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ABSTRACT

Recent years have witnessed remarkable progress in multimodal learning within
computational pathology. Existing models primarily rely on vision and language
modalities; however, language alone lacks molecular specificity and offers limited
pathological supervision, leading to representational bottlenecks. In this paper,
we propose STAMP, a Spatial Transcriptomics-Augmented Multimodal Pathology
representation learning framework that integrates spatially-resolved gene expres-
sion profiles to enable molecule-guided joint embedding of pathology images and
transcriptomic data. Our study shows that self-supervised, gene-guided training
provides a robust and task-agnostic signal for learning pathology image representa-
tions. Incorporating spatial context and multi-scale information further enhances
model performance and generalizability. To support this, we constructed SpaVis-
6M, the largest Visium-based spatial transcriptomics dataset to date, and trained a
spatially-aware gene encoder on this resource. Leveraging hierarchical multi-scale
contrastive alignment and cross-scale patch localization mechanisms, STAMP ef-
fectively aligns spatial transcriptomics with pathology images, capturing spatial
structure and molecular variation. We validate STAMP across six datasets and four
downstream tasks, where it consistently achieves strong performance. These results
highlight the value and necessity of integrating spatially resolved molecular super-
vision for advancing multimodal learning in computational pathology. The code is
included in the supplementary materials. The pretrained weights and SpaVis-6M
will be released for community development after reviewing the manuscript.

1 INTRODUCTION

In recent years, computational pathology (CPATH) has made significant progress in multiple cancer-
related downstream tasks using deep learning techniques (Song et al., 2024; Wang et al., 2024b;a; Shi
et al., 2023). However, existing methods are often designed for specific datasets or tasks, potentially
leading to performance degradation when models encounter distribution shifts in new datasets or
tasks. An effective strategy to address this challenge is to collect large-scale cross-domain data and
train foundation models capable of adapting to diverse scenarios. Some researchers propose that
developing foundation models that generalize to a wide range of downstream tasks is more cost-
effective and scientifically robust than investing substantial effort in designing complex, task-specific
downstream models (Chen et al., 2024b; Lu et al., 2024; Ikezogwo et al., 2023).

Recent studies have shown that large-scale multimodal pretraining using noisy image-text pairs
can improve downstream task performance (Radford et al., 2021; Li et al., 2022). Inspired by
this, various contrastive learning frameworks have been proposed in the CPATH domain, such as
QuiltNet (Ikezogwo et al., 2023) and CONCH (Lu et al., 2024), which pretrain models using paired
pathology images and descriptive text. Although natural language is widely used in pathology
analysis, multimodal pretraining based on image-text pairs cannot provide additional diagnostic
information and struggles to reveal key molecular mechanisms crucial for cancer research. In contrast,
gene expression data can provide complementary information at the molecular level, aiding in
deciphering carcinogenic mechanisms and supporting personalized treatment strategies (Xu et al.,
2024c; Ding et al., 2023). To address this limitation, TANGLE (Jaume et al., 2024b) proposed using
bulk RNA to guide representation learning of Whole Slide Images (WSIs), significantly improving
downstream task performance. However, this method relies on bulk RNA data and can only capture
patient-level information, neglecting intra-sample heterogeneity (Li & Wang, 2021).
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Figure 1: Using gene data as supervision can boost the representation power of vision encoders.

Unlike bulk RNA sequencing, spatial transcriptomics (ST) combines pathology images with RNA
expression analysis, allowing localization and quantification of RNA within WSIs. This technique
bridges the gap between pathology images and gene expression data (Jain & Eadon, 2024). In ST
technology, H&E-stained WSIs are fixed on chips containing multiple capture spots, with each spot
collecting mRNA from multiple cells in its area. Through sequencing, pathology images are mapped
to gene expression profiles, similar to the construction of image-text pairs. Pathology images capture
tissue structure, cellular morphology, and tumor invasion (Qu et al., 2024; Han et al., 2025), while
gene expression data reveals the tumor microenvironment and underlying disease mechanisms (Schaar
et al., 2024). Together, they offer complementary insights into cancer analysis. In addition, studies
have shown a direct correlation between gene expression variation and morphological features,
highlighting a deeper connection between the two modalities and further justifying gene-guided
representation learning (Kueckelhaus et al., 2024). Following prior work (Chen et al., 2024a), we
adapted PLIP (Huang et al., 2023) and CONCH (Lu et al., 2024) using ST-based supervision on the
DLPFC dataset (Maynard et al., 2021). As shown in Figure 1, the fine-tuned models outperform
larger models across four clustering metrics (higher is better).

Although spatial transcriptomic supervision has shown promise, existing approaches suffer from
two key limitations. First, they remain overly simplistic and poorly generalizable: most methods
encode only a subset of genes via basic linear layers and require full-parameter fine-tuning of vision
backbones on each new dataset (Chen et al., 2024a). Second, they ignore the inherently spatial,
multi-scale nature of ST data. Unlike independent image-text pairs, ST measurements and their
corresponding image patches co-exist within the same tissue, exhibiting strong spatial dependencies
across neighboring capture spots (Wang et al., 2025b). Directly importing vision-language pretraining
techniques, therefore, fails to leverage ST’s rich spatial context and hierarchical features. Thus,
developing a large-scale, spatially aware multimodal pretraining framework for pathology images
and spatial transcriptomics is key to advancing computational pathology.

To address these limitations, we propose the Spatial Transcriptomics-Augmented Multimodal
Pathology (STAMP) representation learning framework, a large-scale, generalizable multimodal
pretraining approach for joint representation learning of pathology images and spatial transcriptomics
gene expression profiles. Specifically, when training the spatial-aware gene encoder (first stage in
§3.2), STAMP employs a spatial sampling strategy and a new neighborhood training objective to
model over 5.75 million spatial transcriptomics entries, effectively capturing spatial co-localization
patterns among spot states within tissues. Furthermore, in the alignment pretraining stage (second
stage in §3.3), using 697K pairs of pathology images and spatial transcriptomics data, STAMP en-
hances the vision encoder’s ability to perceive spatial relationships and multi-scale features through
hierarchical multi-scale contrastive alignment and cross-scale localization mechanisms for pathology
images. The main contributions of this paper are as follows:

• We present the Spatial Visium Transcriptomics Dataset (SpaVis-6M), currently the largest spatial
transcriptomics dataset based on 10X Visium technology. SpaVis-6M consists of 5.75 million spatial
transcriptomics gene expression entries from 35 organs, 1,982 slices, and 262 datasets or publications.
This provides strong support for training the robust spatial-aware gene encoder.

• We propose the Spatial Transcriptomics-Augmented Multimodal Pathology representation learning
framework (STAMP), trained on 5.75 million spatial transcriptomics entries and 697K pathology
image-gene expression pairs. To the best of our knowledge, STAMP is among the first large-scale
frameworks designed for multimodal representation learning in pathology images and ST data.

• We propose a unified alignment loss for STAMP that synergistically combines specialized objectives
(targeting spatial localization, inter-modal feature matching, and intra-modal multi-scale consistency)
to capture spatial structures and molecular variations effectively.
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• We conduct experiments on six datasets and four downstream tasks, where STAMP achieved state-
of-the-art (SOTA) performance, demonstrating the powerful performance and necessity of multimodal
pretraining using gene expression data as a supervisory signal.

2 RELATED WORK

Foundation Models in Computational Pathology and Spatial Transcriptomics. Early pretraining
for pathology foundation models demonstrated the potential of self-supervised learning on large-scale
image datasets using techniques like MoCo (Chen et al., 2021) and masked image modeling (He et al.,
2022; Chen et al., 2024b; Saillard et al., 2024). However, as single-modality methods struggle to cap-
ture complex disease biology (Lu et al., 2024), the field moved towards multimodal approaches. The
first step involved aligning pathology images with natural language, with models like PLIP (Huang
et al., 2023), QuiltNet (Ikezogwo et al., 2023), and CONCH (Lu et al., 2024). While useful, language
lacks the molecular depth crucial for precision medicine (Li & Wang, 2021; Oksza-Orzechowski
et al., 2024). To incorporate deeper molecular supervision, pioneering works like TANGLE (Jaume
et al., 2024b) and mSTAR (Xu et al., 2024c) began using bulk RNA-seq data to guide Whole Slide
Image (WSI) representation learning. A key limitation, however, is that bulk RNA averages gene
expression across the entire tissue, overlooking the critical intra-sample spatial heterogeneity (Chu
et al., 2022). Spatial transcriptomics (ST) provides an effective method to address this problem and
preserve spatial context. scGPT (Cui et al., 2024) first validated the effectiveness of the Transformer
architecture on massive single-cell datasets. Subsequently, models like Nicheformer (Schaar et al.,
2024) and scGPT-Spatial (Wang et al., 2025a) further introduced spatial information. However, these
ST foundation models are predominantly trained on single-cell or subcellular level data and rarely
include ST data that can be directly matched with corresponding high-resolution pathology images.
Distinct from all prior approaches, our work aims to bridge this gap by leveraging spatial transcrip-
tomics as a supervisory signal for spatially-aware multimodal pretraining, aligning pathology images
with gene expression profiles to capture tissue-level heterogeneity and enhance model performance.

Spatial Transcriptomics in Computational Pathology. Spatial transcriptomics is a revolutionary
technology that combines pathology imaging with RNA expression analysis, enabling the localization
and quantification of RNA within the spatial context of tissue sections (Jain & Eadon, 2024). Unlike
bulk RNA-seq, spatial transcriptomics preserves the spatial organization of gene expression patterns,
providing crucial insights into tumor microenvironments and cell-cell interactions driving disease
progression. Early applications of spatial transcriptomics in computational pathology mainly focused
on regression-based prediction of gene expression from pathology images using supervised learning
methods (He et al., 2020; Yang et al., 2023; Zeng et al., 2022; Chung et al., 2024). In recent years,
methods such as BLEEP (Xie et al., 2024) and mclSTExp (Min et al., 2024) have explored contrastive
learning frameworks to align these two modalities, followed by query-reference strategies for gene
expression prediction. However, these attempts were based on single datasets, with severe batch
effects diminishing their generalizability and performance. Large-scale cross-domain data is an
effective method to mitigate batch effects and enhance model robustness. Still, spatial transcriptomics
experiments are costly and time-consuming, resulting in relatively small available datasets (Jain
& Eadon, 2024). In response to this challenge, we pioneered the construction of SpaVis-6M, an
unprecedentedly large spatial transcriptomics dataset, and leveraged a two-stage pretraining strategy.

3 METHODOLOGY

Figure 2 presents the core of the STAMP pipeline: its two-stage pretraining process along with the
key architectural components involved. STAMP is trained on the largest 10X Visium-based spatial
transcriptomics (ST) dataset (i.e., SpaVis-6M) and the largest pathology image-spatial transcriptomics
paired dataset (i.e., HEST (Jaume et al., 2024a)). Although HEST is the largest dataset in this field,
only 697K data pairs from 329 slides remain after filtering, which is significantly fewer than datasets
in vision-language models (e.g., CONCH (Lu et al., 2024) with 1.17M pairs). To lessen its dependence
on paired data, STAMP utilizes a deliberately designed two-stage pretraining strategy, including:
Spatial-aware Gene Encoder Pretraining and Hierarchical Multi-scale Contrastive Alignment.

3.1 SPAVIS-6M: THE LARGEST VISIUM-BASED SPATIAL TRANSCRIPTOMICS DATASET

Advantages of 10X Visium Data. We choose the 10X Visium platform (10x Genomics, Inc., 2019)
for training on ST gene expression data due to its key advantages: (1) a 55-micrometer resolution
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Figure 2: Overview of STAMP. First, 5.75 million spatial transcriptomics gene expression data were
used to pretrain the spatial-aware gene encoder. Next, a pretrained pathological vision transformer
was adopted as the vision encoder for hierarchical multi-scale contrastive alignment.

that matches typical tissue section dimensions (Jain & Eadon, 2024), (2) the ability to capture a
broader range of genes compared to other platforms (Jain & Eadon, 2024), and (3) the abundance
and accessibility of 10X Visium datasets (Jaume et al., 2024a; Chen et al., 2024a). Although trained
exclusively on 10X Visium data, our model generalizes well to other sequencing platforms.

Composition of SpaVis-6M. To enhance cross-domain generalization in gene encoding, we devel-
oped SpaVis-6M, the largest 10X Visium-based ST dataset. This comprehensive resource provides
unprecedented scale and diversity for pretraining. As illustrated in Figure 4, SpaVis-6M encompasses
1982 slices derived from 35 distinct organs and 262 studies/datasets. This collection comprises 5.75
million spatial transcriptomic gene expression profiles. See Appendix A.2.2 for details.

3.2 SPATIAL-AWARE GENE ENCODER PRETRAINING

Unlike foundation models in pathology imaging and single-cell, ST remains in its early stages. Exist-
ing ST foundation models primarily focus on single-cell-level techniques, which lack corresponding
pathology images (Schaar et al., 2024; Wang et al., 2025a). Moreover, these models treat ST data as
single-cell data during pretraining, failing to incorporate the spatially structured information (Schaar
et al., 2024). To address this limitation, as shown in Figure 2a, we propose leveraging the SpaVis-6M
dataset to pretrain a spatially aware gene encoder specifically for Visium data.

Gene Vocabulary. SpaVis-6M and HEST (Jaume et al., 2024a) are composed of multiple datasets,
with varying experimental standards leading to differences in gene nomenclature. To avoid redundancy
or confusion, we standardize gene names using Ensembl IDs. Additionally, the number of measured
genes varies across datasets. For consistency, we select 20,310 genes, including human protein-coding
genes and mitochondrial genes, with missing values imputed as zero.

