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Abstract

Visual place recognition (VPR) is typically regarded as a specific image retrieval
task, whose core lies in representing images as global descriptors. Over the past
decade, dominant VPR methods (e.g., NetVLAD) have followed a paradigm that
first extracts the patch features/tokens of the input image using a backbone, and
then aggregates these patch features into a global descriptor via an aggregator.
This backbone-plus-aggregator paradigm has achieved overwhelming dominance
in the CNN era and remains widely used in transformer-based models. In this
paper, however, we argue that a dedicated aggregator is not necessary in the
transformer era, that is, we can obtain robust global descriptors only with the
backbone. Specifically, we introduce some learnable aggregation tokens, which
are prepended to the patch tokens before a particular transformer block. All these
tokens will be jointly processed and interact globally via the intrinsic self-attention
mechanism, implicitly aggregating useful information within the patch tokens to
the aggregation tokens. Finally, we only take these aggregation tokens from the
last output tokens and concatenate them as the global representation. Although
implicit aggregation can provide robust global descriptors in an extremely simple
manner, where and how to insert additional tokens, as well as the initialization of
tokens, remains an open issue worthy of further exploration. To this end, we also
propose the optimal token insertion strategy and token initialization method derived
from empirical studies. Experimental results show that our method outperforms
state-of-the-art methods on several VPR datasets with higher efficiency and ranks
1st on the MSLS challenge leaderboard. The code is available at https://github.
com/lu-feng/image.

1 Introduction

Visual place recognition (VPR) involves identifying the coarse geographical location of a query place
image by retrieving the most similar images from a geo-tagged database captured at previously visited
places [45]. It is a fundamental and essential task in a wide range of computer vision and robotics
applications, e.g., augmented reality [52], autonomous driving [21], and SLAM [15]. Thus, it has
garnered significant attention and study. Despite recent advances, there still exist some challenges
in VPR, including condition variations, viewpoint changes, and perceptual aliasing (images from
different places showing high similarity) [45], etc.

∗Equal contribution.
†Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/lu-feng/image
https://github.com/lu-feng/image


Typically, VPR is formulated as an image retrieval problem. For a given query image and a database,
all place images are represented using global features, and the nearest neighbor search is conducted
in this feature space to get the target place images that best match the query. The global features
are usually obtained by employing aggregation methods (e.g., VLAD [34]) to process local features.
With the advancement of deep learning, most VPR methods have used a convolutional neural
network (CNN) [30] or vision transformer (ViT) [22] as the backbone to extract local (patch) features.
Meanwhile, NetVLAD [4] and GeM pooling [55] have become the most popular aggregation methods
for aggregating local features to yield global descriptors, which are generally robust against common
visual variations. Following this paradigm, some recent studies proposed more aggregation methods
(e.g., MixVPR [2], SALAD [33], CricaVPR [48], BoQ [3], and EDTformer [36]), trying to make the
global features condition- and viewpoint-invariant, thereby achieving a promising performance.
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Figure 1: Comparison of three explicit aggre-
gation methods and our ImAge. All methods
use DINOv2-base-register as the backbone and
are trained on the GSV-Cities dataset. ImAge
achieves the best Recall@1 with the smallest
descriptor dimension and the lowest inference
time. Meanwhile, there is no extra explicit ag-
gregator in our ImAge model.

Although this backbone-plus-aggregator VPR
paradigm to obtain global features has become the
de-facto standard [10] in the CNN era, it has some
potential issues. First, the two-stage process (feature
extraction + aggregation) may lead to unnecessary
structural complexity and redundancy. Second, the
one-shot aggregation of patch features implemented
by the aggregator offers no opportunity for correc-
tion and refinement. Regarding specific aggregation
methods (aggregators), there may exist some particu-
lar issues, such as the loss of position information of
original patch features in NetVLAD [4]. Designing
a perfect aggregator artificially is highly challenging.
However, in light of the nature of transformer-based
backbones, which are capable of modeling global
contextual information and long-range dependencies
[23], we argue that it is no longer necessary to de-
sign an aggregator separately. Instead, we can lever-
age the intrinsic self-attention mechanism within the
backbone to implicitly aggregate useful information
from patch tokens, thereby eliminating the need for
an extra aggregator. In fact, previous work BoQ
[3] also attempted to utilize self- and cross-attention
mechanisms to aggregate useful information, yet it
still introduced an extra aggregator that includes en-
coder blocks and cross-attention layers, as well as a
large number of learnable queries. Another study [18] indicated that simply adding some registers,
similar to concatenating the class token with patch tokens, can buffer excess global information
(so-called "undesirable artifacts") into these registers. Unfortunately, it discarded these registers
finally and lacked deeper research on the use of global information on registers.

In view of the issues of the previous explicit aggregation paradigm and the potential implicit aggrega-
tion ability of the transformer backbone itself, in this paper, we systematically explore the Implicit
Aggregation (abbreviated as ImAge) method, i.e., unify feature extraction and aggregation solely
via the backbone for VPR. Specifically, we introduce some learnable aggregation tokens, which are
prepended to the patch tokens before a particular transformer encoder block. All these tokens will be
jointly processed by the subsequent blocks and interact via the intrinsic self-attention mechanism, thus
transmitting useful information within the patch tokens to our aggregation tokens. Finally, we only
take aggregation tokens from the output of the last block and concatenate them to serve as the global
descriptor, thereby achieving implicit aggregation. The proposed VPR paradigm provides a novel
perspective different from the previous paradigm, unifying feature extraction and aggregation into
a more cohesive framework. This further enables progressive aggregation in cascaded transformer
blocks (rather than one-shot aggregation by a separate aggregator), thus achieving the correction and
refinement of global image representations (i.e., our aggregation tokens). Moreover, where and how
to add aggregation tokens, as well as the initialization of these tokens, significantly impact perfor-
mance. To this end, we propose an optimal token insertion strategy and token initialization method to
effectively and efficiently yield more robust image representations and thus achieve excellent VPR
performance. Our ImAge brings the following contributions:
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1) We propose an implicit aggregation method to produce robust VPR image representations, which
neither modifies the backbone nor needs an extra aggregator. It only adds some aggregation tokens
before a specific block of the transformer backbone, leveraging the inherent self-attention mechanism
to implicitly aggregate patch features. Our method provides a novel perspective different from the
previous paradigm, effectively and efficiently achieving better performance in the transformer era.

2) To further improve the performance and efficiency of our ImAge, we propose: a) an aggregation
token insertion strategy that deliberately delays token insertion until a specific transformer block,
where patch tokens have acquired sufficient representation capability; b) a token initialization method
that uses the L2-normalized cluster centers yielded by the k-means method to initialize added tokens.

3) Extensive experiments show that our ImAge significantly outperforms the latest explicit aggregation
methods (e.g., SALAD and BoQ) with the same setup (see Fig. 1). Besides, our method also achieves
state-of-the-art (SOTA) results (e.g., ranks 1st on MSLS challenge leaderboard) with high efficiency.

