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Abstract

Knowledge distillation is a commonly-used compression method in ML due to the
popularity of increasingly large-scale models, but it is unclear if all the information
a teacher model contains is distilled into the smaller student model. We aim to
formalize the concept of ‘knowledge’ to investigate how knowledge is transferred
during distillation, focusing on shared invariant outputs to counterfactual changes
of dataset latent variables (we call these latents mechanisms). We define a student
model to be a good stand-in model for a teacher if it shares the teacher’s learned
mechanisms, and find that Jacobian matching and contrastive representation learn-
ing are viable methods by which to train such models. While these methods do
not result in perfect transfer of mechanisms, we show they often improve student
fidelity or mitigate simplicity bias (as measured by the teacher-to-student KL di-
vergence and accuracy on various out-of-distribution test datasets), especially on
datasets with spurious statistical correlations.

1 Introduction

Increasingly large deep neural networks (DNNs) trained on huge, web-crawled datasets have shown
unprecedented performance on a multitude of tasks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25], including emergent capabilities that help with more general-purpose
and flexible behaviour with SOTA on tasks they were not finetuned on [26] [11] [18]. However,
resource constraints faced in realistic scenarios, e.g., latency or energy budgets, impact the feasibility
of practically deploying such large models. Knowledge distillation [27, 28, 29, 30, 31, 32, 33, 34]
was motivated as a framework to address this challenge, wherein a smaller “student” model is trained
to mimic the outputs produced by the pre-trained “teacher” network on some available dataset. The
underlying hypothesis is that enforcing consistency between the outputs produced by two models
will yield a “transfer of knowledge” [27], resulting in the less performant model (student) inheriting
the mechanisms [35] used by the more performant model (teacher) to make its predictions.

The immense success of distillation in several diverse domains [28, 29, 30, 31, 36, 37, 38] does make
the argument above sound intuitively correct. However, follow-up work focused on developing a
better understanding of knowledge distillation has raised doubt on this viewpoint [39, 40, 41, 42,
31, 43, 44, 45]. These works demonstrate that distilled student models infrequently make the same
errors as the teacher models. This is an unlikely result if the models were sharing knowledge (and
hence relying on the same mechanisms for making their predictions). These papers make the success
of knowledge distillation surprising, and it remains unclear what precise prediction mechanisms,
if any, the student inherits from the teacher. Since the student is often observed to outperform the
teacher [27, 39, 46, 45, 47], it may be learning entirely novel mechanisms that the teacher does not
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even possess. This is possible because in practical settings, the distillation dataset is likely of direct
relevance to the application of interest. It is also likely smaller than (or minimally overlaps with)
the teacher’s pretraining data, and may not be available in offline distillation [27, 48, 49, 50, 51].
Since these smaller distillation datasets are often underspecified (i.e. they contain several predictive
attributes that can be used to produce the correct output [52, 53, 54, 55, 56]), a student can in principle
learn to match outputs produced by the teacher through a different mechanism to that used by the
teacher. Previous explorations into why knowledge distillation works suggests it is unclear what
would motivate the student to learn similar prediction mechanisms as the teacher. For example, Cheng
et al. [41] suggest that knowledge distillation enforces learning various concepts simultaneously. In
addition to providing additional information, they find that teacher outputs guide the optimisation
process by preventing excessive exploration of the loss landscape. Phuong et al. [40] find data
geometry (e.g. class separation) and optimiser bias to also be contributing factors. This leads to
another question: what design decisions in distillation pipelines incentivize the student to learn the
same prediction mechanisms as the teacher model? Beyond developing a better understanding of
distillation, answering these questions clarify when distillation can be used for producing a student
model that serves as a faithful replacement of its teacher counterpart. We make the following
contributions:

• Formalizing knowledge transfer. We define successful knowledge transfer as when the student
and teacher produce the same outputs under systematically generated counterfactuals of a dataset.
This definition abstracts away the precise implementation of a prediction mechanism and only
emphasizes the behavioral equivalence of two models to define a notion of ‘shared knowledge’.

• Characterizing knowledge transfer in distillation techniques Motivated by our definition,
we develop synthetic datasets spanning different modalities to allow counterfactual generation
and hence enable precise characterization of which prediction mechanisms a model relies on for
producing its outputs. We demonstrate that the standard distillation pipeline of matching teacher
logits suffers from a simplicity bias [57, 58, 59, 60], resulting in the student learning primarily
the simplest mechanisms in the distillation dataset. If the distillation dataset and the teacher’s
pretraining dataset have different distributions, the student and teacher may learn entirely distinct
prediction mechanisms.

• Methods for reducing simplicity bias and improving student-teacher matching. We investigate
two distillation methods aiming to more closely match model representations. We find evidence
for decreased teacher-to-student KL divergence and less simplicity bias towards certain spurious
features.

2 Preliminaries: Knowledge Distillation

Notation. Consider a neural network f : Rn × Rd → RK that takes n-dimensional inputs x ∈
X ⊂ Rn, has parameters θ ∈ Rd, and produces an output f(x; θ) ∈ RK (interpreted as the
logits in a classification setting). The neural network predictions are the composition fSMT =

softmaxT ◦ f , where softmaxT (z)i =
exp zi/T∑
j exp zj/T

is the temperature-weighted softmax function

for some temperature parameter T > 0. Cross-entropy loss on a dataset D ∈ X × [K] (where [K]
denotes the set {1, 2, . . . ,K}) for a model with parameters θ is written L(f(D; θ)).

Let Dt be the dataset used to train the teacher model ft : Rn × Rdt → Rk (whose parameters
are θt ∈ Rdt). The goal in knowledge distillation is to use this teacher model to train a ‘student’
model fs : Rn × Rds → Rk by finding a set of parameters θs ∈ Rds such that the outputs of the
student model fs(·; θs) match, in some specific sense, outputs from the teacher model ft(·; θt) on a
‘distillation dataset’ Ddistill. We distinguish between the dataset used for training the teacher versus
the one used for distilling the teacher into the student to a) emphasize the fact that a practitioner
who acquires an off-the-shelf, pretrained teacher model (offline training) is unlikely to have access
to the data used for training it, and b) explore situations where the student dataset is markedly
different - perhaps more diverse and likely containing spurious mechanisms [35]. There exists a
diverse range of possible distillation methods [28]. Of these, we explore three: Jacobian matching,
contrastive representation distillation, and soft targets only from standard distillation. Beyond their
widespread use, we choose these methods because they focus only on input/output information –
i.e. no intermediate representations are used.
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(A) Standard distillation. First proposed in the context of neural networks by Hinton et al. [27], the
standard distillation pipeline involves optimizing the agreement between teacher and student model
predictions by minimizing the KL-divergence between them:

Ex∼Ddistill

[
DKL

(
fSMTt (x; θt)∥fSMTs (x; θs)

)]
(1)

The objective above is equivalent to minimising cross-entropy loss with fSMTt (x; θt) as the ‘soft’
targets for a student model. As shown by Hinton et al. [27], assuming the logits ft(x), fs(x) are
zero-centered (mean zero), in the high temperature limit T → ∞ this is equivalent to minimising the
average logit squared difference: ∥ft(x)− fs(x)∥2.