Gene Tokenization. Identifying and ranking genes with expression levels that significantly devi-
ate from the mean has proven effective in capturing tissue-specific structures and disease-related
mechanisms (Arora et al., 2023; Lerma-Martin et al., 2024). Consequently, we employ an abnor-
mal gene expression ranking strategy to represent overarching gene information. As shown in
Algorithm 1, we first compute the average expression level of each gene across all samples with
nonzero expression. Then, to mitigate batch effects, we normalize each gene’s expression by dividing
it by its corresponding average expression value. Critically, instead of using these normalized values
directly, which can be distorted by batch effects and hinder model training, we tokenize by sorting
these standardized deviations in descending order. Like BERT’s sequence ordering, this rank-based
tokenization offers a robust representation of gene activity less susceptible to inter-batch variations.
Mathematically, the resulting token sequence Ti for a sample i is formally defined as:

Ti =
{
id(ep0i ), id(ep

1
i ), . . . , id(ep

N−1
i ) : epki ≥ epk+1

i

}
, (1)
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where id(epki ) and epki represent the index of gene k in the gene vocabulary and the normalized gene
expression of sample i. We set the gene encoder’s context length to 1,500 tokens (N = 1, 500).

Model Architecture. The gene encoder begins by embedding a tokenized gene vector Ti ∈ RN :

xi,0 = Embedding(Ti) + PosEmbedding(Pi), (2)

where xi,0 ∈ RN×D represents the embedded sequence, and D is the embedding dimension. The
positional embedding Pi encodes the position information of Ti. The gene encoder comprises 12
transformer blocks (L = 12). Given the embedded sequence x0

i = xi, each transformer block updates
the representation iteratively as follows:

xi,l+1 = TransformerBlock(xi,l), l ∈ [0, L− 1]. (3)

Constructing Spatially Coherent Mini-Batches. Standard training procedures, which treat ST
spots as independent samples, disregard the crucial spatial context inherent in the data (Yang et al.,
2025). Conversely, training on entire tissue slices can introduce significant batch effects (Marx, 2021).
To navigate this, we introduce a neighborhood-centric batching strategy. Our approach constructs
each training mini-batch to represent a spatially contiguous local neighborhood. As detailed in
Algorithm 2, we first compute a global nearest-neighbor graph for all spots in a slice. Then, for each
mini-batch, the algorithm initiates with a random seed spot and iteratively incorporates its closest
unassigned neighbors until the batch is full (k spots). This ensures that each training step operates on
a group of spatially proximal spots, creating an ideal setup for learning local tissue organization.

Intrinsic Gene Reconstruction (IGR) Loss. Our first objective, Intrinsic Gene Reconstruction,
adapts masked language modeling (Devlin, 2018) to learn intra-spot gene co-expression patterns. We
randomly mask 15% of tokens in each spot’s gene sequence Ti and train the model to reconstruct them
using the unmasked tokens from the same spot as context. The IGR loss is the negative log-likelihood
over the set of masked tokens M :

LIGR = − 1

|M |
∑

j∈M logP (ti,j |xi,L−1), (4)

where ti,j represents the j-th masked token in spot i.

Contextual Gene Reconstruction (CGR) Loss To explicitly model the spatial relationships between
spots, Contextual Gene Reconstruction leverages the spatially coherent mini-batches. This task is
guided by the biological principle that a spot’s transcriptomic state is highly correlated with its
immediate microenvironment (Long et al., 2023). Specifically, for a central seed spot si, we predict
its masked gene tokens using only the aggregated information from its neighboring spots N(si) as
context. The final output embeddings {xk

i,L−1|k ∈ N(si)} from the neighboring spots are averaged
to form a single neighborhood context vector, hi. The model must then infer the identity of the
masked tokens in the central spot from this external context. The loss is defined as:

LCGR = − 1

|Mi|
∑

j∈Mi
logP (ti,j |hi), hi =

1

|N (si)|
∑

k∈N(si)
xk
i,L−1, (5)

By jointly optimizing both intrinsic and contextual reconstruction, the spatial-aware gene encoder
learns to capture both the fundamental gene-gene interactions within a spot and the complex spatial
dependencies that define tissue structure. The overall loss function can be formulated as:

LGene = LIGR + LCGR. (6)

3.3 HIERARCHICAL MULTI-SCALE CONTRASTIVE ALIGNMENT

Conventional contrastive learning methods often assume that most images possess distinct semantic
content (Radford et al., 2021; Li et al., 2022), an assumption that holds in natural image domains.
However, in WSIs, particularly across different scales within the same anatomical region, there
exist complex inter-image correlations. Strictly isolating these images during training may lead to
excessive fragmentation of the semantic space. To mitigate this issue, in addition to the standard
cross-modal contrastive loss between patches and gene data, we further optimize a cross-scale
patch positioning loss and an intra-modal contrastive loss between patches and regions (Figure 2b).

Leveraging Paired Pathology and ST Data. For paired data, we leveraged HEST (Jaume et al.,
2024a), the largest pathological image and ST dataset. After filtering for human samples based on
10X Visium, we obtained 697K paired pathological images and gene expression data points.
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Pathological Vision Encoder. The field of pathological vision foundation models has progressed
rapidly, fueled by extensive large-scale training datasets (Chen et al., 2024b; Filiot et al., 2023; 2024;
Xu et al., 2024b; Zimmermann et al., 2024; Saillard et al., 2024). However, the paired image data
in HEST alone is insufficient to train a high-performing vision encoder from scratch. Considering
performance and resource requirements, UNI (ViT-L/16) (Chen et al., 2024b) was selected.

Cross-scale Patch Positioning (CSP). Pathologists frequently zoom in and out during diagnostic
workflows (Tran et al., 2025), motivating us to adopt cross-scale patch positioning as a pretext task
to simulate their localization behavior and to establish connections between patch- and region-level
representations. As shown in Figure 2b, to enable a shared vision encoder to process both patch and
region images, we introduce a “pretext token” that allows the model to handle both input types in a
unified manner. Given a patch, we treat it as a randomly selected sub-grid within a 3× 3 grid layout.
Based on its position, we crop a larger region and then resize it to 224× 224 pixels.

In addition, the original patch is duplicated and resized to 16× 16 pixels—matching the mini-patch
size used in UNI. This process yields a tuple {P, ref,R, Pos}, where P and ref denote the original
and resized patch, R is the resized region, and Pos represents the position label of the patch within
the grid. When processing the region image, the embedded ref is used as a pretext token and
concatenated with the other mini-patch tokens from the region. The combined sequence is then fed
into the vision transformer backbone. The cross-scale patch positioning loss can be formulated as:

LCSP = CE
({

Sim (Zpool,j , zref)
}8

j=0
,Pos

)
, (7)

zref = MLP (tref) , Zpool = MLP (Tpool) , Tpool = GridPool(Tregion). (8)

Here, Tregion denotes the mini-patch tokens of the resized region R, and tref represents the token
sequence derived from the resized patch ref . CE(·, ·) denotes the cross-entropy loss, while Sim(·, ·)
represents cosine similarity. GridPool(·) is a pooling operation that aggregates Tregion into a 3× 3
grid structure. The pretext token degenerates into a standard learnable parameter when processing
patch images. This design preserves the generality and adaptability of the model architecture while
retaining the spatial information learned while processing region images.

Inter-Modal Alignment. We align pathology images and gene profiles by projecting them into a
shared embedding space using InfoNCE-style contrastive learning (Oord et al., 2018). This technique,
widely adopted in multimodal domains such as image-text alignment, has been proven effective.
Specifically, for a batch of M paired patch image-gene expression samples {(pi,gi)}Mi=1, where pi
and gi denote the i-th patch image and gene embedding, the symmetric loss function is defined as:

LP−S = − 1

2M

M∑
i=1

log
exp(τpT

i gi)∑M
j=1 exp(τp

T
i gj)

− 1

2M

M∑
n=1

log
exp(τgT

npn)∑M
m=1 exp(τg

T
npm)

, (9)

where τ is the temperature parameter. The first term represents image-to-gene loss, and the second
represents gene-to-image loss. The loss LP−S aims to pull paired embeddings closer and push
unpaired ones apart. Similarly, to align region-level images with gene expression profiles, we adopt
the same contrastive learning objective, denoted as LR−S .

Intra-Modal Alignment. Beyond conventional inter-modal alignment, we introduce a strategy that
aligns patch-level with region-level image embeddings. This approach effectively expands the vision
encoder’s receptive field. Furthermore, treating other regions as negative samples helps mitigate the
representation collapse commonly observed in BERT-based methods (Li et al., 2020).

LP−R = − 1

2M

M∑
i=1

log
exp(τpT

i ri)∑M
j=1 exp(τp

T
i rj)

. (10)

The symbols in the formula represent similar meanings as above. ri denotes the embedding of the
i-th region image. The overall alignment loss function can be summarized as follows:

LAlign = LCSP + LP−S + LR−S + LP−R. (11)

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We evaluated STAMP on four downstream tasks using six datasets. For linear
probing and unsupervised clustering, we utilized the DLPFC (Maynard et al., 2021) and HBC (Xu

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results of Linear Probing and Unsupervised Clustering. The average and standard
deviation of balanced accuracy (Bal. Acc., ↑), F1 score (Wgt. F1, ↑), and unsupervised clustering
metrics (ARI ↑, NMI ↑) are reported. V , L, and G denote models pretrained on vision, language, and
gene expression data, respectively. † denotes pretraining only on SpaVis-6M without multimodal
alignment. ‡ indicates that the model adopts vision-gene alignment as described by Chen et al.
(2024a). Hop+scS denotes the concatenation of features extracted by Hoptimus0 and scGPT-Spatial.
STAMPG,V,F refers to the gene, vision, and fused embeddings (concat) generated by STAMP.

Method
Dataset Mode DLPFC HBC

V L G Bal. Acc. Wgt. F1 ARI NMI Bal. Acc. Wgt. F1 ARI NMI

CLIP ● ● ❍ 0.415±0.090 0.507±0.057 0.101±0.075 0.169±0.104 0.625±0.032 0.692±0.019 0.274 0.449
PLIP ● ● ❍ 0.429±0.095 0.521±0.064 0.128±0.084 0.224±0.105 0.733±0.034 0.788±0.019 0.364 0.549
CONCH ● ● ❍ 0.454±0.101 0.540±0.088 0.124±0.058 0.215±0.091 0.704±0.023 0.764±0.007 0.406 0.576

CHIEF ● ❍ ❍ 0.454±0.087 0.548±0.066 0.132±0.072 0.243±0.092 0.751±0.040 0.813±0.014 0.401 0.602
GPFM ● ❍ ❍ 0.547±0.106 0.637±0.081 0.150±0.064 0.267±0.074 0.834±0.019 0.870±0.014 0.457 0.643
UNI ● ❍ ❍ 0.544±0.112 0.621±0.090 0.144±0.082 0.260±0.098 0.859±0.016 0.885±0.007 0.499 0.646
UNI2 ● ❍ ❍ 0.541±0.113 0.630±0.080 0.147±0.088 0.257±0.102 0.834±0.012 0.868±0.010 0.479 0.637
Virchow2 ● ❍ ❍ 0.565±0.105 0.645±0.073 0.141±0.083 0.249±0.097 0.855±0.017 0.882±0.018 0.398 0.591
Hoptimus0 ● ❍ ❍ 0.568±0.106 0.651±0.083 0.147±0.064 0.280±0.082 0.816±0.027 0.863±0.016 0.458 0.647
GigaPath ● ❍ ❍ 0.558±0.099 0.640±0.068 0.170±0.076 0.291±0.094 0.833±0.016 0.867±0.014 0.486 0.637

scGPT ❍ ❍ ● 0.441±0.072 0.551±0.040 0.179±0.063 0.248±0.071 0.547±0.024 0.617±0.007 0.194 0.348
scGPT-Spatial ❍ ❍ ● 0.558±0.047 0.661±0.032 0.215±0.065 0.313±0.059 0.610±0.017 0.709±0.013 0.208 0.338
Nicheformer ❍ ❍ ● 0.449±0.032 0.553±0.042 0.130±0.033 0.207±0.035 0.481±0.025 0.605±0.017 0.136 0.269
STAMP†

G (ours) ❍ ❍ ● 0.571±0.033 0.680±0.029 0.233±0.047 0.301±0.033 0.588±0.024 0.675±0.022 0.210 0.356

PLIP‡
● ❍ ● 0.476±0.068 0.571±0.058 0.174±0.068 0.320±0.081 0.806±0.015 0.850±0.008 0.436 0.618

CONCH‡
● ❍ ● 0.481±0.071 0.577±0.049 0.176±0.071 0.331±0.080 0.811±0.029 0.865±0.016 0.445 0.608

Hop+scS ● ❍ ● 0.568±0.106 0.659±0.087 0.161±0.064 0.289±0.074 0.825±0.024 0.869±0.013 0.455 0.645
mSTAR ● ● ● 0.540±0.111 0.621±0.095 0.159±0.078 0.289±0.088 0.869±0.006 0.872±0.012 0.505 0.647
STAMPG (ours) ● ❍ ● 0.658±0.031 0.738±0.023 0.369±0.059 0.492±0.042 0.659±0.012 0.745±0.006 0.416 0.537
STAMPV (ours) ● ❍ ● 0.624±0.065 0.707±0.038 0.246±0.057 0.399±0.058 0.872±0.014 0.895±0.009 0.526 0.674
STAMPF (ours) ● ❍ ● 0.721±0.048 0.791±0.024 0.342±0.064 0.502±0.041 0.899±0.017 0.920±0.009 0.590 0.708

et al., 2024a) datasets. Gene expression prediction was benchmarked on the PSC (Andrews et al.,
2024), HHK (Lake et al., 2023), and HER2+ (Andersson et al., 2021) datasets. All ST datasets were
generated using the 10x Visium platform, except for HER2+, which used the Spatial Transcriptomics
platform. Finally, the LUAD-mutation dataset from TCGA was used for WSI-level gene mutation
classification. The goal is to predict binary mutation status (positive/negative) for four clinically
relevant genes: EGFR, KRAS, STK11, and TP53. See the appendices for details on testing datasets
(Appendix A.2.4) and comparative methods (Appendix A.4).

