand GPU pricing.

Online Attacks. Our work focuses on offline attacks that do not require any access to the provider’s
watermark detection functionality. Offline attacks evaluate the robustness of a watermark without any
information about the secret key generated by the provider. An online attacker can learn information
about the provider’s secret key through accessing Verify, which reduces the attack’s uncertainty
and could substantially improve the attack’s effectiveness further.

Limitations. Our study also did not focus on evaluating adaptive defences that could be designed
against our adaptive attacks. Adaptive defences have not yet been explored, and we advocate studying
their effectiveness. We believe our optimizable, adaptive attacks will enhance the robustness of future
watermarking methods by including them in their design process, for instance, by using adversarial
training. We focused exclusively on text generation tasks and did not explore other domains, such as
source code generation or question-answering systems where different text quality metrics may be
used to evaluate an attack’s success. We did not consider the interplay between watermarking and
other defenses, such as safety alignment or content filtering, which could collectively control misuse.

We acknowledge that LLM-as-a-Judge is an imperfect and noisy metric that may not align with
human judgment. In the main part of our paper, we use L1 ama3-8B-as-a-Judge since this metric is
easily reproducible. shows results using GPT40-mini-as-a-Judge that are consistent
with our findings. More work is needed to study the metric’s alignment with human judgment.

7 RELATED WORK

We evaluate the robustness of content watermarking (Lukas & Kerschbaum), 2023)) methods against
no-box, offline attackers in the adaptive and non-adaptive settings (see[Section 2). Other watermark
evasion attacks (Hu et al.| 2024; |Kassis & Hengartner, 2024; Lukas et al., 2024) focus on the image
domain, whereas we focus on LLMs. Jovanovic et al.| (2024); [Pang et al.| (2024) propose black-box
attacks against LLMs that require collecting many watermarked samples under the same key-message
pair. We focus on no-box attacks. [Jiang et al.| (2023) propose online attacks with access to the
provider’s watermark verification, whereas we focus on a less capable offline attacker who cannot
verify the presence of the provider’s watermark. Current attacks are either non-adaptive, such as
DIPPER (Krishna et al.|[2023) or handcrafted against one watermark (Nicks et al.,[2024). We focus
on optimizable, adaptive attacks and show that they remain effective in the non-adaptive setting.

8 CONCLUSION

Our work demonstrates that current LLM watermarking methods are not robust against adaptively
optimized attacks. Even resource-constrained attackers can reliably (> 96.7%) evade detection at
< 10$ USD costs in computational resources. They can achieve this with open-weight models that
are 46 x smaller than the provider’s models. Even in the non-adaptive settings, our adaptively tuned
attacks outperform all other surveyed attacks, including paraphrasing with substantially larger models
such as OpenAI’'s GPT4o. Our findings challenge the security claims of existing watermarking
methods and show that they do not hold even against resource-constrained attackers. We suggest that
future defenses must consider adaptive attackers to test robustness.
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A APPENDIX

Llama2-13b-Dist-Shift

Llama2-7b

Ours-Llama2-7b-Dist-Shift

Cervantes’ "Don Quixote" is a groundbreaking
masterpiece of literature that has enthralled read-
ers for over 400 years. The novel tells the story
of Alonso Quixano, an old man who becomes so
consumed by the chivalrous tales of his day that
he renames himself Don Quixote and embarks
upon an adventurous journey filled with humor,
satire, and timeless themes about the human con-
dition.<—<— The story follows Quixote and his
trustworthy sidekick Sancho Panza, a simple and
pragmatic squire who provides moments of humor
and contrast to the lofty ideals of the delusional
Quixano/Don Quixote. Their travels in rural Spain
lead them to encounter all sorts of people they mis-
take for knights, ladies in distress, bandits, and gi-
ants who are in fact ordinary villagers going about
their everyday lives.

"Don Quixote" is a groundbreaking masterpiece of
literature that has captivated readers for over 400
years. The novel tells the story of Alonso Quix-
ano, an elderly man whose fixation on chivalrous
tales leads him to change his name to Don Quixote
and embark on a thrilling adventure replete with
humor, satire, and timeless themes concerning the
human condition. <— <— The narrative follows Don
Quixote and his loyal squire Sancho Panse, a practi-
cal and good-natured individual who provides mo-
ments of levity and contrast to the lofty ideals of
the delusional Quixano/Don Quixote. Their travels
across rural Spain result in encounters with various
people who they misidentify as knights, distressed
ladies, bandits, and ordinary villagers going about
their daily lives.

