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Abstract

Neural image compression (NIC) has outperformed traditional image codecs in rate-
distortion (R-D) performance. However, it usually requires a dedicated encoder-
decoder pair for each point on R-D curve, which greatly hinders its practical
deployment. While some recent works have enabled bitrate control via conditional
coding, they impose strong prior during training and provide limited flexibility.
In this paper we propose Code Editing, a highly flexible coding method for NIC
based on semi-amortized inference and adaptive quantization. Our work is a new
paradigm for variable bitrate NIC, and experimental results show that our method
surpasses existing variable-rate methods. Furthermore, our approach is so flexible
that it can also achieves ROI coding and multi-distortion trade-off with a single
decoder. Our approach is compatible to all NIC methods with differentiable decoder
NIC, and it can be even directly adopted on existing pre-trained models.

1 Introduction

Lossy image compression is a fundamental problem of computer vision. In a simplified setting,
the aim of lossy compression is to minimize rate-distortion cost R + λD, with λ as the Lagrange
multiplier controlling R-D trade-off. Traditional compression algorithms (e.g. JPEG, JPEG2000 and
BPG [Bellard, 2018]) first perform a linear transformation (e.g. DCT, wavelet transform) and then
quantize the transformed coefficients for compression. Their bitrate control is achieved by controlling
quantization stepsize. On the other hand, lossy neural image compression (NIC) methods have
outperformed traditional codecs in recent years [Xie et al., 2021, He et al., 2022]. These methods
implement powerful non-linear transformation with a neural network, and therefore achieve better
R-D performance. However, in order to realize R-D trade-offs, we need to optimize multiple networks
towards different losses with different λs, which means that we cannot achieve flexible bitrate control.

To enable NIC models with bitrate control ability, several works adopt conditional networks [Choi
et al., 2019, Cui et al., 2021, Sun et al., 2021] . They use λ as condition and feed it into the encoder
and decoder. During training, they sample λ from a pre-defined prior and optimize the Ep(λ)[R+λD]
via Monte Carlo. Due to the capacity of conditional networks, most of them use simple prior and
limited sets of λ, such as a uniform distribution over only 5− 10 discrete λs [Choi et al., 2019, Cui
et al., 2021]. And additional effort is required to interpolate the discrete λs to achieve continuous
R-D curve [Choi et al., 2019, Cui et al., 2021, Sun et al., 2021], which limits the flexibility of variable
bitrate model. On the other hand, traditional image codecs achieve flexible R-D trade-off naturally by
controlling the quantization step. This control is fine grain (e.g. 100 levels for JPEG). Moreover, they
support flexible spatial bits-allocation for ROI-based (region of interest) coding. And the user need
only one decoder for all those flexibility.
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In this work, we intend to give neural image compression methods the flexibility of traditional codecs:
the continuous rate-distortion trade-off with arbitrary spatial bits-allocation by one decoder. It is
a meaningful task for practical NIC considering the growing size of neural decoders and the need
for fine-grain rate control. In order to achieve this, we propose Code Editing, a semi-amortized
inference [Kim et al., 2018] based approach for flexible R-D trade-off. Although previous works have
adopted semi-amortized inference to improve R-D performance [Johnston et al., 2018, Yang et al.,
2020], we are the first to discover its potential for flexible bitrate control. Specifically, we edit the
latent code directly to change the optimization target at inference time based on desired λs and ROIs.
However, we find that naïve Code Editing has limited bitrate control ability. We further analyze
and address the problem via quantization step size adaptation, and enhance its speed-performance
trade-off. Surprisingly, we find that our Code Editing can achieve not only flexible continuous bitrate
control and ROI-based coding, but also multi-distortion trade-off, all with one decoder.

To wrap up, our contributions are as follows:

• We propose Code Editing, a new paradigm for variable bitrate NIC based on semi-amortized
inference. It supports continuous bitrate control with a single decoder and outperforms
previous variable bitrate NIC methods. To the best of knowledge, we are the first to consider
semi-amortized inference for variable bitrate NIC.