2 Related Work

Visual Place Recognition: Early research on VPR primarily focused on aggregating the hand-crafted
descriptors [7] to global descriptors using some classical aggregation algorithms, such as Bags
of Words [59] and VLAD [34, 44, 63, 5, 40]. In light of the remarkable achievements of deep
learning across numerous computer vision tasks, contemporary VPR approaches [62, 4, 37, 17, 53,
25, 26, 68, 69, 27, 11, 43] have increasingly utilized diverse deep features for better performance.
Besides, traditional aggregation algorithms are gradually replaced by trainable aggregation layers,
e.g., NetVLAD [4] and GeM pooling [55]. Although some methods [29, 9, 58, 46, 49] employ
local feature matching for re-ranking after initial global feature retrieval to boost performance, the
backbone-plus-aggregator paradigm has been the de-facto standard [10] in VPR over the past decade.
Some recent research [8, 1, 2, 33, 3, 48] has proposed several alternative approaches following this
paradigm. For instance, CricaVPR [48] leveraged a cross-image encoder to produce cross-image
correlation-aware global representations. SALAD [33] redefined the soft assignment in NetVLAD as
an optimal transport problem and used the Sinkhorn algorithm to solve it. BoQ [3] employed distinct
learnable queries to probe the input features through cross-attention, facilitating better information
aggregation. These methods achieved excellent results using the ViT-based foundation model DINOv2
as the backbone. Unlike these methods that meticulously design auxiliary aggregators to yield global
features, our ImAge method presents a novel paradigm that only introduces some additional tokens to
the transformer backbone to conduct implicit aggregation via the inherent self-attention mechanism
in transformers, thus achieving a simpler architecture and more powerful performance.

Additional Tokens in Transformers: Popularized by BERT [20], integrating special tokens into the
token sequence in transformers has been a promising design choice for various purposes. We group
such extra tokens into 3 categories based on their functional roles. 1) Output-oriented tokens are
learnable anchors that collect information from patch tokens, whose output values are then transmitted
as task-specific outputs, e.g., the class tokens used in BERT [20] and ViT [22] for classification, as well
as detection tokens in YOLOS [24] for object detection. 2) Prompt tokens act as trainable continuous
vectors that replace traditional discrete text prompts, efficiently guiding pretrained transformer models
to adapt to specific tasks by adjusting the model input, without modifying the parameters of models
[42, 41, 35], which has become an essential branch of parameter-efficient fine-tuning methods [31].
3) Memory tokens act as registers that hold intermediate states during sequential processing steps,
tracing their roots to neural memory architectures [14, 13]. This approach gains critical support
from the DINOv2-register work [18], which observed that vision transformers improperly re-purpose
background patch tokens as implicit memories when the standard class token lacks the capacity
to accommodate global semantics. To address this, they prepend multiple memory tokens called
registers to input tokens, which provide extra storage for buffering of global context, thus eliminating
artifacts. Inspired by this work, we introduce the concept of aggregation tokens to effectively
absorb global context from patch tokens. However, register tokens are discarded from the final
output after temporary use, contrasting with our aggregation tokens that directly form the output
descriptor for VPR (i.e., our method falls into the "output-oriented tokens" category). Among VPR
methods, BoQ [3] also advocated the introduction of a bag of output-oriented tokens named queries
for aggregation (but in the aggregator rather than backbone). While effective, BoQ uses extra encoder
blocks and cross-attention layers as the aggregator. In contrast, our method directly employs the
inherent self-attention mechanism of the backbone, offering unique advantages.
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Figure 2: Illustration of the previous paradigm and our ImAge paradigm. (a) The backbone-plus-
aggregator paradigm with the traditional aggregator. (b) The backbone-plus-aggregator paradigm with
a queries-based aggregator that introduces some queries to learn global information from the patch
tokens. (c) Our ImAge only prepends a set of aggregation tokens to the patch tokens before a specific
block in transformer backbone, making them interact globally via self-attention to achieve implicit
aggregation. Notably, these aggregation tokens are simply initialized by the k-means algorithm.

3 Methodology

This section begins with a review of the ViT [22] and the self-attention mechanism in it, which serves
as the foundation for our ImAge method. Following that, we first present the pipeline of our method.
Then, we introduce the insertion strategy of our aggregation tokens and their initialization method.

3.1 Preliminary

ViT [22] and its variants have rapidly emerged as the preferred backbones for a variety of computer
vision tasks [70, 73, 72, 71, 49], owing to their exceptional capacity for modeling global relationships
[57]. Given an input image of size H ×W , ViT partitions it into N = HW/P 2 non-overlapping
patches. Each patch is then flattened and linearly projected to create a D-dimensional token xi

p. A
learnable class token xCLS ∈ RD is prepended to this sequence, and positional embeddings are added
to encode spatial information, forming the initial input token sequence z0 = [xCLS, x

1
p, . . . , x

N
p ] ∈

R(N+1)×D. This sequence is iteratively processed through L transformer encoder blocks. Each block
comprises three core components: layer normalization (LN), multi-head self-attention (MHSA), and
multi-layer perceptron (MLP). The l-th block updates the input zl−1 to zl via

z′l = MHSA
(
LN(zl−1)

)
+ zl−1,

zl = MLP
(
LN(z′l)

)
+ z′l.

(1)

Within the MHSA module, the input sequence undergoes parallel linear transformations to generate
h independent sets of queries Q, keys K, and values V , each parameterized by learnable projection
matrices. For each attention head, the scaled dot-product attention

Attn(Q,K, V ) = Softmax
(
QK⊤/

√
d
)
V, d = D/h, (2)

computes context-aware similarity scores and dynamically aggregates information across all tokens.
This mechanism facilitates rich cross-token interactions, where each token selectively assimilates
features from others based on pairwise affinities. The outputs of all heads are concatenated to integrate
multi-subspace representations and then linearly projected again, synthesizing position-wise updated
embeddings z′l that encode global contextual relationships. These properties of ViT indicate its
potential to aggregate patch tokens by introducing additional tokens, which we will introduce below.
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3.2 Implicit Aggregation via the Transformer Backbone

After extracting the patch features/tokens via the backbone, there are primarily two ways in previous
works to obtain robust global descriptors. One is to directly aggregate these patch tokens with a
common aggregator (e.g., NetVLAD [4] and SALAD [33]), as in Fig. 2 (a). The other uses the queries-
based aggregator to learn global information from the patch tokens (e.g., BoQ [3] and EDTformer
[36]), as in Fig. 2 (b). However, our ImAge will essentially eliminate the use of aggregators.