While a standard cross-entropy loss promoting correct classification is often added to the distillation
objective, we follow recent works on understanding knowledge distillation [39, 31] and focus on the
distillation objective only. No auxiliary classification loss is added while training the student, isolating
the distillation objective’s effect in inducing knowledge transfer between teacher and student.

(B) Jacobian Matching. A Jacobian matching distillation loss matches norm of the gradient of
logits with respect to the input between teacher and student: fSMTt , fSMTs and the input-output Jacobians
Jf

SMT
s (·,θs), Jf

SMT
t (·,θt) ∈ RK×n match on examples in the distillation dataset Ddistill. This method is

equivalent to classical distillation with analytical addition of perturbation noise to inputs. We can
decompose the loss function into one representing usual squared error loss and a regularisation term
(Tikhonov regulariser). This does not just match on datapoints, but infinitely many points in their
neighbourhood. This can be achieved by adding a the following penalty to the standard distillation
loss of Eq. 1:

∥Jf
SMT
s (·,θs)(x)− Jf

SMT
t (·,θt)(x)∥

2
2 (2)

Beyond distillation [61, 62], the objective above or variants of it have been introduced in several con-
texts, such as improving out-of-distribution generalization [63], improving adversarial robustness [64],
and for learning disentangled representations [65, 66].

(C) Contrastive Distillation. In contrastive distillation, the goal is to train the student to maximise
the mutual information between the representations (typically, the features in the penultimate layer)
of the teacher network and the student network on the transfer dataset Ddistill. In [67], the authors
propose to do this by maximising a lower-bound on the mutual information objective given below.
Denote by gs : Rn → Rhs , gt : Rn → Rht the functions producing the penultimate layer features in
the student and teacher models respectively.

Teacher Representation: Zt = gt (X)
Student Representation: Zs = gs (X)

X ∼ Ddistill

MI (Zt, Zs) ≥ Ep(Zt,Zs)[log h(Zt, Zs)] +NEp(Zt)p(Zs)[log(1− h(Zt, Zs))] (3)

where h : Rht × Rhs → [0, 1] is a learnable function optimized jointly with the parameters of
the student; it can be interpreted as an auxiliary “critic” predicting whether the representations
were sampled jointly (from p(Zt, Zs)) or independently (from p(Zt)p(Zs)), assuming that they are
sampled jointly 1/(N + 1) of the time. h typically takes the parametric form:

h(zt, zs) =
exp r⊺t rs/τ

exp r⊺t rs/τ +
N

|Ddistill|
,

rt =Wtzt/∥Wtzt∥,
rs =Wszs/∥Wszs∥, (4)

whereWs ∈ Rhinter×hs ,Wt ∈ Rhinter×ht are learnable parameters, and τ, hinter are hyperparameters.
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Figure 1: Synthetic Datasets. Following the protocol above, we embed synthetic cues in two existing datasets:
(1) Dominoes [57], where CIFAR-10 images are concatenated with F-MNIST images with the same class
number. A third spurious mechanism selects a location of the CIFAR-10 image to set as randomised pixels (we
refer to this as ‘box’). If the box mechanism is correlated with CIFAR-10, then the location is determined by the
CIFAR-10 label. (2) Spurious parity, where the simple task acts as a spurious mechanism. The label is the parity
of the specified hard task subsequence (which is selected for by the control bit). All the hard tasks together act
as a single complex mechanism. Shown here is a setup with 3 hard tasks, 8 total hard task bits, 3 hard task bits
per task and 2 simple task bits.

3 Defining Knowledge Transfer

Figure 2: Knowledge Transfer: We define suc-
cessful knowledge transfer of a teacher and stu-
dent model based on how they respond to unit
interventions on the data-generating process, i.e.,
interventions on specific dimensions of the latent
vector z; e.g., A1 (shape) and A2 (background)
in the figure. Here, yellow circles represent the
prediction of a given model (column) on a coun-
terfactual image (row). Models whose predic-
tions are invariant to the same set of interventions
(denoted θ1 ∼ θ2) are termed mechanistically
similar.

Motivation. As discussed in Sec. 1, despite distilla-
tion’s immense success in various fields [28, 29, 36, 30,
31, 37], a formal notion of precisely what knowledge,
if any, is transferred from the teacher to student has
yet to be defined. For instance, consider a visual ob-
ject recognition task. In such scenarios, backgrounds
are often correlated with the object category due to
sampling bias [52, 53, 56]. Here, a model can rely on
either the background or more intrinsically meaningful
attributes of the object, such as its shape, to solve the
recognition task. To understand which, we can evalu-
ate how the model’s prediction changes when image
backgrounds are altered. If predictions change, the
model relies on information in the (spurious) attribute
of image background; if the predictions do not change,
the model is invariant to background. Formalizing this
intuition, prior work calls use of a predictive attribute
to produce outputs a “mechanism” [35], and defines
two models that rely on the same mechanisms as mech-
anistically similar. This framework is relevant to the
problem of knowledge transfer in distillation as well. Specifically, if a student model that is perhaps
more resource-efficient behaves the same way as a teacher model (i.e. is mechanistically similar), it
can serve as a faithful replacement of the teacher. We generalize their formalization to our distillation
setup next.

Let I = (i1, . . . , ik) denote a non-empty subsequence of indices (1, 2, . . . , d). Consider a set of
latents z ∈ Z , that instantiates a data-generating process (DGP) g : Z → X from the latents
z to observations x and a labeling function h : Z → Y from latents z to labels y. We assume
observational sufficiency of the DGP: observations are sufficient for determining the label.

Definition 3.1. (Mechanism.) For a particular latent configuration z ∈ Z , we say that f(.; θ) : X →
Y uses mechanism I on that example (where I ⊆ [dz] is the subset of indices of the latents) whenever
f(g(z′); θ) = f(g(z); θ) for all z′ ∈ Z|z′

I = zI .