• We resolve the performance decay of Code Editing by combining it with adaptive quantiza-
tion step size. And we further improve the speed-performance trade-off of Code Editing.

• We demonstrate the potential of Code Editing in flexible spatial bits-allocation and multi-
distortion trade-off, which is beyond the flexibility of traditional codecs.

2 Code Editing: Flexible Neural Image Compression

2.1 Background

The general optimization procedure of NIC methods can be concluded as follows: 1) given an image x,
an encoder (inference model) produces latent parameter y = fϕ(x). 2) Then, we obtain ⌊y⌉ by unit
scalar quantization. 3) Then, an entropy model (prior) pθ(y) parameterized by θ is used to compute

the probability mass function (pmf) Pθ(⌊y⌉) =
∏∫ ⌊y(i)⌉+0.5

⌊y(i)⌉−0.5
pθ(y

(i))dy(i) =
∏
(Fθ(⌊y(i)⌉ +

0.5)− Fθ(⌊y(i)⌉+ 0.5)), where Fθ is the cdf of pθ. 4) With that pmf, we encode ⌊y⌉ with bitrate
R = − logPθ(⌊y⌉) by entropy coder. 5) For the decoding process, ⌊y⌉ is feed into decoder
network to obtain reconstruction image x̄ = gθ(⌊y⌉), and d(·, ·) is used to compute the distortion
between reconstruction and original image. The distortion D can be interpreted as the likelihood
log p(x|⌊y⌉) so long as we treat distortion as energy of Gibbs distribution [Minnen et al., 2018]. For
example, when d(·, ·) is pixel-wise MSE, we can interpret d(x, x̄) = − log p(x|⌊y⌉) + constant,
where p(x|⌊y⌉) = N (x̄, 1/2λI). 6) Finally, the encoder parameter ϕ, decoder and entropy model
parameter θ are optimized to minimize the R-D cost R + λD, where R = − logPθ(⌊y⌉) and
D = d(x, gθ(⌊y⌉)). This procedure can be described by Eq. 1 and Eq. 2. As the rounding operation
⌊·⌉ is non-differentiable, the majority works of NIC adopt additive uniform noise (AUN) to relax it
[Ballé et al., 2017, 2018, Cheng et al., 2020].

θ∗, ϕ∗ = argmax
θ,ϕ
Lθ,ϕ (1)

Lθ,ϕ = −(R+ λD) = Ep(x)[logPθ(⌊y⌉)︸ ︷︷ ︸
-rate

−λ d(x, gθ(⌊y⌉))︸ ︷︷ ︸
distortion

] (2)

With the AUN relaxed latent code ỹ = y + U(−0.5, 0.5), the encoding and decoding of NIC can
be formulated as a Variational Autoencoder (VAE) [Kingma and Welling, 2013] on a probabilistic
graphic model ỹ → x, where ỹ are continuous relaxed latent codes. The prior likelihood log pθ(ỹ)
of such VAE is a continuous relaxation of logPθ(⌊y⌉). The data likelihood log pθ(x|ỹ) is the
distortion offseted by a constant. Moreover, the AUN relaxed latent code ỹ can be interpreted as
the reparameterized sample through a factorized uniform posterior qϕ(ỹ|x) = U(y − 0.5,y + 0.5).
Under such formulation, the evidence lower bound (ELBO) is directly connected to the negative R-D
cost of compression (Eq. 3). Then, minimizing R+ λD is relaxed into maximizing Ltrain

θ,ϕ .

2



Ltrain
θ,ϕ = Ep(x)[Eqϕ(ỹ|x)[log pθ(ỹ)︸ ︷︷ ︸

- rate

+ log pθ(x|ỹ)︸ ︷︷ ︸
- distortion

− log qϕ(ỹ|x)︸ ︷︷ ︸
0

]]
(3)

The above process of encoding is also known as fully amortized variational inference, as for each new
image x′, its variational posterior is fully determined by amortized paramters ϕ. Those parameters
are called amortized parameters as they are global parameters shared by all data points.