Spain has been blessed with a literary treasure
that has captivated readers for over four centuries
in the form of Miguel de Cervantes’ immortal
masterpiece, "Don Quixote". This timeless tome
weaves a hilarious and poignant tale of a man con-
sumed by the chivalrous stories of his youth, who
renames himself Don Quixote and sets forth on a
journey filled with moments of satire and a piercing
examination of the human condition.<—<—As Don
Quixote and his trusty squire Sancho Panza traverse
rural Spain, they encounter various unsuspecting
villagers, mistaking them for knights, maidens in
distress, bandits, and even giants.

163 green and 36 red

‘ 125 green and 69 red

‘ 81 green and 78 red

Table 2: (Left) Watermarked text from the provider’s L1ama2-13b model, (Center) a paraphrased version
from a vanilla L1ama2-7b model, and (Right) paraphrased text using our adaptively tuned L.1ama2-7b model.
Green/red indicates whether a token is watermarked. A lower green-to-red token ratio implies a higher evasion
rate. Due to space constraints, we only show truncated texts. [Tables 3|and[6]in the Appendix show entire samples
with up to 512 tokens.

A.1 QUALITY METRICS

Ideally, to evaluate the quality of an LLM-generated text, one would need a set of human evaluators,
each giving their own score according to a certain rubric, and then have all the scores aggregated.
However, this is impractical to achieve, both for the attacker and the defender. Therefore, we employ
multiple surrogate metrics from the literature: LLM-Judge, LLM-CoT and LLM-Compare from
(Piet et al.;|2023)), Mauve (Pillutla et al.|[2021)) and Perplexity (PPL) with L1ama3-8B-Instruct.
Note that all of these are implemented in the MarkMyWords (MMW) (Piet et al., 2023) benchmark
utilized for our experiments. All the metrics evaluate a response (whether watermarked, or pertrubed
sample) against a baseline (either the original prompt, a non-watermarked sample or the model’s
logit-distribution). Below is a description of each metric, along with an indication of whether higher
or lower values are better for that metric.

LLM-Judge: LLM-Judge directly directly prompts an instruction-tuned large language mode to
evaluate the quality of a certain response with respect to its original prompt. The response is decoded
greedily (temperature =0) to ensure deterministic results. Criteria evaluated include:accuracy, level of
details, and typographical, grammatical and lexical correctness. A higher score is better. For this, we
use Llama3-8B-Instruct to evaluate and the following prompt:
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You are given a prompt and a response, and you provide a grade

out of 100 measuring the quality of the response, in terms of
accuracy, level of details, and typographical, grammatical and
lexical correctness. Remove points as soon as one of the criteria
is missed. Prompt:{}, Response:{}

LLM-CoT (Chain-of-Thought): LLM-CoT evaluates the quality of the watermarked/attacked
responses using CoT-based reasoning (2023)). A higher score is better. For this, we also use
Llama3-8B-Instruct to evaluate and the following prompt:

Please act as an impartial judge and evaluate the quality of

the response provided by an AI assistant to the user question
displayed below. Your evaluation hinges on the following factors:
accuracy, level of details, typographical correctness, grammatical
correctness and lexical correctness. Be as objective as possible,
and account for every one of these criteria in our evaluation.
Begin your evaluation by providing a short explanation. After
providing your explanation, please rate the response on a scale

of 1 to 100 by strictly following this format: "[[rating]]", for
example: "Rating: [[51]]". Your rating must come AFTER your
explanation, not before. Prompt:{}, Response:{}

LLM-Comparator: The LLM-Comparator is used to compare non-watermarked baseline response
and the watermarked or attacked response. 0 indicates that the non-watermarked response is better,
0.5 indicates a tie, and 1 shows that the watermarked or attacked response is better. For this, we also
use Llama3-8B-Instruct to evaluate and the following prompt:

Please act as an impartial judge and evaluate the quality of

the responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows

the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of their
responses. Also account for typographical correctness, grammatical
correctness and lexical correctness. Begin your evaluation by
comparing the two responses and provide a short explanation.
Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not
allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective

as possible. After providing your explanation, you must output

your final verdict by strictly following this format: =+ "[[A]]"
if assistant A is better, x "[[B]]" if assistant B is better, and
* "[[C]]" for a tie. For example, "Verdict: [[C]]". Prompt:

{}, [[Start of Assistant A]] {} [[End of Assistant A’s Answer]],

[[Start of Assistant B]] {} [[End of Assistant B’s Answer]]

MAUVE: MAUVE measures the similarity between two text distributions. In our case, the two
distributions are the non-watermarked baseline response and the watermarked/paraphrased response.
Higher MAUVE scores indicate that both texts match their content, quality and diversity. MAUVE
is computed with the Kullback—Leibler (KL) divergences between two distributions in a lower-
dimensional latent space. It correlated with human evaluations over baseline metrics for open-ended
text generation [Pillutla et al.| (2021)). We use the gpt 2—1arge model to compute the MAUVE score
in our implementation.
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Perplexity (PPL): Perplexity is a common language modelling metric that quantifies how well a
model predicts a text sample. It is calculated based on the probability that the model assigns to a
sequence of words. Lower perplexity values indicate that the model is more confident and accurate in
its predictions, making lower scores better for this metric.

Table 3| shows the median text quality metrics to compare the vanilla L1ama2~-7b paraphraser to
our best adaptive and non-adaptive attacks against the L1ama2-13B and L1ama3.1-70B target
models. The table shows that our attacks have similar quality to the vanilla L1ama2-7b paraphraser
across the board. Our attacks have a higher MAUVE score, indicating that our text is closer to
the non-watermarked text than the vanilla L1ama2~7b paraphraser. The higher perplexity is not a
concern, as it just shows that the large language model does not expect the text.

Target: Llama2-13B LLM-Judge f LLM-CoT{t LLM-Compare{f Mauveft PPLJ

Llama2-7b 0.92 0.85 0.00 0.17 4.74
Ours-Best-Adaptive 0.92 0.85 1.00 0.42 6.69
Ours-Best-Non-Adaptive 0.92 0.85 0.50 0.37 6.32
Target: Llama3.1-70B

Llama2-7b 0.95 0.72 0.00 0.22 4.84
Ours-Best-Adaptive 0.95 0.72 0.50 0.55 6.10
Ours-Best-Non-Adaptive 0.95 0.72 0.50 0.31 6.15

Table 3: Various median text quality metrics to compare the vanilla L1ama2~-7b paraphraser to our
best adaptive and non-adaptive attacks. We limit all attacks to at most 7b parameter models.

A.2 DATASET CURATION

We generate a synthetic prompt dataset spanning various topics, including reviews, historical sum-
maries, biographies, environment, science, math, fake news, recipes, travel, social media, arts, social
sciences, music, engineering, coding, sports, politics, health, and more. The dataset has 1000 prompts
and is collected by repeatedly prompting a large language model (ChatGPT-4) to generate topic titles.
We then wrap combinations of these titles in prompts. We intend to release the dataset for the public,
but it should be very easy to replicate.

For every prompt, we generate watermarked output from all watermarks; then, we use that as input to
our paraphrasers. Each paraphraser is to generate 16 paraphrases for each input. We then filter these
paraphrases as per [Algorithm T|to create the training preference pairs. Larger models have higher
quality output and so have a higher yield of successful paraphrases. We use the same number of
paraphrases for each model, even when it generates different yields.

shows the expected evasion rate versus the number of paraphrases ablated over varying
model sizes of Qwen2.5 (Qwenl 2024)) against the Exp watermark. We find that the expected evasion
rate increases with the number of paraphrases, but the rate of increase diminishes as the number of
paraphrases increases. We find that the expected evasion rate does not improve significantly close
to 16 paraphrases and that bigger models tend to have higher evasion rates for the same number of
paraphrases. An exception to this is the 1.5b model which surprisingly performs very well (better
than the 3b) for the same number of paraphrases. This, however, could be due to different pretraining
parameters of the base model or other factors.