Based on previous research (Appendix A), simplicity bias is where a model tends to rely on latent
features which produce a ‘simpler’ decision boundary or solution. We call such latents corresponding
to spurious correlations in the learned model spurious cues.
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While a few recent analyses have addressed similar questions, they focus on in-distribution test
datasets and coarse-grained measures like loss values [39, 31, 44]. In contrast, we emphasize out-of-
distribution, counterfactual datasets. This is motivated from a notion of behavioral equivalence as
the ideal goal of knowledge distillation. Our experiments are focused on the following questions for
analysis:

1. For soft-target-matching-only distillation, only the simplest mechanisms will match.
2. Training a student model by minimizing the standard distillation objective is insufficient to

guarantee knowledge transfer from teacher to student. Meanwhile, there exist distillation methods
more likely to transfer all mechanisms.

3. Even if a teacher and student have similar fidelity (accuracy on the base task on the distillation set
or even the teacher’s training set), they do not necessarily behave the same out of distribution [39].

The second point above is a consequence of the recent advances made in the in the field of Nonlinear
Independent Component Analysis [68, 69, 70, 71, 72, 66] and disentangled representation learn-
ing [73, 74]. These demonstrate that producing the same outputs on a given dataset is insufficient to
guarantee two models rely on the same underlying mechanisms for making their predictions. These
suggest distillation is limited in what knowledge it can transfer—this depends on what data is shown
to the models during distillation. We probe this further via empirical investigations.

4 Mechanistic Evaluation of Distillation

In this section we highlight the experimental setup and high-level results.

4.1 Training and Evaluation

Dataset Generation. We follow prior work on understanding distillation, which primarily uses
synthetic datasets to evaluate distillation protocols in a controlled manner [39, 41, 40, 45, 43, 42].
Having control over the data-generating process allows us to be precise about the distribution shift
that occurs in the distillation dataset with respect to the teacher’s pretraining data, in order to
evaluate a student model’s reliance on different mechanisms by altering the underlying latents. We
assume a set of ‘natural’ latents underlie the labeling function h of the data-generating process.
All other latents are either uncorrelated with the label or model ‘spurious’ cues in the data. If
using information from spurious latents leads to simpler functions, neural network simplicity bias
[59, 57, 58, 35, 75, 76, 77, 78] suggests that a network will rely on them rather than the natural
attributes for reducing the task loss. We denote the n mechanisms defined by these spurious latents as
{Is1 , Is2 , . . . , Isn}. We design two datasets across both image and text data, called dominoes (images)
and parity (language), shown in Fig. 1. These datasets have been used by prior works for modeling
neural networks’ behavior regarding simplicity bias [57, 35], transfer learning [79, 80, 81, 82],
disentangled representation learning [83], and scaling laws [84].

Training Protocol. We use teacher and distillation datasets with different distributions over the
latents, modeling the fact that a practitioner training a student model is unlikely to have access to
the same dataset as the teacher model’s training data. To understand the effect of distribution shifts,
we test our dominoes dataset (with an image mechanism and two spurious mechanisms) under all
possible combinations of distillation and teacher dataset mechanisms (Figure 3).

Evaluation Protocol. To evaluate whether a model uses any given mechanism, we randomise or
remove latents corresponding to the content of the original image on the dominoes dataset, and report
the expected divergence (as in Definition 3.1). For the image dominoes datasets, we remove the
latents entirely.

4.2 Distillation Loss and Distribution Shift on Dominoes Dataset

This section explores the effect of distribution shifts on a 3-mechanism image dataset for ResNet-18
self-distillation. We use each of 7 possible datasets where at least 1 of 3 mechanisms exists for teacher
training, distillation and test evaluation. This gives 49 student/teacher mechanism combinations and
343 categorical final test values per loss function, each run with 3 seeds. Notation: S is distillation
dataset (student) mechanism and T is teacher dataset mechanism. ‘Base distillation’ means softmax
logit KL matching. All mechanisms are denoted by a single letter (see Figure 1) – I: image (CIFAR-
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Figure 3: Final test accuracy. Notation: Similarity: test mechanism overlaps completely with both student and
teacher mechanisms. Student: test mechanism in S and not in T . There must be a shared mechanism between
S and T , excluding the test mechanism. Teacher: test mechanism in T but not in S, with same criteria for
shared subtask as in Student group. Student TP: test mechanism is covered by S and shares a subset with the T .
Overlap: S, T share a subset and this subset is not in test mechanism. Neither: teacher shares no mechanisms
with student. Any scenarios not fitting these categories are classified under Other, a broad class where the
student and teacher each contain some subset of the test mechanism. Left: for the ‘Similarity’ group, a lower
bound is observed on performance across all combinations. This bound is highest when all three mechanisms
are present (test mechanism IAB). Middle: Jacobian has slightly lower performance when teacher and student
do not share mechanisms (‘Neither’ group), improved performance for certain test mechanisms when only the
teacher contains it (‘Teacher’, ‘Teacher SP’ groups) and reduced performance for certain test mechanisms when
only the student contains it (‘Student’, ‘Student TP’ groups). Right: contrastive loss strongly upper bounds
test accuracy for spurious mechanisms in ‘Similarity’ group. Even when the student, teacher and test datasets
share the spurious mechanism (‘Similarity’ group), learning is impeded. The only exception to this is the box
mechanism in the test dataset, where simplicity bias is still observed.

Figure 4: Final test KL divergence. Notation is as in Figure 3. Middle: Jacobian loss leads to especially high
range of final KL divergence when the teacher and student do not share mechanisms. Right: contrastive loss
further bounds teacher-student KL divergence and results in most effective matching of teacher and student.

10), A: spurious mechanism A (box), B: spurious mechanism B (F-MNIST). In Figures 3, 4, each
strip corresponds to a different test mechanism, and each group to the relationship between S and T .
This grouping does not use the relation between the test mechanism and S, T . However, they are
used in Appendix D Tables 1, 2. Finally, Figure 9 shows the mean and variance of final accuracy
values for separated test mechanisms. Refer to Appendix B, D, E for the rest of the results.

Simplicity bias is observed in Figure 9 column 1 with base distillation. When the box mechanism
(mechanism A) is present in the student and teacher datasets, it is learned while CIFAR-10 and
F-MNIST are ignored. This is expected behaviour, as the teacher also shows simplicity bias (Section
C). Interestingly, the student can learn a new F-MNIST mechanism (column 1, row 4 under test
mechanism B) if it is present in the distillation dataset and correlated with the box mechanism—this
is an example of a type of ‘secondary transfer’ which we discuss in further detail below.