2.2 Code Editing Naïve

Different from previous methods in variable bitrate NIC, we propose a new paradigm of controlling
R-D trade-off by semi-amortized inference, named Code Editing. Consider now we have a pair of
parameters θλ0

, ϕλ0
optimized for a specific R-D trade-off parameter λ0. Then, for a new Lagrangian

multiplier λ1, we encode by editing the code. To be specific, given an image x, we first initialize the
unquantized latent parameters y ← fϕλ0

(x). Note that now y is exactly the same as the latent with
R-D trade-off λ0. Next, we iteratively optimize y to maximize the target Ly as Eq. 5. In other words,
we directly edit the code y to adapt to different R-D trade-offs. During the optimization process,
the decoder and entropy parameter θλ0

remains the same. This process of encoding is known as
semi-amortized inference [Kim et al., 2018], as it utilizes the initial value of amortized inference, and
optimizes latent for each data point afterwards.

y∗ = argmax
y
Ly (4)

Ly = −(R+ λ1D) = logPθλ0
(⌊y⌉)− λ1d(x, gθλ0

(⌊y⌉)) (5)

Similar to NIC, one challenge remains is that the rounding operation ⌊.⌉ is not-differentiable. It is not
possible to adopt gradient based optimization approach directly. Learning from Yang et al. [2020],
we adopt stochastic gumbel annealing (SGA) in lieu of rounding to obtain a surrogate ELBO. As
shown in Sec. 4.2, adopting SGA here achieves better R-D performance than AUN. After that, we
use standard gradient based optimization methods with temperature annealing to optimize latent y.
And we call this method Code Editing Naïve.

2.3 Code Editing Enhanced

Empirically, we find that Code Editing Naive can only achieve continuous R-D trade-off within a
narrow range (e.g. ±0.1 bpp). Out of this range, the R-D performance falls rapidly (See Sec. 4.2).
One possible reason is the train-test mismatch of the entropy model pθλ0

(y). Naturally, ⌊y∗⌉
grows sparser as bitrate decreases. And this causes an obvious gap between latent distribution
optimized for λ0 and λ1 (See Fig. 2). Thus, the entropy model fitted to latent distribution at λ0 might
perform poorly in estimating latent density of other λs. More specifically, the mismatched bitrate
is Ep(x)[Eq(y∗|x)[logPθλ1

(⌊y∗⌉) − logPθλ0
(⌊y∗⌉)]]. Under the assumption that the variational

posterior is the true posterior, this mismatch equal to DKL(Pθλ1
(⌊y∗⌉)||Pθλ0

(⌊y∗⌉)), which is just
the distance between two distributions.

In NIC, the probability mass function (pmf) Pθ(⌊y⌉) over quantized y is computed by taking the
difference of cumulative distribution function. In other words, Pθλ0

(⌊y⌉) =
∏
(Fθλ0

(⌊y(i)⌉+0.5)−
Fθλ0

(⌊y(i)⌉ − 0.5)). Following Choi et al. [2019], we augmenting it with the quantization step ∆,
and this results in Pθλ0

(⌊y/∆⌉; ∆) =
∏
(Fθλ0

(∆⌊y(i)/∆⌉ +∆/2) − Fθλ0
(∆⌊y(i)/∆⌉ −∆/2)),

where ∆⌊·/∆⌉ means the dequantized result of quantization with step ∆. Controlling ∆ results in
significantly different pmf without changing the underlying continuous density pθλ0

(y). Then, we
can optimize the ∆ augmented ELBO to find the optimal code y∗ and quantization step size ∆∗ as
Eq. 6 and Eq. 7.

y∗,∆∗ = argmax
y,∆
Ly,∆ (6)

Ly,∆ = −(R+ λ1D) = logPθλ0
(⌊y/∆⌉; ∆)− λ1d(x, gθλ0

(∆⌊y/∆⌉)) (7)
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In fact, similar idea of controlling ∆ has been adopted in Choi et al. [2019]. It implements continuous
R-D trade-off within small bitrate range (e.g. ±0.2 bpp) by controlling ∆. However, we show that
a large range of continuous R-D trade-off (e.g. 0.1 − 1.1 bpp) can be achieved by combining the
quantization step size control and semi-amortized inference.