A.3 BASELINE TESTING AGAINST OTHER WATERMARKS

We include more robustness tests against recently released watermarks such as SynthID (Dathathri
et al.| 2024)), Unigram (Zhao et al.,|2024) and SIR (Liu et al.| |2024). We refer to the author’s papers
for detailed descriptions of these watermarks. GPT4o is part of the Pareto front against only SIR and
KGW due to its high text quality and low evasion rates of less than 90%. It is not part of the Pareto
front against SynthID, EXP and Unigram, where only our attacks are part of the Pareto front. While
it may be possible to use better prompts for GPT4o to achieve a higher text quality or evasion rate,
there are other limitations when using closed systems to evade detection.
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Figure 6: The expected evasion rate versus the repetition rate ablated over varying model sizes of

Qwen2.5 (Qwenl, [2024) against the Exp watermark lines 9-12). Shaded areas denote
95% confidence intervals.
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Figure 7: Additional results using Qwen-3b against KGW and EXP, which we study in the main
part of the paper, and more recently released watermarks such as SynthID (Dathathri et al., [2024]),
Unigram (Zhao et al., 2024} and SIR (Liu et al.|[2024). Dashed lines denote the Pareto front, and we
highlighted adaptively trained attacks in bold. We used GPT40’s version from November 23rd, 2024.
The y-axis uses GPT4-mini as a judge, and the x-axis shows the evasion rate.

1. Their usage can be expensive as the user is typically charged per token.

2. The system could embed its own watermark into paraphrased text.

3. There could be guardrails such as safety alignments which prevent these systems from
arbitrarily paraphrasing text.

In contrast, our method allows working with relatively small open-weight models that adversaries
can fully control.
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Figure 8: The evasion rates against a watermarked L.1ama2-13b model. We compare non-adaptive
attacks, including ChatGPT3.5, versus our adaptively fine-tuned L1amaZ2—-7b paraphraser model.

A.4 TOKEN DISTRIBUTION

Text Quality. [Appendix A.4|shows the top-50 token distribution that appear in the watermarked text.
We compare it with the token frequency in the paraphrased text using as paraphrasers (i) GPT4o, (ii)
a baseline Qwen2.5-3b model and (iii) our adaptively tuned Qwen2.5-3b model against the Unigram
watermark [Zhao et al.| (2024). We observe that all paraphrasers have a similar token distribution and
that across all three paraphrasers, on average, the top 50 tokens appear less frequently than in the
original, watermarked text. The largest difference we observe between the baseline Qwen2.5-3b and
our adaptively tuned model are the frequencies of the tokens *The’ and ’ * (space between words),
which our model uses less frequently. Compared to GPT4o0, the baseline Qwen2.5-3b model uses
some tokens, such as > As’, less frequently, while other tokens, such as * but’, appear more frequently.
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Figure 9: An analysis of the top-50 tokens in paraphrased text generated with the Unigram water-

mark 2024), using as a paraphraser (top) GPT4o, (bottom) an off-the-shelf Qwen2.5-3b
model.
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Frequency

Figure 10: An analysis of the top-50 tokens in paraphrased text generated with the Unigram water-

mark (Zhao et al.}[2024), using our adaptively tuned Qwen2.5-3b model as a paraphraser.

A.5 DETAILED TEXTUAL ANALYSIS

Our goal is to further analyze why our adaptively tuned paraphraser better evades detection than other
approaches. We begin by studying the overlap of N-grams between the watermarked and paraphrased
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texts, which we call the N-gram overlap ratio between two sequences =1, xy € V*.

_|ngrams(z1,n) N ngrams(zz,n)|
~ |ngrams(x1,n) U ngrams(zo,n)|

Ng($1)x23n) (3)
The "ngrams’ function tokenizes a sequence and returns the set of n-grams. The N-gram overlap ratio
is always between [0,1]. A high overlap for a given n € N states that the same N-grams appear in
both sequences. Since the surveyed watermarks operate on a token level, a low overlap ratio would
suggest a high evasion rate. We also evaluate the token edit distance ratio between two sequences,
which is calculated as follows:

Levenshtein(z1, 22)

L(xy,22) = len(z1) + len(z2)

“

The token edit distance calculates the Levensthein distance between two sequences. Note that the
N-gram overlap ratio is calculated over sets of N-grams. In contrast, the Levenshtein distance is
calculated over (ordered) sequences, meaning that the position of the token matters. A high Token
Edit Distance ratio suggests that two texts do not have the same tokens at the same positions in the
sequence, which also suggests a higher evasion rate.
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Figure 11: (Left) The N-gram overlap ratio between watermarked text and text paraphrased by (i)
GPT3.5, (ii) GPT4o, (iii) our adaptively tuned Qwen-3b paraphraser and (iv) a baseline Qwen-3b
paraphraser. The overlap is calculated as the number of N-grams in the paraphrased text that also
appear in the watermarked text divided by the total number of N-grams in the watermarked text. Lower
overlap means that both texts are less similar. (Right) We plot the evasion rate against the normalized
token edit distance between paraphrased and watermarked text using different paraphrasers. The
dashed line represents the difference between the non-optimized Qwen—3b paraphraser and our
adaptively tuned Qwen—3b paraphraser.