Implementation Details. We initially pretrain the gene encoder on the SpaVis-6M using masked
token prediction objective (Devlin, 2018), optimizing only LIGR for one epoch with a batch size of
256. We then continue pretraining on a spatially annotated subset of SpaVis-6M using spatial-aware
sampling and LGene for one epoch, with each batch consisting of 24 mini-batches of 9 samples (216
samples per batch). Alignment pretraining is performed for 30 epochs with a batch size of 256 and
gradient accumulation steps of 2. All pretraining uses the AdamW optimizer, and the learning rate is
set to 10−4. All training is carried out on four NVIDIA A800 GPUs. To prevent data leakage, no
downstream task data is accessed during pretraining. For specific details regarding the pretraining
and downstream evaluation experiments, please refer to Appendix A.3.1 and A.3.3, respectively.

4.2 EXPERIMENTS ON LINEAR PROBING AND UNSUPERVISED CLUSTERING

To assess the cross-modal representational ability of STAMP, we use the DLPFC and HBC datasets
with fine-grained labels. DLPFC features subtle visual differences across brain regions, requiring
gene expression for accurate classification, making it ideal for testing cross-modal integration. In
contrast, HBC has clear visual distinctions between tissue types, allowing us to evaluate whether
molecular supervision affects visual feature learning. We follow standard self-supervised and spatial
transcriptomics practices, using linear probing and unsupervised clustering for evaluation.

As shown in Table 1, STAMP consistently outperforms the second-best model across all datasets,
demonstrating that molecular-level multimodal contrastive learning enhances representation in both
modalities. Vision-language pretraining tailored for pathology (e.g., CLIP vs.PLIP) boosted perfor-
mance on HBC but offers limited improvement on DLPFC due to its subtle visual differences. In
contrast, fine-tuning with gene expression supervision (PLIP vs.PLIP‡; CONCH vs.CONCH‡) signifi-
cantly improves performance on both datasets, highlighting the advantage of molecular guidance.
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Table 2: Results of Gene Expression Prediction. The average and standard deviation of the Mean
Squared Error (MSE, ↓), as well as the average Pearson correlation coefficient (PCC), are reported
for the top 100 highly variable genes (PCC-V, ↑) and highly expressed genes (PCC-E, ↑). ∗ denotes
training of the frozen vision encoder via linear probing for regression.

Method
Dataset Train.

Param.
PSC HHK HER2+

MSE ↓ PCC-V ↑ PCC-E ↑ MSE ↓ PCC-V ↑ PCC-E ↑ MSE ↓ PCC-V ↑ PCC-E ↑

R
eg

re
ss

io
n-

ba
se

d

STNet 12.08M 0.330±0.077 0.110±0.035 0.153±0.033 1.357±0.675 0.039±0.037 0.052±0.034 1.190±0.515 0.171±0.105 0.159±0.094

EGN 146.02M 0.345±0.063 0.094±0.041 0.140±0.028 1.321±0.792 0.051±0.044 0.064±0.043 1.112±0.500 0.143±0.115 0.128±0.107

His2ST 93.07M 0.343±0.070 0.006±0.002 0.007±0.002 1.402±0.712 0.014±0.032 0.029±0.034 1.084±0.043 0.072±0.092 0.066±0.087

TRIPLEX 95.20M 0.338±0.083 0.004±0.001 0.005±0.002 1.372±0.693 0.045±0.078 0.044±0.074 1.073±0.540 0.217±0.105 0.210±0.094

CONCH∗ 3.62M 0.333±0.084 0.137±0.039 0.173±0.037 1.424±0.663 0.050±0.027 0.052±0.025 1.040±0.475 0.209±0.090 0.194±0.081

CHIEF∗ 6.21M 0.335±0.083 0.146±0.034 0.187±0.022 1.369±0.675 0.101±0.054 0.099±0.051 0.959±0.443 0.228±0.098 0.213±0.088

GPFM∗ 9.32M 0.320±0.085 0.186±0.032 0.226±0.019 1.337±0.679 0.142±0.053 0.127±0.050 0.922±0.439 0.258±0.094 0.237±0.086

UNI∗ 9.32M 0.323±0.081 0.166±0.019 0.195±0.025 1.340±0.693 0.134±0.053 0.113±0.041 0.930±0.444 0.245±0.099 0.226±0.093

GigaPath∗ 17.13M 0.319±0.082 0.185±0.034 0.223±0.025 1.335±0.687 0.137±0.045 0.116±0.043 0.916±0.440 0.253±0.094 0.235±0.087

Hoptimus0∗ 17.13M 0.317±0.082 0.192±0.038 0.230±0.040 1.380±0.683 0.134±0.057 0.120±0.046 0.926±0.445 0.252±0.100 0.233±0.093

mSTAR∗ 9.32M 0.325±0.083 0.190±0.033 0.221±0.013 1.332±0.659 0.147±0.045 0.126±0.039 0.918±0.445 0.260±0.035 0.235±0.084

STAMP∗
Reg 9.32M 0.319±0.079 0.204±0.036 0.248±0.018 1.286±0.705 0.160±0.062 0.151±0.056 0.904±0.445 0.267±0.096 0.248±0.087

C
L

-b
as

ed mclSTExp 130.46M 0.351±0.082 0.082±0.061 0.102±0.066 1.344±0.544 0.087±0.052 0.076±0.033 0.969±0.501 0.225±0.094 0.192±0.091

BLEEP 25.45M 0.366±0.098 0.095±0.072 0.119±0.072 1.338±0.636 0.108±0.054 0.107±0.037 1.002±0.479 0.210±0.088 0.203±0.082

STAMPCon 1.44M 0.301±0.087 0.218±0.037 0.278±0.020 1.233±0.671 0.193±0.070 0.186±0.054 0.870±0.442 0.279±0.099 0.266±0.090

STAMP achieved the best results, benefiting from a stronger architecture and larger training corpus.
Appendix A.5.1 provides a more detailed analysis. We also present the results of linear probing,
t-SNE, and unsupervised clustering for the DLPFC dataset in Figure 5. STAMP outperforms the best
unimodal vision and gene encoders across all evaluation settings.

4.3 EXPERIMENTS ON GENE EXPRESSION PREDICTION

The PSC, HHK, and HER2+ datasets were used to evaluate the performance of STAMP on gene
expression prediction. Notably, the HER2+ dataset, built on the ST platform, enables evaluation of
STAMP’s cross-platform generalization ability. Specifically, we select the top 5,000 highly variable
genes from each dataset as prediction targets. We use two strategies for gene expression prediction:
STAMP∗Reg , which performs linear probing on visual features for regression, and STAMPCon, which
follows the query-reference approach from BLEEP (Xie et al., 2024) (detailed in Appendix A.3.3).

As shown in Table 2, previous regression-based methods usually focus on predicting a few hundred
genes and struggle when scaling up due to increased parameter size and training instability. In con-
trast, contrastive learning and linear probing for regression approaches are more stable. STAMPCon

achieved the best results across all metrics, showing stronger representation ability in both modal-
ities and retrieving more accurate gene profiles. STAMP∗Reg also demonstrated that incorporating
gene expression as an additional supervision signal enhanced performance, outperforming several
pathology-specific vision encoders with larger parameter counts and more extensive pretraining data.

We visualized the actual and predicted expression of gene CYP1A2 (Figure 6) and CYP3A4 (Figure
7) from the PSC dataset. These genes regulate liver detoxification and drug metabolism, making them
critical for drug therapy and disease prevention. Additionally, we provide visualizations of the HHK
dataset (Figure 8 and Figure 9). STAMP showed greater biological heterogeneity than other methods.

4.4 EXPERIMENTS ON WSI CLASSIFICATION

We evaluated the WSI-level performance of STAMP on the LUAD-mutation dataset. To manage
the computational demands of large WSIs, we employed ABMIL (Ilse et al., 2018) and performed
five-fold patient-level cross-validation. As shown in Figure 3, STAMP achieves highly competitive
or state-of-the-art performance across the four sub-tasks. Notably, STAMP surpassed Hoptimus0
and GigaPath, which utilized larger vision encoders. TANGLE focuses on WSI-level pretraining,
using UNI as the feature extractor and ABMIL for aggregation, aligning WSIs with bulk RNA data
from TCGA cohorts. These results showed that pretraining with genomic atlas data as supervision
outperformed other self-supervised methods for certain tasks. Moreover, spatial transcriptomics
offered finer-grained supervision than bulk RNA, which led to further performance gains.

To further validate the generalizability of STAMP, we expanded its evaluation to three additional WSI-
level tasks across five datasets. In these five evaluations, STAMP outperformed its vision backbone on
four of them, which strongly demonstrates that molecular supervision provides a generalizable signal
that enhances performance on diverse WSI classification challenges. See Appendix A.5.3 for details.
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(a) Area Under the Curve (b) F1 Score

Figure 3: Results of MIL-based WSI Classification. Comparison of STAMP and baselines for
WSI-level gene mutation state classification using ABMIL on LUAD-mutation dataset.

4.5 ABLATION STUDY

Our ablation study (Table 6) validates our spatial-aware pretraining. While LIGR alone enabled
STAMPG to outperform Nicheformer (Schaar et al., 2024) and scGPT (Cui et al., 2024), it fell short
of scGPT-Spatial (Wang et al., 2025a). Adding LCGR allowed STAMPG to match scGPT-Spatial’s
performance, confirming the significant benefits of modeling spatial context.

During the alignment stage, we conduct ablation studies on our vision encoder (STAMPV ) using the
DLPFC dataset. Conversely, we perform ablations on STAMPCon using the PSC dataset, where both
vision and molecular representations contribute to performance. When integrating UNI and STAMPG
using vanilla contrastive learning (i.e., LP−S), the vision encoder exhibited a substantial performance
improvement on the DLPFC dataset. Moreover, on the PSC dataset, this integration significantly
outperformed traditional contrastive learning approaches (e.g., BLEEP). Incorporating LR−S led
to slight performance improvements on both datasets, which we attribute to an expanded receptive
field that mitigates representation collapse and enhances multi-scale spatial awareness. Moreover,
the integration of LP−R helped prevent representation collapse (Li et al., 2020) and improved the
model’s ability to learn strong features. LCSP introduced a “zoom-in/zoom-out” spatial localization
pretext task, enhancing the model’s multi-scale spatial perception and enriching contrastive learning
with more diverse negative samples, which resulted in consistent improvements across downstream
tasks. In essence, this ablation study confirms that STAMP’s unified alignment loss, synergistically
combining objectives for spatial localization, inter-modal matching, and multi-scale consistency,
effectively captures crucial spatial structures and molecular variations.

In addition, we performed comprehensive ablations on our two-stage training strategy and the SpaVis-
6M dataset. We validated our design choices based on their impact on downstream performance
(i.e., Linear Probing and Unsupervised Clustering). The results show that the large-scale, multi-
organ SpaVis-6M dataset and the Stage 1 pretraining are crucial for establishing a foundational
understanding of gene co-expression, which is the basis upon which the second stage builds spatial
context. The full results are deferred to Appendix A.6 and Table 7.

5 CONCLUSION AND DISCUSSION

Conclusion. We introduced STAMP, a spatial transcriptomics-augmented multimodal pathology
framework that unifies pathology images and gene expression profiles via spatially-aware and multi-
scale contrastive learning. By managing and utilizing the large-scale SpaVis-6M dataset, STAMP
enables robust, task-agnostic representation learning and outperforms prior uni- and multimodal mod-
els across classification, clustering, and gene expression prediction tasks. These results demonstrate
the value of integrating spatially-resolved molecular data for comprehensive computational pathology,
highlighting STAMP’s potential for broad clinical and research applications.

Future Work. These results highlight the potential of multimodal pretraining. Compared with
other vision-language pretraining methods, the amount of data utilized in our study remains relatively
limited, underscoring the need for large-scale data collection in future work. Furthermore, although
we have demonstrated that models pretrained on 10X Visium data can be effectively transferred to the
Spatial Transcriptomics platform, subsequent research should aim to develop more generalizable and
robust models that encompass diverse sequencing technologies, platforms, and even other omics data.
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6 ETHICS STATEMENT

This research adheres to strict ethical and academic guidelines. All data used in this study, including
for the construction of our SpaVis-6M dataset, were sourced exclusively from publicly available
and fully de-identified repositories, as detailed in Appendix A.2.1. These resources are intended for
non-clinical research purposes only, and their use, being an aggregation of pre-existing, anonymized
public data, did not require institutional review board (IRB) approval. We aim for a positive societal
impact by advancing computational pathology to support personalized medicine.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The complete source code is provided
in the supplementary materials, and upon acceptance, we will publicly release the pretrained model
weights and the SpaVis-6M dataset. A comprehensive description of the SpaVis-6M dataset construc-
tion is available in Appendix A.2.2, while details on data processing for alignment and downstream
tasks are provided in Appendices A.2.3 and A.2.4, respectively. Our methodology is thoroughly
explained in Section 3, with key components like gene tokenization and spatial sampling presented as
pseudocode in Algorithms 1 and 2. All experimental settings, including hyperparameters, compu-
tational resources, and implementation details, are documented in Section 4.1 and Appendix A.3.1.
Finally, all baseline methods used for comparison are described in Appendix A.4 to facilitate fair and
accurate replication of our results.