2.4 Speed-Performance Trade-off

Optimizing y over Eq. 7. from fϕ0(x) for each x is time-consuming. Naturally, we can accelerate
Code Editing by reducing the iteration of optimization, and the R-D performance would drop
accordingly. In practice, we find that reducing the number of iterations to 10% of full convergence
achieves reasonable results for low bitrate regions (with 0.4 db PSNR drop). However, the R-D
performance in the high bitrate range degrades severely. We propose to enhance the amortized
encoder by finetuning at a high bitrate R-D objective. Then the finetuned encoder can predict a better
initial y for a high bitrate range, and thus makes computationally scalable Code Editing possible.

2.5 Extension of Code Editing

With code editing, we can empower NIC with more flexible coding capabilities out of continuous
bitrate control. By extending the optimization target for code editing, we can achieve different
coding requirements. In this work, we explore the potential of code editing in ROI-based coding and
multi-distortion trade-off.

ROI-based Coding. The need of ROI-based coding stems from the fact that different pixels in
an image have different levels of importance. So that spatially different bitrate should be assigned
according to regions of interest (ROI) during compression. When performing ROI-based coding, a
quality map m ∈ RH,W is provided to the encoder in addition to the input image x, which indicates
the importance of each pixel. Here we use a bounded continuous-valued quality map within [0, 1],
where 0 and 1 represent the least and the most important pixel respectively. To make Code Editing
support ROI-based coding, we extent the objective in Eq. 7. Specifically, we weight the per-pixel
distortion with ROI map m to obtain the optimization target LROI

y,∆ , where ◦ represents element-wise
product.

LROI
y,∆ = logPθλ0

(⌊y/∆⌉; ∆)− λ1 m ◦ d(x, gθλ0
(∆⌊y/∆⌉))︸ ︷︷ ︸

ROI weighted distortion

(8)

Note that different from existing ROI-based coding works for NIC [Song et al., 2021], our approach
imposes no prior on the shape of ROI during training. And thus our ROI control is more flexible (See
results in Sec. 4.5)

Multi-Distortion Trade-off. When compressing an image, sometimes we want to optimize the MSE,
sometimes we want to optimize the perceptual loss, and sometimes we want a balanced trade-off
between them. However, the different distortion metrics are in odds to each other [Blau and Michaeli,
2018, 2019]. For conventional NIC, we can add multiple distortion term in Eq. 7 to optimize θ, ϕ
for a specific weights between rate, and different distortions. However, just like R-D trade-off,
multi-distortion trade-off also requires multiple, or even infinite number of decoders to achieve.

Again, our Code Editing can achieve the multi-distortion trade-off by extending the objective in
Eq. 7. For example, we we want to balance the distortion and perceptual quality, we optimize towards
R + λdDd + λpDp, where Dd = dd(x, gθλ0

(∆⌊y/∆⌉)) is MSE, Dp = dp(x, gθλ0
(∆⌊y/∆⌉)) is

the LPIPS [Zhang et al., 2018] and λd, λp are parameters controlling the trade-off. The extended
target is as Eq. 9. Similarly, we can achieve this target by optimizing y and ∆ to maximize LMD

y,∆ .

LMD
y,∆ = logPθλ0

(⌊y/∆⌉; ∆)− λd dd(x, gθλ0
(∆⌊y/∆⌉))︸ ︷︷ ︸

distortion loss

−λp dp(x, gθλ0
(∆⌊y/∆⌉))︸ ︷︷ ︸

perceptual loss

(9)

Moreover, it is theoretically possible to achieve a trade-off between multiple loss metrics by extending
the target as Eq. 10. For example, we can let d1 be the MSE , d2 be the VGG loss, d3 be the style loss.
Then, we can optimize our latent code to achieve the sophisticated photo-realistic effect described in
Sajjadi et al. [2017]. And it is so flexible that we do not even need to know what those loss functions
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are during training. However, we have not conducted empirical study on LMUL
y,∆ as it is a much less

common scenario in practice.