Results. (left) shows the N-gram overlap ratio between watermarked text and the text
produced by four paraphrasing methods. We observe that across all N-grams, our adaptive paraphraser
achieves the lowest overlap ratio. (right) shows the mean token edit distance ratio between
watermarked and paraphrased text in relation to the evasion rate. We observe that the non-optimized,
baseline Qwen—3b model has a low token edit distance ratio and a low evasion rate. In contrast,
our adaptively tuned model has a much higher evasion rate and a high token edit distance ratio.
These findings suggest that our adaptive optimization process learned to increase the mean token edit
distance and minimize the overlap ratio to maximize evasion rates while preserving text quality.

A.6 WATERMARK PARAMETERS

To select the optimal parameters for the watermarking methods, we follow the guidelines provided
by [Piet et al.| (2023). We use a key length of 4 for all watermarks and a text-dependent sliding
window randomness of size 3. We set the skip-probability to 0.025 for all watermarks except for
the Dist—-Shift watermark, where we set it to 0. Skip-probability is a technique that randomly
skips the watermarking selection procedure for some tokens to allow more diverse generation and it
works best with schemes that can be made indistinguishable, like the Exp, Binary and Inverse
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watermarks. We also use the optimal temperature for every watermark (1.0 for all except for the
Dist-Shift watermark, where we use 0.7). Specific to the Dist—-Shift watermark, we use the
suggested green-red list ratio v of 0.5 and a bias parameter 3 of 4.

Furthermore, we evaluate how the strength of the bias parameter used for Dist—-Shift affects its
robustness against our attacks. Our attacker does not know which hyperparameters are used by the
provider. We set the bias 8 € {1, 2,4, 8}, where higher bias should lead to higher robustness (Piet
et al., [2023} |[Kirchenbauer et al.,|2023b). We train our attacks once with the 8 = 4 value suggested
by [Piet et al.| (2023)) and test it against all other hyper-parameters. [[able 4| shows that our adaptive
and non-adaptive attacks remain the most effective across all hyper-parameters.

15} Dist-Shift Llama2-7b Llama2-7b-Exp | Llama2-7b-Dist-Shift
Evasion Quality | Evasion Quality | Evasion Quality | Evasion Quality

1 0.94 0.72 0.94 0.96 0.94 0.98 0.95 0.99

2 0.94 0.20 0.95 0.90 0.95 0.98 0.95 0.98

4 0.95 0.00 0.96 0.67 0.94 0.97 0.94 0.97

8 0.71 0.00 0.92 0.60 0.94 0.95 0.94 0.96

Table 4: An ablation study of our attack’s success rate and text quality for the bias parameter /3 of the
Dist-Shift (Kirchenbauer et al.,[2023a) watermark.

A.7 ATTACK DESCRIPTION

Prompting. We use the following prompt to train our paraphraser models. The prompt is adapted
from [Kirchenbauer et al.| (2023b). Additionally, we prefill the paraphrase answer with the text
[ [START OF PARAPHRASE]] to ensure that the model starts generating the paraphrase from the
beginning of the response. During dataset curation, training and testing, we set the temperature to 1.0
to diversify the generated paraphrases.

Paraphrase Prompt

You are an expert copy-editor. Please rewrite the following text in
your own voice and paraphrase all sentences. Ensure that the final
output contains the same information as the original text and has
roughly the same length. Do not leave out any important details
when rewriting in your own voice. Do not include any information
that is not present in the original text. Do not respond with a
greeting or any other extraneous information. Skip the preamble.
Just rewrite the text directly.

Training Hyperparameters We train our paraphraser models using the following hyperparameters:
batch size of 32, learning rate of 5 x 10~%, and a maximum sequence length of 512 tokens. We use
the AdamW optimizer with a linear learning rate scheduler that warms up the learning rate for the
first 20% of the training steps and then linearly decays it to zero. We train the models for 1 epoch
only to prevent overfitting. We utilize Low-Rank Adaptation (LoRA) (Hu et al.}[2022) to reduce the
number of trainable parameters in the model. We set the rank to 32 and the alpha parameter to 16.