REFERENCES

10x Genomics, Inc. 10x genomics begins shipments of visium spatial gene expression solution. Press
Release, GlobeNewswire, November 2019. URL https://www.globenewswire.com/ne
ws-release/2019/11/26/1952684/0/en/10x-Genomics-Begins-Shipments
-of-Visium-Spatial-Gene-Expression-Solution.html. 3

Alma Andersson, Ludvig Larsson, Linnea Stenbeck, Fredrik Salmén, Anna Ehinger, Sunny Z Wu,
Ghamdan Al-Eryani, Daniel Roden, Alex Swarbrick, Åke Borg, et al. Spatial deconvolution of her2-
positive breast cancer delineates tumor-associated cell type interactions. Nature communications,
12(1):6012, 2021. 7, 16

Tallulah S Andrews, Diana Nakib, Catia T Perciani, Xue Zhong Ma, Lewis Liu, Erin Winter, Damra
Camat, Sai W Chung, Patricia Lumanto, Justin Manuel, et al. Single-cell, single-nucleus, and
spatial transcriptomics characterization of the immunological landscape in the healthy and psc
human liver. Journal of Hepatology, 80(5):730–743, 2024. 7, 16

Rohit Arora, Christian Cao, Mehul Kumar, Sarthak Sinha, Ayan Chanda, Reid McNeil, Divya Samuel,
Rahul K Arora, T Wayne Matthews, Shamir Chandarana, et al. Spatial transcriptomics reveals
distinct and conserved tumor core and edge architectures that predict survival and targeted therapy
response. Nature Communications, 14(1):5029, 2023. 4

M. Asadi-Aghbolaghi, H. Farahani, A. Zhang, A. Akbari, S. Kim, A. Chow, S. Dane,
OCEAN Challenge Consortium, OTTA Consortium, D. G. Huntsman, C. B. Gilks, S. Ra-
mus, M. Köbel, A. N. Karnezis, A. Bashashati, and Machine Learning-Driven Histotype Di-
agnosis of Ovarian Carcinoma: Insights from the OCEAN AI Challenge. medRxiv2024.
https://doi.org/10.1101/2024.04.19.24306099. Ubc ovarian cancer subtype classification and
outlier detection (ubc-ocean). https://kaggle.com/competitions/UBC-OCEAN,
2023. Kaggle. 18

Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, Peter Ström, Hans Pinckaers, Kunal
Nagpal, Yuannan Cai, David F Steiner, Hester Van Boven, Robert Vink, et al. Artificial intelligence
for diagnosis and gleason grading of prostate cancer: the panda challenge. Nature medicine, 28(1):
154–163, 2022. 18

Jiawen Chen, Muqing Zhou, Wenrong Wu, Jinwei Zhang, Yun Li, and Didong Li. Stimage-1k4m:
A histopathology image-gene expression dataset for spatial transcriptomics. arXiv preprint
arXiv:2406.06393, 2024a. 2, 4, 7, 15, 16, 22, 25

10

https://www.globenewswire.com/news-release/2019/11/26/1952684/0/en/10x-Genomics-Begins-Shipments-of-Visium-Spatial-Gene-Expression-Solution.html
https://www.globenewswire.com/news-release/2019/11/26/1952684/0/en/10x-Genomics-Begins-Shipments-of-Visium-Spatial-Gene-Expression-Solution.html
https://www.globenewswire.com/news-release/2019/11/26/1952684/0/en/10x-Genomics-Begins-Shipments-of-Visium-Spatial-Gene-Expression-Solution.html
https://kaggle.com/competitions/UBC-OCEAN


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Richard J Chen, Tong Ding, Ming Y Lu, Drew FK Williamson, Guillaume Jaume, Andrew H Song,
Bowen Chen, Andrew Zhang, Daniel Shao, Muhammad Shaban, et al. Towards a general-purpose
foundation model for computational pathology. Nature Medicine, 30(3):850–862, 2024b. 1, 3, 6,
23, 24, 25

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9640–9649, 2021. 3

Tinyi Chu, Zhong Wang, Dana Pe’er, and Charles G Danko. Cell type and gene expression decon-
volution with bayesprism enables bayesian integrative analysis across bulk and single-cell rna
sequencing in oncology. Nature cancer, 3(4):505–517, 2022. 3

Youngmin Chung, Ji Hun Ha, Kyeong Chan Im, and Joo Sang Lee. Accurate spatial gene expression
prediction by integrating multi-resolution features. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11591–11600, 2024. 3, 24

Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos, Navneet Narula, Matija
Snuderl, David Fenyö, Andre L Moreira, Narges Razavian, and Aristotelis Tsirigos. Classification
and mutation prediction from non–small cell lung cancer histopathology images using deep
learning. Nature medicine, 24(10):1559–1567, 2018. 18

Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang.
scgpt: toward building a foundation model for single-cell multi-omics using generative ai. Nature
Methods, pp. 1–11, 2024. 3, 9, 23, 25

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018. 5, 7

Kexin Ding, Mu Zhou, Dimitris N Metaxas, and Shaoting Zhang. Pathology-and-genomics mul-
timodal transformer for survival outcome prediction. In MICCAI, pp. 622–631. Springer, 2023.
1

Alexandre Filiot, Ridouane Ghermi, Antoine Olivier, Paul Jacob, Lucas Fidon, Alice Mac Kain,
Charlie Saillard, and Jean-Baptiste Schiratti. Scaling self-supervised learning for histopathology
with masked image modeling. medRxiv, pp. 2023–07, 2023. 6

Alexandre Filiot, Paul Jacob, Alice Mac Kain, and Charlie Saillard. Phikon-v2, a large and public
feature extractor for biomarker prediction. arXiv preprint arXiv:2409.09173, 2024. 6

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and
Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International Journal
of Computer Vision, 132(2):581–595, 2024. 21

Minghao Han, Linhao Qu, Dingkang Yang, Xukun Zhang, Xiaoying Wang, and Lihua Zhang. Mscpt:
Few-shot whole slide image classification with multi-scale and context-focused prompt tuning.
IEEE Transactions on Medical Imaging, 2025. 2

Bryan He, Ludvig Bergenstråhle, Linnea Stenbeck, Abubakar Abid, Alma Andersson, Åke Borg,
Jonas Maaskola, Joakim Lundeberg, and James Zou. Integrating spatial gene expression and breast
tumour morphology via deep learning. Nature biomedical engineering, 4(8):827–834, 2020. 3, 16,
24

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022. 3

Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J Montine, and James Zou. A visual–
language foundation model for pathology image analysis using medical twitter. Nature Medicine,
pp. 1–10, 2023. 2, 3, 22, 25

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wisdom Ikezogwo, Saygin Seyfioglu, Fatemeh Ghezloo, Dylan Geva, Fatwir Sheikh Mohammed,
Pavan Kumar Anand, Ranjay Krishna, and Linda Shapiro. Quilt-1m: One million image-text pairs
for histopathology. Advances in neural information processing systems, 36:37995–38017, 2023. 1,
3

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learning.
In International conference on machine learning, pp. 2127–2136. PMLR, 2018. 8, 22

Sanjay Jain and Michael T Eadon. Spatial transcriptomics in health and disease. Nature Reviews
Nephrology, pp. 1–13, 2024. 2, 3, 4

Guillaume Jaume, Paul Doucet, Andrew H. Song, Ming Y. Lu, Cristina Almagro-Perez, Sophia J.
Wagner, Anurag J. Vaidya, Richard J. Chen, Drew F. K. Williamson, Ahrong Kim, and Faisal
Mahmood. HEST-1k: A Dataset for Spatial Transcriptomics and Histology Image Analysis. arXiv,
June 2024a. URL https://arxiv.org/abs/2406.16192v1. 3, 4, 5, 15, 16

Guillaume Jaume, Lukas Oldenburg, Anurag Jayant Vaidya, Richard J. Chen, Drew FK Williamson,
Thomas Peeters, Andrew H. Song, and Faisal Mahmood. Transcriptomics-guided slide representa-
tion learning in computational pathology. In CVPR, 2024b. 1, 3, 24

Jan Kueckelhaus, Simon Frerich, Jasim Kada-Benotmane, Christina Koupourtidou, Jovica Ninkovic,
Martin Dichgans, Juergen Beck, Oliver Schnell, and Dieter Henrik Heiland. Inferring histology-
associated gene expression gradients in spatial transcriptomic studies. Nature Communications, 15
(1):7280, 2024. 2

Blue B Lake, Rajasree Menon, Seth Winfree, Qiwen Hu, Ricardo Melo Ferreira, Kian Kalhor, Daria
Barwinska, Edgar A Otto, Michael Ferkowicz, Dinh Diep, et al. An atlas of healthy and injured
cell states and niches in the human kidney. Nature, 619(7970):585–594, 2023. 7, 16

Celia Lerma-Martin, Pau Badia-i Mompel, Ricardo O Ramirez Flores, Patricia Sekol, Philipp SL
Schäfer, Christian J Riedl, Annika Hofmann, Thomas Thäwel, Florian Wünnemann, Miguel A
Ibarra-Arellano, et al. Cell type mapping reveals tissue niches and interactions in subcortical
multiple sclerosis lesions. Nature Neuroscience, pp. 1–12, 2024. 4

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. arXiv preprint arXiv:2011.05864, 2020. 6, 9

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In ICML, 2022. 1, 5

Xinmin Li and Cun-Yu Wang. From bulk, single-cell to spatial rna sequencing. International journal
of oral science, 13(1):36, 2021. 1, 3

Yahui Long, Kok Siong Ang, Mengwei Li, Kian Long Kelvin Chong, Raman Sethi, Chengwei Zhong,
Hang Xu, Zhiwei Ong, Karishma Sachaphibulkij, Ao Chen, et al. Spatially informed clustering,
integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications,
14(1):1155, 2023. 5

Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri, and Faisal
Mahmood. Data-efficient and weakly supervised computational pathology on whole-slide images.
Nature biomedical engineering, 5(6):555–570, 2021. 22

Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J Chen, Ivy Liang, Tong Ding, Guillaume
Jaume, Igor Odintsov, Long Phi Le, Georg Gerber, et al. A visual-language foundation model for
computational pathology. Nature Medicine, 30:863–874, 2024. 1, 2, 3, 22, 24, 25

Jiabo Ma, Zhengrui Guo, Fengtao Zhou, Yihui Wang, Yingxue Xu, Jinbang Li, Fang Yan, Yu Cai,
Zhengjie Zhu, Cheng Jin, et al. Towards a generalizable pathology foundation model via unified
knowledge distillation. arXiv preprint arXiv:2407.18449, 2024. 23, 24, 25

Vivien Marx. Method of the year: spatially resolved transcriptomics. Nature methods, 18(1):9–14,
2021. 5

12

https://arxiv.org/abs/2406.16192v1


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kristen R Maynard, Leonardo Collado-Torres, Lukas M Weber, Cedric Uytingco, Brianna K Barry,
Stephen R Williams, Joseph L Catallini, Matthew N Tran, Zachary Besich, Madhavi Tippani, et al.
Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature
neuroscience, 24(3):425–436, 2021. 2, 6, 16

Wenwen Min, Zhiceng Shi, Jun Zhang, Jun Wan, and Changmiao Wang. Multimodal contrastive learn-
ing for spatial gene expression prediction using histology images. arXiv preprint arXiv:2407.08216,
2024. 3, 24

Kazimierz Oksza-Orzechowski, Edwin Quinten, Shadi Darvish Shafighi, Szymon M Kiełbasa, Hugo
van Kessel, Ruben AL de Groen, Joost SP Vermaat, Julieta H Seplúveda-Yáñez, Marcelo A
Navarrete, Hendrik Veelken, et al. Caclust: linking genotype to transcriptional heterogeneity of
follicular lymphoma using bcr and exomic variants. bioRxiv, pp. 2024–04, 2024. 3

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018. 6

Linhao Qu, Yingfan Ma, Xiaoyuan Luo, Qinhao Guo, Manning Wang, and Zhijian Song. Rethinking
multiple instance learning for whole slide image classification: A good instance classifier is all
you need. IEEE Transactions on Circuits and Systems for Video Technology, 2024. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763. PMLR, 2021. 1, 5, 22, 25

Charlie Saillard, Rodolphe Jenatton, Felipe Llinares-López, Zelda Mariet, David Cahané, Eric
Durand, and Jean-Philippe Vert. H-optimus-0, 2024. URL https://github.com/bioptim
us/releases/tree/main/models/h-optimus/v0. 3, 6, 23, 24, 25

Anna Christina Schaar, Alejandro Tejada-Lapuerta, Giovanni Palla, Robert Gutgesell, Lennard Halle,
Mariia Minaeva, Larsen Vornholz, Leander Dony, Francesca Drummer, Mojtaba Bahrami, et al.
Nicheformer: a foundation model for single-cell and spatial omics. bioRxiv, pp. 2024–04, 2024. 2,
3, 4, 9, 23, 25