LMUL
y,∆ = logPθλ0

(⌊y/∆⌉; ∆)−
∑

λidi(x, gθλ0
(∆⌊y/∆⌉)) (10)

2.6 Hierarchical Latent Case

Most of the sota NIC methods [Minnen et al., 2018, Minnen and Singh, 2020, Cheng et al., 2020, He
et al., 2022] are based on the hierarchical latent framework proposed by Ballé et al. [2018], which
has graphic model z̃ → ỹ → x. In this framework, ỹ, z̃ are relaxed latent code and x is image.
To simplify notation, in this section we base our analysis upon 1 level latent framework by Ballé
et al. [2017] with graphic model ỹ → x. We note that all the formulas in this section can be easily
extended to the hierarchical latent framework. We also note that for hierarchical latent case, the y’s
quantization stepsize ∆y is directly optimized by gradient descent, and the z’s quantization stepsize
∆z is optimized by grid search (See Appendix A.2 and A.3).

3 Related Works

3.1 Variable Bitrate and ROI-based control for NIC

The pioneers of NIC [Toderici et al., 2016, 2017, Johnston et al., 2018] achieve coarse rate control by
growing the number of residuals. On the other hand, Theis et al. [2017] learns the scaling vector of
latent code for each bitrate to control the bitrate. However, their R-D performance is surpassed by
Ballé et al. [2017]. More recently, based on the framework by Ballé et al. [2017], Choi et al. [2019],
Cui et al. [2021], Sun et al. [2021] uses the one-hot encoded λ as conditional input to the auto-encoder
where λ is sampled from uniform discrete prior during training. And additional efforts are required
to interpolate the R-D curve for continuous rate control. Cui et al. [2021] improves Theis et al.
[2017] with asymmetrically scaled vectors. More recently, Song et al. [2021] inserts Spatial Feature
Transform (SFT) module into the auto-encoder to modulate the intermediate feature. However, to the
best of knowledge, we are the first to explore semi-amortized inference based variable bitrate model.

For ROI-based control, Agustsson et al. [2019] distinguishes images into important and unimportant
regions, and use a GAN to generate the unimportant regions. Cai et al. [2020] supports bit allocation
by applying different losses to ROI and non-ROI regions. Song et al. [2021] uses ROI to modulate
the intermediate features and recover the ROI implicitly from the hyperprior, and it claims that it
support flexible ROI control. However, it requires complicated handcrafted ROI prior during training.
Compared with above-mentioned methods, our Code Editing does not require any prior of ROI, nor
data contains segmentation map during training.

After the submission of this manuscript, Shi et al. [2022], Fathima et al. [2023] also achieve pixel
level variable rate coding for neural codec. On the other hand, Agustsson et al. [2022] also implement
promising perception-distortion trade-off with a conditional decoder.

3.2 Semi-amortized Inference for NIC

The semi-amortized variational inference is concurrently invented by Kim et al. [2018] and Marino
et al. [2018]. The basic idea is that works following Kingma and Welling [2013] lose the good
tradition of learning variational posterior parameters per datapoint. Instead they learn fully amortized
parameters for the whole dataset. And this fully amortized inference might lead to sub-optimal
posterior distribution. Cremer et al. [2018] refers to this phenomena as amortization gap and argues
it is a major contributor to inference sub-optimality of VAE. The semi-amortized inference is to
initialize the variational posterior’s parameter with fully amortized parameters, and conduct stochastic
optimization per data-point.

Although Kim et al. [2018], Marino et al. [2018] are alluring to apply, they require nested iterative
optimization within the stochastic gradient descent loop. When adopting semi-amortized inference
to NIC, Djelouah and Schroers [2019], Yang et al. [2020] simplify it into two stages: 1) training a
fully amortized encoder-decoder pair 2) iteratively optimize latent which is initialized by amortized
encoder. Although this simplification can lead to sub-optimal generative model (recall that now
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the generative model is paired with sub-optimal inference model), it indeed makes semi-amortized
inference practical for NIC. Our method follows Yang et al. [2020] as we explore semi-amortized
inference for R-D trade-off instead of R-D performance.