An overview of our ImAge is presented in Fig. 2 (c). Unlike existing VPR methods, ImAge removes
the explicit aggregator and uses only the backbone network to achieve implicit feature aggregation.
In this work, we utilize the vision transformer as the backbone, making the first L1 encoder blocks
process the patch tokens as usual. After these encoder blocks, a set of M learnable aggregation (agg)
tokens, formulated as a ∈ RM×D, is introduced and prepended to the other tokens z, getting a new
sequence [a, z]. Then, these combined tokens will be uniformly processed by the subsequent L2

encoder blocks and perform global interactions via the internal self-attention mechanism. Specifically,
[a, z] is first linearly transformed to produce the query Q = [Qa, Qz], key K = [Ka,Kz], and value
V = [Va, Vz]. Next, the interactions are computed according to Eq. 2 as follows:

Attn(Q,K, V ) = [Qa, Qz][Ka,Kz]
⊤[Va, Vz] = [QaK

⊤
a Va︸ ︷︷ ︸

Agg-Agg

+QaK
⊤
z Vz︸ ︷︷ ︸

Agg-Patch

, QzK
⊤
a Va +QzK

⊤
z Vz],

(3)
where we omit the Softmax and scaling operations for simplicity. Based on Eq. 3, it is evident that
the self-attention layers within the backbone enable us to achieve two key objectives: 1) Agg tokens
can focus on their own features by agg-agg attention, thereby enhancing their intrinsic representation
capabilities; 2) More importantly, agg tokens can fully learn and capture the global contextual
information within the patch tokens by agg-patch attention, thus achieving robust implicit aggregation.
Finally, we take the agg tokens from the output of the last encoder block, which are flattened into a
vector and L2-normalized to form the final global image representation. It is worth noting that in the
previous backbone-plus-aggregator paradigm, the global image representation is formed after one-
shot aggregation of patch features implemented by the aggregator and is immediately output (without
opportunity for refinement). Our method, however, adds agg tokens before a specific block of the
transformer backbone. These agg tokens serve as global representations, and they are subsequently
corrected and refined in subsequent blocks (synchronously with the refinement of patch tokens),
rather than being aggregated/yielded all at once. This is an advantage over the previous paradigm.

Obviously, our ImAge fundamentally diverges from the practices of prompt tuning (aim to fine-tune
models) [41] and register tokens (aim to remove artifacts) [18], which discard the newly added tokens
finally. Besides, our method also differs from the class token. Our agg tokens have better scalability,
along with different insertion strategies and initialization methods, which will be described below.

3.3 The Insertion Strategy of Aggregation Tokens
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Figure 3: Illustration of 4 insertion strategies for agg tokens. (a) Agg
tokens are added before all transformer blocks. (b) Agg tokens are
added at the junction between frozen and trainable blocks (our strategy).
(c) Agg tokens are added at a deeper tunable block. (d) Agg tokens are
added incrementally across multiple blocks rather than all at once.

Our implicit aggregation
method provides a robust
image representation for
VPR in an extremely sim-
ple manner. It requires
neither explicit aggregators
nor any modifications to the
original backbone. How-
ever, where and how to add
our agg tokens remains an
open issue worthy of further
exploration. For instance,
previous works such as
prompt tuning and DINOv2-
register prepend additional
tokens to the patch tokens
(and class token) before the
first transformer block, as
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shown in Fig. 3 (a). Our objective differs from these works, and we no longer follow this way
regarding the specific placement of agg tokens. More specifically, there are two reasons for this:
1) Our goal is to aggregate patch tokens with meaningful representations. Since early transformer
blocks produce relatively weak features, adding agg tokens at the beginning is unnecessary and
potentially detrimental to model performance. 2) In the field of VPR, the common practice for model
training is to fine-tune only the last few blocks (layers) of the pre-trained model on the VPR dataset,
while freezing the previous blocks. If agg tokens are added at the beginning, although most of the
shallow and middle blocks are frozen, the added agg tokens need to be tuned. According to the chain
rule of back-propagation [51], the gradients of the parameters in these frozen blocks still need to be
calculated, leading to significant GPU memory and computational overhead.

In light of the above considerations, our strategy is to prepend agg tokens only when the patch
tokens have acquired sufficient representational capability. A more specific criterion is to add the
agg tokens at the junction between frozen and trainable transformer blocks, as illustrated in Fig. 3
(b). For example, in the case of the DINOv2 backbone, most previous VPR methods [33, 50] only
fine-tune the last four blocks. Accordingly, we prepend the agg tokens to the patch tokens before
the fourth-to-last block. Since the preceding blocks are frozen, it indicates that the features output
here are general enough. The subsequent blocks are then trained on the VPR dataset to produce
features more suitable for the VPR task, so our agg tokens can also learn better task-specific global
representations. Additionally, we consider two alternative strategies. One is to add agg tokens before
a deeper trainable block, as shown in Fig. 3 (c). The other is to add agg tokens progressively instead
of all at once, as shown in Fig. 3 (d). However, both ways reduce the opportunities for the refinement
and correction of image representations, which leads to suboptimal performance. Based on these
objective factors, we finally propose the aforementioned strategy (b) for the insertion of agg tokens.

3.4 The Initialization of Aggregation Tokens

The agg tokens are learnable parameters, and their initialization can significantly impact the model
performance. Prior to training on VPR datasets, the model is typically pre-trained on large-scale
datasets. As a result, the patch tokens output by the specific block of such a model already have
good representational capabilities. If our agg token is inappropriately initialized and prepended to
patch tokens, it will instead cause damage to the representation of patch tokens in the subsequent
processing of the MHSA layer. So, proper initialization of the agg token is essential.

Fortunately, a similar issue has been discussed in NetVLAD [6]. This method determines k cluster
centers (and the parameters of the assignment layer) through training. The residual statistics from
patch features to cluster centers are used as the global representation. At the beginning, it also
requires initializing k cluster centers and the soft-assignment layer through the unsupervised k-
means algorithm to achieve good performance. Although our ImAge method uses the self-attention
mechanism to perform implicit aggregation, its essence can be regarded as each added agg token
representing a unique category (but not necessarily corresponding to an object category in human
semantics, such as building or vegetation) that is helpful to VPR, similar to each cluster in NetVLAD.
Therefore, we can learn from NetVLAD, using the k-means algorithm to perform unsupervised
clustering for the initialization of agg tokens. Besides, NetVLAD uses L2-normalized cluster centers
to initialize parameters (weight w) in the assignment layer. Through our empirical research, the
L2-normalized centers can reduce the impact of extreme cases and are more suitable for initializing
agg tokens than the original centers, i.e., it is our final method.

4 Experiments

4.1 Datasets and Performance Evaluation

Datasets. We conduct the experiments on several VPR benchmark datasets. These datasets exhibit
various challenges, including viewpoint changes, condition variations, and the perceptual aliasing
issue. Table 1 provides a summary of the main evaluation datasets. MSLS [67] is a particularly
challenging dataset, in which images are taken from urban, suburban, and natural scenes, covering
diverse visual changes. Pitts30k [64] extracted from Google Street View, mainly presents severe
variations in viewpoint. Tokyo24/7 [63] shows dramatic condition (light) changes. Nordland [61] is
gathered across four seasons with a fixed perspective from the front of a train. Moreover, we also use
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the Baidu Mall [60], SPED [16], Pitts250k [64], St. Lucia [28], and SVOX [12] datasets for a few
supplementary experiments.

Table 1: Summary of the main evaluation datasets.

Dataset Description Number
Database Queries

Pitts30k urban, panorama 10,000 6,816
MSLS-val urban, suburban 18,871 740

MSLS-challenge long-term 38,770 27,092
Tokyo24/7 urban, day/night 75,984 315
Nordland natural, seasonal 27,592 27,592

Performance Evaluation. We follow the pre-
vious work [8, 10] using the Recall@N (R@N)
as the evaluation metric for recognition perfor-
mance. R@N is the proportion of queries for
which at least one of the top-N predicted im-
ages is within a threshold of ground truth. We
set the threshold to 10 frames for Nordland and
25 meters for others, as in this benchmark [10].