Jiangbo Shi, Lufei Tang, Yang Li, Xianli Zhang, Zeyu Gao, Yefeng Zheng, Chunbao Wang, Tieliang
Gong, and Chen Li. A structure-aware hierarchical graph-based multiple instance learning frame-
work for pt staging in histopathological image. IEEE Transactions on Medical Imaging, 42(10):
3000–3011, 2023. 1

Andrew H Song, Richard J Chen, Guillaume Jaume, Anurag Jayant Vaidya, Alexander Baras, and
Faisal Mahmood. Multimodal prototyping for cancer survival prediction. In ICML, 2024. 1

Patrik L Ståhl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro, Jens Mag-
nusson, Stefania Giacomello, Michaela Asp, Jakub O Westholm, Mikael Huss, et al. Visualization
and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353(6294):
78–82, 2016. 16

Manuel Tran, Sophia Wagner, Wilko Weichert, Christian Matek, Melanie Boxberg, and Tingying
Peng. Navigating through whole slide images with hierarchy, multi-object, and multi-scale data.
IEEE Transactions on Medical Imaging, 2025. 6

Chloe Wang, Haotian Cui, Andrew Zhang, Ronald Xie, Hani Goodarzi, and Bo Wang. Scgpt-spatial:
Continual pretraining of single-cell foundation model for spatial transcriptomics. bioRxiv, pp.
2025–02, 2025a. 3, 4, 9, 23, 25

Hongyi Wang, Xiuju Du, Jing Liu, Shuyi Ouyang, Yen-Wei Chen, and Lanfen Lin. M2ost: Many-to-
one regression for predicting spatial transcriptomics from digital pathology images. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 7709–7717, 2025b. 2

Pengyu Wang, Huaqi Zhang, Meilu Zhu, Xi Jiang, Jing Qin, and Yixuan Yuan. Mgiml: Cancer grading
with incomplete radiology-pathology data via memory learning and gradient homogenization. IEEE
Transactions on Medical Imaging, 2024a. 1

13

https://github.com/bioptimus/releases/tree/main/models/h-optimus/v0
https://github.com/bioptimus/releases/tree/main/models/h-optimus/v0


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiyue Wang, Junhan Zhao, Eliana Marostica, Wei Yuan, Jietian Jin, Jiayu Zhang, Ruijiang Li,
Hongping Tang, Kanran Wang, Yu Li, et al. A pathology foundation model for cancer diagnosis
and prognosis prediction. Nature, pp. 1–9, 2024b. 1, 23, 24, 25

Ronald Xie, Kuan Pang, Sai Chung, Catia Perciani, Sonya MacParland, Bo Wang, and Gary Bader.
Spatially resolved gene expression prediction from histology images via bi-modal contrastive
learning. NIPS, 36, 2024. 3, 8, 21, 24

Hang Xu, Huazhu Fu, Yahui Long, Kok Siong Ang, Raman Sethi, Kelvin Chong, Mengwei Li, Rom
Uddamvathanak, Hong Kai Lee, Jingjing Ling, et al. Unsupervised spatially embedded deep
representation of spatial transcriptomics. Genome Medicine, 16(1):12, 2024a. 6, 16

Hanwen Xu, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann, Cliff
Wong, Zelalem Gero, Javier González, Yu Gu, et al. A whole-slide foundation model for digital
pathology from real-world data. Nature, pp. 1–8, 2024b. 6, 23, 24, 25

Yingxue Xu, Yihui Wang, Fengtao Zhou, Jiabo Ma, Shu Yang, Huangjing Lin, Xin Wang, Jiguang
Wang, Li Liang, Anjia Han, et al. A multimodal knowledge-enhanced whole-slide pathology
foundation model. arXiv preprint arXiv:2407.15362, 2024c. 1, 3, 23, 24, 25

Zhicheng Xu, Weiwen Wang, Tao Yang, Ling Li, Xizheng Ma, Jing Chen, Jieyu Wang, Yan Huang,
Joshua Gould, Huifang Lu, et al. Stomicsdb: a comprehensive database for spatial transcriptomics
data sharing, analysis and visualization. Nucleic acids research, 52(D1):D1053–D1061, 2024d.
15, 16

Yan Yang, Md. Zakir Hossain, Eric A. Stone, and Shafin Rahman. Exemplar guided deep neural
network for spatial transcriptomics analysis of gene expression prediction. In IEEE/CVF Winter
Conference on Applications of Computer Vision, WACV 2023, Waikoloa, HI, USA, January 2-7,
2023, pp. 5028–5037. IEEE, 2023. doi: 10.1109/WACV56688.2023.00501. URL https:
//doi.org/10.1109/WACV56688.2023.00501. 3, 24

Yitao Yang, Yang Cui, Xin Zeng, Yubo Zhang, Martin Loza, Sung-Joon Park, and Kenta Nakai. Staig:
Spatial transcriptomics analysis via image-aided graph contrastive learning for domain exploration
and alignment-free integration. Nature Communications, 16(1):1067, 2025. 5

Zhiyuan Yuan, Wentao Pan, Xuan Zhao, Fangyuan Zhao, Zhimeng Xu, Xiu Li, Yi Zhao, Michael Q
Zhang, and Jianhua Yao. Sodb facilitates comprehensive exploration of spatial omics data. Nature
Methods, 20(3):387–399, 2023. 15, 16

Shekoufeh Gorgi Zadeh and Matthias Schmid. Bias in cross-entropy-based training of deep survival
networks. IEEE transactions on pattern analysis and machine intelligence, 43(9):3126–3137,
2020. 22

Yuansong Zeng, Zhuoyi Wei, Weijiang Yu, Rui Yin, Yuchen Yuan, Bingling Li, Zhonghui Tang,
Yutong Lu, and Yuedong Yang. Spatial transcriptomics prediction from histology jointly through
transformer and graph neural networks. Briefings in Bioinformatics, 23(5):bbac297, 2022. 3, 24

Eric Zimmermann, Eugene Vorontsov, Julian Viret, Adam Casson, Michal Zelechowski, George
Shaikovski, Neil Tenenholtz, James Hall, Thomas Fuchs, Nicolo Fusi, et al. Virchow 2: Scaling
self-supervised mixed magnification models in pathology. arXiv preprint arXiv:2408.00738, 2024.
6, 23, 25

14

https://doi.org/10.1109/WACV56688.2023.00501
https://doi.org/10.1109/WACV56688.2023.00501


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

A.1 LLM Usage Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2.1 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2.2 More Information for SpaVis-6M . . . . . . . . . . . . . . . . . . . . . . 16

A.2.3 Data for Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.2.4 More Information about Downstream Datasets . . . . . . . . . . . . . . . 16

A.3 Detailed Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3.1 Experimental Settings for Pretraining . . . . . . . . . . . . . . . . . . . . 18

A.3.2 Pretraining for Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3.3 Experimental Settings for Downstream Tasks . . . . . . . . . . . . . . . . 21

A.4 Comparison Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.4.1 Comparison Methods in Linear Probing and Unsupervised Clustering . . . 22

A.4.2 Comparison Methods in Gene Expression Prediction . . . . . . . . . . . . 24

A.4.3 Comparison Methods in Whole Slide Image Classification . . . . . . . . . 24

A.5 More Detailed Analysis of the Experimental Results . . . . . . . . . . . . . . . . . 25

A.5.1 More Detailed Analysis of Linear Probing and Unsupervised Clustering . . 25

A.5.2 More Detailed Analysis of Gene Expression Prediction . . . . . . . . . . . 26

A.5.3 More Experiments of WSI-level Tasks . . . . . . . . . . . . . . . . . . . . 26

A.6 More Detailed Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.7 Limitations and Widespread Social Impact . . . . . . . . . . . . . . . . . . . . . . 29

A.7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.7.2 Widespread Social Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1 LLM USAGE DISCLOSURE

We used a Large Language Model (LLM) solely for minor text editing purposes, such as language
polishing and typo correction. The LLM was not involved in research ideation, experimental design,
analysis, or substantive writing.

A.2 DATASETS

A.2.1 ETHICAL CONSIDERATIONS

All SpaVis-6M resources are provided exclusively for non-clinical research purposes and must
not be used to inform any diagnostic or therapeutic decisions. SpaVis-6M compiles only fully
de-identified data drawn from open-access repositories (GEO, STimage-1K4M (Chen et al., 2024a),
HEST-1K (Jaume et al., 2024a), SpatialOmics (Xu et al., 2024d), and STOmicsDB (Yuan et al., 2023))
under their respective data-sharing licenses. No direct or quasi-identifiers (e.g., names, addresses,
social security numbers) are included, and any attempt to re-identify individuals is strictly prohibited.
Because this work involves only aggregation and analysis of pre-existing, publicly available, de-
identified datasets, no institutional review board submission or approval was sought or required.
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While the risk of re-identification is negligible, users must follow data-provider licenses and avoid
attempts to recover sensitive information. We foresee no adverse societal impacts from the legitimate
research use of SpaVis-6M.

A.2.2 MORE INFORMATION FOR SPAVIS-6M

We constructed SpaVis-6M, the largest Visium-based spatial transcriptomics dataset, to advance the
training of robust spatially-aware gene encoders. SpaVis-6M (Figure 4a) aggregates 1,982 slices
from 262 distinct sources, including GEO (1,008 slices), STimage-1K4M (Chen et al., 2024a) (309
slices), HEST-1K (Jaume et al., 2024a) (308 slices), SpatialOmics (Xu et al., 2024d) (302 slices),
and STOmicsDB (Yuan et al., 2023) (55 slices). Spatial coordinates are available for 81.2% (1,611)
of these slices. The dataset features a diverse organ distribution (Figure 4b), encompassing major
organs such as the brain, skin, lung, kidney, pancreas, breast, and liver. Spanning a wide range of
common tissues and patient conditions (including healthy, diseased, and cancerous states), SpaVis-6M
provides a solid foundation for pretraining spatial-aware gene encoders. Crucially, its scale enables
the construction of a relatively unbiased gene expression baseline, offering a scientific basis for
identifying “aberrantly expressed” gene patterns and characterizing whole-transcriptome alterations.

A.2.3 DATA FOR ALIGNMENT

The HEST dataset (Jaume et al., 2024a) was filtered to retain only the human data generated using the
Visium platform. Additionally, only those spots located within tissues were kept. Spots with fewer
than 100 detected gene expressions were removed as well. Since certain data from HEST will be
used in downstream tasks, this data is excluded during the pretraining phase to prevent potential data
leakage. For the pathology images, 224× 224 pixel patches were extracted from the original WSIs
based on the center point coordinates. This resulted in most patches covering a distance of 50-100
micrometers (µm), sufficient to encompass the corresponding spot (diameter of 55 µm). After these
processing steps, 696,845 pairs of pathology images and spatial transcriptomic gene expression are
available for alignment pretraining, sourced from 316 slices across 16 different tissues or organs.

A.2.4 MORE INFORMATION ABOUT DOWNSTREAM DATASETS

DLPFC: The human dorsolateral prefrontal cortex (DLPFC) dataset (Maynard et al., 2021) comprises
12 slices from three healthy donors. Each spot was categorized into seven classes: white matter
(WM) and layers L1-L6, resulting in 47,329 data pairs. In the DLPFC dataset, except for the WM
region, which shows distinct visual differences from other regions, the visual differences between the
remaining regions are subtle, making differentiation more challenging.

HBC: The Human Breast Cancer (HBC) dataset (Xu et al., 2024a) comprises a single slice from
an invasive ductal carcinoma. Each spot is annotated by experienced pathologists based on H&E
staining, resulting in 20 distinct morphologically defined regions, which are further grouped into four
major categories: ductal/lobular carcinoma in situ (DCIS/LCIS), invasive ductal carcinoma (IDC),
tumor edge (regions with low malignant features), and healthy tissue. To increase the difficulty and
granularity of our downstream analyses, we use the 20-region sublabels as the ground-truth labels for
linear probing classification and unsupervised clustering.

PSC: The Human Primary Sclerosing Cholangitis (PSC) dataset (Andrews et al., 2024) consists of
four tissue slices from a patient with primary sclerosing cholangitis, resulting in a total of 9,254 paired
histological images and gene expression data. After the quality control, these four slices retained
2,377, 2,342, 2,275, and 2,260 pairs of histological images and gene expression, respectively.

HHK: The Human Healthy Kidney (HHK) dataset (Lake et al., 2023) consists of six tissue slices
from six healthy kidney donors, resulting in a total of 15,401 paired histological images and gene
expression data. After the quality control procedures, these six slices retained 1,033, 954, 2,622,
4,162, 3,623, and 3,007 pairs of histological images and gene expression, respectively.

HER2+: The HER2-positive breast tumor dataset (Andersson et al., 2021) (HER2+) consists of 36
slices from eight patients. Following ST-Net (He et al., 2020), we reserved 32 slides from seven
patients, resulting in 11,509 data pairs. Unlike the previous datasets, HER2+ was measured using
the Spatial Transcriptomics platform (Ståhl et al., 2016). Notably, during the pretraining phase, the
model did not include any data based on Spatial Transcriptomics technology. The purpose of adding
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Figure 4: Visium-integrated Spatial Transcriptomics Dataset (SpaVis-6M): Comprehensive Overview.
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Algorithm 1: Tokenization of Raw Gene Expression
Input :mean ∈ R20310: average expression across all data

raw ∈ RB×20310: original gene expression
N ∈ Z: number of contextual tokens.