For Jacobian loss, data points in Figure 9 with a change greater than 2 standard deviations are often
cases of distribution shift. In particular, there is decreased learning if the test mechanism was only
in the distillation dataset. Jacobian loss is more likely to match S to T than base distillation if the
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test mechanism is in T but not in/partially in S (Table 1 column ‘in T ’). Also, it is less likely to
transfer all of S (Table 1 column ’In S’) if it is not in/partially in the teacher dataset. KL divergence
on test datasets decreases if the teacher and student datasets are identical (Figure 13. In contrast,
KL divergence increases when S ̸= T (e.g. mechanism I and AB) or one of T or S contains extra
mechanisms that the other dataset did not (Appendix E). In this sense, Jacobian loss may not improve
accuracy, but leads to better matching overall.

Contrastive loss shows strong suppression of box mechanism transfer where it is not present in
both teacher and student datasets (Figure 3, Figure 9). This transfer suppression is greatest when
the spurious test mechanism is present in only one of the student or teacher datasets. Relative to
performance in base distillation, this effect is surprisingly strong for the image corrupted by the
box mechanism (test mechanism IA, ‘Student’/‘Teacher’ groups, Figure 3). This may model well
behaviour on a type of spurious feature often present in realistic vision datasets. However, for all
mechanisms, training with contrastive loss takes longer to achieve the same accuracy, resulting in a
significant performance-robustness trade-off (Appendix D, Table 1, column ‘EQ’). It can also lead
to transfer of simple mechanisms if they are present in both datasets. Contrastive loss produces the
largest decrease in teacher-student output KL divergence compared to base and Jacobian distillation
(Figure 4). The greatest KL divergence values for this loss function are for the ‘Neither’ group, where
the teacher and student match but do not match the test mechanism. Contrastive loss seems to trade
off matching on the support set of the teacher and student’s intersection for poorer performance
entirely out of distribution of both.

Base distillation often leads to a type of ‘secondary transfer’: if the teacher mechanism contains
mechanisms P and Q, the student mechanism contains mechanisms Q and R, and we test on just
mechanism P, the student may have high performance. This seems obvious, as the shared mechanism
Q allows the teacher to produce correctly labelled examples. However, Jacobian and contrastive
losses are less likely to produce this effect (Figure 9).

4.3 Fraction of Spurious Mechanism on Parity Dataset

Figure 6 shows the training steps required to achieve a given accuracy threshold as a function of the
distillation dataset probability of simple task parity correlating with hard task parity. This shows a
test dataset where only the hard task corresponds to the label. The case where both simple and hard
tasks correspond to the label is in Appendix F. The teacher dataset contains only clean data—i.e. hard
task bit parity is the label, while simple task bits are randomised with respect to the label. More hard
task substrings to pick from increases the relative difficulty of learning the hard task mechanism,
compared to the simple task. For full results, including accuracy and entropy over training time on
datasets with counterfactually randomised latents, see Appendix F.

Except for the case where all distillation training samples have the simple task on, the model can
always learn the hard task. This is true for both MLPs and transformers (Figure 6). The rate at which
this task is learned is strongly affected by the fraction of samples with only the hard task present. The
more hard tasks, the more training time is required to learn to a specific accuracy threshold for a
fixed fraction of spurious mechanism. Adding a Jacobian loss term speeds up the learning of harder
mechanisms present in both teacher and student datasets. This can be seen by comparing Figure 6(a)
to (b): the student reaches higher evaluation accuracy within a fixed number of steps on the dataset
with only hard task corresponding to the label.

5 Discussion

For all results in this section, the effect of changes such as adding loss terms will differ depending on
the modality and dataset, hence the results here should not be considered general.

We observe simplicity bias in the base distillation accuracy plot in 3, where all mechanisms containing
spurious latents have higher maximum accuracy scores. Full results (Appendix D, E) show that the
presence of the box mechanism in both teacher and student datasets will transfer the box mechanism
to the student to near 100% accuracy, to the detriment of learning the image.

Jacobian matching loss on vision datasets has an effect of improved matching of the teacher mecha-
nism, and reduced learning of newer mechanisms only present in the student. In general the results for
this loss function are subtle, though the most statistically significant (2 standard deviations minimum)
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Figure 5: Final accuracy/accuracy change and standard deviation on various test mechanisms, with
dominoes dataset. Row labels within the heatmaps indicate student mechanism. The base distillation column
gives raw values. The Jacobian and contrastive loss columns are differences, given by by new loss function minus
base distillation. Column 2: the effect of Jacobian loss is subtle. It typically results in the greatest reduction in
performance when the student dataset alone contains the test mechanism. Column 3: contrastive loss leads to
reduction in transfer of the spurious mechanisms A and B (rows 2, 3) when both are present in the student and
teacher datasets.
.

differences can be found for student and teacher datasets with little overlap (Figure 9 and Appendices
D, E). This could be explained by the theory presented in Appendix A. We postulate that due to the
complexity and subtlety of this effect, other methods such as matching input-activation Jacobians or
using different datasets may produce more pronounced or qualitatively different results.

Across all teacher-student-test dataset triplets we tested, contrastive loss has the lowest teacher-student
KL divergence, despite being the slowest to train. This effect also holds on the patterned box dataset,
where not only the location but also the pixel values correspond to the label (Appendix E). However,
there is an accuracy penalty of around 40% (Appendix D Table 1). This trade-off may be worthwhile
in cases where it is important that the nature of the representation the student learns is similar to that
of the teacher and large quantities of compute are available. Since prior work [31] shows that with a
long enough distillation training, distillation effectiveness increases, there is no reason to believe that
increasing epochs will not eliminate this accuracy penalty. We leave exploration of this phenomenon
to further work.
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(a) MLP, base loss. (b) MLP, Jacobian loss.

(c) Nano-GPT transformer classifier, base (soft KL
matching) loss.

Figure 6: Steps to reach particular accuracy threshold on a test dataset vs distillation simple task fraction,
parity dataset. Test dataset: hard task always on, simple task randomised. Distillation dataset: hard task always
on, and simple task probability on is given by x-axis. Teacher dataset: hard task only (for difference with test
dataset, see Appendix B—in this case, teacher and test datasets are identical). When a given accuracy value
is never obtained, an ‘x’ is plotted and the datapoint is omitted from quadratic interpolation. Each data point
is a separately trained student. Error bars show steps required in accuracy for ± 1 standard deviation. (a, c)
The model always learns the hard task, except when all distillation examples contain the spurious mechanism.
Steps to reach a given accuracy for the hard task increases as fraction of simple mechanism in distillation dataset
increases. This is expected for per-datapoint simplicity bias. (b) Compare to (a): for a given simple mechanism
fraction, fewer training steps are required for reaching a given accuracy threshold.