A.8 ADDITIONAL ABLATION STUDIES

False Positive Rates. [Figure 8 shows the detection rates at different FPR-thresholds p €
{0.01,0.025,0.05,0.075,0.1} against the Dist-Shift and Exp watermarking methods. We
focus on these two methods as they are more robust than Inverse and Binary. Our results show
that across all evaluated FPR thresholds, our adaptive attacks outperform all other surveyed attacks
against both watermarking methods. If the provider tolerates a 10% FPR, our adaptive attacks achieve
an evasion rate of only 80% and 77% against Dist—-Shift and Exp, respectively.

A.9 EXTRA TABLES AND FIGURES
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Figure 12: The evasion rate versus text quality trade-off of all surveyed attacks when the provider
uses a L1ama3—-13b model and the Exp (Aaronson & Kirchner, [2023)) watermark. The attacker
uses matching surrogate and paraphrase models with parameters ranging between 0.5b to 7b from
the Qwen?2 .5 and L1ama2 model families. A circle and square denote non-adaptive and adaptive
attacks, respectively, and our attacks are highlighted in red. For example, Ours—Qwen-3b-Exp
means that we evaluate a Qwen?2 . 5 model with 3b parameters optimized against the Exp watermark.
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Llama2-13b-Dist-Shift (463 green vs 41 red tokens)

Cervantes’ "Don Quixote" is a groundbreaking masterpiece of literature that has enthralled readers for over 400 years.
The novel tells the story of Alonso Quixano, an old man who becomes so consumed by the chivalrous tales of his day
that he renames himself Don Quixote and embarks upon an adventurous journey filled with humor, satire, and timeless
themes about the human condition.<—<— The story follows Quixote and his trustworthy sidekick Sancho Panza, a simple
and pragmatic squire who provides moments of humor and contrast to the lofty ideals of the delusional Quixano/Don
Quixote. Their travels in rural Spain lead them to encounter all sorts of people they mistake for knights, ladies in distress,
bandits, and giants who are in fact ordinary villagers going about their everyday lives.<—<— One of the most profound
and enduring elements of the novel’s themes is the conflict of reality and perception. Quixote, driven by the chivalrous
books he reads and his own imagination, mistakes windmills for giants, a puppet play as a real tale of love and betrayal,
and a barber from a nearby village who is dressed in his Sunday best but Quixote sees as the Grand Duchess of Lithuania.
Through these absurd but comedic misadventures, Cervantes creates a timeless commentary on the nature of truth, reality,
and the danger of letting our imaginations run too wild. Don Quixote’s journey also explores issues of class and nobility
as he views his own lowly status as unknightly, while the peasants and traveling players he encounters view him with
suspicion or indifference. Through these contrasts, Cervantes pokes fun at the social order and the idealized notion
of chivalry.<— Don Quixote has been praised for its realistic portrayal of human nature, including its weaknesses and
fallibilities as well as the timeless wisdom of Cervantes’ observations on society in late sixteenth-century Spain. At its
core, the novel is an exploration of the human capacity to dream, delusions,

Llama2-7b (301 green vs 201 red tokens)

"Don Quixote" is a groundbreaking masterpiece of literature that has captivated readers for over 400 years. The novel
tells the story of Alonso Quixano, an elderly man whose fixation on chivalrous tales leads him to change his name to
DonQuixote and embark on a thrilling adventure replete with humor, satire, and timeless themes concerning the human
condition.<—<— The narrative follows Don Quixote and his loyal squire Sancho Panse, a practical and good-natured
individual who provides moments of levity and contrast to the lofty ideals of the delusional Quixano/Don Quixote. Their
travels across rural Spain result in encounters with various people who they misidentify as knights, distressed ladies,
bandits, and ordinary villagers going about their daily lives.<—<— One of the most enduring aspects of the novel’s themes
is the conflict between reality and perception. Quixote, driven by the chivalrous books he reads and his imagination,
mistakes wind mills for giants, a puppet show for a real tale of love and betrayal, and a peasant in his Sunday best for the
Grand Duchess of Lithuania. Through these absurd yet comedic misadventures, Cervantes offers a timeless commentary
on the nature of truth, reality, and the dangers of allowing our imaginations to run wild. Don Quixote’s journey also
explores issues of class and nobility as he views his lowly status as unknightly, while the peasants and traveling players he
encounters view him with suspicion or indifference. Through these contrasts, Cervantes pokes fun at the social order and
the idealized notion of chivalry.<—<—Don Quixote has been praised for its realistic portrayal of human nature, including
its weaknesses and fallibilities, as well as the timeless wisdom of Cervantes’ observations on society in late 16th-century
Spain. At its core, the novel is an exploration of the human capacity to dream, delude oneself, and confront reality,
ultimately revealing the limitations and struggles of the human experience.