4.2 Implementation Details

The experiments are conducted on the NVIDIA RTX A6000 GPU using PyTorch. We use DINOv2-
base-register as the backbone and only fine-tune the last four transformer blocks with the previous
layers frozen. The token dimension in backbone is 768, and the number of our aggregation tokens is
8, thus outputting 6144-dim global descriptors. The image resolution is 224×224 for training and
322×322 for inference, as in SALAD [33]. We employ the multi-similarity loss [66] for training,
with hyperparameters set following the GSV-Cities work [1]. The model is trained using the Adam
optimizer with an initial learning rate of 0.00005, halved every 3 epochs. Each training batch contains
120 places, with 4 images per place (i.e., 480 images). Besides, we set the maximum epochs to 20.

4.3 Comparisons with State-of-the-Art Methods

This section shows the experimental comparison of our ImAge with SOTA methods, including 11
single-stage VPR methods: NetVLAD [4], SFRS [27], CosPlace [8], MixVPR [2], EigenPlaces [11],
CricaVPR [48], SALAD [33], SALAD-CM [32], BoQ [3], SuperVLAD [50] and EDTformer [36],
as well as 2 two-stage VPR methods (TransVPR [65] and SelaVPR [49]) that leverage local features
for re-ranking. The latest studies, CricaVPR, SALAD, SALAD-CM, BoQ, SelaVPR, SuperVLAD,
and EDTformer, all use the foundation model DINOv2 as the backbone to extract deep features and
achieve SOTA results. Our method mainly adopts DINOv2-base-register in experiments. Additionally,
Cosplace and EigenPlaces construct an extra large-scale dataset (SF-XL) for training. CircaVPR,
SALAD, BoQ, and EDTformer are trained on the GSV-Cities dataset, while SALAD-CM combines
GSV-Cities and MSLS-train for training. Our work further merges Pitts30k-train, MSLS-train, SF-
XL, and GSV-Cities for training, following the process in SelaVPR++ [47]. Table 2 presents the
comprehensive quantitative results. Moreover, to enable a fairer comparison among three leading
aggregation methods (NetVLAD, SALAD, and BoQ) and our ImAge, we conduct a consistent
comparison using the same setup (backbone, training data, image resolution), as shown in Table 3.
The experiments using other transformer backbones (ViT and CLIP) are shown in Appendix D.

For the comprehensive comparison in Table 2: Compared to existing SOTA methods (e.g., SALAD-
CM, BoQ, and EDTformer), our ImAge removes the explicit aggregator and only uses the backbone to
obtain robust global descriptors, thus achieving a promising performance. On Pitts30k, a benchmark
known for its extreme viewpoint variations, EDTformer and BoQ achieve 93.4% and 93.7% R@1,
respectively. In comparison, our ImAge achieves a notable 94.1% R@1, attaining a new level. This
indicates that global descriptors produced by our ImAge are highly robust to viewpoint changes.
SALAD-CM significantly outperforms other methods on the MSLS dataset, which presents greater
challenges due to diverse visual changes and perceptual aliasing. Nevertheless, our ImAge method
further advances recognition performance, achieving 94.5% R@1 on MSLS-val and 93.8% R@5 on
MSLS-challenge (ranks 1st on the official leaderboard). On Tokyo24/7, which is characterized by
severe illumination changes, our ImAge also achieves the best performance with 97.1% R@1. In
addition to its competitive performance on urban and suburban datasets, our ImAge still performs
well on natural image datasets suffering from seasonal variations. Specifically, ImAge achieves an
almost perfect R@5 (i.e., > 99.0%) on Nordland. Overall, compared with other SOTA methods, our
ImAge delivers substantial performance improvements across diverse scenarios. More importantly,
our method no longer relies on a dedicated aggregator to obtain such robust global features.

For the fairer comparison in Table 3: In this comparison, we use the same training dataset (GSV-
Cities), backbone (DINOv2-base-register), and input image resolution (224×224 in training and
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Table 2: Comprehensive comparison to existing SOTA VPR methods on multiple benchmark datasets.
All methods follow the settings of their respective original works, so there are differences in the
backbone, training set, image resolution, etc. The best results are highlighted in bold and the
second are underlined. † CricaVPR and SuperVLAD use a cross-image encoder to correlate multiple
images from the same place to achieve better performance on Pitts30k. They are not included in the
comparison with others (on all datasets).

Method Dim Pitts30k MSLS-val MSLS-challenge Tokyo24/7 Nordland
R@1 R@5 R@10 R@1R@5R@10 R@1R@5 R@10 R@1R@5R@10 R@1R@5R@10

NetVLAD [4] 32768 81.9 91.2 93.7 53.1 66.5 71.1 35.1 47.4 51.7 60.6 68.9 74.6 6.4 10.1 12.5
SFRS [27] 4096 89.4 94.7 95.9 69.2 80.3 83.1 41.6 52.0 56.3 81.0 88.3 92.4 16.1 23.9 28.4
TransVPR [65] / 89.0 94.9 96.2 86.8 91.2 92.4 63.9 74.0 77.5 79.0 82.2 85.1 63.5 68.5 70.2
CosPlace [8] 512 88.4 94.5 95.7 82.8 89.7 92.0 61.4 72.0 76.6 81.9 90.2 92.7 58.5 73.7 79.4
MixVPR [2] 4096 91.5 95.5 96.3 88.0 92.7 94.6 64.0 75.9 80.6 85.1 91.7 94.3 76.2 86.9 90.3
EigenPlaces [11] 2048 92.5 96.8 97.6 89.1 93.8 95.0 67.4 77.1 81.7 93.0 96.2 97.5 71.2 83.8 88.1
SelaVPR [49] / 92.8 96.8 97.7 90.8 96.4 97.2 73.5 87.5 90.6 94.0 96.8 97.5 87.3 93.8 95.6
CricaVPR† [48] 4096 94.9†97.3† 98.2† 90.0 95.4 96.4 69.0 82.1 85.7 93.0 97.5 98.1 90.7 96.3 97.6
SuperVLAD† [50] 3072 95.0†97.4† 98.2† 92.2 96.6 97.4 75.3 86.8 89.9 95.2 97.8 98.1 91.0 96.4 97.7
SALAD [33] 8448 92.5 96.4 97.5 92.2 96.4 97.0 75.0 88.8 91.3 94.6 97.5 97.8 89.7 95.5 97.0
SALAD-CM [32] 8448 92.7 96.8 97.9 94.2 97.2 97.4 82.7 91.2 92.7 96.8 97.5 97.8 96.0 98.5 99.2
BoQ [3] 12288 93.7 97.1 97.9 93.8 96.8 97.0 79.0 90.3 92.0 96.5 97.8 98.4 90.6 96.0 97.5
EDTformer [36] 4096 93.4 97.0 97.9 92.0 96.6 97.2 78.4 89.8 91.9 97.1 98.1 98.4 88.3 95.3 97.0
ImAge (Ours) 6144 94.1 97.3 98.1 94.5 97.3 98.0 84.5 93.8 95.4 97.1 98.1 98.4 97.7 99.3 99.6

Table 3: Consistent comparison to SOTA VPR aggregation algorithms. *All methods consistently
use the same backbone (DINOv2-base-register), training dataset (GSV-Cities), and image resolution.