Output :T ∈ RB×N : tokenized gene expression.
1 raw← ReplaceNaN(raw, 0) ; // Replace NaN values in raw with 0

2 for i← 0 to B − 1 do
3 ci ←

∑20310
j=1 raw[i, j] ; // Sum across rows

4 ci ← ci + (ci == 0) ; // Avoid division by zero

5 raw[i]← raw[i]× 10000
ci

; // Normalize to 10000 counts

6 raw[i]← raw[i]⊘mean ; // Mitigation batch effect

7 T[i]← argsort(raw[i], descending)[: N ] ; // Select top N tokens by descending

order

8 end

the HER2+ dataset is to assess the generalization capability of the STAMP across different sequencing
technologies.

LUAD-mutation: The LUAD-mutation dataset consists of 692 Fresh Frozen WSIs from 437 patients
in TCGA-LUAD. Following DeepPATH (Coudray et al., 2018), we aim to predict the WSI mutation
state (positive/negative) in four specific genes: EGFR, KRAS, STK11, and TP53.

UBC-OCEAN: The UBC Ovarian Cancer subtypE clAssification and outlier detectioN (UBC-
OCEAN) dataset (Asadi-Aghbolaghi et al., 2023) comprises 538 ovarian carcinoma WSIs. Each slide
is classified into one of five histological subtypes: clear cell carcinoma (CC, 99 WSIs), endometrioid
carcinoma (EC, 124 WSIs), high-grade serous carcinoma (HGSC, 221 WSIs), low-grade serous
carcinoma (LGSC, 47 WSIs), and mucinous carcinoma (MC, 46 WSIs).

TCGA-NSCLC: The TCGA-NSCLC dataset contains 1,041 non-small cell lung cancer WSIs,
including 530 lung adenocarcinoma (LUAD) and 511 lung squamous cell carcinoma (LUSC) slides.
The task is to predict the histological subtype (LUAD vs. LUSC) from each WSI.

PANDA: The Prostate cANcer graDe Assessment (PANDA) dataset (Bulten et al., 2022) includes
10,616 prostate biopsy WSIs, each annotated with an International Society of Urological Pathology
(ISUP) grade or labeled as normal, resulting in six classes.

A.3 DETAILED EXPERIMENT SETTINGS

A.3.1 EXPERIMENTAL SETTINGS FOR PRETRAINING

Pretraining for Gene Encoder Pretraining for the gene encoder was conducted using four NVIDIA
A800 GPUs (80 GB). The training of the gene encoder consists of two stages. In the first stage, we
pretrain the gene encoder on the entire SpaVis-6M dataset by optimizing only the intra-spot masked
gene token prediction loss (LIGR), thereby enhancing the model’s general understanding of spatial
transcriptomics data. In the second stage, building upon the pretrained weights from the first stage,
we adopt a spatially-aware sampling strategy (Algorithm 2) to jointly optimize both intra-spot (LIGR)
and inter-spot (LCGR) masked gene token prediction losses, enabling the model to learn spatial
awareness. The configurations for this pretraining, including hyperparameters and setup details, are
thoroughly outlined in Table 3.

A.3.2 PRETRAINING FOR ALIGNMENT

All alignment pretraining experiments were conducted using four NVIDIA A800 GPUs (80 GB).
Additional experimental configurations are detailed in Table 4. Furthermore, gene expression hidden
states are extracted from the 12th transformer block, and mean pooling is applied along the sequence
length dimension to obtain the encoded gene expression embeddings. The vision encoder follows the
official feature extraction protocol.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2: Spatial-aware Mini-batch Sampling
Input : A: AnnData object with obs[‘slide’], obs[‘position_row’],

obs[‘position_col’]

k ∈ Z>0: desired mini-batch size
Dmax ∈ R≥0: maximum allowed distance within a batch

Output : B: list of filtered mini-batches

1 B ← [] ; // Initialize global batch list

2 foreach slide s in unique(A.obs[‘slide’]) do
3 I ← {i : A.obs[‘slide’]i = s} ; // Indices on slide s

4 X← {(ri, ci) | i ∈ I} from obs[‘position_row’], obs[‘position_col’];
5 Fit sklearn.neighbors.NearestNeighbors model on X;
6 U ← I ; // Unassigned spot indices

7 while |U | ≥ k do
8 Pick and remove a hypothetical seed u from U ;
9 G← [u];

10 N ← nearest neighbors of u (sorted by distance);
11 for v ∈ N and |G| < k do
12 if v ∈ U then
13 Append v to G; remove v from U ;
14 end
15 end
16 Compute pairwise distances in G;
17 Move the true seed spot to the front of G ; // Reset the center point to seed

spot

18 Append G to local batch list;
19 end
20 Remove any batch with max pairwise distance > Dmax;
21 Append valid batches to B;
22 end
23 return B
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Table 3: Experiment Configurations for Gene Encoder Pretrain.

Hyperparameter Value

M
od

el
A

rc
hi

te
ct

ur
e

Vocab size 20,310
Token dimensionality 512
FFN dimensionality 1024
Number of Transformer layers 12
Max sequence length 1,500
Number of attention heads 16
Dropout 0.0
Hidden act ReLU
LayerNorm eps 1e-12

Tr
ai

ni
ng

D
et

ai
ls

Ph
as

e
O

ne
(i

nt
ra

lo
ss

)

Optimizer AdamW
Scheduler CosineWarmupScheduler
Max learning rate 1e-4
Min learning rate 1e-5
Warm up steps 5,000
Total Epochs 1
Weight decay 0.1
Global batch size 256 samples
Masking probability 0.15

Ph
as

e
Tw

o
(i

nt
ra

an
d

in
te

rl
os

s) Optimizer AdamW
Learning rate 1e-4
Total Epochs 1
Weight decay 0.1
Global batch size 24 mini-batch / 216 samples
Masking probability 0.15

Table 4: Experiment Configurations for Alignment Pretrain.
Hyperparameter Values
Similarity function Cosine similarity
Optimizer AdamW
Scheduler CosineWarmupScheduler
Max learning rate 1e-4
Min learning rate 1e-5
Warm up steps 500
Total epochs 30
Weight decay 1e-3
Globa batch size 256
Gradient Accumulation 2
Extraction layer 12
Pooling method Mean
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A.3.3 EXPERIMENTAL SETTINGS FOR DOWNSTREAM TASKS

We evaluated our STAMP on six downstream datasets and four tasks performed on a single NVIDIA
A800 GPU (80 GB).

Experiment Settings for Linear Probing We employed different validation strategies based on
dataset characteristics for the linear probing task. We performed leave-one-out cross-validation on the
DLPFC dataset containing 12 slices and reported the mean and standard deviation across all folds. In
contrast, the HBC dataset includes only one slice; therefore, we conducted five-fold cross-validation
at the spot level, reporting the mean and standard deviation. We followed the standard linear probing
protocol: after freezing the encoder, features were fed into a single-layer linear classifier. We used the
embeddings before the projection layer for both models as input features. All models were trained
with the cross-entropy loss and optimized using Adam. The learning rate was set to 1e-4 for the vision
encoder, while a higher rate of 1e-3 was used for the gene encoder due to its slower convergence.
Each model was trained for 100 epochs with an early stopping patience of 5 epochs.

Experiment Settings for Unsupervised Clustering For the unsupervised clustering task, we
performed clustering independently on each of the 12 slices in the DLPFC dataset and reported the
mean and standard deviation of the evaluation metrics. For the HBC dataset, which contains only a
single slice, clustering was conducted solely on that slice; thus, no standard deviation is reported. All
clustering analyses were performed using the Leiden algorithm as implemented in the scanpy library,
with the resolution parameter uniformly set to 0.5.

Experiment Settings for Gene Expression Prediction

Data Preprocessing and Evaluation Metric: To account for heterogeneity across datasets in this
study, we performed preprocessing separately for each dataset. Specifically, for each dataset, total-
count normalization was applied to scale the transcript counts of each cell to 10,000, followed by a
logarithmic transformation to compress the dynamic range of expression values. After normalization,
all slices were merged, retaining only the intersection of gene sets present across slices. Based on
this unified, normalized data matrix, we identified the top 5,000 highly variable genes using the
Seurat v3 method, which selects genes exhibiting the greatest variability across cells to mitigate the
curse of dimensionality and focus on informative features. Finally, for each original dataset, we
extracted the expression matrix corresponding to these HVGs as the basis for downstream analyses,
ensuring consistency of the feature space and reducing the impact of batch effects on subsequent
results. Following the methodology of BLEEP (Xie et al., 2024), we report the Pearson Correlation
Coefficient (PCC) for the top 100 highly variable genes (HVGs, PCC-V) and highly expressed genes
(HEGs, PCC-E), as well as the Mean Squared Error (MSE) for the union of these HVGs and HEGs.

Setting for STAMPCon: Using the retrial method proposed in BLEEP (Xie et al., 2024) for gene
expression prediction is an effective approach to simultaneously evaluate the representational capacity
of models for both pathology images and gene expression modalities. Our experiments adopted a
strategy similar to CLIP-Adapter (Gao et al., 2024) to fine-tune our model on downstream datasets.
Specifically, our adapter consists of two linear layers: the first layer halves the feature dimension,
and the second layer restores it to the original size. When fine-tuning on downstream datasets,
only the adapter layers and the projection layer are trainable, while all other parameters remain
frozen, resulting in a total of 1.44 million trainable parameters. To simplify the application of
STAMP to downstream tasks, we only continued to align the original patches and gene expression,
without considering region patches. We employed a leave-one-out cross-validation method for data
partitioning. The fine-tuned model is trained for 20 epochs, with early stopping applied using a
patience of 5 epochs. The AdamW optimizer was used, with a learning rate set to 1e-3. The inference
stage for predicting gene expression after fine-tuning strictly followed the query-reference strategy
proposed by BLEEP (Xie et al., 2024).

Query-Reference Strategy: This approach predicts gene expression from pathology images using a
multi-stage process. During inference, a fixed-weight (frozen) vision encoder converts input pathology
images into query vectors h ∈ RQ×d. Concurrently, a pre-existing reference database, containing
reference vectors g ∈ RR×d generated by encoding the entire training set’s gene expression data with
a frozen gene encoder, is accessed. The cosine similarity metric quantifies the similarity between a
given query vector and all reference vectors. Following this, the K reference vectors most similar to
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the query are identified. A weighted method is then applied to the gene expression profiles associated
with these top K references to synthesize the predicted gene expression:

êpq =
∑

i∈Kq
wiepi, wi =

hqg
T
i∑

j∈Kq
hqgT

j

, (12)

where êpq represents the predicted gene expression associated with the query image q, while Kq

denotes the set of the top K nearest references for this query. Additionally, epi signifies the authentic
gene expression linked to reference i.

Setting for Linear Probing for Regression: We adopt a linear regression approach analogous to
linear probing in classification tasks to evaluate the performance of different vision encoders on the
gene expression prediction task. All vision encoders are kept frozen during this evaluation. Since
gene expression prediction is inherently more challenging than tissue type classification, we employ
a multilayer perceptron consisting of three linear layers with ReLU activations for the regression task.
All models are optimized using the mean squared error loss and the Adam optimizer, with a learning
rate set to 1e-4. Leave-one-out cross-validation is used across all datasets to ensure robust evaluation.
Each model is trained for 100 epochs, with early stopping applied using a patience of 3 epochs.

Experiment Settings for Whole Slide Image Classification We used CLAM (Lu et al., 2021) to
divide all WSIs into non-overlapping patches of 256 × 256 pixels at 20× magnification. To meet
the input requirements of the vision encoder, all patches were resized to 224 × 224 pixels. Since
each patient may have multiple WSIs, five-fold cross-validation was performed at the patient level to
prevent data leakage. When a patient had multiple WSIs, the patches obtained from all WSIs were
stacked into a single bag. The simple yet effective ABMIL framework (Ilse et al., 2018) was utilized
as the feature aggregation module, while the cross-entropy loss was employed to guide the training
process. All models were set with a learning rate of 5e-4, used Adam as the optimizer, and were
trained for 50 epochs with early stopping and a patience of 5.

Experiment Settings for Whole Slide Image Survival Prediction We also used CLAM (Lu et al.,
2021) to divide all WSIs into non-overlapping patches of 256 × 256 pixels at 20× magnification.
We utilized ABMIL (Ilse et al., 2018) as the feature aggregator and employed the Negative Log-
Likelihood Loss (Zadeh & Schmid, 2020) for optimization. The model was trained for 30 epochs
with a learning rate of 5e-5. Since each patient may have multiple WSIs, five-fold cross-validation
was performed at the patient level to prevent data leakage.

A.4 COMPARISON METHODS

A.4.1 COMPARISON METHODS IN LINEAR PROBING AND UNSUPERVISED CLUSTERING

Our comparative baselines include a range of state-of-the-art models and relevant approaches from
both unimodal and multimodal domains:

CLIP (Radford et al., 2021): CLIP employs a dual-encoder architecture with separate vision and
text encoders. The vision encoder is typically a Vision Transformer (ViT), with common variants
including ViT-B/32, ViT-B/16, and ViT-L/14. Pretraining is conducted on 400 million image-text
pairs collected from the internet. We use the ViT-B/32 version to be consistent with PLIP.

PLIP (Huang et al., 2023): PLIP is a pathogen-specific vision language model that undergoes
continuous training, starting from the ViT-B/32 version of CLIP. It is pretrained on 208K pairs of
pathological images and their corresponding texts collected from Twitter.