6 Conclusion

In the datasets we examined, we found that Jacobian matching is useful when the teacher dataset
is cleaner than the student dataset. Furthermore, we found that contrastive distillation results in a
noticeable mitigation of simplicity bias. For both Jacobian and contrastive representation distillation,
when the test mechanism either subsets, is a subset of, or only partially overlaps with the teacher and
student mechanisms, transfer is reduced when compared to base distillation. In both cases, we also
observe slower training. Distillation results are always stopped at a fixed number of epochs, so final
accuracy may continue improving in these examples if the student is trained for longer.

Results on the parity dataset also agree with our simplicity bias hypothesis. On distillation datasets
where the simple task always corresponds to the hard task’s label, the hard task will never be learned
by the student. Jacobian matching has the strongest effect on this dataset. It speeds up transfer of
the hard task from a clean teacher distilled on a student dataset with the simple task, as long as the
dataset has some examples for which the hard task only is predictive of the label.

6.1 Further Work

We suggest that further work investigates how exactly the model uses each of the mechanisms,
potentially locating ‘circuits’ corresponding to localized computation of concepts in the network,
as per recent interpretability literature [85, 86, 87, 88, 89]. In particular, the mechanism definition
may be most useful when each latent dimension corresponds to ‘features’—for example, using the
Fourier spectrum of image data [90] or gradient spectral clustering [84]. Such human-imperceptible
statistical correlations often form the backbone of how models learn algorithms to compute tasks
[87, 90], leading to models vulnerable to adversarial attacks. A more modular representation should
also allow our data-generating process to align better to how models process information.
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A Related Work

A.1 Understanding Distillation.

Several prior works have attempted a study of understanding how knowledge distillation yields
highly performing student models, both empirically [39, 41, 31, 44] and theoretically (under strong
assumptions) [40, 45, 43, 42]. Most relevant to our work amongst these are the works by Stanton et
al. [39] and Beyer et al. [31]. In these papers, the authors evaluate whether the teacher and student
model make the same predictions on test samples corresponding to the dataset used for training the
student. Their results suggest the teacher and student models relatively rarely make the same incorrect
predictions, i.e., they likely focus on different predictive attributes of the data to produce their output.
However, due to a lack of formalization, it remains unclear in their work precisely what information
did the student acquire from the teacher. We address this limitation by thoroughly controlling for the
data-generating process using synthetic datasets. Our analysis enable a precise evaluation of which
prediction mechanisms are shared by the teacher and student models and which factors of the training
pipeline influence the transfer of these mechanisms.

A.2 Causal Representation Learning, Disentanglement, and Nonlinear ICA.

Modeling the data-generating process is arguably the foundation of all works on causal and dis-
entangled representation learning [73, 74, 72, 71, 91, 92], as well as the related field of nonlinear-
ICA [68, 69, 93, 66, 70]. A highly relevant result from these works is that just because two systems
match in their observations (e.g., they generate the same outputs for a given set of inputs), then that
does not imply the rules or mechanisms they use for arriving at their outputs are the same [73, 74].
Given the standard distillation pipeline (detailed in Sec. 2) only focuses on matching the student and
teacher in the predictions they produce, the results above imply we cannot be certain the models are
utilizing the same mechanisms for making their decisions. This raises the question, precisely what
mechanisms, if at all, are getting transferred via the distillation pipeline. We address this question in
this work.

A.3 Simplicity Bias in DNNs.

Neural networks have been shown to have an inductive bias towards preferring the simplest hypothesis
to explain their data in a supervised setting [57, 58, 59, 60, 35, 94, 95, 96]. While defining simplicity
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itself is a difficult problem, the general intuition in these papers is that the number of linear regions
required to explain the decision boundary of the model is proportional to the hypothesis’s complexity,
such that a linear classifier is the simplest hypothesis. Some other work investigating inductive
biases in neural networks define simplicity via the general lower-bound complexity measure of the
Kolmogorov complexity of the function the NN approximates [97, 98, 78]. Others view it through
the lens of effective parameter count or degeneracy of the trained model [76, 99, 100]. As we show,
simplicity bias plays a non-trivial role in which mechanisms actually transfer to the student in a
distillation pipeline, with more advanced methods essentially improving performance by enabling
transfer of more mechanisms.

A.4 Measuring Similarity of Neural Networks.

As we instantiate it, a transfer of knowledge essentially implies two models produce similar rep-
resentations or predictions. A few prior works have used this intuition to evaluate similarity of
two neural networks as well, defining measures like prediction mismatch [101, 102, 103, 39] and
variants of Canonical Correlation Analysis [104, 105, 106, 107]. However, by not accounting for
the data-generating process itself, these measures are only capable of measuring how similar two
networks are in their outputs on a given distribution, specifically the one the models were trained
on. As we show, the notion of a mechanism for prediction must account for the data-generating
process and hence measure the model’s outputs on out-of-distribution data. A few papers have
proposed data-driven methods for measuring similarity of two neural networks [108, 109], however
they generally limit their measures to similarity under some differomorphism of the inputs. These
measures are highly correlated with predicting a model’s performance [110], but are relatively less
useful for our purpose of understanding which mechanisms are transferred in a distillation setting,
which requires the ability for a more precise characterization.

A.5 Learning with forgetting, distribution shift and Jacobian matching

This section is key to understanding how the Jacobian loss function may behave under distribution
shifts between teacher and student datasets. In particular, while existing theory shows learning with
forgetting (LwF) conducts matching on subsets of the teacher’s dataset, Srinivas et al. [61] suggest
more work is to be done investigating matching between a teacher and a student under more structured
distribution shifts than noise addition.

Learning with forgetting involves using both hard and soft distillation on smaller target (student)
dataset. The pre-trained teacher may be trained on a different, larger source dataset. The teacher can
produce noisy and incorrect results on unseen data. For LwF to work well, activations of pre-trained
teacher on target dataset must contain information about the source dataset.

Srinivas et al. introduce a formalisation for a general distillation loss bound in learning with forgetting.
This becomes relevant in our work for exploring large statistical dataset domain shifts between the
teacher (source) dataset, which is often fixed and/or inaccessible in practice, and the distillation
dataset (target dataset). They claim LwF approximates distillation on a subset of the teacher’s source
dataset:

Proposition A.1. Suppose f(·) is the untrained student network, and g(·) is the pre-trained teacher
network. Let x,y be the input image and ground truth label, and |D| the dataset size. Let the
distillation loss function be ℓ(f(x), g(x)). Also assume Lipschitz continuity for the loss function with
constant K, and a valid distance metric in ψx on the input vector space. This metric can be most
usefully thought of as distance in feature or embedding space.