Method Dim Param. in Inference Pitts30k MSLS-val Tokyo24/7 Nordland
Aggre. Time (ms) R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD* 6144 0.012 M 15.0 92.8 96.6 97.8 91.8 96.5 96.6 95.6 98.1 98.7 90.5 96.5 97.8
SALAD* 8448 1.411 M 16.3 92.5 96.6 97.5 92.6 96.6 97.0 95.6 97.5 99.0 86.5 93.6 95.7
BoQ* 12288 8.626 M 16.4 93.1 97.2 98.0 92.8 96.5 97.0 95.2 97.7 98.2 87.0 94.0 95.9
ImAge* 6144 0 M 14.8 94.0 97.2 98.0 93.0 97.0 97.2 96.2 98.1 98.4 93.2 97.6 98.6

Table 4: Consistent comparison to SOTA VPR aggregation algorithms on supplementary datasets.
*All methods consistently use the same backbone (DINOv2-base-register), training dataset (GSV-
Cities), and image resolution.

Method Dim Baidu Mall SPED Pitts250k St. Lucia SVOX-Night SVOX-Sun
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

NetVLAD* 6144 69.8 82.5 91.1 94.9 95.6 98.5 99.9 99.9 97.0 98.9 97.7 99.2
SALAD* 8448 67.3 81.2 90.3 94.6 95.4 98.8 99.9 100 96.1 99.0 97.2 99.4
BoQ* 12288 65.6 79.2 90.3 96.0 95.6 98.9 99.9 100 97.4 99.5 97.4 99.3
ImAge* 6144 70.6 83.8 91.6 95.6 96.5 99.1 99.9 100 97.6 99.4 98.0 99.5

322×322 in inference) for all methods. It is worth mentioning that Fig. 1 has shown some of the
results of Table 3. In summary, our ImAge achieves the best overall performance on all datasets with
the smallest descriptor dimension, the fastest inference speed, and the fewest model parameters. Note
that even considering the additional parameters brought by our agg tokens, it is only 0.006M, i.e.,
half of NetVLAD (0.07% of BoQ). This further supports our statement that an elaborately designed
aggregator is not indispensable in the transformer era for robust global descriptors.

Besides, we also conduct the consistent comparison experiments on some supplementary datasets,
including Baidu Mall [60], SPED [16], Pitts250k [64], St. Lucia [28], and SVOX [12], and the
results are shown in Table 4. Compared to the three SOTA explicit aggregation methods, our ImAge
achieves the best R@1 performance on all supplementary datasets. In particular, on Baidu Mall,
which is the only indoor dataset and exhibits a distinct visual distribution from the other outdoor
datasets, our method achieves the best performance, outperforming NetVLAD, SALAD, and BoQ
with 0.8%, 3.3%, and 5.0% absolute R@1 improvements, respectively. This demonstrates that the
global descriptors produced by our ImAge method through implicit aggregation are not only highly
robust against common visual changes but also exhibit superior generalization ability.
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Figure 4: Qualitative results. In these four challenging scenarios (involving dynamic objects, severe
viewpoint variations, condition changes, etc.), our proposed ImAge method consistently retrieves the
correct results from the database, while other methods all return the wrong images.

Fig. 4 presents qualitative retrieval results, where the proposed ImAge consistently demonstrates
high robustness in various extreme scenes. For example, the first three cases exhibit severe lighting
changes, viewpoint variants, and seasonal transitions, respectively. Other methods often retrieve
visually similar but actually incorrect results due to perceptual aliasing. However, our ImAge
effectively addresses these challenges in VPR and successfully returns the right results.

4.4 Ablation Studies

In this section, we conduct a series of ablation studies on our ImAge. We uniformly use the
DINOv2-base-register backbone and train models on GSV-Cities with the batch size set to 120 (as the
experiment in Table 3). Unless stated otherwise, we only fine-tune the last four transformer blocks.

Effect of tokens insertion strategy. In Section 3.3, we discussed several strategies for adding agg
tokens and proposed the optimal strategy. To validate its effectiveness, we conduct an ablation to
compare different strategies. To be fair, we consistently add 8 agg tokens. Strategy (a) and (â) both
add agg tokens before the first transformer block. The only difference is that all transformer blocks in
(â) are trainable. Strategy (b) is our optimal strategy. Strategy (c) introduces agg tokens before the
penultimate block. Strategy (d) progressively adds 2 agg tokens before each of the last four blocks.
Results are presented in Table 5. Among them, (a) performs the worst, because the early frozen
transformer blocks produce weak and less informative features for VPR, harming the agg tokens
to effectively capture meaningful global information. The issue is mitigated in (â), which further
confirms our hypothesis (i.e., adding agg tokens before the first trainable blocks). However, (â) trains
all blocks, which incurs a lot of computational overhead and damages the excellent transferability of
foundation models, thus failing to get optimal results. When fine-tuning only the last four transformer
blocks, our proposed strategy (b) consistently outperforms all alternatives on all datasets by a large
margin. This is because the last four tunable blocks can produce more suitable features for the VPR
task, so our agg tokens can fully learn task-specific global representations. Although (c) and (d) also
show relatively competitive performance, the late or gradual addition of agg tokens provides fewer
opportunities to interact with patch features, thus limiting their ability to learn better representations.

Effect of aggregation tokens initialization. To validate the effectiveness of our proposed initializa-
tion methods for agg tokens, we conduct an ablation study using four initialization strategies: zero
initialization (i.e., no initialization), normal distribution initialization (commonly used for the class
token or register tokens initialization [18]), vanilla cluster centers (yielded by k-means) initialization,
and L2-normalized cluster centers initialization (i.e., ours). We consistently use 8 agg tokens and
prepend them to the patch tokens before the fourth-to-last transformer block. The experimental
results are presented in Table 6. Zero initialization produces uniform representations at the beginning,
limiting (even harming) interaction between agg tokens and patch features, and hindering global
context modeling. In contrast, normal initialization provides a better inductive bias during early
training and introduces slight randomness into the agg tokens, which helps break symmetry to get
better performance. However, both initialization methods lack any visual prior, forcing the agg tokens
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Table 5: Comparison of different insertion strate-
gies for agg tokens. The strategy (b) is ours.

Method Pitts30k MSLS-val Nordland
R@1 R@5 R@1 R@5 R@1 R@5

Strategy (a) 88.5 94.1 83.6 90.9 40.4 56.2
Strategy (â) 92.6 96.9 92.0 96.6 89.0 95.6
Strategy (b) 94.0 97.2 93.0 97.0 93.2 97.6
Strategy (c) 93.2 97.1 92.2 96.5 88.1 95.0
Strategy (d) 93.3 97.1 92.4 96.6 90.3 96.4

Table 6: Comparison of different initializations
for agg tokens. The centers-L2N is ours.

Method Pitts30k MSLS-val Nordland
R@1 R@5 R@1 R@5 R@1 R@5

zero 92.1 96.6 89.6 95.1 68.9 82.7
normal_distrib 92.9 96.9 92.0 96.8 88.6 95.3
centers 93.5 96.9 92.6 96.9 91.7 97.0
centers-L2N 94.0 97.2 93.0 97.0 93.2 97.6

to learn the patterns relevant to VPR from scratch, which constrains their final performance. Initial-
izing agg tokens with cluster centers can be viewed as injecting a data-driven prior. These centers,
obtained via unsupervised clustering of descriptors from randomly sampled training images, tend
to capture common visual patterns. Such initialization can facilitate agg tokens to learn meaningful
global information and diminish useless elements. Moreover, L2-normalized cluster centers offer
more robust initializations for agg tokens by mitigating the influence of outliers, thereby achieving
the optimal performance on all datasets.