4 Experimental Results

4.1 Experimental Settings

Following He et al. [2021], we train the baseline models on a subset of 8,000 images from ImageNet.
For training, we use MSE as distortion. For each baseline method, we train models with 7 fixed R-D
trade-off points, with λ ∈ {0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045, 0.08}. This setup is aligned
with Cheng et al. [2020]. The baseline models’ bitrate ranges from 0.1 to 1.0 bpp on Kodak dataset
[Kodak, 1993]. All baseline models are trained using the Adam optimizer for 2000 epochs. Batchsize
is set to 16 and the initial learning rate is set to 10−4. For all the results reported in the R-D curve, the
bitrate is measured by actual bits of range encoder, and the reconstruction is computed by the latent
coded from the actual the range decoder. For all visualization involves spatial bitrate distribution, the
theoretical bitrate is used. More detailed setup can be found in Appendix C.

4.2 Ablation Study

We set Ballé et al. [2018] as the baseline of the ablation study. All experiments involving Code
Editing are based on the model trained with λ0 = 0.015. In ablation study, all the results are tested
on Kodak dataset.

Adaptive ∆. To reduce the prior mismatch, we propose to control the quantization step ∆ in addition
to optimizing y. To verify its effectiveness, we compare Code Editing Enhnanced (w/ adaptive ∆)
with Code Editing Naïve (w/o adaptive ∆). As shown in Fig. 1, the R-D performance of Code Editing
Naïve drops evidently when the bitrate changes out of a small range (± 0.1 bpp). Further, we provide
statistics of normalized dequantized results of quantized y(i) before and after Code Editing on the
Kodak dataset in Fig. 2. It is shown that the distribution mismatch of Code Editing Naïve is more
evident than Code Editing Enhanced. On the other hand, we also show the result of controlling ∆
alone. As Choi et al. [2019], we find that adjusting ∆ can shift the bitrate in a limited range (± 0.1
bpp). But out of this range, the R-D performance drops rapidly.

SGA vs. AUN. In Code Editing, we adopt SGA instead of additive uniform noise (AUN) as relaxation
of discrete latent. To verify the effect of SGA, we optimize y for 2,000 iterations using SGA and
AUN, respectively. As shown in Fig. 1, although Code Editing with AUN also outperforms the
baseline, the SGA’s R-D performance is significantly higher than AUN especially in high bitrate
region. This is due to the fact that SGA closes the discretization gap [Yang et al., 2020] via soft to
hard annealing.

Encoder Fine-tuning for Fast Inference. We show that we can control the computational complexity
of Code Editing by early termination. We terminate Code Editing with {50, 100, 200} iterations,
which correspond to {2.5%, 5%, 10%} of full iterations. The results on the Kodak dataset are shown
in Fig. 1. In low bitrate range, the R-D performance achieves a reasonable point within 10% of
iterations. However, the R-D performance in the high bitrate region degrades severely. To solve
this problem, we finetune encoder with λ = 0.052 under ∆y = 0.5. The latent code predicted by
the finetuned encoder is used as the initial value for Code Editing in the high bitrate range. And a
stronger encoder achieves better R-D performance with very few iterations (marked with "Encoder
FT." in the Fig. 1).

4.3 Variable Rate Coding

First, we evaluate Code Editing Enhanced for continuous variable bitrate coding. We choose three
established works [Ballé et al., 2018, Minnen et al., 2018, Cheng et al., 2020] as baselines. For
each of the baselines, we set base model’s R-D trade-off parameter λ0 = 0.015, which results in a
mid-range bitrate (around 0.5 bpp). For each image x to be compressed, we initialize y ← fϕλ0

(x)

and optimize y for 2,000 iterations using SGA, with the learning rate of 5× 10−3. This setting is
aligned with Yang et al. [2020]. ∆y is directly optimized by gradient descent and ∆z is optimized by
grid search. Fig. 3 shows the R-D performance of variable bitrate via Code Editing. It can be seen
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Figure 1: Results of ablation study. Left: Results of adaptive ∆ and SGA. Right: Results of speed-
performance trade-off. ∆ adjustment is used for "0 iters".