∥ℓ(x1)− ℓ(x2)∥ ≤ Kψx(x1,x2)

Define the asymmetric Haussdorf distance between two sets in the input space.

Ha(A,B) = sup
a∈A

( inf
b∈B

ψx(a, b))

Then, the following should hold, where the left hand side is the loss on the teacher’s dataset, and the
right hand side is the maximum loss on the student’s dataset.
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1

|Dl|
∑
x∼Dl

ℓ(f(x), g(x)) ≤ max
x∼Ds

ℓ(f(x), g(x)) +KHa(Dl,Ds) (5)

The Haussdorf distance limits the maximum bound on the loss on the teacher’s dataset. By restricting
Ds to the overlap with Ds, the Haussdorf distance is minimised.

This work claims that if there is no overlap, then distillation will not be of benefit, since the Haussdorf
distance depends on the overlap in the two datasets.

B Details of Training and Hyperparameters

Dominoes Dataset We use three mechanisms—a spurious box replacing certain pixels of a CIFAR-
10 image and an Fashion-MNIST image concatenated on top of a CIFAR-10 image, making a
64 × 32 domino. Where the mechanism is not present, it is replaced by black pixels (F-MNIST
mechanism) or CIFAR-10 pixels (box mechanism). The box mechanism is an 8× 8 patch of random
pixels. Appendices D, E also details results on a box mechanism where the pattern within the box
corresponded to the label. Here, the model can either learn the box’s location or the pixel placement
within them. This was chosen to test whether our results transferred between qualitatively different
types of spurious features and relative simplicity of mechanisms affect conclusions drawn.

Parity Dataset This dataset assigns a label for the parity of a a subset of a Boolean string. Which
subset or specific hard task is used depends on the control bits at the start of the string. There is also
a subset of the string dedicated to the simple task. This is designed to be easier to learn because the
substring is shorter than each hard task substring, and its location within the string is always fixed. A
probability of simple task of 0.5 means that there is a 50% chance that the parity of the simple task
bits matches that of the true label (parity of ‘hard task’ bits).

Models All experiments use self-distillation to remove confounding issues with architecture size
for transfer capability.

For the dominoes dataset, we use PyTorch’s pretrained ResNet18, with weights reset using PyTorch’s
module default parameter reset for fully connected layers (uniform with no bias), and Kaiming
initialisation for convolutional layers. Adaptive average pooling with output size (1,1) was used
(global pooling).

For the parity experiments, we use a 3-hidden layer MLP with 50 neurons each. The transformer is a
nano-GPT implementation with a classifier built in the final layer. It has 3 layers, 4 heads per layer
and an embedding dimension of 256.

Training hyperparameters A hyperparameter sweep was conducted for Jacobian and contrastive
loss to softmax KL loss ratio, which minimised evaluation loss. The values chosen were 0.15 Jacobian
and 0.03 for contrastive loss.

For the dominoes dataset with PyTorch’s ResNet18, a batch size of 64, SGD with no momentum or
dropout, and cosine LR scheduler were used. The number of evaluation batches was 50, and training
was done for 20,000 iterations. Initial and final learning rates were 0.01 and 0.001. A base distillation
temperature of 30 was chosen after initial hyperparameter search.

For the parity dataset, a batch size of 256, AdamW with no momentum, cosine LR schedule or
dropout and gradient clipping of 0.25 was used. The learning rate was fixed at 0.001. Hard task
bits was 8 in total, while number of bits per hard task was 3. Simple task bits was 2. A distillation
temperature of 1 was used throughout. Evaluation batches was 10, and training was done for 10,000
iterations.

Jacobian matching loss implementation It is possible to approximate this computationally ex-
pensive loss function with Jacobian terms with largest magnitude, but we need to compute the full
Jacobian for this. A heuristic is the output variable involving correct answers or largest output logits
(often corresponds to right label in trained models). We implement the full Jacobian matching as
well as an optional top-k class Jacobian matching for large datasets such as CIFAR-100, where top-1
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matching may not capture sufficient information. We only investigate input-output Jacobian, though
code is available for feature-matching Jacobians as in Srinivas et al. [61].

Contrastive representation loss implementation We use the version of code available publicly
from Tian et al. [67]. This was edited to remove the memory buffer. In practice, a large number of
negative pairs should be seen each time the loss is calculated to better approximate the lower bound,
so the authors use a memory buffer is used to store previously-used feature representations of each
datapoint. However, the error difference between N=64 and N=4096 is around 0.8%. This minor
difference meant our implementation used only images present in each training batch and no memory
buffer, and does not make use of their code for the memory buffer. An embedding is used to transform
the dimensionality of the student and teacher representations onto the same space and normalise them.
A dot product similarity is then used, with a softmax-like transformation to normalise as a probability
P (C = 1|T, S). In their original implementation, both the student and teacher are used as the anchor.
When the student is the anchor, its output for a specific image are compared against multiple feature
samples drawn from the teacher’s outputs. Assuming the teacher is fixed (offline distillation) means
we only use the student as an anchor. Finally, the contrastive representation requires intermediate
layer representations. In all experiments, the representation was lifted from the 8th residual block’s
second convolutional layer post batch-norm (or the input to the final average pool). This hopefully
captures higher-level representations about the data. Other layers were not attempted in this project,
though it is possible that the qualitative result differs depending on the layer and architecture.

Training Protocol and Experimental Design In distillation, the student and teacher see the same
samples and the student may be able to learn a randomised mechanism. This can happen if there is
independence of representation by the teacher for hard or simple tasks, or the teacher was trained on
a dataset with this spurious mechanism not randomised with respect to the labels. For this reason, we
remove the spurious mechanism during training and replace the data with zeros, where possible. This
was done with the image dataset, since in the parity dataset, a binary string of zeros still corresponds
to a valid parity label. The parity dataset contains multiple hard tasks, treated as one semantically
important mechanism. With 2 latent variables, the number of different datasets is rather low at 3.
This dataset is not so useful for distillation shift, but instead used to investigate basic NLP setups and
changing fraction of spurious mechanism in the dataset.

In typical counterfactual evaluations, randomising the mechanisms which we do not want to be
learned should suffice. This is the approach taken for the parity dataset. The parity dataset uses two
types of evaluation datasets.

• Test datasets: the simple task either has a 50% probability of matching parity with the hard
task, or always matches the hard task. We flip the last bit of the simple task if it does not
match the hard task. These datasets make up the results in Figure 6.