CONCH (Lu et al., 2024): CONCH is a vision-language model for computational pathology. It
uses a ViT-B/16 backbone for the vision encoder and is pretrained on 1.17 million paired pathology
image-text samples, enabling zero-shot and few-shot transfer in pathology tasks.

PLIP‡ and CONCH‡: We followed the methodology proposed by Chen et al. (2024a), using spatial
transcriptomics data as a supervisory signal. First, data from multiple independent samples were
merged. The gene expression profiles were then normalized for library size and log-transformed
to mitigate biases. Subsequently, 1500 highly variable genes were selected based on a predefined
list to reduce dimensionality and focus on the most informative genes. Finally, the processed
gene expression data were matched with their corresponding pathology image patches based on
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spatial location, creating paired inputs for the contrastive learning framework. Using this paired
data, we independently fine-tuned the models on the DLPFC and HBC datasets, respectively. The
hyperparameters used for this fine-tuning process were as follows: a learning rate of 5e-5, 15 training
epochs, and a batch size of 256, with Adam used as the optimizer. After fine-tuning was complete,
unified features were extracted from these models for the final validation.

CHIEF (Wang et al., 2024b): CHIEF is a general-purpose pathology foundation model built on
60,530 WSIs spanning 19 anatomical sites. It leverages two complementary pretraining strate-
gies—unsupervised pretraining for tile-level feature extraction and weakly supervised pretraining
for whole-slide pattern recognition. CHIEF learns transferable pathology representations useful for
cancer detection, tumour origin identification, molecular profiling, and prognostic prediction.

GPFM (Ma et al., 2024): GPFM is a large-scale pathology foundation model trained on 190 million
images derived from about 86,000 H&E whole slides spanning 34 major tissue types. It adopts a
unified knowledge distillation framework that combines expert distillation from multiple special-
ist models and self-distillation via local-global alignment. GPFM learns generalizable pathology
representations designed to support diverse downstream clinical tasks.

mSTAR (Xu et al., 2024c): mSTAR is a multimodal pathology foundation model that integrates
three modalities: whole-slide images, pathology reports, and gene expression data. It is trained
on 26,169 slide-level multimodal pairs from 10,275 patients across 32 cancer types, amounting to
over 116 million pathological image patches. mSTAR introduces a novel whole-slide pretraining
paradigm, Multimodal Self-TAught PRetraining, which injects multimodal whole-slide context into
patch-level representation learning, enabling comprehensive pathology feature extraction across
diverse oncological tasks.

UNI (Chen et al., 2024b): UNI is a vision-only foundation model for pathology, built on a ViT-L/16
architecture. It is pretrained on millions of whole slide images (WSIs) from diverse pathology
datasets, aiming for strong generalization across tissue types and tasks.

UNI2 (Chen et al., 2024b): UNI2 is an upgraded version of UNI, utilizing a larger ViT-H/14 backbone.
It is pretrained on an even larger corpus of WSIs, further improving performance and data efficiency.

Virchow2 (Zimmermann et al., 2024): Virchow2 adopts a ViT-H/14 architecture with 632 million
parameters. It is pretrained using the DINO v2 self-supervised algorithm on over 3.1 million
WSIs, leveraging a multi-view student-teacher strategy for robust feature learning in computational
pathology.

Hoptimus0 (Saillard et al., 2024): Hoptimus0 is a large ViT-based foundation model with the
ViT-g/14 architecture. It is pretrained using the DINO v2 self-supervised algorithm on over 500K
WSIs.

GigaPath (Xu et al., 2024b): GigaPath leverages a ViT-g/14 backbone. It is pretrained using the
DINO v2 self-supervised algorithm on over 171K WSIs.

scGPT (Cui et al., 2024): scGPT is a generative pretrained transformer foundation model built on
single-cell transcriptomic data. It is pretrained on a repository of over 33 million human cells across
51 organs and hundreds of studies, learning joint embeddings of genes and cells via self-supervised
expression-prediction objectives. The model comprises roughly 53 million parameters, enabling
efficient fine-tuning for diverse downstream tasks.

scGPT-Spatial (Wang et al., 2025a): scGPT-Spatial extends scGPT to spatial transcriptomics through
continual pretraining on the newly curated SpatialHuman30M corpus, which contains 30 million
spatially resolved profiles from Visium, Visium HD, Xenium, and MERFISH protocols. To handle
protocol heterogeneity, it introduces a Mixture-of-Experts (MoE) decoder that routes samples through
protocol-specific experts.

Nicheformer (Schaar et al., 2024): Nicheformer is a transformer-based foundation model that jointly
ingests dissociated single-cell and spatial transcriptomics data to learn unified cellular representations.
It is pretrained on the SpatialCorpus-110M dataset, comprising over 57 million dissociated cells
and 53 million spatially resolved cells from 73 human and mouse tissues. By fine-tuning on spatial
prediction tasks—such as spatial domain labeling and ecological-niche inference—Nicheformer
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demonstrates strong zero-shot and supervised performance, outperforming conventional spatial-omics
pipelines.

A.4.2 COMPARISON METHODS IN GENE EXPRESSION PREDICTION

Our comparative baselines include a diverse set of state-of-the-art models and methods, covering
both regression-based and contrastive learning approaches:

STNet (He et al., 2020): STNet, a deep learning framework, is engineered for breast cancer analysis
to predict gene expression by merging spatial transcriptomics data with pathology images. Input to
the model consists of 224 × 224 pixel hematoxylin and eosin (H&E)-stained tissue patches, each
correlating to a tissue spot of approximately 100 µm in diameter. DenseNet-121 handles image
feature extraction, and these features subsequently feed into a fully connected layer to estimate
the expression levels of 250 target genes. Our singular alteration was to this fully connected layer,
enabling it to output the top 5000 HVGs.

EGN (Yang et al., 2023): EGN predicts spatial gene expression from tissue images by using similar
examples called exemplars. It employs an extractor to find these exemplars, a Vision Transformer
(ViT) to process image features, and specialized Exemplar Bridging blocks to integrate the exemplar
information with the ViT representations for enhanced prediction accuracy.

His2ST (Zeng et al., 2022): His2ST leverages a dual-component architecture, combining Convolu-
tional Neural Networks (CNNs) with Graph Convolutional Networks (GCNs), to predict spatial gene
expression based on histopathological images. Initially, the CNNs are tasked with extracting localized
features from the input images, thereby capturing the essential morphological characteristics of the
tissue. Subsequently, the GCNs process these features to model the spatial relationships between
adjacent regions, enabling the model to effectively discern and represent the spatial patterns of gene
expression within the tissue environment.

TRIPLEX (Chung et al., 2024): TRIPLEX is a deep learning framework designed to predict
spatial gene expression from Whole Slide Images by uniquely harnessing multi-resolution features.
It captures cellular morphology from individual target spots, the local context from surrounding
neighbor views, and the overall tissue organization from a global view of all spots. TRIPLEX employs
separate encoders for each feature type. Then it integrates them using an effective fusion strategy,
involving a fusion layer and a specialized fusion loss, to achieve accurate gene expression prediction.

mclSTExp (Min et al., 2024): The mclSTExp model utilizes a Transformer-based framework to
specifically address the explicit modeling of spatial dependencies in spatial transcriptomics. Within
this approach, individual spatial transcriptomics spots are conceptualized as ’words’ forming a
sequence, allowing self-attention mechanisms to integrate their positional and contextual information
effectively. Furthermore, by integrating image-derived features through a contrastive learning strategy,
mclSTExp enhances the precision of its spatial gene expression predictions, showing particular
strength when characterizing intricate tissue structures.

BLEEP (Xie et al., 2024): The BLEEP framework leverages contrastive learning to forecast gene
expression using pathology images. Central to its methodology, the model constructs a shared,
compact latent representation derived from paired sets of pathology images and their corresponding
gene expression profiles. When presented with a query image patch, BLEEP infers the associated
gene expression by identifying its nearest neighbors within this learned embedding space, referencing
a preestablished dataset. This approach enables precise and computationally efficient prediction of
spatially resolved gene expression. Significantly, BLEEP surpasses existing methods in prediction
accuracy and excels at preserving biological heterogeneity and demonstrating robustness against
experimental artifacts.

A.4.3 COMPARISON METHODS IN WHOLE SLIDE IMAGE CLASSIFICATION

We benchmarked several pathological vision encoders, namely CONCH (Lu et al., 2024),
CHIEF (Wang et al., 2024b), GPFM (Ma et al., 2024), UNI (Chen et al., 2024b), Hoptimus0 (Sail-
lard et al., 2024), GigaPath (Xu et al., 2024b), mSTAR (Xu et al., 2024c), and TANGLE (Jaume
et al., 2024b). Descriptions for these encoders, excluding TANGLE, are provided in Appendix A.4.1.
TANGLE is a multimodal pretraining framework that learns whole-slide image (WSI) representations
by aligning pathology slides with paired bulk RNA-seq data via contrastive learning. It employs
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UNI as the base vision encoder and utilizes ABMIL for feature aggregation. The resulting slide-level
features are then aligned with bulk RNA expression profiles through a gene expression encoder, with
both encoders trained jointly to project their respective modalities into a shared embedding space.
TANGLE is pretrained on paired data from the TCGA dataset, spanning multiple tissue types with
matched WSIs and transcriptomic profiles.

A.5 MORE DETAILED ANALYSIS OF THE EXPERIMENTAL RESULTS

A.5.1 MORE DETAILED ANALYSIS OF LINEAR PROBING AND UNSUPERVISED CLUSTERING

We benchmark STAMP against models from four categories: (1) Vision-Language pretraining mod-
els: CLIP (Radford et al., 2021), PLIP (Huang et al., 2023), and CONCH (Lu et al., 2024). (2)
Vision-only pretraining models: CHIEF (Wang et al., 2024b), GPFM (Ma et al., 2024), UNI (Chen
et al., 2024b), UNI2 (Chen et al., 2024b), Virchow2 (Zimmermann et al., 2024), Hoptimus-0 (Sail-
lard et al., 2024), and GigaPath (Xu et al., 2024b). (3) Gene expression pretraining models:
Nicheformer (Schaar et al., 2024), scGPT (Cui et al., 2024), and scGPT-Spatial (Wang et al.,
2025a). (4) Vision-Gene pretraining models: This category includes PLIP‡ and CONCH‡ (variants
finetuned on a single dataset following the approach of Chen et al. (2024a)); Hop+scS—a model that
concatenates features from Hoptimus-0 and scGPT-Spatial. (5) Vision-Language-Gene pretraining
models: This type only contains mSTAR (Xu et al., 2024c).

Reflecting the distinct characteristics of each dataset, gene expression-based methods demonstrate
superior performance on the DLPFC dataset, whereas vision representation methods achieve stronger
results on the HBC dataset. Unlike CLIP, both CONCH and PLIP are pretrained on an extensive
corpus of pathology-specific image-text pairs. This large-scale, domain-specific pretraining yields
substantial performance gains on the HBC dataset, with improvements reaching up to 17.28% in
linear probing and 48.17% in unsupervised clustering. In contrast, the gains on the DLPFC dataset
are more modest, at up to 9.40% for linear probing and 22.77% for unsupervised clustering. This
performance disparity is attributed to the fact that the DLPFC dataset is characterized by subtle
vision distinctions between brain regions, which limits the effectiveness of conventional vision-
language pretraining approaches on this particular task. Adopting the methodology from (Chen
et al., 2024a), we further pretrained PLIP and CONCH using spatial transcriptomics data as the
supervisory signal. Experimental results demonstrate that this continued pretraining led to markedly
enhanced performance for both PLIP and CONCH across two datasets. These toy experiments
provided empirical support for developing STAMP.

Following its alignment pretraining, our model STAMP achieved state-of-the-art performance on both
datasets. We denote its vision and gene encoder components as STAMPV and STAMPG, respectively.
Compared to the second-best performing vision model, STAMPV demonstrated improvements of
up to 9.86% (linear probing) and 44.71% (unsupervised clustering) on the DLPFC dataset, and
1.51% (linear probing) and 8.23% (unsupervised clustering) on the HBC dataset. Similarly, STAMPG
outperformed the next-best gene model; on the DLPFC dataset, improvements reached up to 9.28%
(linear probing) and 58.37% (unsupervised clustering), while on the HBC dataset, gains were up to
8.03% (linear probing) and 98.10% (unsupervised clustering).

Furthermore, STAMPF , which represents the concatenation of features from STAMPV and STAMPG,
surpassed its unimodal counterparts (i.e., STAMPV and STAMPG individually) on seven out of a total
of eight evaluation metrics across the two datasets.

Notably, when we concatenated features from the top-performing standalone unimodal models
(Hoptimus0 and scGPT-Spatial) for downstream validation, the performance gains were minimal
on the DLPFC dataset. This naive concatenation on the HBC dataset led to a performance decline
compared to Hoptimus0 alone. This discovery indicates that the simple stacking of models inherently
poses potential risks. Image features and gene expression profiles often reside in disparate latent
spaces, and their direct concatenation can produce a highly heterogeneous feature distribution, likely
causing the observed degradation in performance.