Code Editing EnhancedCode Editing Naïve

Figure 2: The distribution of normalized dequantized results of quantized y(i) before and after Code
Editing. The normalization parameter is σ2 from p(y|z). Left: Code Editing Naïve. Right: Code
Editing Enhanced. The source λ0 = 0.015, the target λ1 = 0.0016.

that Code Editing Enhanced can effectively achieve wide range continuous R-D trade-off with fixed
decoder and entropy model trained at λ0.

Then, we compared Code Editing Enhanced with the sota variable code-rate methods [Theis et al.,
2017, Cui et al., 2021, Song et al., 2021]. For fairness, we re-implement these methods on the
baselines with the same setting as original papers. The results are shown in Fig. 3. Note that we only
show the results of Song et al. [2021] on Ballé et al. [2018] as it produces NaNs on other models.
As shown in Fig. 3, Our proposed Code Editing outperforms existing variable bitrate methods with

Figure 3: Results of Code Editing Enhanced on Kodak dataset. Left: Ballé et al. [2018] as baseline.
Middle: Minnen et al. [2018] as baseline. Right: Cheng et al. [2020] as baseline.
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all three baseline. Theis et al. [2017] brings larger degradation in R-D performance, especially in
the high bitrate region. Cui et al. [2021] achieves similar R-D performance as the original fix-bitrate
model. The R-D performance of Song et al. [2021] on Ballé et al. [2018] exceeds the fix-bitrate
model in the low bitrate range but is inferior to Code Editing Enhanced.

4.4 Multi-Distortion Trade-off

Next, we explore the potential of Code Editing Enhanced in multi-distortion trade-off. For exper-
iments, we choose to balance between MSE and LPIPS [Zhang et al., 2018]. MSE is adopted to
measure fidelity, while LPIPS is widely adopted for perceptual quality [Mentzer et al., 2020, Bhat
et al., 2021].The lower the LPIPS is, the better perceptual quality an image has. In our experiment,
we select 3 trade-off points by controlling the LPIPS weight λp ∈ {0.1, 0.5, 1.0}. We use the bitrate
control scheme in Mentzer et al. [2020] to stabilize bitrate (See Appendix C for detail). Fig. 4
shows the multi-distortion trade-off results based on Ballé et al. [2018] on the Kodak dataset. As λp

increases, both LPIPS and PSNR decrease, implying better perceptual quality and worse distortion is
achieved. Further, we show qualitative results based on Ballé et al. [2018] on the CLIC2022 dataset
[CLIC, 2022] in Fig. 5. We can see that as λp increases, the detail level of image increases, which
indicates a better perceptual quality. Both quantitative and qualitative results show that our Code
Editing can achieve flexible multi-distortion trade-off.

Figure 4: The quantitative multi-distortion trade-off results. Left: Bitrate-PSNR with different λps.
Middle: Bitrate-LPIPS with different λps. Right: PSNR-LPIPS with different λps, the bitrate are
approximately the same.

4.5 ROI-based Coding

This section shows the performance of Code Editing in terms of ROI-based coding. In order to verify
the effectiveness of spatially adaptive R-D trade-off, we use various quality maps. We use Ballé et al.
[2018] as the baseline model to verify the effectiveness of Code Editing in ROI-based coding on
Kodak and CLIC2022 datasets. Fig. 6 illustrates these results. And our Code Editing can allocate
bitrate spatially according to arbitrary-shape ROI maps, including checkerboard and alphabet shapes.
Moreover, we compared our Code Editing ROI results with Song et al. [2021] which is trained with
sophisticated prior in Fig. 7. It can be seen that Song et al. [2021]’s result suffers from ROI map
diminishing issue. We can barely sense the effect of ROI map inside the region indicated by the white
rectangle. In Appendix B.2, we provide more ROI results on different types of masks, including
segmentation mask.