• Counterfactual datasets: randomize latent bits of the mechanisms involved, and randomize
the labels in a matching manner. For the hard task, the function mapping latents to observed
variables is the identity map—for standalone evaluation, this randomisation does nothing.
However, the point of the counterfactual datasets is to compare performance to the ‘factual’
(training) datasets. For the simple task, the latents versus observed datapoints differ only in
the last simple bit. This bit is flipped based on a Bernoulli distribution with parameter set
by the probability of simple task. These datasets make up the results for entropy and top-1
mismatch probability in Appendix F.

C Teacher Results

Figures 7, 8 show performance for the dominoes dataset on test test datasets during training for
early-stopped teachers. The purpose of these plots is to show a baseline in relative ease of learning
different mechanisms via counterfactual evaluations, before distillation is used. The following trends
are noted from the teacher training data.

Observation 1: no clear modularity. A clean assumption is if the model can learn tasks 1 and 2
together, then it has formed separate circuitry which localises information within the model for each
of the tasks. Based on performance of the teacher model for the image corrupted with a box (Figure
7, IA), neither sub-mechanism is learned in isolation: the sum of the image and box accuracies is not
100%. Further work may like to test what modifications can be universally made for images to yield
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Figure 7: Teacher accuracy over training time with dominoes dataset, random box mechanism.

more modularity. For example, if the box mechanism size decreases or a constant pixel value is used,
will mechanism IA will become more modular? This is possible, if the model is less incentivised
to use edge detection. Aligning our latent discrete variable constituents (our with features a model
sees when the overall task (IAB) is fed in helps with producing results where performance on the
independent tasks helps predict what happens when shifts occur without necessarily having to have
trained the model at hand on these datasets.

Observation 2: static information is likely preferred. Note how simplicity bias is shown for teachers
trained on A (box mechanism) and tested on box or datasets with the box mechanism plus one other
mechanism (IA, AB). This behaviour does not carry through for the test dataset with all 3 mechanisms
(IAB). Assumptions about what might make for a good toy dataset are difficult to know a-priori.
While the box mechanism is expected to be simplest, Figure 7 shows F-MNIST explains most of
the performance on mechanism AB. This has implications for what can be considered a mechanism
in more naturalistic data settings. Preliminary results not shown here (code available in codebase
(TOLINK)) show using a smaller box with static information increases the box mechanism’s relative
simplicity.
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Figure 8: Teacher accuracy over training time with dominoes dataset, label-specific box pattern.

D Dominoes Dataset Final Accuracy

In all graphs in this section and succeeding sections with the dominoes dataset, the shorthand I
(image), A (spurious mechanism 1 box), B (spurious mechanism 2 F-MNIST) will be used when
referring to the mechanisms present in the datasets. Columns within the heatmaps hold results when
trained on datasets with the same teacher mechanism, while rows all have students trained with the
same distillation dataset mechanism (‘student mechanism’). We report final test accuracy, with mean
and population standard deviation estimate from 3 seeds. The values for base distillation are raw
values, while those for Jacobian and contrastive are values obtained with the new loss function minus
values obtained for base distillation.

D.1 Random Box

The table below outlines a more fine-grained grouping of all results, conditional on a greater than 4
percentage point difference with base distillation loss. While this threshold is somewhat arbitrary,
it captures any values that are at least the sum of each value’s standard deviation away from each
other. Data was drawn from all 343 teacher, student and test mechanism combinations. For simplicity,
results are to nearest percent difference. Results to 1 decimal place are in the heatmaps below.
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Table 1: Grouped final accuracy change compared to base distillation for random box.

Notation. IS (in S): the test mechanism is equal to/a subset of S. NT (not teacher): the test mechanism has no
overlap with T . SM (student more): the test mechanism is present in both student and teacher datasets, but S
contains extra mechanisms which are not in T . EQ (equal): S, T and test mechanisms are identical. SS S, T
(subset student and teacher): the entire test mechanism is a subset of both student and teacher mechanisms. This
subset does not need to be the same for the student and teacher mechanisms. PT (part teacher): there exists a
test mechanism subset and T subset which matches. For row headings, J = Jacobian, C = contrastive.

IS IT IS, IT P or S, T

NT PT NS PS SM TM EQ PS, IT PT, NS PS, NT SS, S, T

J −9 −8 +6 +6 −2 +0 −6 −12 −13 −10 −9
C −24 −42 −28 −32 −37 −48 −40 −25 −15 −38 −49

D.2 Patterned Box

Now we consider the box mechanism where the pattern within each patch corresponds to a label-
specific crop of a cartoon two-tone Mandelbrot set. The information per class is static.

As in Table 1, the table below outlines a more fine-grained grouping of all results, conditional on a
greater than 4 percentage point difference with base distillation and to nearest percentage.

Table 2: Grouped final accuracy change compared to base distillation for label-specific pattern box.

Notation. IS (in S): test mechanism equal to/subset of S. NT (not teacher): test mechanism has no overlap
with T . SM (student more): test mechanism present in both student and teacher datasets, but S contains extra
mechanisms which are not in T . EQ (equal): student, teacher and test mechanisms are exactly equivalent.
SS S, T (subset student and teacher): entire test mechanism is a subset of both student and teacher datasets.
However, this subset does not need to be the same for student and teacher. PT (part teacher): there exists a test
mechanism subset and T subset which matches. For row headings, J = Jacobian, C = contrastive.

IS IT IS, IT P or S, T

NT PT NS PS SM TM EQ PS, IT PT, NS PS, NT SS, S, T

J −1 +2 NA −11 +4 −15 NA −5 −5 −7 −15
C −4 −22 +6 −7 −3 −22 −41 −11 +7 −14 −23
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Figure 9: Final accuracy and standard deviation, random pixel box mechanism dominoes dataset.
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Figure 10: Final accuracy and standard deviation, random pixel box mechanism dominoes dataset.
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Figure 11: Final accuracy and standard deviation, on label-specific box pattern dominoes dataset.
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Figure 12: Final accuracy and standard deviation, on label-specific box pattern dominoes dataset.
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E Dominoes Dataset KL Divergence

For the final KL divergence values in this section, there exist many cases where the KL divergence
can increase (i.e. worse matching of teacher and student distributions), but accuracy stays the same
or increases. Similarly, there are cases where the KL divergence can decrease, while evaluation final
accuracy decreases. In all heatmaps in this section, the base distillation column gives raw mean final
values. The Jacobian and contrastive loss columns are mean differences, given by value obtained
using new loss function minus value obtained with base distillation.