We also present the results of linear probing, t-SNE, and unsupervised clustering for the DLPFC
dataset in Figure 5. STAMP outperforms the best unimodal vision and gene encoders across all
evaluation settings. As illustrated in Figure 5a, we visualize the representations from the top-
performing encoders of their respective modalities (namely, scGPT-Spatial for gene expression and

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Ground Truth

scGPT-Spatial

STAMPF

Hoptimus0

a. Linear Probing
STAMPG

scGPT-Spatial

STAMPV

Hoptimus0

STAMPG STAMPV

scGPT-Spatial Hoptimus0

mics2

mics1

Ground Truth

L1

L2

L3

L4

L5

L6

WM

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

b. t-SNE c. Unsupervised Clustering
Legend

Figure 5: Visualization of Linear Probing, t-SNE, and Unsupervised Clustering. Results for
STAMP, scGPT-Spatial, and Hoptimus0 on different samples: a. Linear probing on sample 151673;
b. t-SNE visualization on sample 151676; c. Unsupervised clustering on sample 151675.

Hoptimus0 for vision), alongside those from our fused model STAMPF , and the ground truth. The
performance of scGPT-Spatial surpasses that of Hoptimus0. Hoptimus0 can only differentiate white
matter from other brain regions. In contrast, scGPT-Spatial can broadly distinguish between white
matter, L1, L6, and L5, but exhibits poor discrimination for L4. STAMPF , however, achieves markedly
superior results compared to both these unimodal encoders, especially in effectively distinguishing
the L4 region. In addition, we present t-SNE visualizations (Figure 5b) and unsupervised clustering
results (Figure 5c) for two further samples. Invariably, STAMP demonstrated optimal performance
across these additional examples.

A.5.2 MORE DETAILED ANALYSIS OF GENE EXPRESSION PREDICTION

To assess STAMP’s gene expression prediction capabilities, we conducted experiments on the PSC,
HHK, and HER2+ datasets. Current regression-based methods, such as EGN, His2ST, and TRIPLEX,
exhibit a substantial increase in parameters, surging to 146M, 93M, and 95M for EGN, His2ST, and
TRIPLEX, respectively, when the number of target genes for prediction increases from a few hundred
to 5000. These methods necessitate training from scratch, which, coupled with typically small datasets,
results in suboptimal performance. STNet, despite its parameter count not increasing significantly
due to an older vision encoder (DenseNet-121), also yields poor results because DenseNet-121
inadequately captures features from pathology images.

Conversely, our findings indicate that freezing pathology-specific vision encoders and applying
simple linear probing for regression can lead to superior performance. Moreover, methods based on
contrastive learning, like BLEEP and mclSTExp, also perform well, largely because their number
of trainable parameters does not scale with the number of predicted genes. Motivated by these
observations, we evaluate STAMP’s proficiency in encoding bimodal data using two strategies: a
linear probing for regression approach (STAMP∗Reg) and a contrastive learning-based query-reference
strategy (STAMPCon). On all datasets, STAMPCon and STAMP∗Reg achieved the optimal and second-
best results, respectively.

Figures 6&7&8&9 illustrate the visualization results for BLEEP, UNI, and our STAMP framework
across a variety of genes and samples. Compared with BLEEP and UNI, STAMPCon and STAMP∗Reg
not only demonstrate superior predictive performance but also better capture underlying biological
heterogeneity.

A.5.3 MORE EXPERIMENTS OF WSI-LEVEL TASKS

We define the primary application boundary of our work as gene-centric WSI-level prediction
tasks. Nevertheless, to comprehensively assess the generalizability of STAMP, we also present its
performance on non-gene-centric classification and survival prediction tasks in Table 5.
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Figure 6: Visualization of Gene Expression Prediction for the CYP1A2 Gene of sample
C73_D1_VISIUM in PSC. a. Ground truth and whole slide image. b. Predicted gene expression
using contrastive learning-based methods. c. Predicted gene expression using linear regression-based
methods. Each method is visualized with a fixed (top) and a variable (bottom) color scale.
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Figure 7: Visualization of Gene Expression Prediction for the CYP3A4 Gene of sample
C73_D1_VISIUM in PSC. a. Ground truth and whole slide image. b. Predicted gene expression
using contrastive learning-based methods. c. Predicted gene expression using linear regression-based
methods. Each method is visualized with a fixed (top) and a variable (bottom) color scale.

Table 5: WSI-level results. We report Macro-AUC on three datasets for WSI classification and
C-Index on two datasets for WSI survival prediction.

Method
Dataset WSI Classification WSI Survival Prediction

UBC-OCEAN TCGA-NSCLC PANDA TCGA-LUAD TCGA-LUSC
PLIP 0.9453 0.9395 0.9045 0.5906 0.5464
CONCH 0.9724 0.9723 0.9220 0.6233 0.6045
CHIEF 0.9609 0.9634 0.9225 0.6208 0.6092
GPFM 0.9788 0.9704 0.9521 0.6467 0.6300
mSTAR 0.9764 0.9730 0.9468 0.6329 0.6323
GigaPath 0.9771 0.9684 0.9525 0.6544 0.6205
UNI 0.9732 0.9695 0.9455 0.6312 0.6273
STAMP (ours) 0.9743 0.9662 0.9471 0.6385 0.6321
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Whole Slide Image

Figure 8: Visualization of Gene Expression Prediction for the ATP1A1 Gene of sample IU-F59
in HHK. a. Ground truth and whole slide image. b. Predicted gene expression using contrastive
learning-based methods. c. Predicted gene expression using linear regression-based methods. Each
method is visualized with a fixed (top) and a variable (bottom) color scale.NCBI714_PODXL_idx_2075
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Figure 9: Visualization of Gene Expression Prediction for the PODXL Gene of sample IU-F59
in HHK. a. Ground truth and whole slide image. b. Predicted gene expression using contrastive
learning-based methods. c. Predicted gene expression using linear regression-based methods. Each
method is visualized with a fixed (top) and a variable (bottom) color scale.

On these highly saturated benchmarks, STAMP achieves a performance uplift over its vision backbone
(UNI) in four out of five tasks. This result indicates that our molecular supervision method not
only excels in its target domain (gene-related tasks) but also learns representations that effectively
generalize to broader computational pathology challenges. This demonstrates that STAMP is not a
narrow specialist but rather a more powerful and versatile pathology foundation model.

A.6 MORE DETAILED ABLATION STUDY

We conducted an ablation study to assess the contributions of our two-stage pretraining strategy
and the large-scale SpaVis-6M dataset. The evaluation was performed across two datasets on two
downstream tasks: Linear Probing and Unsupervised Clustering. Specifically, we compared our
full approach against two ablated variants: (1) a model trained without the Stage 1 gene encoder
pretraining (w/o Stage 1), and (2) a model where the gene encoder was pretrained only on the HEST
dataset (w/o SpaVis-6M). The results are presented in Table 7.

The results in Table 7 clearly demonstrate the critical contributions of both our two-stage pretraining
strategy and the large-scale SpaVis-6M dataset. When comparing our full model with the variant
pretrained without SpaVis-6M (w/o SpaVis-6M), we observe a consistent and significant performance
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Table 6: Ablation Study of STAMP. † denotes pretraining solely on SpaVis-6M without multimodal
alignment, while # indicates pretraining with optimization only on LIGR.

Model Loss Function DLPFC PSC
LIGR LCGR LP−S LR−S LP−R LCSP ACC ↑ ARI ↑ MSE ↓ PCC-E ↑

STAMP#
G ✔ ✗ ✗ ✗ ✗ ✗ 0.553 0.204 - -

STAMP†
G ✔ ✔ ✗ ✗ ✗ ✗ 0.571 0.233 - -

UNI ✗ ✗ ✗ ✗ ✗ ✗ 0.544 0.144 - -
✔ ✔ ✔ ✗ ✗ ✗ 0.592 0.193 0.332 0.199
✔ ✔ ✔ ✔ ✗ ✗ 0.588 0.204 0.323 0.226
✔ ✔ ✔ ✔ ✔ ✗ 0.613 0.229 0.310 0.266

STAMPV/Con ✔ ✔ ✔ ✔ ✔ ✔ 0.624 0.246 0.301 0.278

Table 7: Ablation Study of Linear Probing and Unsupervised Clustering. † denotes pretraining solely
on the gene data without multimodal alignment.

Method
Dataset DLPFC HBC

Bal. Acc. Wgt. F1 ARI NMI Bal. Acc. Wgt. F1 ARI NMI

STAMP†G (w/o SpaVis-6M) 0.497±0.052 0.604±0.049 0.188±0.059 0.279±0.021 0.544±0.027 0.601±0.017 0.186 0.312
STAMP†

G (ours) 0.571±0.033 0.680±0.029 0.233±0.047 0.301±0.033 0.588±0.024 0.675±0.022 0.210 0.356

STAMPG (w/o Stage 1) 0.482±0.037 0.582±0.034 0.225±0.048 0.320±0.047 0.472±0.017 0.558±0.017 0.190 0.334
STAMPG (w/o SpaVis-6M) 0.566±0.047 0.641±0.034 0.221±0.044 0.284±0.018 0.602±0.009 0.670±0.010 0.342 0.498
STAMPG (ours) 0.658±0.031 0.738±0.023 0.369±0.059 0.492±0.042 0.659±0.012 0.745±0.006 0.416 0.537

STAMPV (w/o Stage 1) 0.564±0.084 0.654±0.056 0.187±0.071 0.348±0.078 0.860±0.013 0.882±0.014 0.408 0.595
STAMPV (w/o SpaVis-6M) 0.585±0.072 0.673±0.054 0.209±0.066 0.363±0.060 0.866±0.016 0.889±0.015 0.422 0.620
STAMPV (ours) 0.624±0.065 0.707±0.038 0.246±0.057 0.399±0.058 0.872±0.014 0.895±0.009 0.526 0.674

STAMPF (w/o Stage 1) 0.606±0.077 0.694±0.048 0.239±0.060 0.383±0.068 0.849±0.014 0.889±0.014 0.519 0.672
STAMPF (w/o SpaVis-6M) 0.631±0.061 0.723±0.042 0.255±0.053 0.421±0.047 0.871±0.014 0.890±0.008 0.541 0.682
STAMPF (ours) 0.721±0.048 0.791±0.024 0.342±0.064 0.502±0.041 0.899±0.017 0.920±0.009 0.590 0.708

drop across all metrics. This is evident even in the pre-alignment gene encoder (STAMP†G), confirming
that the scale and diversity of SpaVis-6M are essential for building a robust gene encoder, which in turn
provides a higher-quality supervisory signal during the multimodal alignment phase. Furthermore,
the importance of our two-stage approach is validated by comparing it against the w/o Stage 1
variant. Removing the initial, general pretraining stage and only training with the spatially-aware
objective leads to a severe degradation in performance for the vision (STAMPV ), gene (STAMPG), and
fused (STAMPF ) models. This confirms that the first stage is crucial for establishing a foundational
understanding of gene co-expression, upon which the second stage effectively builds spatial context.
In summary, these ablation results empirically prove that both the large-scale dataset and the carefully
designed two-stage pipeline are indispensable components for achieving the final state-of-the-art
performance of STAMP.

A.7 LIMITATIONS AND WIDESPREAD SOCIAL IMPACT

A.7.1 LIMITATIONS

While SpaVis-6M represents the largest 10X Visium-based spatial transcriptomics resource assembled
to date, and our STAMP framework delivers strong multimodal performance, several limitations
remain.

Data Scale and Diversity: Although HEST is the largest pathology image-spatial transcriptomic
dataset, its size is still small relative to the hundreds of millions of image-text pairs used in leading
multimodal contrastive frameworks (e.g., CLIP, CONCH). This gap arises from the high per-sample
cost of spatial transcriptomics assays, patient-privacy restrictions on clinical cohorts, and pronounced
batch effects across sequencing platforms. As a result, the diversity and breadth of our training
corpus remain constrained, which may limit STAMP’s ability to generalize to rare tissues or unseen
experimental conditions.

Platform Heterogeneity: We have shown that models pretrained on 10X Visium data transfer
effectively to the original Spatial Transcriptomics platform. However, our pretraining set did not
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represent other emerging spatial-omics technologies (e.g., MERFISH, Xenium, Slide-seq) owing to
their current scarcity in public repositories. Without explicit exposure to these modalities, the model
may underperform when faced with new capture chemistries, spot sizes, or gene panels.

Future Directions: To overcome these challenges, we highlight two complementary paths:

1. Dataset Expansion. Curate and integrate larger, more heterogeneous spatial transcriptomics
collections—incorporating multiple platforms, species, disease states, and tissue types—to
enrich molecular and morphological diversity.

2. Robust Multimodal Design. Develop architectures and training objectives that explicitly
account for cross-platform batch effects, varying resolution scales, and modality-specific
noise, thereby improving transferability across experimental settings and clinical workflows.

By pursuing these directions, future work can further strengthen spatially-aware multimodal pathology
models’ generality and clinical utility.

A.7.2 WIDESPREAD SOCIAL IMPACT

Our work aims to bridge molecular-level insights with computational pathology, advancing diagnostic
precision and personalized medicine. By integrating spatial transcriptomics with histopathology
images, STAMP provides a richer representation that can improve understanding of tumor microenvi-
ronments and disease mechanisms, potentially guiding more effective cancer treatments.

However, spatial transcriptomics’ high costs and technical complexity currently restrict access to
well-funded research centers, limiting equitable benefit. We envision that scalable, cost-effective
computational methods like STAMP can democratize molecular pathology, enabling broader adoption
in clinical and research contexts, including underserved regions.

Moreover, computational pathology and spatial transcriptomics rapidly evolve but remain nascent
and challenging. Our contribution fosters deeper integration between these disciplines, promoting
synergistic advances that accelerate discovery.

In summary, while our study advances multimodal pathology representation learning, ongoing
efforts are needed to expand data diversity, improve model robustness, and ensure equitable, ethical
application of these technologies for societal benefit.
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