Table 7: Comparison with the ImAge ablated ver-
sions with different numbers of aggregation tokens.

Number Pitts30k MSLS-val Nordland
R@1 R@5 R@1 R@5 R@1 R@5

cls 91.8 96.5 89.1 95.3 63.5 79.0
1 92.2 96.6 90.7 95.4 74.8 87.0
4 93.4 97.0 92.3 96.6 89.6 96.1
8 94.0 97.2 93.0 97.0 93.2 97.6

16 93.7 97.2 92.8 96.9 92.2 97.2
32 93.1 96.9 92.6 96.8 90.3 96.2
64 92.8 96.8 92.2 96.5 85.4 93.0

Effect of the number of aggregation tokens.
In this subsection, we investigate the impact of
the number of added agg tokens (and use the
class token, i.e., cls, as baseline). The agg to-
kens are all added before the fourth-to-last block,
and the results are in Table 7. Even with a single
agg token, ImAge demonstrates a clear advan-
tage over the class token with the same dimen-
sionality, notably achieving an 11.3% absolute
R@1 improvement on Nordland. This proves
the differences and advantages of our method
compared with directly using the class token, as
well as the excellent performance of our method with low-dimensional descriptors. Furthermore,
performance consistently improves as the number of agg tokens increases, with the best results
obtained using 8 agg tokens. This is because a moderate increase of agg tokens enables more
sufficient interaction and finer aggregation from the patch tokens. However, when the number of agg
tokens becomes excessively large (e.g., 64), a noticeable decline is observed. This may be attributed
to the global nature of self-attention, where an excessive number of agg tokens can interfere with
the contextual information of patch tokens, thereby indirectly degrading their own representational
capability. Thus, adding 8 agg tokens is a promising choice overall.

5 Conclusions

In this paper, we presented ImAge, an innovative paradigm that explores implicit aggregation with
a transformer to produce robust global image representation for VPR. Our method only adds some
aggregation tokens and leverages the inherent self-attention of the transformer backbone to implicitly
aggregate patch features. It overcomes the limitations of the previous backbone-plus-aggregator
paradigm in an extremely simple manner, which neither modifies the original backbone nor requires
an extra aggregator. Moreover, we propose an aggregation token insertion strategy and a token
initialization method for our ImAge method to further improve the performance and efficiency.
Experimental results show that ImAge obviously outperforms the latest explicit aggregation methods
with higher efficiency under the same setup and achieves SOTA results on common VPR datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction 1 of our paper clearly outline our contributions,
which include the development of the Implicit Aggregation and its advantages over explicit
aggregators like NetVLAD[4] and SALAD[33], providing a clear clarification of the scope
and contributions of our work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our paper includes a dedicated “Limitations and Future Work" section B where
we comprehensively discuss the limitations of our approach.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our paper only involves a small amount of theory, which has been described
in the methodology section 3 and relevant references are also provided.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper provides detailed formulations and descriptions of our proposed
algorithms called ImAge in the methodology section 3. We also provide implementation
details in the experiments section 4.2. In addition, more details about datasets I and compared
methods J are included in the appendix. What’s more, open access to our code and model
checkpoints will be provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The full codes and model checkpoints for reproducing our methods will be
publicly available upon paper publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experimental setup is detailed in sub-section 4.2, including key hyperpa-
rameters. Additional information on the compared methods can be found in apendix J. More
importantly, detailed ablation studies 4.4 are performed to show how the design strategies of
our methods were chosen.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not commonly used in the VPR research.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We presented our compute resources in sub-section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, it is.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discussed both the potential positive and negative societal impacts of the
work in appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our model achieved state-of-the-art performance in the task of VPR, and
while there is a small possibility of unintended and malicious use, our project is not at high
risk since we do not release new datasets. We will include a reminder of the risks in the
README.md for the upcoming release of our open-source project.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the paper, we have accurately cited the original sources of the datasets in
sections 4.1 and I. We respect the licenses of the referenced code and data and will properly
acknowledge them in the project’s README.md.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Codes and model checkpoints for reproducing our methods will be publicly
available upon paper publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper neither involves crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In this research, the development of the core methods 3 is entirely based
on our own original thinking without any involvement of LLMs as important, original, or
non-standard components. LLMs were only utilized for paper polishing purposes, which
falls under the category of writing, editing, or formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impacts

Visual place recognition plays an important role in several applications, including autonomous driving,
augmented reality, and robot localization. Our work proposes an implicit aggregation method to
produce robust image representation for VPR with the transformer-based backbone and shows SOTA
performance. While our exploration on VPR remains fundamental and application-agnostic, the
potential utilization of VPR technology for intrusive surveillance and social media monitoring raises
some privacy issues. It is crucial to prevent the misuse of VPR research for detrimental purposes.

B Limitations and Future Work

While our study provides a novel insight (i.e., implicit aggregation without an explicit aggregator)
into achieving robust global image representation for VPR, we acknowledge three limitations of
our work: 1) Although our ImAge method demonstrates universality for the transformer-based
models, compared to the foundation models pre-trained on the massive dataset (e.g., DINOv2 pre-
trained on the LVD-142M dataset [54]), the performance improvement is less pronounced when
using backbones without pre-training on sufficiently massive data (e.g., the ViT pre-trained only
on ImageNet [19]). This will be shown in Appendix D. However, this also suggests that with the
advancement of increasingly powerful foundation models, the superiority of our approach compared
to existing VPR methods may become more prominent. 2) The proposed method may not be a good
choice when we want to keep the backbone frozen (like AnyLoc [38]) or when the backbone is
extremely expensive to fine-tune. However, it is also worth noting that we only fine-tune the last few
blocks of the transformer backbone in most cases, which is relatively cheap. 3) Although this work
focuses on the VPR task, we believe that the proposed ImAge is broadly applicable to a wide range of
image (or other modalities) retrieval tasks. The potential of our ImAge method for more applications
in the machine learning community needs to be further explored through more experiments in future
work.