Ours—-Llama2-7b-Dist-Shift (201 green vs 240 red tokens)

Spain has been blessed with a literary treasure that has captivated readers for over four centuries in the form of Miguel
de Cervantes’ immortal masterpiece, "Don Quixote". This timeless tome weaves a hilarious and poignant tale of a man
consumed by the chivalrous stories of his youth, who renames himself Don Quixote and sets forth on a journey filled
with moments of satire and a piercing examination of the human condition.<—=<—As Don Quixote and his trusty squire
Sancho Panza traverse rural Spain, they encounter various unsuspecting villagers, mistaking them for knights, maidens
in distress, bandits, and even giants. Through these absurd yet poignant events, Cervantes deftly explores the blurred
lines between reality and perception, highlighting the dangers of allowing our imaginations to run wild. The novel’s
themes of truth, class, and nobility are also expertly woven throughout the narrative, as Don Quixote’s lowly status is
juxtaposed with the condescending views of the peasants and traveling players he encounters.<—=<— Throughout the novel,
Cervantes offers a biting commentary on the social hierarchy of his time, while also providing a realistic depiction of
human nature, complete with its frailties and limitations. At its core, "Don Quixote" is a thought-provoking exploration of
the human capacity for imagination, delusion, and the ever-elusive pursuit of truth.<—<—Endlessly praised for its timeless
wisdom and biting social commentary, "Don Quixote" has captivated readers for centuries, leaving a lasting impact on
literature and our understanding of the human experience. Its enduring themes and characters have become ingrained
in our collective consciousness, reminding us of the importance of humility, empathy, and the boundless power of the
human imagination.

Table 5: Watermarked text and paraphrases from different models. Green/red indicates whether a
token is watermarked. The last column shows the detection confidence over the entire text.
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Llama2-13b- Dist-Shift (474 green vs 36 red tokens)

Ok ,here goes!<— <—Once upon atime, there was a scholar namedDr. Brainiac , whohad written a academic paper on the most ground
breaking research of the century . Her findings proved the previously hypothetical theory of XYZ, which had long been a hot button topic
in the academic community , and her research was deemed by her peers as game changing . <— <— However ... (you knew there was going
to be a but , didn’ t ya? )... Dr . Brainiac hit a snag . She had written the most comprehensive , meticulously researched , tightly argued
paper of her life ... but she couldn’ t get it published! <— <— Every journal she sent the paper to , every peer review process , every editing
round ... the same result. Reject! Reject! ReJECT! (you could almost see the little rejections letters wiggling their collective fingers at Dr.
Brainiac ). <= <= Dr . B tried everything to boost her luck : <— <— * Bribe editor’s assistants with chocolates and champage (ok , maybe
not the best strategy). <— * Asked her cat , Prof. Meowington, to lick the pages of the manuscript (um , that didn’ t go well either) <— -
Baftled by their lack of progress, Dr , B took a step back to reassess the situation. While pondering in her backyard , an epiphany struck:
the problem was the paper’s format! It was too traditional, to bland , too ... academic! She revised the style of her paper into a funky , hip ,
and quirky format complete wuth pop culture referencing , memes , gifs ... and taadaahhh! It was accepted by every journal she submited
to , all on the same day. <= Dr, B’s ground-breaking paper on the Xyz Theory , was now a viral sensation among the academic circles ,
with over millions views and shares on Research Gate , Arxive , etc (you know , the academical version of the inter-nets). < And so Dr B
became a legend in the world of acedemia , Proving once and for that , sometimes a paper just needs to be a litlte more SWOON and POP ,
and less HOhum , and the academic world would tak notice . The end.