E.1 Random Box

Figure 13: Teacher to student KL divergence KL(T |S) and standard deviation, on random pixel box
mechanism dominoes dataset.
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Figure 14: Teacher to student KL divergence KL(T |S) and standard deviation, on random pixel box
mechanism dominoes dataset.
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E.2 Patterned Box

Figure 15: Teacher to student KL divergence KL(T |S) and standard deviation on label-specific box
mechanism dominoes dataset.
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Figure 16: Teacher to student KL divergence KL(T |S) and standard deviation on label-specific box
mechanism dominoes dataset.
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F Parity Spurious Fraction Results

Figure 17 summarizes accuracy over training time for the MLP and transformer using Jacobian or
base distillation loss, on number of hard tasks ranging from 3 to 7. It is an extension of figures in
Section 4.3. For each run, we also report prediction dissimilarity probability and entropy change on
test datasets. This is detailed in Subsection F.1.

(a) MLP, base (soft KL matching) loss.

(b) MLP, Jacobian loss.

(c) Nano-GPT transformer classifier, base (soft KL matching) loss.

Figure 17: Steps to reach particular accuracy threshold vs distillation simple task fraction. Test dataset:
simple task always on, hard task always on. Distillation dataset: hard task always on, and simple task probability
on is given by x-axis. The teacher dataset has hard task on only. the x-axes varies the probability of simple task
corresponding to correct label in the distillation dataset. Each data point is a separately trained student. Training
was done for 10000 iterations and 5 seeds. The teacher dataset has hard task bits predictive of parity, and simple
task bits are randomised. The threshold accuracy curves compress full training evolution curves, giving steps to
achieve a given accuracy. If that accuracy value is never obtained, an ‘x’ is plotted and that datapoint is omitted
from interpolation.

F.1 Counterfactual Evaluations

The following metrics are reported in this section. For simplicity, the concept of the hard or simple
task’s parity matching the label in any dataset example is colloquially called ‘on/off’.

• Maximum prediction change: probability of disagreement of top predicted label between
student evaluated on the training dataset examples, and examples where a) either the hard
task or simple task is randomised (depending on which test dataset is used), b) it is as
specified during training (base example). There are M type (a) examples for each type (b)
example.

• Maximum prediction entropy: entropy of the unique predictions of randomised examples.
This is computed for a fixed number M times for each base example.

If the randomised examples lead to a large entropy increase, then it can be assumed that the task that
was randomised was important for the model to be certain about its predictions. If this is accompanied
by a significant probability of top-1 disagreement, it is likely the model was relying on this mechanism
for its predictions.
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(a) Num hard tasks 2.

(b) Num hard tasks 3.

(c) Num hard tasks 5.

(d) Num hard tasks 7.

Figure 18: Accuracy and loss. Test datasets: simple task on/off, hard task always on. MLP, base loss, teacher
dataset hard task on only. Distillation dataset has varying probability of simple task on (legend), and hard task
always on.
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(a) Num hard tasks 2.

(b) Num hard tasks 3.

(c) Num hard tasks 5.

(d) Num hard tasks 7.

Figure 19: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task on/off,
hard task randomised. MLP, base loss, teacher dataset hard task on only. The distillation dataset has varying
probability of simple task on (legend), and hard task always on. For the no spurious delta max prediction column,
as expected, results match those of the test dataset with no spurious feature during training (Figure 18 column 1).
This is because counterfactual and test examples should be equivalent between these two datasets.
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(a) Num hard tasks 2. (b) Num hard tasks 3.

(c) Num hard tasks 5. (d) Num hard tasks 7.

Figure 20: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task ran-
domised. MLP, base loss, teacher dataset hard task on only. The distillation dataset has varying probability of
simple task on (legend), and hard task always on.
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(a) Num hard tasks 2.

(b) Num hard tasks 3.

(c) Num hard tasks 5.

(d) Num hard tasks 7.

Figure 21: Accuracy and loss. Test datasets: simple task on/off, hard task always on. MLP, Jacobian loss,
teacher dataset hard task on only. Distillation dataset has varying probability of simple task on (legend), and
hard task always on.
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(a) Num hard tasks 2.

(b) Num hard tasks 3.

(c) Num hard tasks 5.

(d) Num hard tasks 7.

Figure 22: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task on/off,
hard task randomised. MLP, Jacobian loss, teacher dataset hard task on only. The distillation dataset has varying
probability of simple task on (legend), and hard task always on.
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(a) Num hard tasks 2. (b) Num hard tasks 3.

(c) Num hard tasks 5. (d) Num hard tasks 7.

Figure 23: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task ran-
domised. MLP, Jacobian loss, teacher dataset hard task on only. The distillation dataset has varying probability
of simple task on (legend), and hard task always on.
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(a) Num hard tasks 2.

(b) Num hard tasks 3.

(c) Num hard tasks 5.

(d) Num hard tasks 7.

Figure 24: Accuracy and loss. Test datasets: simple task on/off, hard task always on. Transformer classifier,
base loss, teacher dataset hard task on only. Distillation dataset has varying probability of simple task on (legend),
and hard task always on.
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(a) Num hard tasks 2.

(b) Num hard tasks 3.

(c) Num hard tasks 5.

(d) Num hard tasks 7.

Figure 25: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task on/off,
hard task randomised. Transformer classifier, base loss, teacher dataset hard task on only. The distillation dataset
has varying probability of simple task on (legend), and hard task always on.
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(a) Num hard tasks 2. (b) Num hard tasks 3.

(c) Num hard tasks 5. (d) Num hard tasks 7.

Figure 26: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task ran-
domised. Transformer classifier, MLP loss, teacher dataset hard task on only. The distillation dataset has varying
probability of simple task on (legend), and hard task always on.
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(a) Transformer classifier, num hard tasks 2.

(b) MLP, num hard tasks 3.

(c) Transformer classifier, num hard tasks 5.

(d) MLP, num hard tasks 7.

Figure 27: Accuracy and loss. Test datasets: simple task on/off, hard task always on. Base loss, teacher dataset
hard task and simple task on. Distillation dataset has varying probability of simple task on (legend), and hard
task always on.
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(a) Transformer classifier, num hard tasks 2.

(b) MLP, num hard tasks 3.

(c) Transformer classifier, num hard tasks 5.

(d) MLP, num hard tasks 7.

Figure 28: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task on/off,
hard task randomised. Base loss, teacher dataset hard task and simple task on. The distillation dataset has
varying probability of simple task on (legend), and hard task always on.
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(a) Transformer classifier, num hard tasks 2. (b) MLP, num hard tasks 3.

(c) Transformer classifier, num hard tasks 5. (d) MLP, num hard tasks 7.

Figure 29: Mean top-1 disagreement probability and entropy. Counterfactual datasets: simple task ran-
domised. Base loss, teacher dataset hard task and simple task on. The distillation dataset has varying probability
of simple task on (legend), and hard task always on.
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