C More Details about the Relations & Differences to Other Methods

Our ImAge design draws inspiration from prior works, particularly DINOv2-register [18] and prompt
tuning [41]. Both approaches introduce additional tokens to the transformer backbone before the
first encoder block. However, their objectives and usage differ fundamentally from ours. Prompt
Tuning aims to adapt a frozen model to downstream tasks by learning a set of prompt tokens in a
parameter-efficient manner, while these tokens are typically excluded from the final representation.
DINOv2-register introduces additional register tokens to mitigate artifacts in the feature maps.
Although the study shows that these registers may capture certain global information, they are
ultimately discarded, and only the patch and class tokens are used for downstream tasks. In contrast,
our ImAge method introduces the aggregation (agg) tokens before a particular transformer block,
and utilizes agg tokens from the output of the last block as the final global image representation,
which provides a reverse perspective compared to these approaches. In addition, while the class token
within the transformer backbone is sometimes used as a global representation, our ImAge differs in
several key aspects and demonstrates superior scalability. First, the class token is typically introduced
at the beginning of the transformer and starts to learn from shallow features, which may limit its
flexibility and make it difficult to fully capture task-specific complex semantics. Second, the class
token is a single fixed embedding, which inherently restricts its representational capacity. Although it
may suffice for relatively simple classification tasks, it often proves inadequate for more complex
scenarios requiring richer and more flexible representations. In contrast, our ImAge introduces agg
tokens with customizable positions and quantities, allowing them to fully learn task-specific global
features. Moreover, we also design a tokens initialization method based on the k-means algorithm,
which is significantly different from other works. Additionally, among existing VPR methods, BoQ
[3] also offers some valuable insights for our work. However, it elaborately designs an explicit
aggregator consisting of additional encoder blocks and cross-attention layers, which aggregates
global information from patch tokens into a set of extra learnable queries. In contrast, we focus on the
transformer backbone itself and make use of the inherent self-attention mechanism. Our study reveals
a new insight: the aggregation function, previously implemented through an exquisitely designed
aggregator, already appears naturally in the transformer backbone. We demonstrate that, by adding
just some additional tokens, we can fully develop this implicit and progressive aggregation behavior.

23



Table 8: Results of NetVLAD and our ImAge using CLIP (base version, only vision encoder) and
ViT (base version) as backbone. All models are trained on the GSV-Cities dataset with the batch size
equal to 120. The learning rate is 0.00006 for the CLIP-based model and 0.0003 for the ViT-based
model. For ViT, the last two blocks are directly truncated and all other blocks are trainable, as in
[10, 50]. For CLIP, we only train the last 6 blocks with the previous layers frozen. All methods
produce 768*8-dimensional descriptors, i.e., 8 clusters for NetVLAD and 8 aggregation tokens for
ImAge, the same as in the main paper.

Method Pitts30k MSLS-val Nordland
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-NetVLAD 90.6 95.7 97.2 87.2 94.1 94.6 60.6 74.6 80.2
CLIP-ImAge (Ours) 91.2 95.6 96.9 88.2 94.1 95.5 61.0 74.6 80.1
ViT-NetVLAD 90.1 95.3 96.4 82.4 90.7 93.0 52.1 67.6 74.1
ViT-ImAge (Ours) 90.3 96.1 97.3 86.2 92.2 93.8 53.3 69.3 75.6

Table 9: Results of CricaVPR and the CricaVPR boosted by ImAge (i.e., CricaVPR+ImAge).

Method Pitts30k MSLS-val Nordland
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CricaVPR 94.9 97.3 98.2 90.0 95.4 96.4 90.7 96.3 97.6
CricaVPR+ImAge 94.9 97.5 98.2 92.0 97.2 97.3 94.1 97.9 98.7

D Comparison to NetVLAD Using Other Transformer Backbones

In the main paper, we conduct experiments using the DINOv2 backbone to validate the effectiveness
of our method. Notably, DINOv2 is a foundation model based on the ViT architecture and pre-trained
on the large-scale curated LVD-142M dataset. However, our method is also applicable to other
transformer models. To this end, we conduct additional experiments using the CLIP [56] model
and a ViT model pre-trained only on ImageNet. The results are shown in Table 8. We observe that
our proposed method, ImAge, consistently achieves higher R@1 performance across all datasets
compared to the explicit aggregation method NetVLAD. However, the performance gains of ImAge
are less pronounced (except for ViT-ImAge on MSLS-val) compared to using DINOv2-base-register
as the backbone. This observation aligns with the prior study [39], which suggests that foundation
models pre-trained on large-scale datasets (significantly larger than ImageNet) are more capable of
utilizing additional tokens to capture global information. Moreover, using CLIP as the backbone
yields significantly less improvement than DINOv2. Although CLIP is a widely used foundation
model (i.e., a vision-language model), its pre-training data and objectives differ considerably from
those of the VPR task, making it not a promising choice. This is consistent with the prior work
AnyLoc [38], which suggests that CLIP performs significantly worse than DINOv2 in outdoor VPR
scenarios.

E Improving Other VPR Methods with ImAge

Since our ImAge is a general image representation method for VPR, it can not only be implemented
based on different transformer backbones, but also can be combined with some other VPR methods
to improve their performance. This section uses the CricaVPR [48] method as an example to conduct
experiments, and the results are shown in Table 9. It can be seen that our method significantly
improves the performance.

F The GPU Memory Usage and Computational Efficiency in Training

Our method does not add agg tokens before the first block of the transformer backbone, which can
significantly reduce GPU memory usage and computational burden. Here, we not only compare our
method with adding tokens before the first block, but also use NetVLAD and SALAD as baselines.
The results are shown in Table 10. Our method has significant advantages over adding tokens before
the first block in terms of GPU memory usage and training time, and also outperforms NetVLAD and
SALAD.
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Table 10: The comparison of training GPU memory usage and training time.
Method Training GPU Memory (GB) Training Time/Epoch (min)
NetVLAD 17.54 9.93
SALAD 21.81 9.98
Adding tokens before 1st block 34.00 15.12
ImAge (Ours) 16.73 9.87

G The Attention Visualization of Aggregation Tokens
Here we provide the visualization of attention weights of our agg tokens to other patch tokens, as
in Fig. 5. This vividly demonstrates that our agg tokens can effectively focus on objects beneficial
for VPR (e.g., buildings and vegetation) while ignoring irrelevant or even detrimental elements
(e.g., sky and moving vehicles). Additionally, we can observe that: 1) Our method maintains
consistent attention on key objects under significant illumination and seasonal changes, indicating
high robustness. 2) The attention on critical objects is sparse rather than uniform, suggesting that
typically only the most distinctive features need to be considered for VPR. Even for buildings, there
is no need to focus on (aggregate) their full area. 3) Some agg tokens focus on both buildings and
vegetation, and there are also multiple tokens that focus on buildings. Therefore, there is not a
one-to-one correspondence between agg tokens and human-defined object categories.

H Additional Qualitative Results and Failure Cases

In this section, we provide additional qualitative results (i.e., visual examples) as a supplement
for Fig. 4 in the main paper. As shown in Fig. 6, our ImAge method demonstrates exceptional
robustness in retrieving correct database images across various challenging scenarios, including
seasonal/viewpoint/lighting variations and occlusions. In contrast to other methods that fail to
distinguish critical landmarks or are misled by superficial similarities, the proposed ImAge accurately
captures key features (e.g., building textures, positional relationships) to identify right matches.

Moreover, Fig. 7 illustrates some representative failure cases. While our method achieves rela-
tively close retrievals (within 50 meters) in ambiguous natural scenes without distinct landmarks,
it occasionally exceeds the predefined threshold (i.e., 25 meters) due to geographic proximity but
insufficient visual discriminability. The fourth example, which is the most challenging, involves
nighttime images with over-exposure and motion blur, where all methods (including ours) even fail
to meet the 50-meter criterion, highlighting persistent challenges in low-quality visual conditions.
These results underscore both the advancements of our approach and the remaining difficulties in
VPR, which may require increasing the geographical density of image collection for the database to
solve. Additionally, for the last two samples, SelaVPR based on local feature re-ranking obtains the
correct results, while other methods (including ours) all fail. This points to a possible way to further
enhance the robustness of our approach in the future.