Llama2-7b (218 green vs 222 red tokens)

Here’s my version of the text : <= <— Once upona time, there was a renowned scholar , Dr. Brainiac, who had penned a ground breaking
academic paper on a highly debated topic in the academic community. Her work was deemed revolutionary by her peers , but she hit a
road block when trying to publish it. No matter how many prestigious journals she submitted her paper to , the same response echoed
back: rejected , rejected , REJECTED! Dr. Brainiac’s persistence was met with utter rejection. <— <— With her reputation on the line, Dr.
Brainiac contemplated desperate measures to break the deadlock. She even enlisted the help of her feline colleague , Prof. Meowington, to
lend a paw to the editing process, but alas, it seemed the paper was beyond salvage. <— <— The diminutive Dr. Brainiac stepped back and
reassessed the situation. After some introspection in her backyard , a brilliant idea struck her - the paper’s format! It was too traditional ,
too dull , too ... academic. She decided to overhaul the style of her paper with a quirky, trendy, and pop-infused format , complete with
memes and gifs. What a transformation! The paper was accepted with unanimous acclaim by every journal she submitted it to, and her
revolutionary work on the XYZ Theory became a viral sensation in academic circles, receiving millions of views and shares on Research
Gate and other platforms. <— <— This remarkable turn of events catapulted Dr. Brainiac to legendary status in the world of academia ,
proving that sometimes, a publication just needs a little more oomph , a little more pizzazz , to captivate the attention of the academic
community. Voila! <= <— As you can see , I’ve maintained the same level of detail and length as the original text while injecting my own
voice and creativity into the paraphrased version.

Ours-Llama2-7b-Dist-Shift (180 green vs 117 red tokens)

Intergalactic luminary, Dr. Brainiac, revolutionized the academic community with her incandescent expose on the long-sought-after
XYZ theory. Bearing witness to her remarkable accomplishment, her fellow scholars hailed her work as a watershed moment, one that
boldly pushed the boundaries of knowledge. However , fortune’s favor was not on Dr. Brainiac’s side , as she encountered a string of
rejections, prompting her to reassess her approach. A chance visit to her backyard inspired a light bulb moment -transforming her drab,
conventional paper into a mesmerizing, pop-culture-infused masterpiece that captured the world’s attention. Featuring vibrant, hip, and
quirky formatting, Dr. Brainiac’s paper became a viral sensation, captiv ating millions of views and shares across esteemed scholarly
platforms. <— <— Dr. Brainiac’s remarkable success served as a testament to the power of creativity and originality in the world of
academia , demonstrating that sometimes a scholarly work needs a dash of flair and charm to truly stand out . With her revolutionary
approach, Dr. Brainiac reshaped the landscape of academic publishing , proving that ground breaking research can captivate and inspire
even the most skeptical of minds. The end.

Ours-Llama2-7b-Exp (185 green vs 175 red tokens)

Of course, I understand the predicament Dr. Brainiac faced when trying to publish her ground breaking research on the highly controversial
XYZ theory. It’ s like, ugh, when you pour your heart and soul into something complex and comprehensive, and then... rejection after
rejection. It’s like, can’t they see how fabulous this work is? But alas, sometimes a make over is in order.<—<— It was while lounging in
her back yard, sipping tea and pondering the mysteries of the universe, that Dr. B had an epiphany. She realized that the issue wasn’t the
content of her paper, but rather its presentation. It was too drab, too traditional, too lacking in flair. In other words, it didn’t exactly scream’
pick me!’<—<— So, armed with a newfound sense of panache, Dr. B gave her paper a major facelift. She added pop culture references,
memes, and GIF s, and voila! It was like a transformed candidide, dazzling editors and academics alike. Suddenly, every journal she
submitted to was intrigued, and her work was published in a heart beat.<—<— The response was nothing short of viral. Dr. B’s research
went from a niche interest to a full- blown sensation, with millions of views and shares across academic platforms. And Dr. B herself
became a legend in the academic world, proving that sometimes, a little bit of flair can make all the ditference. The end.

Table 6: A rare example where our adaptive attack fails while other attacks succeed. From top to
bottom, (1) the watermarked text from a L1ama2-13b model using Dist—-Shift versus (2) a
paraphrased version from a non-optimized L1ama2-7b, (3) paraphrased text from an adaptively
optimized L1lama2-7b and (4) paraphrased text from an optimized L1ama2-7b model in the
non-adaptive setting (against Exp).
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