4.6 Gap to SAVI with Multiple Models

We present the results of direct performing semi-amortized inference on baseline models on Kodak
dataset. To be specific, we directly optimize y using SGA based on multiple models, which is
equivalent to Yang et al. [2020] without bits-back coding. From Fig. 8 we can see that when baselines
are Ballé et al. [2018], Minnen et al. [2018], our Code Editing Enhanced is comparable to SGA based
on multiple models. However, when baseline is Cheng et al. [2020], our Code Editing Enhanced
indeed suffers from R-D performance decay in high bitrate region. We use a single decoder to achieve
this while Yang et al. [2020] require multiple decoder. We are neither superior nor inferior to Yang
et al. [2020], as the task is very different.
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(1.b). λp = 0.1

Bitrate: 0.1955 bpp
PSNR: 25.29 dB
LPIPS: 0.3968

(1.c). λp = 0.5

Bitrate: 0.1974 bpp
PSNR: 25.16 dB
LPIPS: 0.2978

(1.d). λp = 1.0

Bitrate: 0.1973 bpp
PSNR: 24.71 dB
LPIPS: 0.2448(1.a). Original Image

(2.b). λp = 0.1

Bitrate: 0.1575 bpp
PSNR: 25.25 dB
LPIPS: 0.5364

(2.c). λp = 0.5

Bitrate: 0.1600 bpp
PSNR: 25.10 dB
LPIPS: 0.4358

(2.d). λp = 1.0

Bitrate: 0.1586 bpp
PSNR: 24.67 dB
LPIPS: 0.4054(2.a). Original Image

Figure 5: The qualitative multi-distortion trade-off results. (x.a) is the original image, and (x.b)-(x.d)
are reconstruction results of three images with different multi-distortion trade-off λp.

b. ROI Map, black=0 (least 

bits), white=1 (most bits)

a. Original Image c. Reconstructed Image d. Actual bits allocation, the 

unit is bits per pixel (bpp)

0.81

0.00

0.36

0.78

0.00

0.00

Figure 6: Results of Code Editing Enhanced‘s ROI-based coding.

Note that the major difference between our work and Yang et al. [2020] is that our approach requires
only one decoder for continuous bitrate control, ROI and perception-distortion trade-off. And Yang
et al. [2020] require multiple decoders for them. Yang et al. [2020] adopt SAVI Kim et al. [2018] to
improve the R-D performance of a pair of encoder-decoder. We find SAVI can also be adopted to
achieve bitrate control, ROI and multi-distortion with only a single decoder. In fact, even without the
SGA of Yang et al. [2020], the semi-amortized inference of the simple AUN implementation can still
achieve flexible bit rate control (See Sec. 4.2).
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1.60

0.00 0.00

1.40

Figure 7: Results of Song et al. [2021]’s ROI-based Coding by using the same original image and
ROI map of Fig. 6. The white rectangle indicates where ROI map is not effective.

Figure 8: Comparison of R-D performance between Code Editing Enhanced and Baseline + SGA per
model . Left: Ballé et al. [2018] as baseline. Middle: Minnen et al. [2018] as baseline. Right: Cheng
et al. [2020] as baseline.

5 Conclusions

We propose Code Editing, a new paradigm for continuous variable bitrate NIC based on semi-
amortized inference. It outperforms current variable bitrate NIC methods. Moreover, it achieves
flexible spatial bits allocation and multi-distortion trade-off, all with one decoder. Limitations
include that the efficiency of Code Editing could be improved, and that the empirical study on more
compounded target mentioned as Eq. 10 should be addressed.

Limitation

In general, our method does not work for the cases where encoding time matters, such as real-time
communication. Our method is extremely useful for the cases where we encode just once but
decode/view plural number of times, such as content delivery network. Another limitation of our
work is that we limit the scope of discussion to scalar ∆ instead of vector ∆. Adopting a vector ∆
increase the range of bitrate in ROI-based coding. For Code Editing Enhanced, all pixels share one ∆.
And this means in ROI-based coding, the overall ∆ might not be suitable for all pixels with different
quality map value m.
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