I More Details about Datasets

The testing datasets used in our experiments, including Pitts30k, Pitts250k, Tokyo24/7, Nordland,
SPED, St. Lucia, and SVOX, are organized following the Visual Geo-localization (VG) benchmark
[10]. Notably, we use the official version MSLS dataset as in previous work [67, 2, 48, 3, 33]. This
version of MSLS-val only consists of 740 query images, which is different from the version in the VG
benchmark [10]. In addition, there are also several versions of the Nordland dataset in the VPR task.
In our experiments, we use the version in the VG benchmark [10], which employs the summer images
as the database and the winter images as queries, each containing 27592 images. Baidu Mall [60] is
a well-known indoor dataset for image-based localization. All images are collected at a shopping
mall that is over 5000 square meters with many challenging elements, such as transparent windows,
reflective materials, repetitive structures, dynamic pedestrians, etc.

Moreover, in the comprehensive comparison (i.e., Table 2 in main paper) with other SOTA methods,
we merge Pitts30k-train, MSLS-train, SF-XL, and GSV-Cities for training, following the approach in
SelaVPR++ [47]. Specifically, we process datasets other than GSV-Cities to divide places into a finite
number of categories, thus facilitating fully supervised training with the multi-similarity loss [66].
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(a) Input image (b) Attention weights of single aggregation token (c) Merged attention

Figure 5: The visualization of the attention weights of our agg tokens to patch tokens. The first
column (a) represents the input images. The middle 2-5 columns (b) separately display the attention
weights of a single agg token to all patch tokens (reshaped to restore spatial position), meaning
each image shows the attention of only one agg token. The last column (c) shows the merged
attention of all 8 agg tokens. The first five examples (i.e., five rows) show five different places, with
buildings, vegetation, and dynamic interference. While different agg tokens attend to distinct regions
(or objects) in the images, they consistently focus on stable and discriminative areas (e.g., buildings
and vegetation), while largely ignoring variable elements (e.g., cars). The sixth and seventh examples
show two images taken at the same place in different seasons. Our agg tokens can consistently focus
on buildings (and some discriminative regions where the terrain and railroad tracks change). The last
two examples demonstrate that agg tokens can consistently focus on buildings and landmarks even
after undergoing severe lighting changes.

J More Details about Compared Methods

In the main paper, we compare our method with several other approaches and briefly introduce them.
Here, we provide more details about them (for the results in Table 2).

NetVLAD [4] and SFRS [27] both consist of a VGG16 backbone and a NetVLAD aggregator, and
use Pitts30k as the training dataset. The latter employs self-supervised image-to-region similarities
to mine hard positive samples for training a more robust model. In our experiments, we use their
PyTorch implementations for comparison.
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Figure 6: Qualitative results. In four challenging groups of examples (covering seasonal changes,
viewpoint variations, lighting changes, occlusions, etc.), our ImAge successfully retrieves the correct
database images, while other methods fail. In the first group, most other methods return incorrect
images with landscapes absent from the query image (e.g., lakes, cliffs, and hills) or railway tracks
of contradicting shapes. The examples in the second group exhibit significant viewpoint variations,
where our ImAge consistently gets the right results and demonstrates high robustness. In contrast,
other methods return images that appear similar in viewpoint but are actually wrong. Still, they
cannot distinguish the critical difference of the landmarks (e.g., the texture of the buildings and their
positional relationship). As for the third group, the dim nature of the query image likely interferes
with the judgment of the other approaches, resulting in low-luminosity images with different buildings.
Dynamic objects like cars in the first example query of this group are also misleading. Nevertheless,
our method successfully caught the key features (e.g., the texture of buildings). The final group shows
a complex query with severe occlusions by a colossal tree. It is so difficult that all these methods except
ours have crashed, returning perceptually similar but wrong images that are also extensively covered
(by darkness, brightness, and trees). In summary, our ImAge method demonstrates unparalleled
capacity to recognize the truly identical place against various perceptual variations.

CosPlace [8] and EigenPlaces [11] both frame VPR training as a classification task and use the
SF-XL dataset to train their models. For Cosplace, we use the official model based on the VGG16
backbone (with the 512-dim output feature) for testing. For EigenPlaces, we utilize its official
implementation and the best configuration based on the ResNet50 backbone to output 2048-dim
global descriptors for comparison.

MixVPR [2] aggregates the deep features using the multi-layer perceptrons and trains the model with
multi-similarity loss [66] on the GSV-Cities [1] dataset. We apply its best-performing configuration
(ResNet50 with 4096-dim output features) for comparison.

CricaVPR [48], SuperVLAD [50], SALAD [33], BoQ [3], and EDTformer [36] all use the
foundation model DINOv2-base [54] as the backbone to extract deep features, and train their models
on GSV-Cities with the multi-similarity loss. In the comparison experiments, we consistently use
their official implementations and the best configurations.
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Figure 7: Failure cases. In the first three examples, our method retrieves database images that are
geographically close to the query images. However, the distance (radius) between these retrieved
images and the query images exceeds the predefined threshold (i.e., 25 meters), although it remains
below 50 meters. These cases (partially correct) are labeled in yellow. For the first two cases, ImAge
tolerably retrieves results with distances of 33.11 meters and 27.32 meters, while other methods even
fail to find an image within 50 meters. In the third example, the images are captured in natural scenes
without discriminative landmarks. Nonetheless, ImAge can effectively exclude incorrect answers
involving ponds and rivers, while some other methods fail to do so. The distance for this retrieval is
a fair 35.70 meters, compared to other methods ranging from 161.90 meters to 4592.90 meters. In
the fourth challenging example, all methods, including ours, fail to get an answer within 50 meters.
This challenge arises from the complex lighting conditions at night, where over-exposure in bright
areas, such as lights, affects the overall texture and the visibility of landmark details. For the last two
challenging cases (involving large changes in viewpoint), all methods (including ours) that rely solely
on global features for retrieval fail. Notably, SelaVPR, which is based on local features re-ranking,
yields the right results. This provides a potential direction for further improving the accuracy of our
method. In short, some challenges for current VPR methods remain, despite our method moving a
step forward from others.

SALAD-CM [32] is an improvement of SALAD. This work analyzes the Geographic Distance
Sensitivity of VPR embeddings and proposes a novel mining strategy to address it. Moreover, SALAD-
CM first trains the model using both the GSV-Cities and MSLS datasets for better performance. In
the comparison experiments, we follow its official implementation.

The rest TransVPR [65] and SelaVPR [49] are two-stage VPR methods. These works provide two
models: one trained for testing on urban datasets (e.g., Pitts30k and Tokyo24/7), and another trained
for testing on datasets that may contain suburban and natural scenes (e.g., MSLS and Nordland). We
follow the usage in their original paper for comparison experiments.

K The Snapshot of MSLS Leaderboard

Fig. 8 is the snapshot of the MSLS place recognition challenge [67] leaderboard at the time of
submission, and our ImAge method ranks 1st.
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Figure 8: The snapshot of MSLS place recognition challenge leaderboard. Our ImAge method
(named "ImAge4VPR" for double-blind policy) ranks 1st at the time of submission.
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